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MULTISCALE TOPOLOGY OPTIMIZATION OF MODULATED FLUID

MICROCHANNELS BASED ON ASYMPTOTIC HOMOGENIZATION

F. FEPPON1

1 NUMA Unit, Department of Computer Science, KU Leuven, Belgium.

Abstract. Dehomogenization techniques are becoming increasingly popular for enhancing lattice designs of
compliant mechanical systems with ultra-large resolutions. Their effectiveness hinges on computing a deformed

periodic grid that enable to reconstruct fine-scale designs with modulated and oriented patterns. In this pa-

per, we propose an approach for extending dehomogenization methods to laminar fluid systems. We initiate
our methodology by asymptotically deriving Darcy’s law on a periodically porous medium deformed by a dif-

feomorphism. Unlike the mechanical context, we reveal that the homogenized permeability matrix depends

not solely on local the orientation but also on the local dilation of the deformed periodic medium. This dis-
tinction presents one of the several challenges to be tackled when adapting dehomogenization-based topology

optimization techniques to porous media. To accommodate existing methodologies, we formulate a simplified

“poor man’s” homogenized model, which streamlines various aspects, yet still leans on periodic cell problems
to estimate the spatially varying permeability matrix. Specifically, we overlook boundary layer effects, we pre-

sume periodic grid deformations, and we neglect local dilation, solely considering the relationship with local cell

orientations. Subsequently, we present a numerical approach for designing a system that redistributes an input
flow across numerous regularly spaced outlets at an output interface. Leveraging the homogenized model, we

deduce optimized geometric arrangements of local channel spacing parameters and orientations. We then use
established methods to reconstruct grid deformations and fine-scale designs. The fidelity of these reconstructions

is then validated through fine-scale simulations. Our observations indicate that while the proposed designs yield

satisfactory performance when subjected to the full-scale model, discernible deviations from the homogenized
model persist, appealing to future improvements.

Keywords. Mulsticale Topology Optimization, homogenization, porous media, spatially modulated locally
periodic medium, Darcy’s law.
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1. Introduction

Topology Optimization (TO) has revolutionized industrial design processes by automating the creation of
optimized physical systems [13, 8]. The rise of additive manufacturing has expanded the scope of feasible
designs [28], making TO increasingly popular in industries like automotive where it’s used to design light-
weight supporting components. Among these increased capabilities, additive manufacturing is opening the way
towards achieving ultra-fine resolutions in printing structures, potentially down to the nanometer level [61].
However, traditional TO methods struggle when it comes to capturing the intricate microscopic details needed
for multiscale designs due to the need for highly detailed and computationally intensive meshes.

To address these limitations, the field of multiscale Topology Optimization has emerged, see [64] for a
review. The goal of multiscale TO is to create designs that optimize both the overall shape and the microscopic
lattice-like structures To achieve this in reasonable computational time, multiscale TO takes advantage of
homogenization theory [51, 7], which predicts how materials will behave on a larger scale by averaging out
the tiny details on a smaller scale. With the benefit of rigorous asymptotic analysis, the effective medium
can be conceptualized as a homogeneous entity possessing smooth, homogenized material attributes. These
attributes are explicitly derived by solving a cell problem within a representative periodic unit cell. This makes
it possible to simulate the physics of the medium using coarse meshes, reducing drastically the computational
effort compared to running full simulations with ultra-fine grids.

A promising subclass of multiscale Topology Optimization are dehomogenization methods [41, 9, 37]. These
methods generate optimized designs with geometrically modulated periodic patterns in a two-steps process.
In the initial step, an optimal microstructure is computed. This microstructure is characterized by a concise
set of smoothly changing geometric parameters and the local orientation of the periodic cell. Subsequently, in
the second step, a distorted grid is deduced from the optimized orientation. This grid manipulation allows for
projecting the finely tuned geometric parameters onto a viable design spanning various length scales. The de-
formed grid is numerically described by a diffeomorphism, which is the key ingredient for successfully generating
periodically modulated lattice structures with spatially oriented cells.

The microstructure parameters are optimized on a coarse mesh, while the final reconstruction of the multiscale
design on a fine mesh is relatively inexpensive. As a result, dehomogenization enables to generate large-scale,
high-resolution multiscale structures without the computational burden that classical Topology Optimization
would demand on exceptionally fine mesh.

So far, multiscale TO methods, including dehomogenization techniques, have been primarily applied to the
design of mechanical structures. However, there is a great potential for their application to the design of systems
featuring complex arrangements of fluid channels, such as microfluidic devices and heat exchangers. Microfluidic
devices in particular are commonly used in various applications from biology, chemistry [57, 12], for instance for
DNA separation [29]. They require careful design of fluid channels to meet requirements such as uniform output
pressure through multiple outlets [49, 26, 45, 63]. Recent advancements in additive manufacturing have made
it possible to produce micro-architectured designs, which have shown to improve performance and efficiency
[55, 60].

The development of multiscale TO methods for fluid systems is fairly recent and has been the object of
only a few publications; none of them using dehomogenization based methods whereby the locally periodic
microstructure is projected on a deformed grid. The first work investigating optimal porous media can be
found in [44], where classical TO was used to determine the geometry of periodic microstructures maximizing
the components of the Darcy–permeability tensor. This approach was still not coupled to a macroscale model.
The first truly multiscale TO method for fluid systems was developed in the PhD thesis [65] for the design of
micropillar arrays constituting a microfluidic device. The author relied on a Brinkman model with a penalization
factor parameterized by the local volume fraction according to an empirical constitutive law. After optimizing
the local volume fraction, micropillars arrays were subsequently reconstructed and aligned according to the fluid
strain tensor directions.

Subsequently, Dede and his co-authors published a number of works using a reaction-diffusion equation to
generate Turing patterns, which effectively dehomogenize optimized porous designs into microchannel flows. In
their initial work, [26] utilized an empirical analytical Darcy model relating fluid channel widths to the inverse
permeability. This approach was expanded in [27], where the permeability coefficient was numerically estimated
by solving an empirical cell problem, and dehomogenized designs were successfully experimentally validated. In
these two works, fluid microchannels were reconstructed according to the macroscopic fluid streamlines. Then,
the authors considered a different modelling approach for optimizing convection-reaction systems in [68, 45],
where the orientation of the channels was considered as the key design variable.

The optimization of multiscale fluid-thermal devices was considered in [52] by resorting to the Brinkman
model and to a homogenized convection-diffusion equation derived by physical modelling. The optimized de-
signs include “gray regions” corresponding to porous parts of the design which were not dehomogenized. More
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recently, [53, 54] proposed a multiscale TO method for the optimization of the orientations and sizes of mi-
cropillars that could be selected among a set of predefined shapes relying on a Stokes model penalized with the
Darcy permability matrix obtained by periodic homogenization. Finally, [19] developed a multiscale Topology
Optimization method relying on recent macroscale models obtained by the volume averaging technique, still
observing large discrepancies with direct fluid simulations.

As these references suggest, one of the major challenges to address when devising dehomogenization methods
for fluid systems comes from the multiplicity of available homogenized models relating the geometry of the
porous microstructure to the macroscale fluid behavior, not all of them being mathematically justified. In fact,
extending dehomogenization methods to fluid systems pose serious difficulties that are not present in the context
of mechanical systems.

First, scaling effects come into play: the mathematical literature on homogenization of porous media states
that different homogenized models apply to different scaling regimes between the size of the periodic inclusions
and the distance between them [58, 4, 31]. Assuming that the solid obstacles are distributed on the cells of
a grid with periodicity ϵ, the physics of the porous medium is described by the Darcy equation. Still, if the
solid obstacles become tiny, with size of the order of ϵ3 (in three dimensions), the physics of the medium is
then described by the Brinkman model [3]. Solid inclusions of size much smaller than ϵ3 have no effects; the
physics of the medium is then that of the Navier-Stokes equation. In order to apply gradient based optimization
methods to multiscale design of fluid systems, there is a need for effective model that would account for pure fluid
to pure solid regions and all possible transitions between the Brinkman and Darcy regimes; the derivation of
homogenized equations accurate at higher order powers in ϵ can represent a possible research direction towards
the derivation of such ideal models [36].

Second, classical homogenization theory still only applies to academic systems with idealized boundaries
and periodic microstructures, while realistic multiscale systems features inlets and outlets as well as spatially
varying microstructures. Boundary conditions in heterogeneous media create boundary layers which impact the
homogenized field inside the domain which are known to be quite delicate to describe analytically [5, 14, 38, 50].

A third difficulty, that we discuss in Section 3, comes from the fact that the Darcy permeability tensor
on a deformed periodic domain depends on the local stretching experienced by the distorted medium. This
is a major difference with the setting of linear elasticity where this effect does not exist for the homogenized
stiffness matrix. For instance, diminishing the size of the periodic cell within a composite elastic material by
a factor of 2 doesn’t alter its effective properties. However, in the context of a porous material, reducing the
radius and the relative spacing of periodic solid obstacles by a factor of two results in a fourfold increase in
the permeability tensor. The invariance of the effective properties by rescaling is a rather strong assumption of
previous dehomogenization based multiscale methods [41, 9], which would need to be addressed when developing
future dehomogenization based methods for fluid systems.

In this paper, we develop a “poor man’s approach” to dehomogenization based Topology Optimization of
fluid microchannels that ignore these three difficulties. The intention of the paper is to provide a proof of
concept of the applicability of the dehomogenization techniques previously developed for mechanical structures
to the context of fluid channels. We rely on multiple simplifying assumptions such as ignoring boundary layers,
scaling regimes and the dependence of the permeability matrix to the local dilation. Still, as an important
methodological difference with respect to the dehomogenization methods of [26, 68, 27, 45], we rely on asymptotic
homogenization to compute the macroscopic permeability tensor from the geometry of the microstructure rather
than empirical numerical or analytical permeability models. The advantage of using asymptotic homogenization
for computing the permeability matrix lies in the fact that it potentially leads to mathematically justified
approximations (up to the limitations exposed above). The use of analytical or numerical empirical models
does not require an online precomputation phase in which the effective parameters are evaluated for all possible
considered unit cells, but these can be more difficult to derive for arbitrarily complex microscopic geometries.

We call it “a poor man’s approach“ because our methodology is based on the exclusive use of the Darcy model,
in reference to the paper [67]. As it may be expected, this simplified models lead to significant discrepancies when
evaluating the flow field with the full-scale model, typically larger than those observed when using a Brinkman
model rather than the Darcy model for solving the state equation (as in [26, 68]). Still, we demonstrate
that despite the strongly simplifying assumptions considered, our methodology is able to generate multiscale
microchannels designs that achieve reasonable performance, even when evaluated with the full-scale model.

The paper is organized as follows. Section 2 starts by presenting the design problem considered and the asso-
ciated physical model: we aim at generating a distribution of fluid microchannels spreading over many regularly
spaced outlets with uniform output velocity, taking into account upper-bound constraints on the pressure drop
and the total fluid volume. We describe the set of admissible locally periodic domains parameterized by two
geometric parameters fields and a diffeomorphism.

Before proceeding to a numerical methodology, we present then in Section 3 homogenization results for the
Stokes system in an idealized periodic porous medium distorted by a diffeomorphism. We particularly emphasize

3



the non-trivial dependency of the Darcy matrix to the local grid stretching. The full derivation is based on the
method of two-scale expansions and is provided in the Appendix B.1.

Then, in Section 4, we introduce a number of simplifying assumptions that enable us to devise our multiscale
design optimization procedure. We provide formulas for the sensitivities of objective and constraint functionals,
and we describe filters used to avoid “checkerboard” solutions. Numerical results of the optimization of the
geometric parameter fields are presented.

Proceeding in the vein of dehomogenization, which closely follows [40], Section 5 outlines the dehomoge-
nization procedure. We showcase numerically reconstructed designs and evaluate their performance through
utilization of the full-scale model. An additional numerical test case with the position of the inlet set at a
different location of the domain is presented at the end of the section. In both cases, we obtain satisfactory
performance of the reconstructed designs when assessing them to the full-scale model, despite sensible deviations
from the predictions of the homogenized model.

Finally, the limitations as well as the perspectives opened by the present work are discussed in the concluding
Section 6.

2. Setting of the design problem

In this section, we introduce the design problem considered as the physical motivation for the present study.
We wish to design a microfluidic device that redistributes an input flow across numerous regularly spaced outlets
an output interface, taking advantage of a homogenized description to capture these numerous channels without
the need for explicitly representing them on a fine grid.

The design problem is described and modelled as a constrained optimization problem in Section 2.1. The
set of admissible designs is restricted to a class of locally periodic media which are constructed according to a
procedure detailed in Section 2.2.

2.1. Description of the physical model and optimal design problem

In all what follows, we consider a 2D rectangular domain D = (0, 1) × (0, 1) illustrated on Figure 1. The
domain D is divided into a fluid component Ωϵ and a solid part D\Ωϵ. The fluid component is labeled by the
variable ϵ which represents a small length scale parameter. The scope of acceptable designs is confined to a class
of locally periodic media, which are constructed according to a detailed procedure elaborated in Section 2.2.

A laminar fluid is entering the domain through an inlet boundary Γin with prescribed velocity uϵ = u0 and
flows out the domain through the right boundary Γout with zero output pressure pϵ = 0. In the present setting
illustrated on Figure 1, the inlet boundary occupies on a centered portion of the left side of the domain; an
alternative configuration with a different inlet position is considered in Section 5.4. The fluid enters the domain

Γin uϵ = u0 Γout pϵ = 0

D

Figure 1. Physical domain D with inlet and outlet boundaries Γin and Γout.

on the inlet boundary Γin with velocity uϵ = u0 and exits on the outlet boundary Γout with zero output pressure
pϵ = 0 and zero tangential velocity (uϵ × n = 0). We assume that the fluid motion and pressure are governed
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by the Stokes equations on Ωϵ, which read:

−∆uϵ +∇pϵ = 0 in Ωϵ,

div(uϵ) = 0 in Ωϵ,

uϵ = u0 on Γin,

uϵ × n = 0 on Γout,

pϵ = 0 on Γout,

uϵ = 0 on ∂Ωϵ\(Γin ∪ Γout).

(2.1)

We refer to (2.1) as the “full-scale” model. The outlet boundary condition involving the pressure and tangential
velocity is rather non-standard but is well-posed, see [23].

The goal is to generate a distribution of microchannels that distribute a fluid in evenly in multiple channels
on the right outlet boundary Γout, occupying a limited portion of the domain D and with limited pressure drop.
We model the optimal design problem by the following maximization problem

max
Ωϵ⊂D

min
x∈Γout

uϵ(x) · n

s.t.

DP(p) :=

∫
Γin

pϵ dσ ≤ 10× DP0 × ϵ−2,

Vol(Ωϵ) := |Ωϵ| ≤ Vol0.

(2.2)

We use this max-min formulation in the hope that the minimizer yields an approximately constant value for
u(x) ·n on the outlet boundary Γout. The constants DP0 and Vol0 are given upper bound values for the pressure
drop and the volume of the fluid phase Ωϵ in the bulk domain D. The constant DP0 is thought as the pressure
drop value in the case where Ωϵ = D, that is without any solid obstacle; in other words, we allow the pressure
drop to increase by a maximum factor 10 when adding solid material to the domain. The multiplicative factor
ϵ−2 is considered in the pressure drop constraint in order to make the problem (4.5) (approximately) independent
of ϵ; the choice of this scaling is motivated by the Darcy model proposed in Section 4 below. Physically, this
corresponds to the fact that adding more and more channels makes the pressure drop constraint more difficult
to satisfy.

2.2. Description of the locally periodic domain

To execute topology optimization of the fluid component through the dehomogenization method, we acquire
the fluid domain Ωϵ ⊂ D by tiling a distorted grid with a locally periodic cell characterized by geometric
parameters that change smoothly. In the following, we elaborate on the process for creating such a domain,
which draws inspiration from prior dehomogenization studies [9, 41, 62].

We consider the parameterized periodic unit cell Y (m1,m2) = P\T (m1,m2) illustrated on Figure 2. The cell
Y (m1,m2) is obtained by removing from the centered unit square P = (−1/2, 1/2)× (−1/2, 1/2) a rectangle of
solid T (m1,m2) with dimension m1×m2. The rectangle is centered at the middle of the unit cell. Fluid channels
are devised by connecting these cells side-by-side, creating channels of widths 1−m1 and 1−m2 in respectively
the vertical and horizontal directions. The choice of this rectangular cell is motivated by its simplicity, it would
be of course possible to consider alternative parameterized geometries with rather straightforward adaptations
of the method.

m1

m2

Y (m1,m2)

T (m1,m2)

P = (−1/2, 1/2)2

Figure 2. A parameterized unit cell for fluid channels. The fluid domain Y is represented in
white.

The cells are distributed periodically on a regular grid that is deformed by a nonlinear transformation. Let
Φ : R2 → R2 be a prescribed diffeomorphism satisfying

|det(∇Φ(X))| ≥ c for all X ∈ R2,
5



for some positive constant c > 0. The map Φ is understood as a distortion of the cartesian coordinates
X = (X1, X2) ∈ R2. We think of X = (X1, X2) as the regular coordinates on the cartesian grid of R2, and of
x = (x1, x2) = Φ(X) as the coordinates on the curved grid. From Φ, we build a multiscale fluid domain by
tiling deformed grid cells of size ϵ with the periodic pattern Y (m1,m2), where the geometric parameters m are
also allowed to spatially vary smoothly over the domain D.

For given smooth distributions of parameters m1(x) and m2(x) and diffeomorphism Φ, we build a locally
periodic fluid domain Ωϵ as the negative subdomain of a level-set function carefully designed. We start by
considering a level-set function whose negative domain is R2\T (m1,m2) for given fixed parameters (m1,m2):

ϕ(X1, X2) = −max
(
|X1| −

m1

2
, |X2| −

m2

2

)
.

We then introduce the sawtooth function S defined by

S(t) = t for t ∈
)
−1

2
,
1

2

)
and S is 1–periodic.

The sawtooth function S is plotted on Figure 3; it enables to extend by periodicity a level-set function defining
an implicit domain in (−1/2, 1/2)2, a feature which has been used for dehomogenization in [62, 43]. In particular,

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 3. Sawtooth function S on (−2, 2).

a level-set function whose negative subdomain is the domain obtained by repeating the cell periodically in the
two space directions, that is P\T (m1,m2) + Z, is given by

(X1, X2) 7→ ϕ(S(X1), S(X2)).

Subsequently, a level-set function whose negative subdomain is the periodic porous structure with periodicity ϵ
aligned on the grid deformed by Φ (that is Φ(ϵ(Y (m1,m2) + Z))) is

(x1, x2) 7→ ϕ

(
S

(
Φ−1

1 (x1, x2)

ϵ

)
, S

(
Φ−1

2 (x1, x2)

ϵ

))
,

where Φ−1
1 (x1, x2) and Φ−1

2 (x1, x2)) denotes the two space components of Φ−1(x1, x2). Finally, a level-set
function describing the fluid domain on the curved grid with periodicity ϵ, and spatially modulated parameters
m1 ≡ m1(x1, x2) and m2 ≡ m2(x1, x2) reads

ρϵ(x1, x2) = −max

(∣∣∣∣S (
Φ−1

1 (x1, x2)

ϵ

)∣∣∣∣− m1(x1, x2)

2
,

∣∣∣∣S (
Φ−1

2 (x1, x2)

ϵ

)∣∣∣∣− m2(x1, x2)

2

)
. (2.3)

The negative subdomain of ρϵ is approximately

{x ∈ R2 | ρϵ(x) < 0} ≃
⋃
n∈Z

Φ
(
nϵ+ ϵT (m1(Φ(nϵ)),m1(Φ(nϵ)))

)
,

this fact is justified in Appendix A where the interested reader will find an exact explicit description of this set.

Accordingly, the fluid domain Ωϵ that we consider in (2.1) is defined as the negative subdomain of ρϵ on D:

Ωϵ = {(x1, x2) ∈ D | ρϵ(x1, x2) < 0}. (2.4)

The tiling process leading to a domain Ωϵ is illustrated on Figure 4 for the mapping Φ whose inverse is given by

Φ−1(x1, x2) =

(
x1 + 0.3

(x1 + 0.3)2 + (x2 − 0.5)2
,− x2 − 0.5

(x1 + 0.3)2 + (x2 − 0.5)2

)
,

and for the distributions of parameters

m1(x1, x2) = max(0,min(1, x2
1 + (x2 − 0.5)2)), m2(x1, x2) = max(0,min(1, 0.9− x2

1)).
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(a) Mapping Φ (b) m1(x1, x2) (c) m2(x1, x2) (d) Ωϵ.

Figure 4. Construction of a locally periodic fluid domain Ωϵ from a diffeomorphism Φ and
geometric parameter fields m1(x1, x2) and m2(x1, x2) based on the formula (2.3). The colormap
for m1(x1, x2) and m2(x1, x2) encompasses values ranging from from 0 to 1 with a gradient
transitioning from white to black, so that the fluid domain is represented in white.

3. Homogenized permeability matrix on a deformed periodic domain

Rigorous asymptotic expansions of the solution (uϵ, pϵ) to the Stokes problem (2.1) in the perforated domain
Ωϵ are not available in the literature [58, 4, 31], where strictly periodic structures on square domains with
homogeneous or Dirichlet boundary conditions are usually considered.

In this section, we state a homogenization result for Stokes flow in deformed periodic domains. We obtain
two conclusions: first, the flow can be approximated by the solution to a Darcy system with spatially dependent
permeability matrix (Proposition 3.1). This could be expected since this result is just a generalization of the
standard homogenization theory for periodic porous media where this permeability matrix is constant. For
arbitrary deformations, we find that the homogenized Darcy matrix at the point x ∈ Ωϵ can be obtained by
solving a periodic cell problem in the unit cell stretched by the local Jacobian matrix ∇Φ(Φ−1(x)).

Second, we find that for conformal deformations, the homogenized Darcy permeability tensor is proportional
to the square of the local grid dilation (Proposition 3.2), which is a major difference with respect to the linear
elasticity setting where this dilation factor is absent.

We note that there is a rather vast literature on the derivation of homogenized models for non-periodic media:
we can mention for instance periodic media with localized defects [15], periodic media with smoothly varying
microstructure [22, 6], stochastic media [39], media filled with randomly distributed inclusions [35]. Perforated
domains with a locally periodic microstructure defined implicitly as in Section 2.2 have been considered in [21].
On the other hand, locally periodic media obtained by smooth deformation of a periodic medium have been
studied in a series of papers [18, 2, 56] that followed a work of Briane [17]. The locally periodic media considered
in the work of Briane are very close in spirit to ours, the main difference lies in the fact that we consider the
Stokes equation rather than the linear elasticity equation, and that our analysis relies on the introduction of
a suitable, non-standard two-scale ansatz (detailed in Appendix B) rather than on various notions of weak
convergence. We note that our two-scale expansions method is similar to that of [69] who recently proposed a
derivation of the homogenized elasticity system in a deformed periodic medium.

For simplicity, our derivation assumes a simpler setting than the one of Section 2, of that lends itself to
rigorous asymptotic expansions. Let K = (0, 1)2 be the unit square domain understood as a portion of R2.
We use a different notation than D (or P ) to avoid any confusion with respect to Section 2: here, K is the
argument space of the diffeomorphism Φ while the computational domain D is the argument space of Φ−1 in
Section 2. We denote by Kϵ = K\ωϵ the set obtained by perforating K with holes ωϵ = ϵ(P\T (m1,m2) + Z2)
periodically distributed on a regular grid of width ϵ. We then consider a laminar fluid flowing in the distorted
domain Φ(Kϵ) illustrated on Figure 5.

In this section only, we assume that the parameters m1 and m2 are constant: the shape of the hole T (m1,m2)
is not modulated along the domain; we only investigate the effect of the distortion of the domain by the
diffeomorphism Φ. Actually, the solid obstacles may have an arbitrarily different shape than the one of Figure 2,
but this shape is not spatially modulated along the domain.
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ϵ

Φ

Kϵ Φ(Kϵ)

Figure 5. Deformed periodic domain Φ(Kϵ).

For the present analysis, we assume that the flow is governed by the Stokes system in the deformed perforated
domain Ωϵ = Φ(Kϵ) with periodic boundary conditions on opposite deformed matching faces:

−∆uϵ +∇pϵ = f in Φ(Kϵ),

div(uϵ) = 0 in Φ(Kϵ),

uϵ = 0 on Φ(∂ωϵ),∫
Φ(Kϵ)

pϵ dx = 0,

uϵ ◦ Φ is K–periodic,

(3.1)

where f is a given a smooth right-hand side forcing and where we impose that the pressure has zero average to
fix the constant.

In order to state our homogenization result for (3.1), let us introduce, for a given x ∈ Φ(K), the solution
(X j(x, ·), αj(x, ·))1≤j≤2 to the following cell problem posed in the linearly stretched cell ∇Φ(Φ−1(x))Y (m1,m2):

−∆zzX j(x, z) +∇zαj(x, z) = ej ∀z ∈ ∇Φ(Φ−1(x))Y (m1,m2),

divz(X j(x, z)) = 0 ∀z ∈ ∇Φ(Φ−1(x))Y (m1,m2),∫
∇Φ(Φ−1(x))Y (m1,m2)

αj(x, z) dz = 0,

X j(x, z) = 0 ∀z ∈ ∂(∇Φ(Φ−1(x))T ),

X j(x, ·) is ∇Φ(Φ−1(x))P–periodic,

(3.2)

where e1 = (1, 0) and e2 = (0, 1) denote the vectors of the canonical basis of R2. The stretched cell
∇Φ(Φ−1(x))Y (m1,m2) is illustrated on Figure 6. It reflects that as ϵ → 0, infinitesimally small cells of width ϵ
are deformed by the linear Jacobian ∇Φ. When the transformation Φ is the identity mapping, the cell problem
(3.2) reduces to the standard cell problem derived by homogenization theory in the Darcy regime [58].

∇Φ(Φ−1(x))

∇Φ(Φ−1(x))Y (m1,m2)Y (m1,m2)

Figure 6. Deformation of the unit cell by the linearized transformation.

We then denote by

X (x, ·) =
[
X 1(x, ·) X 2(x, ·)

]
(3.3)

the matrix gathering the cell solutions and we introduce the permability matrix X ∗(x) = (X ∗
ij(x))1≤i,j≤2 ob-

tained by averaging X (x, ·) over the unit cell:

X ∗
ij(x) =

1

|∇Φ(Φ−1(x))P |

∫
∇Φ(Φ−1(x))Y (m1,m2)

eTi X j(x, z) dz, ∀1 ≤ i, j ≤ 2. (3.4)
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The coefficients of the permeability matrix X ∗ are normalized by the area of the deformed unit cell |∇Φ(Φ−1(x))P |.

The following proposition states that the system (3.1) can be homogenized and that the homogenized velocity
and pressure are at first order solution to a Darcy system with inhomogeneous porosity tensor X ∗

ij(x).

Proposition 3.1. Let (u, p) be the solution to the following Darcy system:

u(x) = X ∗(x)(f(x)−∇p(x)), x ∈ Φ(K),

div(u(x)) = 0, x ∈ Φ(K),∫
Φ(K)

p(x) dx = 0,

u, p are Φ(K) periodic,

(3.5)

where X ∗ is the permeability matrix (3.4). Then the following asymptotic expansions hold for the solution
(uϵ, pϵ) to the perforated Stokes system (3.1) in the deformed domain Φ(Kϵ):

uϵ(x) = ϵ2X (x,∇Φ(Φ−1(x))Φ−1(x)/ϵ)(f(x)−∇p(x)) +O(ϵ3), pϵ(x) = p(x) +O(ϵ), (3.6)

where X (x, ·) is the matrix (3.3) and the error terms are measured with the L2 norm on Φ(Kϵ).

Proof. The proof is based on the method of two-scale expansions and is detailed in Appendix B.1. □

Equation (3.6) shows that the functions ϵ2u(x) and p(x) of (3.5) are the leading order approximations of uϵ

with the oscillations at the small scale ϵ being averaged. The model (3.5) is therefore a homogenized model for
(3.1) with effective permeability matrix X ∗(x).

We now stress an important difference with respect to the mechanical setting. In the works [9, 41] dealing
with dehomogenization of mechanical structure, the deformation Φ is assumed to be a conformal mapping,
namely preserving locally right angles at the grid intersections. The conformality condition means that the
polar decomposition of the Jacobian matrix Φ(x) has the form

∇Φ(Φ−1(x)) = s(x)R(x), (3.7)

for real positive number s(x) > 0 and orthogonal 2× 2 matrix R(x) satisfying R(x)TR(x) = I. In the present
situation, we find that the Darcy matrix X ∗(x) admits a simple expression when Φ is a conformal mapping.

Proposition 3.2. Assume that Φ is a conformal mapping satisfying (3.7). Then the permeability matrix X ∗(x)
of (3.4) admits the following expression:

X ∗(x) = s(x)2R(x)X ∗R(x)T . (3.8)

where X ∗ = (X ∗
ij)1≤i,j≤2 is the Darcy tensor of the non-deformed unit cell Y (m1,m2), namely

X ∗
ij =

∫
Y (m1,m2)

eTi X j(y) dy, 1 ≤ i, j ≤ 2, (3.9)

where (X j)1≤i,j≤2 are the solutions to the cell problem in the unit square cell Y (m1,m2) = P\T (m1,m2):

−∆yyX j +∇αj = ej in Y (m1,m2),

div(X j) = 0 in Y (m1,m2),∫
Y (m1,m2)

αj(y) dy = 0,

X j = 0 on ∂T,

X j is P–periodic.

(3.10)

Proof. The proof is given in Appendix B.2. □

The scaling s2(x) affecting the homogenized permeability tensor X ∗(x) is a major difference with respect to
the linear elasticity setting. In the case of homogenized elasticity tensor within a deformed periodic domain,
a relationship similar to (3.8) holds, albeit devoid the dilation factor s(x) [9]. This observation signifies that
conventional dehomogenization techniques [9, 41], which assume the homogenized tensor’s dependence solely on
local orientation (i.e., the matrix R(x)) and not on local grid stretching s(x), need to be revisited theoretically
for dehomogenizing porous media. However, we do not address this challenge within the scope of this paper.

Alternatively, in the subsequent analysis, we opt to disregard the influence of the local grid stretching s(x).
This simplification permits the application of existing dehomogenization methods to tackle the design problem
described in Section 2.
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4. Optimal design of fluid microchannels with an approximate homogenized Darcy model

In this section, we present a numerical approach to tackle the design optimization problem (2.2) that takes
advantage of a multiscale model. Building upon the insights from the previous section’s analysis, we propose a
heuristic homogenized model in Section 4.1 that incorporates several simplifying assumptions to facilitate the
application of the dehomogenization method as described in [9, 41].

Following this, Section 4.2 describes the offline precomputation phase, in which we compute the coefficients
of the permeability matrix by solving cell problems corresponding to various cell geometries. The subsequent
Section 4.3 outlines the derivation of formulas necessary for calculating the derivatives of both the objective
and constraint functions which are required by first-order optimization techniques.

Finally, we realize in Section 4.4 that checkerboard patterns emerge when solving the constrained optimization
problem. This leads us to resort to density filters in order to acquire smooth geometric parameter distributions
and orientation fields. We also use an additional filter to project the design to well delimited pure solid, pure
fluid, or porous regions. Solving numerically the optimization problem, we obtain optimized distributions of
geometric channel spacings m1, m2 and orientation field θ that are dehomogenized in the next Section 5.

4.1. Simplified relaxation of the design problem

We make the hypothesis that the fluid velocity and pressure (uϵ, pϵ) solution to the full-scale model (2.1)
can be approximated (in an approximate homogenized sense that we leave unclarified) by the solution (u, p) to
the following Darcy system: 

u = −ϵ2X ∗(m1,m2, θ)∇p, in D,

div(u) = 0 in D,

u · n = u0 · n on Γin,

p = 0 on Γout,

(4.1)

where X ∗(m1,m2, θ) denotes the permeability matrix given by

X ∗(m1,m2, θ) := R(θ)X ∗(m1,m2)R(θ)T , (4.2)

with X ∗(m1,m2) being the permeability tensor as defined in (3.9) within the parameterized cell Y (m1,m2)
depicted in Figure 2. The matrix R(θ) is the one arising in the polar decomposition of ∇Φ(Φ−1(x)) as in (3.7)
and is represented as

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 ,

where θ is the orientation parameter. It’s important to note that in Equation (4.2), m1, m2, and θ are parameters
that vary with spatial position.

In our implementation, we solve the Darcy system (4.1) by solving the equivalent Laplace equation for the
pressure p with a Neumann boundary condition on Γin and a Dirichlet boundary condition on Γout:

−div(X ∗(m1,m2, θ)∇p) = 0 in D,

nTX ∗(m1,m2, θ)∇p = −ϵ−2u0 · n on Γin,

p = 0 on Γout.

(4.3)

Note that p is proportional to ϵ−2 and the velocity field u determined by (4.1) is independent of the parameter ϵ.
We numerically solve (4.3) with the finite element method, by discretizing the following variational formula-

tion: find p ∈ H1(D) with p = 0 on Γout such that for any q ∈ H1(D) with q = 0 on Γout:∫
D

X ∗(m1,m2, θ)∇p · ∇q dx = −ϵ−2

∫
Γin

(u0 · n)q dσ, (4.4)

where H1(D) is the standard Sobolev space of square integrable functions with square integrable partial deriva-
tives on D.

We then approximate the design problem (2.2) by the following “relaxed” version

max
0≤m1,m2≤1

θ∈R

MINOUT(u) :=

(
1

|Γout|

∫
Γout

(u · n)−p dσ

)− 1
p

s.t.


DP(p) =

∫
Γin

p dσ ≤ 10× DP0 × ϵ−2,

Vol(m1,m2) =

∫
D

(1−m1m2) dx ≤ Vol0,

(4.5)

where the pressure drop constant is set to DP0 = 1 and p is a penalty parameter set to p = 4 in our implemen-
tation.
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The multiplicative factor ϵ−2 considered in the pressure drop constraint makes the optimization problem (4.5)
independent of ϵ. Thus, in our numerical implementation, we solve the state and the optimization problem (4.3)
and (4.5) with ϵ = 1.

It is important to note that the homogenized model (4.1) and the relaxed optimization problem (4.5) introduce
multiple approximations. First, the effective model (4.1) is heuristic, in the sense that:

• it assumes the transformation Φ to be conformal (preserving right angles) and the dilation parameter
to be constant (s(x) = 1 in (3.8)) for (4.2) to hold true. in order for (4.2) to be true. In other words,
it assumes that

∇Φ(Φ−1(x)) ≃ R(θ(x)) for all x ∈ D. (4.6)

However such approximation cannot be valid without a definite amount of error, since (4.6) is possible
only for approximately rigid body transformations (see [47]);

• it is not valid in the low volume fraction limit m1 and m2 → 0 corresponding to locations where the
solid obstacles disappear (see [3, 34]) where the Darcy model (4.3) becomes singular (the coefficients of
X ∗(m1,m2) blow up as m1 and m2 → 0, and converges to zero as m1 and m2 → 1). We decide to neglect
the transition to the Stokes regime occurring in this regime. We numerically assign the coefficients of
X ∗ to finite values when m1,m2 approach 0 and 1, these values being chosen by interpolation (see
Section 4.2);

• it potentially neglects boundary layers arising in the vicinity of ∂D due to the inlet, wall and outlet
boundary conditions in (2.1).

Second, the minimum of uϵ ·n on Γout in (2.2) is approximated by the differentiable averaged functional MINOUT
with penalty parameter p = 4.

Remark 4.1. The volume functional Vol(m1,m2) is a consistent approximation of the fluid volume |Ωϵ|, see the
discussion at the end of Appendix A. This approximation has also been used in [9, 41] and has shown to be
accurate when dehomogenizing mechanical structures.

4.2. Offline phase: precomputation of the Darcy permeability matrix

In order to solve the Poisson problem (4.3) and to evaluate the objective function MINOUT and its derivatives,
we precompute the Darcy matrix X ∗(m1,m2) as well as its partial derivatives in a preliminary offline phase.
This step is computationally expensive as it involves solving many times the cell-problem (3.10) but is required
only once before solving any optimization problem depending on the variables u and p. Furthermore, the
computational time can be diminished by solving the cell problems independently in parallel.

The coefficients of the permeability matrix are evaluated for all possible combinations of parameters (m1,m2)
distributed on a grid discretizing (0, 1)× (0, 1) with 100 points, removing 0 and 1 corresponding to degeneracies
(respectively a crack in the cell and a cell full of solid). The partial derivatives of X ∗(m1,m2) with respect to
m1 and m2 are estimated using finite differences. Then, a linear interpolant is constructed for approximating
this tensor in the whole square (0, 1)× (0, 1). The orientation-dependent permeability tensor X ∗(m1,m2, θ) is
subsequently obtained thanks to the formula (4.2). Since the cell is symmetric with respect to the median axes,
X ∗ is a diagonal matrix and only the coefficients X ∗

11 and X ∗
22 needs to be computed.

For a set of given parameters (m1,m2), the matrix X ∗(m1,m2) is computed with formula (3.9) after solving
the cell problem (3.10). Each cell problem is solved by the finite element method with FreeFEM [46, 1] on a
single periodic mesh with the rectangle T (m1,m2) explicitly discretized using the remeshing software MMg [24].
The typical edge length defining the mesh resolution is h = 0.01. We solve the matrix-block formulation of the
Stokes system using a Lagrange multiplier to enforce the zero-mean constraint for the pressure, and a PETSc
fieldsplit Schur preconditioner [11] for solving the linear system.

We illustrate on Figure 7 a coarse version of the mesh employed for discretizing a unit cell Y (m1,m2) and
the vector fields X 1 and X 2 solutions to the cell problem (3.10) evaluated on this mesh.

Surface plots of the diagonal coefficients X ∗
11 and X ∗

22 computed in this offline phase are represented on
Figure 8. As expected, coefficients are vanishing near the point (1, 1) (corresponding to pure solid regions) and
reach a maximal value the point (0, 0) (corresponding to pure fluid regions).

Remark 4.2. In theory, X ∗
11 and X ∗

22 blow up as m1 and m2 → 0, which is not obtained numerically since, as
visible on Figure 8, the interpolation procedure sets these coefficients to a value approximately equal to 0.35
near the point (0,0). This is related to the fact that X ∗

11 and X ∗
22 scale as | log η| for a rescaled obstacle of size

ηm1 × ηm2 [3]. In order to amplify the permeability tensor by a multiplicative factor C, η needs to be roughly
of the order of 10−C , which is difficult to achieve numerically. Physically, this is related to the fact that in 2D,
exponentially small obstacles have a non-negligible influence on the flow-field (corresponding to the Brinkman
regime). This amounts to say that our Darcy model assumes that pure fluid regions are in fact not “pure fluid”
but filled with very tiny obstacles. We verified that the numerical procedure devised in the next sections is
rather insensitive to setting manually X ∗

11 and X ∗
22 to a large constant for m1 = m2 = 0.
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(a) Mesh of a unit cell (b) X 1 (c) X 2

Figure 7. Solutions to the cell problem (3.10) on a periodic mesh.

Figure 8. 3D plot of the coefficients X ∗
11 and X ∗

22 for (m1,m2) ∈ (0, 1)× (0, 1).

4.3. Adjoint-based numerical optimization

We use the open-source implementation [30] of the Null Space Optimizer [33, 32] as a first order gradient
method for solving the optimization program (4.5). The algorithm requires the Fréchet derivatives of the
objective and constraint functions, which can be computed by using the formula of the next proposition.

Proposition 4.1. Let us denote by m := (m1,m2, θ) ∈ L∞(D, (0, 1) × (0, 1) × R). Let J(m, p) be a Fréchet
differentiable functional with respect to m and p ∈ H1(D) and denote by p ≡ p(m) ∈ H1(D) the solution to the
Poisson equation (4.3). The mapping m 7→ J(m, p(m)) is Fréchet differentiable and the Fréchet derivative is
given by

d

dm
[J(m, p(m)] · δm =

∂J

∂m
(m, p(m)) · δm−

∫
D

∂X ∗

∂m
(m) · δm∇p · ∇q dx, (4.7)

where q is the solution to the adjoint problem

find q ∈ H1(D) with q = 0 on Γout such that∫
D

X ∗(m)∇q · ∇q′ dx =
∂J

∂p
(m, p(m)) · q′ for all q′ ∈ H1(D) with q′ = 0 on Γout. (4.8)

Proof. We compute the derivative of J(m, p(m) by following the classical steps of the adjoint method. Using
the chain rule, we find

d

dm
[J(m, p(m)] · δm =

∂J

∂m
(m, p(m)) · δm+

∂J

∂p
(m, p(m)) ·

(
dp

dm
(m) · δm

)
.

Differentiating (4.4) with respect to m = (m1,m2, θ), we find that dp
dm (m) · δm satisfies∫

D

X ∗(m)∇
(

dp

dm
(m) · δm

)
· ∇q dx = −

∫
D

dX ∗

dm
(m) · δm∇p · ∇q dx.

Finally, (4.7) follows by substituting q′ = dp
dm ·δm in (4.8) and by using the symmetry of the matrix X ∗(m). □
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In our particular case, we rewrite MINOUT(u) in terms of p as

MINOUT(u) ≡ MINOUT(m, p) =

(
1

|Γout|

∫
Γout

(ϵ2nTX ∗(m)∇p)−p

)− 1
p

. (4.9)

We do not delve into the mathematical issue of the trace of ∇p ∈ L2(D) being not well defined on Γout when
writing this formula, that turns out to behave rather well numerically. The Fréchet derivatives of the functional
MINOUT(m, p) of (4.9), the pressure drop functional DP(p) and the volume functional Vol(m1,m2) can then be
assembled with (4.7) and (4.8) from their partial derivatives:

∂MINOUT

∂m
(m, p) · δm = ϵ2

(
1

|Γout|

∫
Γout

(nTX ∗(m)∇p)−p dσ

)− 1
p
−1

× 1

|Γout|

∫
Γout

(
nT

(
∂X ∗

∂m
· δm

)
∇p

)
(nTX ∗(m)∇p)−p−1 dσ, (4.10)

∂MINOUT

∂p
(m, p) · δp = ϵ2

(
1

|Γout|

∫
Γout

(nTX ∗(m)∇p)−p dσ

)− 1
p
−1

× 1

|Γout|

∫
Γout

(
nTX ∗(m)∇(δp)

)
(nTX ∗(m)∇p)−p−1 dσ. (4.11)

∂DP

∂p
(p) · δp =

∫
Γin

δpdσ,

∂Vol(m1,m2)

∂m1
· (δm1) = −

∫
D

m2 × δm1 dx,
∂Vol(m1,m2)

∂m2
· (δm2) = −

∫
D

m1 × δm2 dx,

4.4. Checkerboard effect and filtering of the design variable

Solving the optimization problem (4.5) as it is formulated yields numerical designs featuring checkerboard
patterns. The checkerboard effect is a classical phenomenon in density based Topology Optimization [59]; it
reflects the fact that numerical designs discontinuous across mesh elements are more performant than smooth
designs. However, this effect is not desirable since this gain of performance is a pure artefact of the numerical
discretization, and the dehomogenization method requires geometric parameters and orientation fields to vary
smoothly over the meshed domain D.

We illustrate this effect in the present case on Figure 10 where we display the parameter fields m1, m2 and θ
optimized on a regular triangle mesh Tcoarse with edge length hcoarse = 1/60 (Figure 9). These parameters feature
large areas with checkerboard patterns near the outlet boundary Γout. Additionally, the objective function is
very sensitive to very small variations of the design preventing a smooth convergence of the optimization process:
after increasing as expected till iteration 80, the objective function suddenly shrinks to suboptimal values, as
visible on Figure 11.

Figure 9. Computational mesh for solving the optimization problem (4.5) on the square
domain D = (0, 1) with boundaries Γin and Γout respectively labeled by 20 and 2.

This issue is almost solved when using a Hilbertian inner product for identifying the gradient, namely when
filtering sensitivities by solving the variational problem

find ∇J(m, p(m)) ∈ H1(D) such that ∀v ∈ H1(D), a(∇J, v) = DJ(m, p(m)) · v, (4.12)
13



(a) m1 (b) m2 (c) θ

Figure 10. Optimized design variables (m1,m2, θ) obtained after 200 iterations of the Null
Space Optimizer solving the optimization problem (4.5) without filtering.
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Figure 11. Convergence histories obtained with the Null Space Optimizer for the optimization
problem (4.5) solved without filtering.

where a(·, ·) is the bilinear form defined by

a(v, v′) :=

∫
D

(γ2∇v · ∇v′ + vv′) dx,

and where the regularization parameter γ is set to γ := 0.05. This classical identification procedure (which
traces back at least to [10, 20, 25]) amounts to use a Hilbertian regularization sensitivity filter (sometimes also
called “Helmholtz-type filter“ [48], but this denomination should be used cautiously since (4.12) is a regularizing
problem and not a wave equation) and can be made consistent with first order optimization algorithms [33, 32].
Filtering the Fréchet derivatives of the objective and constraint functions with (4.12), the convergence process
becomes stable (Figure 13) and the numerically optimized designs becomes almost devoid of checkerboard
patterns (Figure 12).

(a) m1 (b) m2 (c) θ

Figure 12. Optimized design variables (m1,m2, θ) obtained after 200 iterations of the Null
Space Optimizer solving the optimization problem (4.5) with the Hilbertian sensitivity filter
(4.12).

Nevertheless, the optimized fields m2 and θ still incorporates a small layer with checkerboard patterns in
the vicinity of the outlet boundary Γout. We conjecture that this effect can be attributed to the fact that
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Figure 13. Convergence histories obtained with the Null Space Optimizer for the optimization
problem (4.5) with the Hilbertian sensitivity filter (4.12).

checkerboard designs encourage larger pressure gradients which are favorable to increase the magnitude of the
outlet velocity component.

In order to entirely avoid this phenomenon, and to subsequently facilitate the dehomogenization process, we
rather solve the following filtered version of the optimization problem (4.5):

max
0≤m1,m2≤1

θ∈R

MINOUT(u(˜̂m)

s.t.

{
DP(p(˜̂m) ≤ 10× DP0 × ϵ−2,

Vol( ˜̂m1, ˜̂m2) ≤ Vol0,

(4.13)

where ˜̂m = ( ˜̂m1, ˜̂m2, θ̃) contains the filtered design variables. These are obtained by cumulating two density
filters.

The first mapping ρ 7→ ρ̂ is just the Hilbertian regularization filter (4.12) applied to density variables rather
than derivatives: it maps ρ to the solution ρ̂ to the variational problem

find ρ̂ ∈ H1(D) such that ∀v ∈ H1(D),

∫
D

(γ2∇ρ̂ · ∇v + ρ̂v) dx =

∫
D

ρv dx. (4.14)

The regularization parameter is still set to γ = 0.05 which limits the smallest feature resolved by the fields m̂1,

m̂2 and θ̂ to this size. This filter enforces the smoothness of the optimized physical variable even in the vicinity
of the outlet, thereby guaranteeing fully checkerboard-free designs.

In order to obtain later on better dehomogenized designs, we use the additional mapping ρ̂ 7→ ˜̂ρ which
implements the projection filter of [41]. This filter projects intermediate values of m̂1 and m̂2 to either 0 or
1 outside the window (η, 1 − η) for a specified threshold η. This allows to constrain homogenized designs to
feature clearly distinguished porous, solid fluid regions. Following [41], the projection filter is defined by

˜̂m1 := m̂1(1−H(β, 1− η, m̂1))H(β, η, m̂1) +

(
β − 1

β
+

m̂1

β

)
H(β, 1− η, m̂1), (4.15)

where H is the regularized Heaviside function

H(β, η, m̂1) =
tanh(βη) + tanh(β(m̂1 − η))

tanh(βη) + tanh(β(1− η))
. (4.16)

The parameter β controls the sharpness of the approximation of the Heaviside function (the larger is β and the
sharper is the slope near the origin approximation). In our implementation, we set the parameters to η = 0.1

and β = 40. Unlike [41], we do not use a continuation scheme on the parameter β. The mapping m̂1 7→ ˜̂m1 as
well as the smoothed Heaviside function m̂1 7→ H(β, η, m̂1) of (4.16) are plotted on Figure 14. As ϵ decreases,
the designs feature more and more regularly spaced channels connected to the outlet. The flow is entering the
inlet through a single channel which admits a porous transition region before being divided into the multiple
channels joining the outlet.

Finally, the sensitivities of the filtered objective function m 7→ −MINOUT(u(˜̂m)) and constraints m 7→
DP(p(˜̂m)) and m 7→ Vol( ˜̂m1, ˜̂m2) are derived by using the chain rule, which states that the Fréchet derivative

of a functional m 7→ J(˜̂m) satisfies

dJ(˜̂m)

dm
· δm =

dJ

d˜̂m (˜̂m) · d˜̂m
dm̂

· dm̂

dm
· δm.
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(a) Smoothened heaviside function m̂1 7→
H(β, η, m̂1) (eq. (4.16)).
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(b) Filtering function m̂1 7→ ˜̂m1 (eq. (4.15)).

Figure 14. Heaviside and filtering functions used to define the filter m̂1 7→ ˜̂m1 of Section 4.4.

The implementation of this filtering procedure is facilitated by using the decorator @filtered optimizable of
the Null Space Optimizer package; see [32].

The numerically optimized physical design variables obtained with this filtering procedure are displayed on
Figure 15 (note that we do not further filter the sensitivities with a Hilbertian inner product as in (4.12): we
use the standard inner product for identifying Fréchet derivatives to gradients). The obtained designs are now
smooth even in the vicinity of the outlet, where m1 is zero and m2 is approximately equal to a constant non-zero
value, corresponding physically to regularly spaced outlet channels. Optimization histories with the objective
and constraint functions are reported on Figure 16. The optimized design has a performance approximately
twice worse than the unfiltered design of Figure 12, but is fully smooth and better suited for dehomogenization.

(a) m1 (b) m2 (c) θ

Figure 15. Optimized design variables (m1,m2, θ) obtained after 200 iterations of the Null
Space Optimizer for solving the optimization problem (4.5) with density filtering.
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Figure 16. Convergence histories for the filtered optimization problem (4.5).

5. Dehomogenization procedure and numerical results

In this section, we focus on dehomogenizing the homogenized designs obtained with the numerical optimiza-
tion methodology of the previous Section 4. We employ the dehomogenization procedure from [41] in order
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to reconstruct fine scale designs, which we present in Section 5.1. Then in Section 5.2, we validate the per-
formance of the dehomogenized designs by solving the full-scale model. The numerically computed full-scale
physical variable enables us additionally to clean dehomogenized designs from spurious channels, a step which
we shortly describe in Section 5.3. Finally, the multiscale optimization procedure is tested in Section 5.4 on a
second design test case with a different position for the inlet boundary.

5.1. Dehomogenization procedure

The purpose of the dehomogenization process consists in reconstructing a design with well-defined boundaries

from the optimized smooth parameter fields ( ˜̂m1, ˜̂m2, θ̂). Because the orientation vector field θ̂ shown on
Figure 15 is devoid of singularities, we adopt the procedure of [41] which is sufficient for our purpose and
simpler to implement than the one of [9].

First, the optimized filtered design variables ( ˜̂m1, ˜̂m2, θ̂) are projected by interpolation from the mesh Tcoarse
to a finer mesh Tmedium with resolution hmedium = 1/200. In order to avoid the aliasing effect, the interpolated
design variables are filtered by solving a variational problem similar to (4.14) with a regularization parameter
γ set to the minimum edge size of the finer mesh.

Then, we construct a diffeomorphism Φ satisfying ∇Φ(Φ−1(x)) ≃ R(θ̂(x)) in order to comply with (4.6).
Since the locally periodic porous medium is obtained as the negative subdomain of the level-set function (2.3),
we actually construct the inverse Φ−1 of this diffeomorphism on the mesh Tcoarse. In what follows, we denote
by (φ1(x), φ2(x)) the components of Φ−1(x). Since

∇Φ−1(x) =

∇φ1(x)
T

∇φ2(x)
T

 = (∇Φ(Φ−1(x)))−1 ≃ R(θ̂)T =

 cos(θ̂) sin(θ̂)

− sin(θ̂) cos(θ̂)

 ,

the problem reduces to construct two functions φ1 and φ2 such that ∇φ1 ≃ e1(θ̂) and ∇φ2 ≃ e2(θ̂), where

e1(θ̂) and e2(θ̂) are the local orientation vectors defined by

e1(θ̂) :=

cos(θ̂)
sin(θ̂)

 , e2(θ̂) :=

− sin(θ̂)

cos(θ̂)

 .

In general, it is not possible to find functions φ1 and φ2 satisfying exactly ∇φ1 = e1(θ̂) and ∇φ2 = e2(θ̂)
without an integrability condition on e1(θ) and e2(θ). Since we don’t impose such integrability condition during
the optimization process (see for instance [9, 69] where this approach is considered), we rather implement a
compromise between enforcing strictly ∇φ1 · e2(θ) ≃ 0 and requiring ∇φ1 ≃ e1(θ). Following [41, 40], we seek
φ1 as the solution to the following minimization problem:

min
φ1∈H1(D)

I1(φ1) :=

∫
D

a(x)|∇φ1(x)− e1(x)|2 dx+

∫
D

b(x)|∇φ1 · e2(θ)|2 dx, (5.1)

where a(x) and b(x) are weights defined by

a(x) :=


10−3 if 1− ˜̂m1(x) ˜̂m2(x) ≥ 1− η,

10−3 if 1− ˜̂m1
˜̂m2(x) ≤ η,

1 otherwise ,

b(x) :=


0 if 1− ˜̂m1(x) ˜̂m2(x) ≥ 1− η,

0 if 1− ˜̂m1
˜̂m2 ≤ η,

10 otherwise.

The weight a(x) is set to 10−3 in regions that are considered as pure fluid or pure solid according to the local

volume fraction 1 − ˜̂m1(x) ˜̂m2(x) (the use of the small value 10−3 rather than zero ensures that I1 is strictly
convex). The threshold value determining the limit between porous and solid or pure fluid regions is the same

parameter used for defining the density filter ρ̂ 7→ ˜̂ρ in Section 4.4, i.e. it is assigned to η = 0.1. The weight
b(x) is set to 10 in porous regions and zero otherwise.

The minimizer φ1 is obtained by solving the first-order optimality condition for the least squares-problem
(5.1), i.e. the following variational problem:

find φ1 ∈ H1(D) such that ∀v ∈ H1(D),∫
D

(
a(x)∇φ1 · ∇v + b(x)(∇φ1 · e2(θ))(∇v · e2(θ)) + 10−9φ1v

)
dx =

∫
D

a(x)∇v · e1(θ) dx, (5.2)

where we have added the bilinear form
∫
D
10−9φ1v dx to fix the constant determining φ1. The level-set function

φ2 is obtained by the identical procedure with e1(θ) and e2(θ) interchanged. We plot on Figure 17 the optimized

orientation field determined by the parameter field θ̂. On Figure 19 we show on Figure 18 the numerically com-
puted level-set functions ϕ1 and ϕ2 with the described procedure and the grid corresponding to the underlying
diffeomorphism Φ satisfying Φ−1 = (ϕ1, ϕ2).
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Once these two components (φ1, φ2) of the diffeomorphism Φ−1 are computed, we use formula (2.3) with a
desired value of ϵ to reconstruct the medium on a fine mesh with minimum edge size hfine = 1/200. The designs
obtained with ϵ = 0.05, ϵ = 0.025 and ϵ = 0.0125 are plotted on Figure 19.

Figure 17. Optimized orientation field (e1(θ̂), e2(θ̂)).

(a) φ1 (b) φ2 (c) Φ

Figure 18. Reconstructed diffeomorphism from the level set functions φ1 and φ2 with the
procedure of Section 5.

(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Figure 19. Dehomogenized designs for various values of ϵ.

5.2. Numerical comparisons with the full-scale model

In order to assess qualitatively the performance of the proposed designs, we construct a fine mesh Tadapted
adapted to the fluid domain by discretizing the zero isovalue of the level-set function ρϵ of (2.3) and improving
the quality of the mesh by remeshing with the open-source library MMg [24]. We then solve the full-scale model
(2.1) on the mesh Tadapted. We do this evaluation for ϵ ∈ {0.05, 0.025, 0.0125}.
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We plot the pressure fields on Figure 20 which are compared with the one obtained from the homogenized
model (4.1). For this example, the full-scale pressure fields presents rather important deviations with respect
to the homogenized pressure field. We then plot on Figure 21 the magnitude of the velocity field expected by

(a) Homogenized model

(b) Full-Scale model (2.1) on an
adapted mesh.

(c) Full-Scale model (2.1) on an
adapted mesh.

(d) Full-Scale model (2.1) on an
adapted mesh.

Figure 20. Pressure field obtained by solving the Stokes equation with the homogenized model
on Tcoarse and with the full-scale model on a fine mesh Tadapted adapted to the dehomogenized
designs of Figure 19. The magnitude of the pressure fields are scaled by ϵ2 to enable comparison.

the homogenized model that we compared to those obtained with the full scale model for the three values of ϵ.
Here the agreement with the homogenized model is also not perfect.

In order to quantitatively verify whether the goal of enforcing an approximately constant outlet flow has
been achieved, we plot on Figure 21b the average mass flow rate mi on every outlet boundary Γout,i, that is

mi =
1

|Γout,i|

∫
Γout,i

v · ndσ, (5.3)

where Γout,i denotes the i-th outlet. The horizontal axis corresponds to the y coordinate on the right boundary
Γout. As illustrated on this figure, the obtained design fails to achieve a perfectly constant mass flow rate,
with outlet flow values distributed between 0.1 and 0.5. Still, the proposed design performs qualitatively well
in the sense that a wide portion of the outlet channels computed with the full-scale model achieve outlet
velocities larger than the value predicted by the homogenized model. However, the significant quantitative
discrepancy highlights the limitations of the proposed homogenized model to accurately capture the physics
of the periodically modulated medium. Interestingly, the full scale velocities depicted on Figure 21 seem to
converge to a limiting field as ϵ → 0, suggesting that a better homogenized model could possibly be found.

5.3. Cleaning of dehomogenized designs

The dehomogenized designs of Figure 19 are not fully satisfying in the sense that they feature channels
connected to wall boundaries which do not belong to the outlet. We partially explain this phenomenon by
the fact that the wall boundary condition u · n on ∂D\(Γin ∪ Γout) is not enforced exactly by the discrete
model, since it is an essential boundary condition. This leads small parts of the wall boundaries featuring small
non-vanishing normal velocity components.

Once the velocity field has been computed on a fine mesh, it is rather straightforward to post process these
designs to remove channels featuring very small flow motion. Post-processed designs obtained by removing
parts of the fluid domain at which the local magnitude of the velocity is smaller than 0.1% than its maximum
value are represented on Figure 22. We numerically verified that this post-processing induces minor alterations
of the flow profiles.
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(a) Homogenized model

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6 eps=0.05
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(b) Mean mass flow rates on every
outlet channel Γout,i along Γout (eq.
(5.3)). Axis is the y variable on Γout.

(c) Full-Scale model (2.1) on an
adapted mesh.

(d) Full-Scale model (2.1) on an
adapted mesh.

(e) Full-Scale model (2.1) on an
adapted mesh.

Figure 21. Norm of the velocity field obtained by solving the Stokes equation on a fine mesh
discretizing the dehomogenized design of Section 5 with ϵ = 0.025.

(a) ϵ = 0.05 (b) ϵ = 0.025 (c) ϵ = 0.0125

Figure 22. Post-processed designs obtained by removing channels with very small velocity
(compare with Figure 19.

5.4. Multiscale Topology Optimization of a non-symmetric microchannel device

In this last subsection, we present the results of the previous numerical procedure applied to the design of
a microchannel spreading device with an alternative non-symmetric configuration. The physical setting for the
design problem is shown on Figure 23: the fluid is entering through a small inlet Γin of width 0.1 situated on
the left of the bottom boundary. For this test case, the pressure constant is set to DP0 = 0.5 and the other

parameters are left unchanged. The optimized design variables ( ˜̂m1, ˜̂m2, θ̂) obtained by solving the optimization
problem (4.13) on the coarse mesh Tcoarse are shown on Figure 24 and the optimization histories on Figure 25.

In this situation, we obtain non-trivial non-symmetric distributions of geometric parameters ˜̂m1 and ˜̂m2 and

orientation θ̂.
The components (φ1, φ2) of the diffeomorphism Φ−1 reconstructed from on the optimized orientation θ̂

with the procedure of Section 5 are represented on Figure 26. The inferred dehomogenized designs for ϵ ∈
{0.05, 0.025, 0.0125} computed on the fine mesh with N = 600 are plotted on Figure 27.
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Γin

uϵ = u0

Γout pϵ = 0

D

Figure 23. Physical domain D with non-symmetric configuration for the inlet and outlet
boundaries Γin and Γout considered in Section 5.4.

(a) m1 (b) m2 (c) θ

Figure 24. Optimized design variables (m1,m2, θ) obtained after 200 iterations of the Null
Space Optimizer for solving the optimization problem (4.5) without filtering for the non-
symmetric configuration of Section 5.4.
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Figure 25. Convergence histories for the optimization problem (4.5) for the non-symmetric
configuration considered in Section 5.4.
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(a) φ1 (b) φ2 (c) Φ

Figure 26. Reconstructed diffeomorphism from the level set functions φ1 and φ2 with the
procedure of Section 5 for the non-symmetric design optimization test case of Section 5.4.

(a) ϵ = 0.05. (b) ϵ = 0.025. (c) ϵ = 0.0125.

Figure 27. Dehomogenized designs for various values of ϵ for the non-symmetric design opti-
mization problem of Section 5.4.

Finally, we evaluate the quality of the proposed designs by solving the full-scale model (2.1) on the fine
mesh Tfine. The obtained pressure field and norm of the velocity fields are compared to the solutions to the
homogenized model on respectively Figs. 28 and 29. For this test case, the predictions of full-scale and the
homogenized model match qualitatively well, a little less for the fine situation ϵ = 0.0125. Looking at the graph
of the average mass flow rate mi at the outlet boundaries Γout,i on Figure 29b (eq. (5.3)), we see that the flow
is spread only approximately evenly at the outlet: the design achieve output mass flow rates ranging between
0.15 and 0.25, which is above the value 0.1 obtained from the homogenized model.

Finally, we show on Figure 30 the post-processed designs obtained by removing spurious channels with
velocity smaller than 0.1% of its maximum value.

6. Conclusion and perspectives

In conclusion, our study is an attempt to pave the way towards unlocking the potential of multiscale topology
optimization methods based on asymptotic homogenization for designing intricate fluid systems. In this paper,
we raised attention on some challenges that need to be addressed when extending dehomogenization methods
from mechanical to fluid models. Using asymptotic analysis, we emphasized the dependency of the homogenized
permeability matrix to the local dilation of the underlying locally periodic medium.

We then presented a numerical methodology resting on multiple approximations for solving optimal design
problems of two-dimensional systems featuring locally periodic microchannels compatible with the dehomoge-
nization procedure of [41]. Compared to the existing method of Dede et. al. [26], our method is as rigorously
as possible based on two-scale asymptotic homogenization and could extend easily to arbitrarily complex unit
cell patterns by solving the cell problem (3.2) with a different hole shape T , and then by adapting the tiling
procedure, see e.g. [66]. In contrast, the variability of admissible Turing patterns seems currently rather limited
to stripe or spot shapes whose geometry is controlled by the convection-reaction parameters [45]. In comparison
with the alternative method of [53, 54] also based on periodic homogenization, the proposed dehomogenization
method is able to generate designs that are not restricted to periodic arrangements of micropillar arrays with
a locally varying pattern. We note that in the latter works, the pattern can be chosen within a variety of unit
cells (which theoretically could also be considered in the present framework), but these cells are projected on a
(nondeformed) cartesian grid, limiting the range and the complexity of achievable designs.
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(a) Homogenized model

(b) Full-Scale model (2.1) on an
adapted mesh, ϵ = 0.05.

(c) Full-Scale model (2.1) on an
adapted mesh, ϵ = 0.025.

(d) Full-Scale model (2.1) on an
adapted mesh, ϵ = 0.0125.

Figure 28. Pressure field obtained by solving the Stokes equation on a fine mesh discretizing
the dehomogenized design of Section 5 with ϵ = 0.025 for the non-symmetric configuration of
Section 5.4.
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(b) Mean mass flow rates on every
outlet channel Γout,i along Γout (eq.
(5.3)). Axis is the y variable on Γout.

(c) Full-Scale model (2.1) on an
adapted mesh, ϵ = 0.05.

(d) Full-Scale model (2.1) on an
adapted mesh, ϵ = 0.025.

(e) Full-Scale model (2.1) on an
adapted mesh, ϵ = 0.0125.

Figure 29. Norm of the velocity field obtained by solving the Stokes equation on a fine
mesh discretizing the dehomogenized design of Section 5 for the non-symmetric test case of
Section 5.4.
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(a) ϵ = 0.05 (b) ϵ = 0.025

(c) ϵ = 0.0125

Figure 30. Post-processed designs obtained by removing channels with very small velocity.

The extension of the method to three-dimensional problems would be in principle feasible with the 3D
dehomogenization procedure of [42], without theoretical difficulties as long as no singularities of the orientation
field is involved. However, the method would rest on the same approximations.

Still, the numerical results of Section 5 highlights several limitations of the method. First, the mapping
used to deform the periodic cell in dehomogenization methods is approximately conformal Section 5, which is
naturally adapted to compliance minimization problems featuring bars crossing perpendicularly, but this must
obviously be less performant for the case of microchannels whose junctions need not to be aligned according
to square angles. Furthermore, the proposed approach based on the Darcy system (4.3) fails to capture the
velocity and pressure field accurately. In contrast, a rather good agreement between the full-scale and the
homogenized model is reported in the alternative dehomogenization method of [53, 26, 68]. More accurate
homogenized models should be sought to minimize physical discrepancies between the homogenized and the
dehomogenized medium; for instance, a Brinkman equation featuring the inverse of the homogenized Darcy
tensor as porosity coefficient is used in [53]. Future investigations could therefore seek to devise methods able to
handle non-conformal mappings, and foreseeing improved homogenized descriptions of porous media. Finally,
devising an efficient and consistent cleaning procedure for obtaining designs devoid of channels not connected
to the outlet or the inlet remains an import open issue that needs to be addressed in future works.
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Appendix A. Exact description of the deformed locally periodic domain

It is possible to give an exact description of the geometrically modulated periodic domain Ωϵ of Section 2.2,
characterized by the implicit function ρϵ of (2.3). To our knowledge, this description has not been investigated
in previous works but is of interest as it offers a refined understanding of this set.

Let x(t, ϵ, s) be the implicit function satisfying

F (x(t, ϵ, s), t, ϵ, s) = 0 where F (x, t, ϵ, s) = Φ−1(x)− t− ϵs⊙m(x)

where ⊙ denotes the coefficient-wise multiplication: s⊙m(x) = (s1m1(x), s2m2(x)). The existence and smooth-
ness of the function x(t, ϵ, s) is guaranteed by the the implicit function theorem for small values of ϵ, t ∈ R2

and s ∈ (−1/2, 1/2)2. The reader can then verify that the negative subdomain of ρϵ is

{(x1, x2) ∈ R2 | ρϵ(x1, x2) < 0} = R2\
⋃

n∈Z2

Fnϵ,ϵ((−1/2,−1/2)2) where Fnϵ,ϵ(s) = x(nϵ, ϵ, s). (A.1)
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In other words, Ωϵ (which is the intersection of this set with D) is obtained by removing from D the many small
obstacles Fnϵ,ϵ((−1/2, 1/2)2) for all possible n ∈ Z2.

The obstacle Fnϵ((−1/2, 1/2)2) is at first order a rectangle of size m1(x)×m2(x) centered around the point
x = Φ(nϵ). To be convinced of this fact, the computation of the leading asymptotic expansion of the function
Fnϵ,ϵ as ϵ → 0 yields

Fnϵ,ϵ(s) = x(nϵ, ϵ, s) = Φ(nϵ) + ϵ∇Φ(nϵ)(s⊙m(Φ(nϵ))) +O(ϵ2). (A.2)

Thus, Fnϵ,ϵ(P ) is at first order the stretched rectangle ϵ∇Φ(nϵ)T (m) of width and height m1(Φ(nϵ)) and
m2(Φ(nϵ)), centered around the point x = Φ(nϵ).

Finally, let us justify why the volume functional Vol(m1,m2) =
∫
D
(1−m1m2) dx is a consistent approxima-

tion of the fluid volume |Ωϵ|. In view of (A.1) and (A.2), the following approximation holds:

|Ωϵ| ≃ |D| −
∑

n∈Z,nϵ∈D

ϵ2m1(Φ(nϵ))m2(Φ(nϵ))|∇Φ(nϵ)| ≃ |D| −
∫
Φ−1(D)

m1(Φ(X))m2(Φ(X))|∇Φ|dX

=

∫
D

(1−m1(x)m2(x)) dx,

which is the desired result. We note that the formula is valid even for nonconformal mappings Φ.

Appendix B. Proofs of homogenization theorems on deformed periodic domains

This appendix is dedicated to the proof of the homogenization results of Section 3. The notation conventions
of this part are those of Section 3. Throughout this part, we use the Einstein summation convention on repeated
indices. Furthermore, in order to make the notation lighter, we omit the dependency to m1 and m2 when
referring to the solid obstacle or the fluid component in the unit cell, i.e. Y ≡ Y (m1,m2) and T ≡ T (m1,m2).
In any case, the results presented here are true if the solid inclusion is replaced with any smooth simply connected
set, and the results would extend without difficulty to the three-dimensional setting.

B.1. Proof of Proposition 3.1

We prove the result thanks to two intermediate propositions. First, we introduce a cell problem in the (non-

stretched) unit cell Y = P\T . For any x ∈ Φ(D), let us denote by (X̂ j(x, ·), α̂j(x, ·))1≤j≤d the solution to the
cell problem 

−divy(A(x)∇yX̂ j(x, y)) + (∇Φ−1(x))T∇yα̂j(x, y) = ej , ∀y ∈ Y,

divy(∇Φ−1(x)X̂ j(x, y)) = 0, ∀y ∈ Y,∫
Y

α̂j(x, y) dy = 0,

X̂ j(x, ·) = 0 on ∂Y,

X̂ j(x, ·) is P–periodic,

(B.1)

where A(x) is the fourth order tensor defined by

A(x)ξ := ξ∇Φ−1(x)(∇Φ−1(x))T for all 2× 2 matrix ξ.

The cell-problem (B.1) is an elliptic, symmetric, problem in y that is well-posed for every x ∈ Φ(D) owing to
the Lax-Milgram theorem, noting that the matrices A(x) and ∇Φ−1(x) are constant in y. The symmetry of
the system (B.1) comes from the fact that the operator α̂ 7→ (∇Φ−1(x))T∇yα̂ is the transpose of the operator

X̂ 7→ divy(∇Φ−1(x)X̂ ), which is a key property ensuring well-posedness.

Let us then denote by X̂ =
[
X̂ 1 X̂ 2

]
the matrix gathering the correctors, and by X̂ ∗ = (X̂ ∗

ij)1≤i,j≤2 its

average over the unit cell:

X̂ ∗
ij(x) :=

∫
Y

Xij(x, y) dy. (B.2)

The correctors (X̂ j , α̂j) are those that naturally come into play when using the method of two scale expansions.
They allow us to obtain the following proposition, which turns out to be equivalent to Proposition 3.1 after

proving (in Proposition B.2 below) that X̂ ∗(x) = X ∗(x).
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Proposition B.1. Let (u, p) be the solution to the following Darcy system:

u(x) = X̂ ∗(x)(f(x)−∇p(x)), x ∈ Φ(D),

div(u(x)) = 0, x ∈ Φ(D),∫
Φ(D)

p(x) dx = 0,

u, p are Φ(D) periodic.

(B.3)

The following asymptotic expansion holds for the solution (uϵ, pϵ) to the perforated Stokes system (3.1) in the
deformed domain Φ(Dϵ):

uϵ(x) = ϵ2X̂ (x,Φ−1(x)/ϵ)(f(x)−∇p(x)) +O(ϵ3), pϵ(x) = p(x) +O(ϵ), (B.4)

where the error terms are measured with the L2 norm on Φ(Dϵ).

Proof. We only sketch the proof of this result: we detail the derivation of (B.3) and (B.4), but we do not prove
in details the estimates O(ϵ3) and O(ϵ) which can be obtained by following the methods outlined in [16, 34].

For deriving the asymptotic (B.4), we apply the method of two scale expansions which postulates the following
ansatz:

uϵ(x) =

+∞∑
k=0

ϵk+2uk(x,Φ
−1(x)/ϵ), pϵ =

+∞∑
k=0

ϵk(p∗k(x) + ϵpk(x,Φ
−1(x)/ϵ)), (B.5)

where uk(x, y), pk(x, y), p
∗
k(x) are functions defined for x ∈ Φ(D), y ∈ Y , which are Φ(D) periodic in x and

P–periodic in y. Note that (B.5) are non-standard two-scale periodic expansions owing to the dependence to
the deformation of the cell Φ−1 (also considered in [69]). Following [31], we require furthermore the following
conditions in order to determine uniquely the functions p∗k and pk(x, y):∫

Φ(D)

p∗k(x) = 0 dx and

∫
Y

pk(x, y) dy = 0.

Using the chain rule, and assuming the Einstein notation convention on repeated indices, we find:

−∆uk(x,Φ
−1(x)/ϵ) = −∂iiuk(x,Φ

−1(x)/ϵ) = −∂i
(
∂xi

uk(x,Φ
−1(x)/ϵ) + ϵ−1∂iΦ

−1
j (x)∂yj

uk(x,Φ
−1(x)/ϵ)

)
= −∆xxuk(x,Φ

−1(x)/ϵ)− 2ϵ−1∂iΦ
−1
j (x)∂xi,yj

uk(x,Φ
−1(x)/ϵ)

− ϵ−1∂iiΦ
−1
j (x)∂yj

uk(x,Φ
−1(x)/ϵ)− ϵ−2∂iΦ

−1
j (x)∂iΦ

−1
l (x)∂yjyl

uk(x,Φ
−1(x)/ϵ)

= −(Axx + ϵ−1Axy + ϵ−2Ayy)uk(x,Φ
−1(x)/ϵ),

where Axx, Axy and Ayy are the following differential operators:

Axxv(x, y) := ∆xxv(x, y) = ∂xixiv(x, y),

Axyv(x, y) := 2∂iΦ
−1
j (x)∂xiyj

v(x, y) + ∂iiΦ
−1
j (x)∂yj

v(x, y),

Ayyv(x, y) := ∂iΦ
−1
j (x)∂iΦ

−1
l (x)∂yjyl

v(x, y) = divy(A(x)∇yv(x, y)).

We also have, still by applying the chain rule:

∇pk(x,Φ
−1(x)/ϵ) = ∇xpk(x,Φ

−1(x/ϵ)) + ϵ−1(∇Φ−1(x))T∇ypk(x,Φ
−1(x)/ϵ).

div(uk(x,Φ
−1(x)/ϵ)) = Tr(∇xuk + ϵ−1∇yuk∇Φ−1)

= divxuk + ϵ−1divy(∇Φ−1uk).

Therefore, inserting (B.5) into (3.1) yields

f =

+∞∑
k=0

[
−(Axxϵ

k+2uk + ϵk+1Axyuk + ϵkAyyuk) + ϵk∇p∗k + ϵk+1∇xpk + ϵk(∇Φ−1)T∇ypk
]

=

+∞∑
k=0

ϵk
[
−Axxuk−2 −Axyuk−1 −Ayyuk +∇p∗k +∇xpk−1 + (∇Φ−1)T∇ypk

]
,

(B.6)

and

0 =

+∞∑
k=0

ϵk+2div(uk(·,Φ−1(·)/ϵ)) =
+∞∑
k=0

ϵk+2(divxuk + ϵ−1divy(∇Φ−1uk))

=

+∞∑
k=0

ϵk+1(divxuk−1 + divy((∇Φ−1)uk)),

(B.7)
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where we use the convention u−2 = u−1 = 0 and p−1 = p−2 = 0. Let us assume that f is given by a power
series in ϵ:

f(x) =

+∞∑
k=0

ϵkfk.

Identifying identical powers of ϵ in (B.6) and (B.7), we read the following cascade of equations:

−Ayyuk + (∇Φ−1)T∇ypk = fk −∇p∗k −∇xpk−1 +Axyuk−1 +Axxuk−2 in Φ(D)× Y, ∀k ≥ 0,

divy((∇Φ−1)uk) = −divxuk−1 in Φ(D)× Y,∀k ≥ 0,

u−1 = u−2 = 0, p−1 = 0,∫
Φ(D)

p∗k(x) dx = 0 ∀k ≥ 0,∫
Y

pk(x, y) dy = 0, ∀x ∈ Φ(D), ∀k ≥ 0,

uk(x, ·) = 0 on ∂Y, ∀x ∈ Φ(D),

uk(x, ·) is P–periodic for any x ∈ Φ(D) ∀k ≥ 0,

uk(·, y) is Φ(D)–periodic for any y ∈ P ∀k ≥ 0.

(B.8)

An important difference of (B.8) with respect to the same analysis where Φ is just the identity mapping lies in
the fact that the operator Ayy = divy(A(x)∇y·) now depends on x. However, it is still possible to find solutions
to (B.8) decoupling the slow variable x and the fast variable y ≡ Φ−1(x)/ϵ. For the proof of the present
Proposition 3.1, we content ourselves to the first order approximation obtained by identifying the solutions to
(B.8) for k = 0 and k = 1.

For k = 0, the system (B.8) reads, for a given fixed x ∈ Φ(D):
−divy(A(x)∇yu0(x, y)) + (∇Φ−1(x))T∇yp0(x, y) = f0(x)−∇p(x), ∀y ∈ Y,

divy(∇Φ−1(x)u0(x, y)) = 0 ∀y ∈ Y,

u0(x, ·) = 0 on ∂Y,

u0(x, ·) is P–periodic.

This problem has a unique solution (u0, p) given by

u0(x, y) = X̂ j(x, y)(f0,j(x)− ∂jp(x)), p0(x, y) = α̂j(x, y)(f0,j(x)− ∂jp(x)), (B.9)

where (X̂ j , α̂j)1≤j≤d are the solution to the cell problem (B.1). It remains to identify the function p(x) in (B.9),
which is possible by examining (B.8) with k = 1:

−divy(A(x)∇yu1) + (∇Φ−1(x))T∇yp1 = f1 −∇p∗1 −∇xp0 +Axyu0,

divy((∇Φ−1)u1) = −divx(u0),

u1(x, ·) = 0 on ∂Y,

u1(x, ·) is P–periodic.

By the Fredholm alternative, this elliptic problem has a solution if and only if the following compatibility
condition is satisfied: ∫

Y

divx(u0) dy = 0.

This condition can be rewritten

0 = divx

(∫
Y

X̂ j(x, y)(f0,j(x)− ∂jp
∗
0(x)) dy

)
= div(X̂ ∗(x)(f −∇p)),

which is equivalent to (3.5). This proves that if the expansion (B.5) exists, then the terms u0 and p are solution
to the Darcy system (3.5). On this periodic setting, the error bounds (B.4) can then be proven by using standard
elliptic estimates, see e.g. [16, 31]. □

The next proposition relates the cell problem (B.1) with non-homogeneous coefficients on the rectangle cell
Y to the one (3.2) with constant coefficients but posed on the deformed cell ∇Φ(Φ−1(x))Y .

Proposition B.2. The following identity holds for the cell solutions (X̂ j , α̂j) of (B.1):

X̂ j(x, y) := X j(x,∇Φ(Φ−1(x))y), α̂j(x, y) := αj(x,∇Φ(Φ−1(x))y), ∀x ∈ Φ(D), ∀y ∈ Y. (B.10)

where (X j , αj) is the cell solution to the problem (3.2).
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Proof. Let us introduce the auxiliary correctors

X̃ j(x, z) := X j(x,∇Φ−1(x)z), α̃j(x, z) := αj(x,∇Φ−1(x)z)

defined for any x ∈ Φ(D) and z ∈ ∇Φ(Φ−1(x))Y . In virtue of (∇Φ−1(x))−1 = ∇Φ(Φ−1(x)), the result is proved

as soon as we show that X̃ j = X j and α̃j = αj . First, it is straightforward to see that both X j(x, ·) and

X̃ j(x, ·) satisfy the same boundary conditions on ∇Φ(Φ−1(x))Y . Then, the use of the chain rule implies that
these functions also satisfy the same differential equations:

∆zzX̃ j(x,∇Φ−1(x)z) +∇zα̃j(x,∇Φ−1(x)z) = ∂zizi(X j(x,∇Φ−1(x)z)) + ∂zl α̃j(x,∇Φ−1(x)z)el

= ∂iΦ
−1
k (x)∂iΦ

−1
l (x)∂yk

∂yl
X j(x,∇Φ−1(x)z) + ∂lΦ

−1
k (x)∂yk

α̃j(x,∇Φ−1(x)z)el

=
[
AyyX̃ j + (∇Φ−1(x))T∇yα̃j

]
(x,∇Φ(Φ−1(x)z))

= ej ,

divz(X̃ j(x,∇Φ−1(x)z)) = Tr(∇zX̃ j(x,∇Φ−1(x)z))

= Tr(∇yX̃ j(x,∇Φ−1(x)z)∇Φ−1(x))

= divy((∇Φ−1(x))T X̃ j(x,∇Φ−1(x)z)) = 0.

This implies the result by uniqueness of the solutions to the cell problem (3.2). □

Performing the change of variable y = ∇Φ−1(x)z in (B.2) and using ∇Φ−1(x) = ∇Φ(Φ−1(x))−1, we find

that the tensors X ∗ of (3.4) and X̂ ∗ of (B.2) coincide:

X̂ ∗(x) =

∫
Y

X̂ (x, y) dy

= |∇Φ−1(x)|
∫
∇Φ(Φ−1(x))Y

X̂ (x,∇Φ−1(x)z) dz = X ∗(x).

This shows the equivalence of the Darcy systems (3.5) and (B.3). Then (3.6) follows from (B.4) together
with (B.10). This completes the proof of Proposition 3.1.

B.2. Proof of Proposition 3.2

Let us recall elementary commutation identities for the Laplace, gradient and divergence operators with
respect to rotation and rescaling.

Lemma B.1. Let s > 0 and R ∈ R2×2 a rotation matrix satisfying RTR = I. For any vector and scalar fields
X ∈ C∞(R2,R2), α ∈ C∞(R2,R), the following identities hold:

∆(RTX ◦ (sR)) = s2RT (∆X ) ◦ (sR),

∇(α ◦ (sR)) = sRT (∇α) ◦ (sR).

div(RTX ◦ (sR)) = sdiv(X ) ◦ (sR).

This lemma implies the following identities relating the solution to the cell problems (3.2) and (3.10) in
respectively the rotated and rescaled cell ∇Φ(Φ−1(x))Y to that in the unit cell Y .

Proposition B.3. If ∇Φ(Φ−1(x)) = s(x)R(x) with s(x) > 0 and R(x)TR(x) = I, then the solution to (3.2)
reads

X j(x, z) = s2Rjl(x)R(x)X l(s
−1R(x)T z), αj(x, z) = sRjl(x)αl(s

−1R(x)T z), (B.11)

where (X j(y), α(y)j) are the solutions to the cell problem posed in the perforated unit cell Y = P\T :

−∆yyX j +∇αj = ej in P,

div(X j) = 0 in P,∫
Y

αj(y) dy = 0,

X j = 0 on ∂Y,

X j is P–periodic.

Proof. By applying Lemma B.1, we find

∆zzX j(x, ·) +∇zαj(x, ·) = Rjl(x)
(
∆zz(s

2R(x)X l ◦ (s−1R(x)T )) +∇z(sαl ◦ (s−1R(x)T ))
)

= Rjl(x)
(
R(x)(∆yyX̃ l +∇yyα̃l) ◦ (s−1R(x)T )

)
= Rjl(x)R(x)el

= R(x)R(x)Tej = ej ,
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and
divz(X j(x, ·)) = div(s2Rlj(x)R(x)X l ◦ (s−1R(x)T )) = 0.

Since s2Rjl(x)R(x)X l(s
−1R(x)T ·) also satisfies the boundary conditions of (3.2) on∇Φ(Φ−1(x))Y = s(x)R(x)Y ,

we obtain the result. □

The proof of Proposition 3.2 follows by the change of variable y = s−1R(x)T z in the formula (3.4):

X ∗
ij(x) =

1

|s(x)R(x)P |

∫
s(x)R(x)Y

eTi X j(x, z) dz

= s(x)−2

∫
s(x)R(x)Y

s(x)2Rjle
T
i RX l(s

−1RT z) dz

= s(x)2RjlRik

∫
Y

eTkX l(z) dz = s(x)2RjlRikX ∗
kl = s(x)2R(x)X ∗R(x)T .
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