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École de Technologie Supérieure (ÉTS)
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Abstract—Network slicing is one of the major catalysts to
turn future telecommunication networks into versatile service
platforms. Along with its benefits, network slicing is introduc-
ing new challenges in the development of sustainable network
operations. In fact, guaranteeing slices requirements comes at
the cost of additional energy consumption, in comparison to
non-sliced networks. Yet, one of the main goals of operators
is to offer the diverse 5G and beyond services, while ensuring
energy efficiency. To this end, we study the problem of slice
activation/deactivation, with the objective of minimizing energy
consumption and maximizing the users quality of service (QoS).
To solve the problem, we rely on two Multi-Armed Bandit
(MAB) agents to derive decisions at individual base stations.
Our evaluations are conducted using a real-world traffic dataset
collected over an operational network in a medium size French
city. Numerical results reveal that our proposed solutions provide
approximately 11-14% energy efficiency improvement compared
to a configuration where all the slice instances are active, while
maintaining the same level of QoS. Moreover, our work explicitly
shows the impact of prioritizing the energy over QoS, and vice
versa.

Index Terms—5G, Network Slicing, Energy Efficiency, QoS

I. INTRODUCTION

The telecommunication industry accounts for approximately
2% of total global carbon emissions [1]. By 2030, 8% of
the projected global electricity demand will come from the
information and communications technology sector as a whole,
even in the best case scenario [2]. Energy consumption will
continue increasing in beyond 5G and 6G networks, where
computationally intensive services will be largely deployed.
Although 5G equipment is more energy efficient than 4G [3],
with the data traffic volume increasing tremendously along
with 5G services, overall energy consumption will increase
too. In fact, the energy consumption of a 5G base station is
three times higher than that of a 4G base station, when both
are considered at a full load [4].
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5G is envisioned to serve a wide variety of services, with
heterogeneous traffic, through network slicing [5]. This is
done by forming, on one physical network, multiple vir-
tual networks on a per-service basis, i.e., slices. That said,
slices requirements need to be met, including performance
isolation. Guaranteeing these requirements and the additional
virtualization layer come with some overhead, which produces
higher energy consumption with respect to non-sliced network
deployments [6]. One of the key objectives in the field is to
offer this service differentiation, while reducing the associated
CO2 emissions. Indeed, energy efficiency in networks is no
longer an option but a necessity. When delving into this
topic, we observe that, today, the highest amount of energy is
consumed in the radio access network (RAN), approximately
70% of the overall network energy utilization [7].

To deal with this, several research works consider base sta-
tion sleep schemes to further optimize the energy consumption
in 5G networks [8], [9]. While such techniques show effective
results, they are more challenging to be applied directly in
the case of multi-services network slicing environments. That
is mainly because slice instances can exhibit quite different
temporal traffic patterns. Completely shutting down or putting
the entire base station into sleep mode could notoriously
impact the quality of service (QoS) of users in specific slice
instances. This motivates us to introduce a new approach, in
which slice instances are dynamically activated and deacti-
vated, according to their traffic patterns, thereby enhancing the
overall base station energy efficiency. However, deactivating
some slice instances to minimize the energy consumption can
potentially degrade the QoS of users. On the other hand,
activating all slices all the time, so as to maximize QoS,
significantly increases energy consumption. Accordingly, the
energy minimization objective shall be coupled with a QoS
maximization objective [10].

To manage the trade-off between the two objectives, opera-
tors may consider using an EcoSlice, which is a slice instance
with bare minimum resources and network functions. By that,
it incurs much lower energy consumption than typical slice
instances. The EcoSlice is up and running 24/7 to provide



a bare-minimum service. In some conditions, e.g., low traffic
demand, operators may switch the users of other slices to this
specific EcoSlice, without a significant QoS impact.

In this regard, we study the problem of slice activa-
tion/deactivation, with the objective of minimizing the energy
consumption while satisfying the user QoS. The contributions
of our work are twofold. First of all, we propose two different
approaches for solving the problem, namely a Deep Contex-
tual MAB (DCMAB) algorithm and a Thompson Sampling
Contextual (Thompson-C) algorithm. These approaches allow
to derive solutions dynamically over time, while considering
traffic patterns of individual slice instances deployed at a base
station. Moreover, our proposed agents enable operators to
navigate users to and from an EcoSlice, if their requested slice
instance is activated/deactivated. Second, we evaluate the per-
formance of the proposed approaches and their computational
cost using a real-world traffic dataset.

The rest of the paper is organized as follows. Section II
discusses the related work of energy efficiency in network
slicing. Then, the network model and problem statement are
laid out in Section III. In Section IV, we present the detailed
design of our proposed solutions. We articulate the results in
Section V and conclude the paper in Section VI.

II. RELATED WORK

With the aim of enabling energy efficiency, several research
works consider optimizing the allocation of network slice re-
sources (i.e., radio, CPU, transmission bandwidth and power)
in the different domains (i.e., RAN, Edge Computing (EC),
Core Network (CN) and end-to-end network). At the RAN
slicing level, [11] combines deep learning (DL) and reinforce-
ment learning (RL) on a distributed framework to efficiently
allocate radio and transmission power resources over base
stations. They use stacked and bidirectional Long-Short Term
Memory (SBiLSTM) to predict the per slice resources demand
on a large time scale and rely on asynchronous advantage
actor-critic (A3C) to allocate resources to users on a small
time scale. Their proposed framework achieves higher energy
efficiency than baselines using static power allocation.

In [12], the authors optimize the energy consumption and
computation cost in a network slicing based Cloud-RAN (C-
RAN) setting, using a twin-delayed double-Q soft Actor-Critic
(TDSAC) approach. Their agent performs the up/down scaling
of computing and beamforming power resources. Their work
outperforms other baseline RL models in terms of overall
network energy and computing cost. Similarly, [6] designs
a slice energy consumption model based on the C-RAN
architecture. An optimisation problem is solved per-slice, with
the objective of minimizing the overall network energy cost,
jointly considering communication and computation resources.
This approach improves energy efficiency over a baseline
focusing only on radio resources.

Focusing on CN slicing, the authors in [13] formulate a
security-aware network slicing optimization problem to en-
hance the energy efficiency of CN nodes. They limit them-

selves to static resource allocation. Their proposed solution
provides more power savings than a greedy approach.

Considering an obvious trade-off, it is sensible to couple
QoS maximization and energy consumption minimization.
Therefore, focusing on end-to-end network slicing, the authors
in [14] aim to maximize the energy efficiency while respecting
service level agreement (SLA) constraints. To this end, they
rely on statistical federated learning (stFL). Their federated
local agents coordinate and predict per slice network metrics,
without transferring datasets to a central unit, and largely
outperform other federated learning and centralised solutions.

While prior works attempt to achieve the energy efficiency
as well as ensuring QoS, we believe there is still room to
further optimize the energy efficiency by switching off some
of the underutilized slice instances, under some conditions. As
of our knowledge, there is no contemporary work studying
this problem. In this light, we introduce the RAN slice
activation/deactivation problem with the aim of minimizing
energy consumption and maximizing QoS. To this end, we
rely on the fully decentralized state-aware MAB approaches
to enable decisions for slice instances at each base station,
while considering the impact on energy and QoS factors.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We study the problem of slice instance activation and deac-
tivation at individual base stations with the aim of minimizing
energy consumption and maximizing QoS. We thus explicitly
lay out the system model, energy consumption and user QoS
model, needed as part of our defined problem. We then
formalise the main objective of our problem. We formulate the
latter as a Markov decision process (MDP), and re-design it
after that as a contextual Multi-Armed Bandit (MAB) problem.

A. System Model

We consider a time-slotted system. Accordingly, we define
τ as the slice activation/deactivation interval (SADI), where
slices are active or inactive continuously over the period of
that interval. Accordingly, activation/deactivation decisions are
made at the end of every τ , for the upcoming τ + 1. The
period of the SADI is defined based on the operator policies.
Besides, we define T as a time interval of interest, such
that τ ∈ T . Figure 1 illustrates the time frame consideration
in our proposed model. In this example figure, we consider
four different types of slices: three of them, denoted as
Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low
Latency Communication (URLLC) and Massive Machine-
Type Communication (mMTC), provide services with different
QoS levels and they can be activated/deactivated as needed,
as well as the EcoSlice which is always up and running.

We define Ib as a set of slice instances attached to base
station b ∈ B. We define Uτ

b as the set of users served by
base station b at τ . Accordingly, Uτ

i,b is the set of users that
can be served by slice instance i of base station b at τ . Thus,
Uτ
b =

⋃
i∈Ib

Uτ
i,b. Each slice instance i ∈ Ib is characterized

by a specific QoS class identifier (QCI) [15] and its energy
consumption Eτ

i,b.



Fig. 1: Slice Activation-Deactivation Interval (SADI) illustra-
tion.

Without loss of generality, we consider user delay as an
indicator of the QoS, but any other metric could be easily
integrated instead. In the optimal slice instance activation
scheme, underutilized slice instances are switched off to save
energy when certain conditions are met. Consequently, the
user-perceived delay is prone to deteriorate. In this light,
we deliberately study the impact of optimal slice instance
activation on both energy and delay. Hence, we define δi as
a predefined achievable delay for a slice instance i. We also
consider an EcoSlice instance ie ∈ Ib, to which users are
switched when their requested slice instances are inactive. The
EcoSlice instance ie also has a predefined achievable delay δie
and its energy consumption over τ is denoted as Eτ

ie,b
.

At every τ , each user u ∈ Uτ
b makes a specific request, char-

acterized by a delay requirement dτu and a traffic flow demand
lτu. Each base station b has a set of possible configurations
Kb. Each configuration k ∈ Kb implies activation/deactivation
decisions for some slices. In detail, k contains {cτi |i ∈ Ib}.
Here, cτi = 1 if slice instance i is active at b during τ , and 0
otherwise. Needless to say, cτie = 1 for any τ .

B. Energy Consumption Model

We define the function f(.) to refer to the overall energy
consumption of a base station. This energy model can be
further fine-tuned based on specific operator resource man-
agement policies and activated RAN energy saving features.
It is composed of the energy consumption resulting from its
individual deployed slice instances Eτ

i,b and the static energy
consumption of the base station P static

b (i.e cooling and circuit
power):

fb(c
τ
i , Ib) =

∑
i∈Ib

cτi · Eτ
i,b + P static

b (1)

with
Eτ

i,b = ρτi,bψiP
dynamic
b + ψiP

fixed
b (2)

As indicated in the above equation, the energy consumption
of slice instances for a base station b encompasses a load-
dependent power consumption component, P dynamic

b , and
a load-independent power consumption component, P fixed

b .
Specifically, as the name implies P dynamic

b depends on the
traffic load of the base station. It is worth stressing that a slice
instance consumes some power even at zero load traffic, in
order to run its corresponding network functions. Thereupon,
P fixed
b is independent of the traffic load, but related to

the energy consumption of associated network functions of
specific slice instances.

We note here that not all slice instances are designed
equally [16]. Their required network functions and signalling
traffic are different [17]. For instance, an URLLC service
potentially consumes higher energy, because it requires spe-
cific network functions to offer high reliability and very low
latency [18]. In short, the more stringent the latency require-
ments of the service, the higher its consumed energy [19].
Regardless of their requirements for energy, both mMTC and
eMBB have flexibility in terms of latency. It is fair to say
that, even under the same amount of traffic load, the energy
consumption of each service is different. Meanwhile, the
EcoSlice is deployed with relatively low energy consumption.
It is sensible to conclude that different slice types consume
different amounts of energy not only because of their traffic
portion but also because of their service attributes [20].

In this vein, ψi denotes the power consumption impact
factor of slice instance i on both P dynamic

b and P fixed
b . We

let the operators define the value of ψi based on their slice
instances configurations and analytics. Having said that, based
on the prior explanation, it is pragmatic to assume that URLLC
has larger ψ value than eMBB and mMTC. Needless to say, ψ
value of the EcoSlice is the lowest. Besides, ρτi,b is the traffic
load portion of associated slice instance i of base station b
during τ . For this, we can simply obtain ρτi,b by dividing the
traffic load over slice lτi,b by the total base station traffic load,
as below:

ρτi,b =
lτi,b∑

i∈Ib
lτi,b

(3)

C. User QoS Model

As explained, our objective is coupled with ensuring the
user QoS. In this regard, we define the user satisfaction factor
ητu for each user u at τ associated to slice instance i as follows:

ητu =

{
1 if δi ≤ dτu
0 otherwise

, u ∈ Uτ
i,b, i ∈ Ib, τ ∈ T (4)

where dτu is the delay requirement of user u at time τ .
Consequently, the average per slice QoS at base station b is
defined as:

ητi,b =

∑
u∈Uτ

i,b
ητu

|Uτ
i,b|

(5)

We then compute the average QoS of the base station b
considering all the associated slice instances during τ :

ητb =

∑
i∈Ib

ητi,b
|Ib|

(6)

D. Objective Function

Given the system model and utility models mentioned
in the preceding sections, the objective of our slice activa-
tion/deactivation problem can be expressed as:

max

T∑
τ=1

[
1

fb(cτi , Ib)
+ ητb

]
(7)



As one can see in Equation 7, the objective function is
influenced by the time-varying user demand and active slice
instances. Thus, we believe that RL-based approaches are best-
suited for this problem, as they enable complex decision-
making without requiring an explicit modeling of the network
environment [21]. In what follows, we formulate the problem
as MDP and contextual MAB.

E. Markov Decision Process (MDP)

An MDP is defined by a tuple (S,A, P,R). S denotes
the set of states in the system. Representing states as feature
vectors helps the RL agent converge to a near-optimal reward
value, but one can also simplify a problem with a less complex
state representation (which might converge to a similar reward,
with less computation). In this light, we explore two definitions
for a state s in this problem: i) energy consumption and QoS of
base station in the previous SADI: s =

{
fb(c

τ−1
i , Ib), ητ−1

b

}
and ii) simply the SADI identifier: s = {τ}. The reason for
the latter definition is that, since the user demand depends
on time and it shows a significant periodicity, a simple state
representation based only on the SADI might already contain
enough information for the RL agent. Each action a ∈ A is a
configuration k, as defined in Section III-A, and A is the set
of possible configurations: A = Kb.

In the MDP model, P : S × A × S → [0, 1] captures
the stochastic transition probability function to transition to
s′ from state s based on action a, with

∑
s′∈S P (s

′|s, a) = 1
for all s ∈ S and a ∈ A. P is unknown to an RL agent.
However, it occurs that if an agent knows the current state and
the reward obtained in each iteration, it can still converge to the
optimal solutions through RL approaches [22]. Accordingly,
the formulation of reward function is critical for the RL agent
to be able to learn the optimal policy and it usually boils down
to the main objectives of the problem. We therefore define
reward r ∈ R as:

r(s, a, s′) =
1

fb(cτi , Ib)
+ β · ητb (8)

As shown in Equation 8, our reward function is aligned
with our objective function. Besides, we define β as a QoS
impacting factor on the reward. In short, the larger the β value
is, the more the QoS is emphasized with respect to the energy
consumption of the base station. If β = 1, the objective is to
find the trade-off between energy and QoS.

Due to the nature of our defined problem, we observe two
key points in our MDP representation: i) the transition proba-
bility of MDP can be simplified, such as P (s′|s, a) ≡ P (s′|a),
where states are independent of each other, and ii) unlike
typical MDP [12], our reward function depends only on current
state and action, but not on the successor state. With this, the
reward function could be simplified as r(s, a, s′) ≡ r(s, a).
Based on these observations, we present an equivalent formu-
lation as a state-aware MAB in the following.

F. Multi-armed Bandit (MAB)

In this section, we formulate our slice instance activa-
tion/deactivation problem as a state-aware MAB. Formally,

state-aware MAB is tupled with (S,A,R). Same as in our
MDP model, we use the two different state definitions for
s ∈ S: energy consumption and QoS observed over a SADI,
or simply the SADI identifier. Similarly, the set of actions
a ∈ A is the set of available configurations.

We then define the associated reward set R. Since we
consider the state-aware MAB (i.e., involving multiple states),
our reward distribution is non-stationary, and changes based
on the state s (also called context in the following). With this,
the reward set can be defined as R = {r(s, a)| a ∈ A, s ∈ S}.
In this regard, we rely on the same reward calculation as
Equation 8. Needless to say, the objective here is to maximize
the expected reward E [

∑
r(s, a)].

To evaluate our reward function, one standard approach
is to compete with the best-action benchmark. On the other
hand, we compute the regret resulting from not selecting the
optimal action at each iteration. That said, one would define
the cumulative regret incurred by an agent over a total of J
time steps as [23]:

Regret(J) =

J∑
j=1

(r∗j (s, a)− rj(s, aj)) (9)

where r∗j (s, a) is the best-action benchmark at round j and can
be obtained via r∗j (s, a) = max

a
rj(s, a), and aj is the action

selected by the agent in round j. It is worth mentioning that
the regret function is non-negative, as it compares the optimal
reward to the actual reward obtained by the agent.

IV. PROPOSED SOLUTION

In this section, we lay out our two fully decentralized
approaches, based on DCMAB and Thompson-C agents.

A. DCMAB Agent

As explained, we use two different context/state definitions
and thus we have two types of DCMAB agents: i) DCMAB-
EQ where the state is the overall energy and QoS over the
base station: s =

{
fb(c

τ−1
i , Ib), ητ−1

b

}
, and ii) DCMAB-

SADI when the state is the SADI: s = {τ}. Due to space
limitation, we outline them together in Algorithm 1. However,
we make sure the main differences (occuring at Line 3 and
Line 11 of Algorithm 1) are clearly outlined.

The inputs of the DCMAB agent consist of the probability
of selecting a random action ϵ, the learning rate α for the
deep neural network (DNN) model, and maximum time steps
J to train the DCMAB agent. The output is a trained model,
which can predict a reward distribution R̂(w̃) for the available
actions of the associated states. With this, the algorithm begins
by the initialization of the weights w̃ with arbitrary values
and the variable j referring to an iteration and starting with
zero (Line 1). At each step, the agent observes a context s:
for DCMAB-EQ , s is the overall energy consumption and
QoS factor and for DCMAB-SADI, s is a SADI identifier
(Line 3). Then, it predicts the reward distribution for all the
actions (Line 4) for a given context. After that, an action
is selected by considering the exploration and exploitation



Algorithm 1: DCMAB-EQ and DCMAB-SADI
Input: Probability of selecting a random action ϵ,

learning rate α, maximum time steps J
Output: R̂(w̃)

1 Initialize w̃ randomly and j = 0
2 repeat
3 Observe context/state: s - based on state definition

s =
{
fb(c

τ−1
i , Ib), ητ−1

b

}
for DCMAB-EQ or

s = {τ} for DCMAB-SADI
4 Predict Reward Distribution for each action:[

R̂w̃(a|s)
]
a∈A

5 if generate random probability: rand() < ϵ then
6 Select a random action a
7 else
8 Select a = argmax

a∈A

[
R̂w̃(a|s)

]
9 end if

10 Evaluate reward r(a|s)
11 Update new state s′

12 Calculate the loss: L(w̃) ∆
= (r(a|s)−

[
R̂w̃(a|s)

]
a
)2

13 Update the weights: w̃ ← w̃ − α▽L(w̃)
14 j ← j + 1
15 until j > J ;

tradeoffs (Line 5 - Line 9). Precisely, the random action is
selected with probability ϵ, and otherwise the action giving
the maximum reward is selected. Next, the chosen action is
applied to the defined network environment, which, after the
potential reconfiguration, returns an actual reward (calculated
using Equation 8) (Line 10). Accordingly, the new state s′

is obtained based on the action a for DCMAB-EQ, or new
state s′ is simply the next SADI (which is independent of
the previous action a) for DCMAB-SADI (Line 11). Then,
the loss between the predicted reward and the actual reward is
computed for the purpose of model training (Line 12). We rely
on a gradient descent method to update the weights matrix of
the DNN with a learning rate α (Line 13). Then, we go for
another iteration (Line 14) and the above process is repeated
for a maximum number of time steps J (Line 15).

B. Thompson-C Agent

Unlike DCMAB, the Thompson-C agent adopts a statistical
approach with the goal of achieving a proper estimation of the
posterior distribution of expected reward for each action. The
Thompson-C agent (Algorithm 2) operates as follows. We note
that we only consider the SADI identifier as context/state for
the Thompson-C agent. Accordingly, the inputs of the algo-
rithm are the context data for all the actions: C = (dk)|T |×|Kb|,
where dk is a context vector for configuration k, the number
of dimensions of the context vector z = |T |, the tunable
parameters φ and M (that can be tuned by the operator
as needed) and the maximum number of time steps J to
run the Thompson-C. The output is a posterior distribution

Algorithm 2: Thompson-C
Input: Context data C = (dk)|T |×|Kb|, number of

dimensions of context/state vector z = |T |, φ,
M , maximum time steps J , σ =M

√
9zln(Jφ )

Output: N
(
µ̂, σ2D−1

)
1 Initialize D = Iz , µ̂ = (0)z , j = 0
2 repeat
3 Sample µ̃ from Gaussian distribution

N
(
µ̂, σ2D−1

)
4 Select action a = argmax

k
dTk µ̃

5 Observe reward ra
6 D = D + dad

T
a

7 µ̂ = D−1 (dara)
8 j ← j + 1
9 until j > J ;

N
(
µ̂, σ2D−1

)
of having the optimal parameter µ̂. For better

understanding, µ̂ can be regarded as a weighted vector for a
z-dimensional context/state. The parameter σ can be obtained
via σ =M

√
9zln(Jφ ).

The algorithm begins by setting the parameter D as the
identity matrix with a z-dimensional vector. µ̂ is initialized
with zeros as a z-dimensional vector and j = 0 (Line 1). In
each time step j (Line 2), the Thompson-C agent samples
a parameter µ̃, from the posterior distribution N

(
µ̂, σ2D−1

)
(Line 3). It then selects an action that yields the best sample
(Line 4) and observes an associated reward (Line 5). Finally,
the parameters D and µ̂ are updated (Line 6 and Line 7).
Then, we go for another iteration (Line 8). The above process
is repeated for a maximum number of time steps J (Line 9).

V. EVALUATION

In this section, we evaluate the performance of our proposed
solutions. We start with a description of the dataset and sim-
ulation environment. Afterwards, we explain the benchmark
approaches and implementations that we use. Finally, we
discuss the overall results.

A. Dataset and Simulation Setup

We evaluate the proposed solutions using a real-world
dataset collected from the Orange 4G network, in Poitiers,
France. The dataset includes mobile data traffic demand of
different mobile applications at a base station level. We assume
slice instances are deployed on an application-basis, i.e.,
one application maps to one slice instance. More precisely,
Facebook, YouTube, and Google have been considered as three
different types of slice instances attached to each base station.
It is worth mentioning that those three different applications
exhibit very different traffic demands, which is appropriate
for the simulation of network slicing [26]. On the user side,
we assume stochastic delay requirements of users for each
application, as indicated in Table I.
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Fig. 2: Reward and regret obtained for different β values.

TABLE I: LIST OF PARAMETERS

Parameter Value
P static
b [24] 18 Watts
P fixed
b [25] 139 Watts
P dynamic
b [25] 742 Watts
ψi [Facebook, YouTube, Google, EcoSlice] [1.2, 1.6, 1.4, 1]
δi [Facebook, YouTube, Google, EcoSlice] [10, 1, 15, 11] ms
Number of users per slice [11-30]

Users delay requirement dτu
Facebook: [11-20]ms
YouTube: [6-17]ms
Google: [16-25]ms

Loss function MSE
Learning rate α 0.001
β [5,1,0.8]
Maximum episodes J 1000
φ 0.5
M 0.01

The granularity of the dataset is 10 minutes, for 10 days in
May 2019. With this, for our simulation purposes, we consider
T is 10 days and SADI τ = 10 minutes. Thus T includes
1440 τ . We analyse 10 base stations from the Poitiers city
center, where different slice instances are associated. We then
apply our proposed solutions using an action set where each
action implies the activation/deactivation of one of the slices:
[Facebook, YouTube, Google, EcoSlice].
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B. Benchmarks and Implementation Setup

We compare the performance of our proposed DCMAB
and Thompson-C solutions with three counterparts: Thomp-
son Sampling Non-Contextual (Thompson-NC), AllActive and
Random. Unlike Thompson-C, no state/context information is
considered in Thompson-NC [27]. For AllActive, as the name
implies it, all the slice instances are active. And a random
action is selected at each iteration for the Random approach.

For the implementation, we rely on the Pytorch frame-
work for the DCMAB agents. All the models (i.e. DCMAB,
Thompson-C, Thompson-NC, AllActive and Random) are



0.0

0.2

0.4

0.6

0.8

1.0

β = 0.8 β = 1 β = 5

Q
o

S

DCMAB-SADI DCMAB-EQ Thompson-C

Thompson-NC Random

Fig. 4: QoS based on different β values

implemented using a Python environment and trained on
the high-performance Linux server provided by Digital Re-
search Alliance of Canada. The DNN of a DCMAB agent
is composed of three fully-connected layers of 100 neurons,
followed by a RELU activation function for each. The detailed
parameters are summarized in Table I.

C. Results

1) Overall Agents Performances: First of all, to fully com-
prehend the performance of our agents, we study the trends
of reward, regret, QoS and energy for β = [5, 1, 0.8]. We note
that agents focus on QoS when β = 5, search for a trade-off
when β = 1, and stress on energy when β = 0.8. Therewith,
we compare the reward trends of our proposed solutions and
their peers in Figure 2. The curves are smoothed by averaging
within a rolling window of 50 iterations.

In Figure 2a, the DCMAB-EQ and Thompson-C agents
exhibit the superior reward, even significantly better than
AllActive, followed by DCMAB-SADI and Thompson-NC.
Random approaches failed our proposed solutions in every
scenario. Noticeably, AllActive shows inferior performance to
that of the other agents in general. We also perceive the same
behavior for the regret trends for all the agents in Figure 2b.

2) Roles of Agents in Energy and QoS: We then explic-
itly verify if our proposed solutions are feasible for energy
optimization in RAN slicing by comparing them with the
baselines. In this regard, as depicted in Figure 3, compared
with the AllActive strategy (currently the standard approach),
the energy improvement of Thompson-C is approximately
24%, 18% and 14% respectively, for β equals 0.8, 1 and
5. As expected, the energy gain deteriorates when β value
increases. The prior phenomenon holds for all the agents (ex-
cept Random). Also, we saw a great deal of energy gains over
AllActive for DCMAB-EQ, DCMAB-SADI, Thompson-NC
and even Random as well. Overall, we notice the Thompson-
C agent is quite superior to others in terms of energy gain.
Conversely, Thompson-NC has slightly lower energy gains
than the DCMAB agents for all β values.

We are all aware that optimizing energy consumption means
compromising QoS to an extent. In this light, we visualize the
QoS of all the agents in Figure 4. We note that Thompson-C

exhibits a comparable performance with its fellows in terms
of QoS, but a slightly lower performance when β = 0.8.
This is linked to Thompson-C showing highest energy gain
at β = 0.8. It is observed in Figure 4 that our proposed
solutions satisfy almost 100% QoS at β = 5 (slightly lower for
DCMAB-SADI). Therewith, it is at β = 5 where our agents
make themselves stand out, as they deliver the same QoS as
AllActive, while providing significant improvement in energy
efficiency. Regardless of showing acceptable performance,
the Thompson-NC agent shows lower performance than our
proposed solutions, comforting our modelling choices. We can
not help but stress that: i) state-aware agents outperform the
one in which context/state is not considered, and ii) a DNN
approach is constantly surpassed by a statistical approach.

3) Impact of EcoSlice: To grasp the benefits EcoSlice, we
examine in Figure 5 the performance of the Thompson-C agent
with and witout an EcoSlice, in terms of reward, regret, QoS
and energy utilization. We select the Thompson-C algorithm
here as it shows the best results in most of the scenarios
compared to its fellows. As we can observe, Thompson-C
demonstrates better performance under the different metrics
when compared to Thompson-C (w/o EcoSlice). Therefore, an
EcoSlice significantly enhances the overall energy efficiency
of the network by allowing operators to switch off the un-
derutilized slice instances and yet ensure QoS. Without the
assistance of an EcoSlice, one can not reach the level of energy
efficiency that we have accomplished.

4) Computing Time Comparisons: The detailed computing
time comparisons conducted on the Digital Research Alliance
of Canada servers are shown in Figure 6. Paying the price for
its performance, Thompson-C takes much longer computing
time than all the other agents. Despite Thompson-C being
considered to be a better agent than DCMAB-EQ, it is not a
good option for the real-time decision-making process, at least
not with a SADI of 10 minutes, as we consider. On the other
side, the DCMAB agents, who also outperformed the baselines
in terms of energy efficiency, are on par with Thompson-NC in
terms of computing power. There is no single answer here, and
Thompson-C can be a favourable solution for a system without
computing time constraints. However, all the solutions we
proposed in this work offer avenues for operators to optimize
the energy efficiency by slice activation/deactivation while
controlling the impact on QoS. Operators can also opt between
different design choices by varying β, based on their targets
and limitations.

5) MSE of DCMAB: Last but not least, we also compare
the MSE of the two DNN-based solutions, DCMAB-EQ and
DCMAB-SADI, in Figure 7. As we can see, DCMAB-EQ
has a stable training process with lower MSE than DCMAB-
SADI. This explains the superior performance of DCMAB-
EQ in the prior results, as DCMAB-EQ predicts better reward
distribution of associated actions. In Figure 7, MSE results are
shown for β = 5 only, but we noticed similar behaviour for
other tested values.
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VI. CONCLUSION

In this paper, we focus on the slice activation/deactivation
problem, to further enhance the energy efficiency in RAN slic-
ing. To this end, we advocate the state-aware MAB approaches
(i.e., DCMAB and Thompson-C), where an agent attempts to
activate the optimal slice instances while providing guaranteed
QoS. More than anything else, we investigate the important
aspect of the compromise between energy consumption and
user QoS. The results are derived based on a real-world
datasets and demonstrate that the MAB approach in general,
and DCMAB and Thompson-C in particular, are appropriate
for the slice activation/deactivation problem. They significantly
alleviate the energy consumption at the base station level while

ensuring a satisfactory QoS level.
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