
Handover Forecasting in Cellular Networks: A
Spatio-temporal Graph Neural Network Approach

Gwladys Ornella Djuikom Foka
Software and IT Engineering Department

École de Technologie Supérieure (ÉTS)
Montreal, Canada

gwladys-ornella.djuikom-foka.1@ens.etsmtl.ca

Razvan Stanica
Telecommunications Department

Univ Lyon, INSA Lyon, Inria, CITI
Villeurbanne, France

razvan.stanica@insa-lyon.fr

Diala Naboulsi
Software and IT Engineering Department

École de Technologie Supérieure (ÉTS)
Montreal, Canada

diala.naboulsi@etsmtl.ca

Abstract—The proliferation of connected devices, as well as
the continuous integration of data demanding applications, have
brought significant challenges to mobile network operators.
Indeed, mobile networks need to accommodate the resulting
exponential growth of traffic, while still ensuring a decent Quality
of Service (QoS) and Quality of Experience (QoE) to their users.
To do so, adequate management solutions are needed. So far, a va-
riety of problems have been tackled, including resource allocation
and network planning. Yet, handovers (HO) management has not
received much attention, despite its importance for users QoS and
QoE. In this work, we study the problem of mobile devices HO
forecasting, over time, among base stations. To solve the problem,
we introduce a Handover Graph Convolutional Long Short-Term
Memory (HGC-LSTM) neural network forecasting approach.
Our approach allows capturing spatio-temporal correlations
among neighboring pairs of base stations in the forecasting
process. The evaluation on a real-world dataset shows that the
proposed HGC-LSTM approach outperforms other methods in
the state-of-art in terms of accuracy and execution time.

Index Terms—Handovers Forecasting, 5G and beyond, Time
Series Forecasting, Machine Learning

I. INTRODUCTION

By the end of 2028, 5 billion 5G subscriptions are forecasted
in the world [1]. With more and more data-hungry appli-
cations, mobile network data traffic has been skyrocketing,
namely doubling in the past two years. As a result, mobile
operators are facing a remarkable surge in data traffic, leading
to significant pressure on their infrastructures. Indeed, the
proliferation of intelligent devices, coupled with data hungry
applications, are pushing for greater network capacity [2],
[3]. Operators are thus continuously seeking for appropriate
solutions, that can help accommodate for the resulting traffic,
while guaranteeing a decent quality of service (QoS) and
quality of experience (QoE) to their customers.

In this context, different problems have been investigated,
including resource allocation and network planning, for future
5G and beyond networks. However, handover (HO) manage-
ment has not received as much attention, despite the impact
it has on users QoS and QoE. Indeed, a HO refers to the
process of transferring an ongoing user communication session

This work was supported by the National Natural Sciences and Engineering
Research Council of Canada (NSERC) through research grant RGPIN-2020-
06050 and by the Fonds de Recherche du Québec – Nature et Technologies
(FRQNT) through research grant 2022-NC-297403.

from one Base Station (BS) to another, while minimizing
disruptions perceived by the user [4]. Hence, HO management
represents one of the key aspects to handle in order to
preserve users’ QoS and QoE and maintain a high level of
users satisfaction, as they move. With the growing number
of connected devices, relying on very diverse applications
and with drastic increase in data traffic, HO management
is becoming more and more challenging, especially for the
mobile operators, because of the high number of HOs on one
hand, and the HO overhead in terms of signaling and resources
requirements on the other hand [2].

The HO management process includes itself several com-
ponents, namely HO prediction [5], HO triggering [6], HO
decision [7], HO optimization [8] and HO evaluation [9]. Our
work is focused on HO forecasting, a key aspect in the HO
management process, allowing for more efficient resource (e.g.
bandwidth, power, processing capacity) allocation schemes
that can minimize operational costs and lead to improved
scalability and load balancing. In addition, it is beneficial
for network planning, including network optimization and
dynamic configuration of the base stations.

In our work, we are interested in studying the problem
of mobile devices HO forecasting, over time, between every
pair of neighboring base stations, in a certain geographical
area. In this context, most existing contributions focus on
the prediction of the next BS (or cell) where a HO will
occur [10], except for two previous studies [5], [11] that
focus on forecasting the number of HOs. In [5], the authors
group cells that have similar HO behavior in clusters, and then
they forecast the number of HOs attempts for each cluster.
However, this study does not consider the prediction of HOs
between BSs or cells, as we do, but rather the prediction
of the number of HO attempts per cell. On the other hand,
in [11], the authors forecast the number of HOs and traffic
between every pair of neighboring BSs, over time, with a
multivariate forecasting approach, for resource allocation in
Cloud-Radio Access Networks (C-RANs). This work is very
similar to ours, yet in our case, we adopt a novel approach,
based on Graph Neural Networks (GNN), that can capture
spatio-temporal correlations among neighboring pairs of base
stations, in the forecasting process.

The contributions of this paper are twofold:

• We propose a Handover Graph Convolutional Long
Short-Term Memory (HGC-LSTM) neural network fore-
casting approach, that relies on a GNN architecture,
combined with an LSTM model, to forecast the number
of HOs, between every pair of neighboring BSs, over
time. The GNN architecture allows extracting the spatio-
temporal dependencies between the different pairs of base
stations, and to achieve better forecasting performance.
It further allows modeling complex relationships and
captures non-linear dependencies, which are useful for
the forecasting task. The LSTM model, well-known for
its excellent results on time series data [12], further helps
achieve a more accurate forecasting.

• We evaluate the performance of our HGC-LSTM solution
on a real-world HO dataset, and compare its performance
to other existing forecasting solutions. The results show
that our solution outperforms the baseline solutions, while
maintaining a decent ratio between the execution time and
the accuracy metric. We also shed light on the impact of
LSTM parameters on the performance of our solution,
and further investigate its performance at times with
peaks of HOs.

The rest of the paper is organized as follows. Section II
examines previous studies on forecasting in networks in gen-
eral, and handover forecasting in particular, while Section III
presents the problem statement and the corresponding system
model. In Section IV, we elaborate on the design of our
proposed solution, which covers the methodology and the
framework architecture. Section V focuses on the evaluation
of our approach. Finally, Section VI concludes this work.

II. RELATED WORKS

Existing works on HO forecasting follow one of two axes:
the prediction of the next HO target cell (or BS) for a given
mobile user, and the prediction of the number of HOs between
cells (or BSs), over time.

Regarding the first axis, authors in [13] focused on the HO
decision, in order to forecast the best next cell for a given
user equipment (UE) even before the moment when a HO
needs to be executed. To do so, they proposed a hybrid HO
forecasting mechanism, which contains long-term and short-
term forecasting models, as well as a fuzzy forecasting model
to deal with imprecise data. Their results showed the proposed
method decreases the rate of HO failure. Going on the same
lane, researchers in [14] also focused on the HO decision
and used the HO information to predict the next (target)
cell to avoid lag during HOs. There, the authors predict the
next target BS based on the history of serving and target
BSs during the HO process. For the prediction itself, they
used the frequency of previous HOs between pairs of BSs.
The simulation showed that the number of neighboring BSs
influences the prediction. The authors in [10] target the same
problem as in the previously discussed studies, but argue that
sophisticated techniques are not necessary for HO prediction in
multi-access edge computing (MEC) systems. Therefore, they
proposed probabilistic approaches to predict the future cell.

Thus, they used forecasting strategies based on the existence
of global knowledge and individual profiling and showed that
they lead to a high prediction accuracy.

The second axis, in which our contribution fits, includes a
lower number of studies. Researchers in [5] propose a method
to perform the forecasting of the number of HOs aggregated
per cell. They unveil common HO patterns by analyzing
cells behavior and propose a clustering approach (K-means)
to group cells accordingly. They then used linear regression
(LR), neural networks (NN), polynomial regression (PR) and
Gaussian processes (GP) to forecast hourly HOs per cell. The
evaluation shows that the four algorithms can accurately fore-
cast HOs, with GP presenting the best performance. Speaking
of clustering-based frameworks, the authors in [15] propose
a three-phased data clustering framework (using a generative
adversarial network (GAN) for clustering, cluster calibration,
and cluster division) to improve the performance of HO
forecasting. With that, LSTM is used to forecast the number
of hourly HOs occurrences, per cell, in a specific city. The
results show that, not only does this method allow preserving
the privacy of the users, but also leads to improvement in
HO forecasting. As we can see, the previous papers are
only focused on the forecasting at a per-cell level. This is
not the case for [11], where authors perform the forecasting
of the number of HOs between every pair of neighboring
Radio Remote Heads (RRHs) connected to the same Baseband
Units (BBUs), as part of a CRAN architecture, based on
historical data. For this aim, they propose a Multivariate LSTM
model (MuLSTM) to forecast the number of HOs for a future
period of time. The results show that MuLSTM is better than
Auto-Regressive Integrated Moving Average (ARIMA) and
Windowed Artificial Neural Network (WANN) methods.

Besides the studies discussed above, some contributions
exploit the number of HOs for mobile traffic forecasting,
such as in [16]. There, the authors proposed a spatio-temporal
dynamic graph network (SDGNet) solution, based on a GNN
approach, to perform mobile traffic forecasting. In their work,
the authors model the cellular network as a graph where nodes
are the BSs, with edges linking them. The edges are weighted
by HO frequency between every pair of BSs. Their results
show excellent performance in terms of long-term prediction
and time complexity.

In a nutshell, we observed that most of the works on the HO
forecasting topic focus on the prediction of the next cell or BS
rather than the forecasting of the number of HOs. Considering
the latter aspect, the majority of the contributions are focused
on the forecasting of the number of HOs per cell, which is
different from our problem, in which we target the forecasting
of the number of HOs between pairs of neighboring BSs.
The closest to our work remains the study in [11], aiming
to forecast HOs among pairs of neighboring RRHs. However,
in our case, we propose a more advanced technique, relying
on a GNN architecture, capable of accurately capturing spatio-
temporal dependencies between the different pairs and leading
to a better performance, on regular and complex HO patterns.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the problem statement and the
system model used for the handover forecasting problem.

A. System model

We consider an urban area that includes a set of deployed
BSs, and we use p to refer to a pair of BSs between which
HOs occur. Each pair is associated to a time series HT

p which
represents the evolution of the number of handovers between
the pair p over time, up until a timestamp T . We use P to
refer to the set of all pairs, such that p ∈ P .

As depicted in Figure 1, we model our network as an
undirected graph G = (P,E), where P = {p1, ..., pN} is the
set of nodes denoting the N = |P | pairs of BSs, and E is the
set of edges. Considering the scenario in Figure 1, we define
the nodes p1, p2, p3 and p4 as the pairs (BS-A, BS-B), (BS-B,
BS-C), (BS-C, BS-D), (BS-D, BS-A) where handovers occur
respectively. There is an edge between two nodes, pi and pj ,
if there is at least one base station in common between them,
and the weight of the edge is wi,j = 1.

HANDOVER

BS-D

BS-C

BS-B

BS-A
HANDOVER

HANDOVER HA
ND

OV
ER

P1

P3

P2P4

W 4,1 = 1

W 3,4 = 1 W 2,3 = 1

W 1,2 = 1

Fig. 1. Graph modeling.

B. Problem statement

Considering the system model, we study the problem of
HO forecasting for each pair of BSs. We define HT

p =
{hT−t

p , ..., hT
p } as a time series, representing the evolution of

the number of HOs for the pair p between time slot T − t and
time slot T . Accordingly, hT−t

p represents the number of HOs
for pair p at time slot T − t and hT

p represents the number
of HOs for pair p at time slot T . Given HT

p , our goal is to
forecast hT+1

p , the number of HOs for pair p, in time slot
T + 1.

IV. FRAMEWORK DESIGN

To address the above-stated problem, we will describe in
this section the methodology we used to build our proposed
solution, followed by the architecture of the framework.

A. Methodology

The proposed HGC-LSTM model combines GNNs and
LSTM to predict the number of handovers between pairs of
base stations. Inspired by [17], our architecture includes two

main components: the Graph Convolutional Network (GCN)
layer and the LSTM layer.

The first component allows to have the nodes representa-
tions which are obtained by passing our dataset through the
GCN layer. This layer aims to capture the local and global
dependencies in the graph, by aggregating information from
neighboring nodes through a message passing mechanism. The
GCN layer learns representations that encode both the node
local features and its structural context within the graph for
the forecasting. The message passing is performed as follows:

• Neighbor’s embeddings collection: the representation of
each node is computed based on the connected neighbors
of that node.

• Neighbors aggregation: the neighbors of each node are
aggregated through an average function to have aggre-
gated messages as the output.

• Node representation update: the final output is com-
puted by passing the initial node representation and the
aggregated messages to a dense neural network layer.

The second component, namely the LSTM layer, will be
used solely for the forecasting of the time series associated to
each node. In this stage, we are considering the corresponding
adjacency matrix A

′
(G, t) of our graph and the nodes repre-

sentations H
′
(G, t), to pass them as an input to the LSTM

layer. It is worth mentioning that t represents the time steps
in the past considered for the prediction.

B. Framework architecture

In the following, we farther describe each component,
starting with the GCN part, and followed by the LSTM part.

1) GCN block: GCN is a fundamental building block in
GNNs, enabling aggregation across the nodes in the graph, and
as already mentioned, message passing is a key component in
GCN. For each node p in the graph, we consider the following
steps to compute the nodes representations, as in Figure 2:

• Initialization: Each node p is associated to pi∈{1,...n}
neighbors, where n represents the number of neighbors.
The node and its neighbors are assigned features H(p,t)

which represent the historical data of length t, that will be
considered for the prediction. Basically, for each pair p,
we consider t points in the past for the future predictions.

• Aggregation: In this step, we compute the aggregated
messages pagg of p neighbors.

• Update: The final representation H
′

(p,t) is computed
using the aggregated messages pagg and the initial repre-
sentation of the node pinit.

We thus obtain as the output, the nodes representations over
time including for each nodes, the information about its
neighbors. The update step usually consists in applying an
activation function to the final representation of the node.
However, for our problem, the activation function will be
directly included in the LSTM layer.

2) LSTM layer: From the previous component, we take
the representation of nodes for each time step, which will
be considered as the input for the LSTM layer in order to

INPUT

MEAN

Updated node

OUTPUT

P1

P4 P2
P3

H(P3, t)

H(P2, t)H(P4, t)

H(P1, t)

INITIALIZATION

w(p1, p4)

w(p1, p3)

w(p1, p2)

AGGREGATION

w(p1, p2)H(P2, t)
w(p1, p3)H(P3, t)
w(p1, p4)H(P4, t)

H(P1, t)

MESSAGE PASSING MECHANISM

UPDATE

P'1

CONCATENATION

Aggregated
messages

H'(P1, t)

Fig. 2. GCN block.

x

x

x

+

Sigmoid
function

ct-1
Cell state

ht-1
Hidden state

Sigmoid
function

Tanh
function

Sigmoid
function

Tanh
function

H't

Input

LSTM Unit

ft it

ot

ct
Next cell state

ht
Hidden state

H'(G, t)

A'(G, t)

Fig. 3. LSTM block.

process the information over time. So, after applying the
graph convolutional layer, we pass the result through a LSTM
network as shown in Figure 3, to capture the spatio-temporal
dependencies of our data. For the sake of simplicity, we denote
as H

′

t the representation of each pair p over time. The LSTM
network processes the information of the input sequence to
make predictions for future time steps and each unit of the
network includes the following components:

• Initialization and input processing: the hidden state
h(t−1) and the cell state c(t−1) are initialized to capture
the memory of the LSTM cell in order to propagate
information across time steps.

• Input gate it: this takes the input and the hidden state
to past them through a sigmoid activation function to
determine if the new information should be added to the
current state.

• Forget gate ft: it decides what information to discard
by passing the input value and the previous hidden state
through a sigmoid function.

• Cell state update: it consists in combining the new

information from the input gate and the forget gate ft
to determine the new value of the cell state ct.

• Output gate ot: this determines the output based on the
previous hidden state ht−1, the updated cell ct and the
current input H

′

t .
• Prediction: the predicted value is the hidden state ht,

which represents the output of the LSTM network and
is obtained by combining the cell state ct and the output
gate ot.

V. EVALUATION

In this section, we present the evaluation of our approach.
To do so, we will first present the dataset that we used for the
experiments, as well as our experimental settings. Then we
will compare the performance of our approach against other
methods and discuss the obtained results.

A. Dataset

We evaluate our HGC-LSTM using a real-world dataset
collected from 59 4G base stations of the Orange network

in Poitiers, France. The locations of the 59 cellular sites are
shown in Figure 4.

Fig. 4. 4G site locations in Poitiers, France.

The dataset includes the records of the number of HOs
between pairs of BSs, with a granularity of 30 minutes, from
March 15th, 2019, to April 16th, 2019. The dataset includes
in total information about 537 pairs of BSs where HOs occur,
and we constructed the graph in Figure 5 based on that.

Fig. 5. HGC-LSTM Graph.

B. Benchmarking

We compare the performance of our proposed HGC-LSTM
model to two other approaches: AutoRegressive Integrated
Moving Average (ARIMA) [18], a classical time series ap-
proach, and Multivariate LSTM (MuLSTM), applied in [11],

the closest work to ours, where the authors study the problem
of HO forecasting between pairs of RRHs over time, in a C-
RAN architecture.

ARIMA is a popular statistical univariate model used to
analyze and forecast single time series data, while focusing
on modeling the behavior and patterns of a single variable
over time. It combines autoregressive (AR), differencing (I),
and moving average (MA) components to analyze and predict
time series data. The AR component captures the linear
relationship between an observation and lagged observations,
the I component removes trends through differencing, and the
MA component models the dependency on residual errors [19],
[20]. The model is defined by three parameters: a, d, and q.
Parameter a represents the autoregressive order, d represents
the differencing order, and q represents the moving average
order [21]. These parameters are determined based on the
characteristics of the time series data and can be estimated
using statistical techniques. Since ARIMA is not designed for
multivariate forecasting, we built a personalized model for
each pair of BSs with HOs to be predicted, knowing that each
model used in this approach has its own parameters, which
are different based on the chosen pair.

MuLSTM on the other hand is a neural network used to
process and predict a feature (variable) which depends on
multiple other features. This model is designed to capture
dependencies and patterns across multiple variables in a time
series dataset [22]. The LSTM architecture provides the ability
to capture long-term dependencies and handle sequential data
effectively, as it is designed to remember information for
long periods of time [23]. A LSTM cell consists of three
components also known as gates: input gate, forget gate and
output gate. We implemented and applied this algorithm to
our problem, considering one model for each pair of BSs.
Indeed, to forecast the time series associated to a specific
pair of BSs, we used the historical data of that pair and its
neighbors considering the graph that we defined earlier.

We rely on the Root Mean Square Error (RMSE) of the
predicted values with respect to the ground truth values in
the dataset, which is a widely used metric to assess the
performances of the above-mentioned algorithms. We divide
the dataset and use 70% for training and 20% for testing in
the case of ARIMA and MuLSTM, whereas we have 70%,
10%, 20% for training, validation and test sets respectively for
HGC-LSTM. The predictions are performed on the test set for
each algorithm. The best model would be the one leading to
the lowest RMSE values.

C. Experimental settings

In this section, we are presenting the different configurations
that we considered when running the experiments.

Our framework variables are described in Table I. This table
includes the parameters for the GCN components and the
LSTM network. We highlight that we considered one model
per pair of BSs for ARIMA, with different parameters for each
one. For MuLSTM, we also considered one model per pair,

and considered the same batch size as HGC-LSTM and 50
LSTM units.

Variable Description Value
N Number of nodes (pairs) 537
E Number of edges 21098
batch Batch size (number of time series

samples in each batch)
64

inputs Number of input features 1
ouputs Number of output features 1
t Number of time steps considered

for the prediction
4

epochs Number of epochs 300
units Number of LSTM units 64

TABLE I
FRAMEWORK VARIABLES.

Our HGC-LSTM model is built using the TensorFlow-GPU
open source machine learning library, and we mainly used
PySpark to preprocess the data, and the PyCharm Integrated
Development Environment (IDE) for coding. All the algo-
rithms are trained on the Canada national high-performance
compute (HPC) infrastructure called Compute Canada, which
is a national platform of advanced research computing re-
sources. The device configuration used in all the experiments
is Intel Xeon Silver 4110 Skylake 2.10 GHz and Intel Xeon
Gold 6238 Cascade Lake 2.10 GHz as the CPUs, the graphical
processor is Tesla T4, and the memory is 3.20 GB.

D. Results

For this section, we will first compare the performances of
our algorithm with the chosen baselines and after that, we will
conduct an analysis of the relevant outcomes of HGC-LSTM
on its own.

1) RMSEs analysis: We show, in Figure 6, the global
average of the RMSEs for the three models computed for the
537 pairs of BSs. As we can see, HGC-LSTM has the lowest
average RMSE, which means that its overall performance is
better than ARIMA and MuLSTM.

In order to have a better visualization of the forecasting
performance achieved by our framework and the baselines, in
Figure 7, we arbitrarily chose four pairs to plot the predicted
number of HOs on the test data, for HGC-LSTM, ARIMA and
MuLSTM. The figure also suggests that HGC-LSTM achieves
better performance than the two other methods.

Considering the previously selected pairs, we can see a
more quantitative comparison through the individual RMSEs
depicted in Figure 8, where the results of HGC-LSTM are
not too far overall from MuLSTM in terms of performance
on these examples. However, we noticed that MuLSTM and
ARIMA perform poorly at predicting time series where the
seasonal pattern does not include many points. The ability
of HGC-LSTM to capture more complex patterns, due to the
GNN part which allows the model to do so, is the reason why
it performs better overall.

2) Execution Time: From the perspective of the compu-
tation complexity, as we can see in Table II, HGC-LSTM

Fig. 6. Average RMSEs of ARIMA, HGC-LSTM and MuLSTM.

outperforms ARIMA and MuLSTM with an execution time
of 775.97 seconds. We also noticed that ARIMA performs
poorly from this point of view because its execution time is
high. This can be explained by the fact that ARIMA itself
requires building one model per pair of BS, with its own set
of parameters that need to be automatically defined. Defining
these parameters comes at the cost of an important additional
computational overhead. Considering that we have more than
500 time series, the whole process of finding the parameters,
training the model, and conducting the forecasting, had to
be done more than 500 times. This causes ARIMA to take
much longer execution time than the others. As for MuLSTM,
although we have one model per pair of BSs as well, it does
not require a high execution time. This can be explained by the
fact that in our configuration settings, to run all the algorithms,
we used the Tesla T4 GPU which is optimized for training
workloads, as it comes with dedicated tensor cores for deep
learning operations, leading to faster computations when we
manipulate neural networks [24], [25], as we do in MuLSTM
and HGC-LSTM.

Algorithms Execution time (seconds)
ARIMA 312422
HGC −
LSTM

775.97

MuLSTM 6276

TABLE II
FRAMEWORK VARIABLES

3) LSTM units: With regard to the analysis of HGC-LSTM
itself, we initially investigated the influence of the number of
LSTM units on the quality of the prediction. As we can see in
Figure 9, there is a remarkable decrease of the average RMSE
as we go from 4 to 8 units, followed by a slower decrease
as we go to larger number of units, despite a local peak that
is observed for 200 units. Moreover, we can notice that 500
units gives the best results in terms of RMSE (24.97) and 4
units gives the worst results (26.37). We can conclude that
the number of units of the LSTM model has a significant
impact on the performance of our HGC-LSTM framework,
and it should be properly evaluated for different datasets.

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

Time

0

50

100

150

200

250

300

350
Nu

mb
er

of
ha

nd
ov

ers
Pair 203

Test
ARIMA
HGC-LSTM
MuLSTM

(a) Pair 203

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

Time

0

10

20

30

40

50

60

70

Nu
mb

er
of

ha
nd

ov
ers

Pair 267
Test
ARIMA
HGC-LSTM
MuLSTM

(b) Pair 267

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

Time

0

50

100

150

200

250

300

Nu
mb

er
of

ha
nd

ov
ers

Pair 329
Test
ARIMA
HGC-LSTM
MuLSTM

(c) Pair 329

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

02:30:00

14:30:00

Time

0

50

100

150

200

250

300

350
Nu

mb
er

of
ha

nd
ov

ers

Pair 334
Test
ARIMA
HGC-LSTM
MuLSTM

(d) Pair 334

Fig. 7. Forecasting for the pairs 203, 267, 329, and 334 with HGC-LSTM, ARIMA and MuLSTM.

Fig. 8. RMSE values per pair for ARIMA, HGC-LSTM and MuLSTM.

4) Peaks analysis: We also investigated the performance
of HGC-LSTM on the prediction of peak values of HOs in

Fig. 9. Average RMSEs by number of units for HGC-LSTM.

our data. This metric is particularly important from the point
of view of a mobile operator, as peak moments are the most

0 500 1000 1500 2000 2500
Actual values

0

500

1000

1500

2000

2500
Pr

ed
ict

ed
 v

al
ue

s
All Peaks

Fig. 10. Peaks distribution.

important to manage properly. We defined a peak as a point in
the time series where the k values before and after that point
in the series are lower than that point. We considered k = 4
for this analysis, and Figure 10 depicts the distribution of the
predicted and actual values of the peaks. We can observe that,
in the very large majority of cases, the predicted values are
smaller than the actual values. In addition, for higher peaks,
HGC-LSTM has a hard time performing accurate predictions.

We also computed the error percentage on all the peaks of
the network using the following formula:

error(%) = ((prediction− real)/real) · 100,

where prediction is the predicted value of the peak and real
is the real value of the peak. By computing the global error
(mean of all the errors) we have 37.55%, which means that
globally the model fails in the prediction at this percentage
when the network experiences a very high HO rate, reflecting
a high level of mobility.

Furthermore, we analyzed the probability distribution of the
error according to the different peaks by using the Cumulative
Distribution Function (CDF). The CDF is defined by :

F (x) = P (X ≤ x),

where X is a random variable, x represents our error value,
and the CDF F (x) calculates the probability that the random
variable X is less or equal to x. Considering the absolute
values of the error percentage, like in Figure 11(a), we notice
that the probability to have an error percentage less than 50%
is higher for all the data points than just the peaks. This means
that the percentage error can be much higher on peaks than
on other data points.

On the other hand, we show in Figure 11(b) the CDF of the
error, with both positive and negative errors. We can notice
that almost all errors on the peaks present a negative value,
meaning that the HGC-LSTM approach is almost always
underestimating the values at the peaks. The percentage of
negative errors drops on the other hand to 60%, as we
consider all data points. Accordingly, despite the fact that
we underestimate the values in the majority of cases, we still
overestimate them in 40% of the cases.

VI. CONCLUSION

This paper addresses the problem of the forecasting of the
number of HOs between pairs of BSs, over time. To this end,
we propose HGC-LSTM, a GNN-based framework combined
with LSTM to capture the spatio-temporal dependencies and
complex patterns within the data. Our approach was built and
evaluated with a real-world HO dataset on all the 4G base
stations of the city of Poitiers. We compared our results to two
baselines, ARIMA and MuLSTM, which are well-known al-
gorithms in time series forecasting, and the experiments show
that our model outperforms these state-of-art methods in terms
of global RMSEs. We also demonstrated that HGC-LSTM is
more efficient considering the execution time. Furthermore, we
showed that increasing the number of LSTM units improves
the accuracy of the forecasting to a certain extent. Since this
contribution is directed to networking applications, we also
investigated the forecasting of peaks of HOs in the day, where
we have a lot of mobility. Despite the fact that the solution
succeeds in predicting complex patterns, we noticed that the
accuracy is diminished when it comes to predicting very high
values. As future works, we are planning to leverage the
outcomes of this contribution for optimization applications in
RAN architectures to enable better resource allocation.

REFERENCES

[1] Ericsson, “Ericsson Mobility Report November 2022,” no. November,
2022.

[2] M. S. Mollel, A. I. Abubakar, M. Ozturk, S. F. Kaijage, M. Kisangiri,
S. Hussain, M. A. Imran, and Q. H. Abbasi, “A Survey of Machine
Learning Applications to Handover Management in 5G and beyond,”
IEEE Access, vol. 9, pp. 45 770–45 802, 2021.

[3] M. Ozturk, “Cognitive networking for next generation of cellular
communication systems,” Ph.D. dissertation, University of Glasgow, 05
2020.

[4] A. Goldsmith, Wireless Communications, 1st ed. Cambridge, UK:
Cambridge University Press, 2005.

[5] L. L. Vy, L. P. Tung, and B. S. P. Lin, “Big data and machine learning
driven handover management and forecasting,” 2017 IEEE Conference
on Standards for Communications and Networking, CSCN 2017, pp.
214–219, 2017.

[6] P. Bellavista, C.-M. Chen, and H. Hassanein, “Editorial: Special issue
on service delivery management in broadband networks,” J. Netw.
Comput. Appl., vol. 35, no. 5, p. 1375–1376, sep 2012. [Online].
Available: https://doi.org/10.1016/j.jnca.2012.05.004

[7] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, “Mobility
management for femtocells in lte-advanced: Key aspects and survey
of handover decision algorithms,” IEEE Communications surveys &
tutorials, vol. 16, no. 1, pp. 64–91, 2013.

[8] K. Kitagawa, T. Komine, T. Yamamoto, and S. Konishi, “A handover
optimization algorithm with mobility robustness for lte systems,” in 2011
IEEE 22nd international symposium on personal, indoor and mobile
radio communications. IEEE, 2011, pp. 1647–1651.

[9] N. Montavont and T. Noel, “Handover management for mobile nodes
in ipv6 networks,” IEEE Communications magazine, vol. 40, no. 8, pp.
38–43, 2002.

[10] H. Abdah, J. P. Barraca, and R. L. Aguiar, “Handover prediction
integrated with service migration in 5g systems,” in ICC 2020 - 2020
IEEE International Conference on Communications (ICC), 2020, pp.
1–7.

[11] L. Chen, T.-M.-T. Nguyen, D. Yang, M. Nogueira, C. Wang, and
D. Zhang, “Data-Driven C-RAN Optimization Exploiting Traffic and
Mobility Dynamics of Mobile Users,” IEEE Transactions on Mobile
Computing, vol. 20, no. 5, pp. 1773–1788, 2021.

0 25 50 75 100
Error Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
Pr

ob
ab

ilit
y

CDF_absolute_values
CDF_all_points
CDF_peaks

(a) Absolute values

100 75 50 25 0 25 50 75 100
Error Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

CDF_all_values
CDF_all_points
CDF_peaks

(b) All values

Fig. 11. Probability distribution of the error percentage

[12] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from
raw data using lstm networks,” in IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2018.

[13] H. Qu, Y. Zhang, J. Zhao, G. Ren, and W. Wang, “A hybrid handover
forecasting mechanism based on fuzzy forecasting model in cellular
networks,” China Communications, vol. 15, no. 6, pp. 84–97, 2018.

[14] Z. B. , “Efficiency of Handover Prediction Based on Handover History,”
Journal of Convergence Information Technology, vol. 4, no. 4, pp. 41–
47, 2009.

[15] Y. Kim, E. A. Hakim, J. Haraldson, H. Eriksson, J. M. B. da Silva, and
C. Fischione, “Dynamic clustering in federated learning,” in ICC 2021
- IEEE International Conference on Communications, 2021, pp. 1–6.

[16] Y. Fang, S. Ergüt, and P. Patras, “Sdgnet: A handover-aware spa-
tiotemporal graph neural network for mobile traffic forecasting,” IEEE
Communications Letters, vol. 26, no. 3, pp. 582–586, 2022.

[17] Z. He, C. Zhao, and Y. Huang, “Multivariate Time Series Deep Spa-
tiotemporal Forecasting with Graph Neural Network,” Applied Sciences,
vol. 12, no. 11, p. 5731, 2022.

[18] M. Elsaraiti, G. Ali, H. Musbah, A. Merabet, and T. Little, “Time series
analysis of electricity consumption forecasting using arima model,” in
2021 IEEE Green Technologies Conference (GreenTech), 2021, pp. 259–
262.

[19] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
Series Analysis: Forecasting and Control. Wiley, 2015.

[20] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice. OTexts, 2018.

[21] J. D. Hamilton, Time Series Analysis. Princeton University Press, 1994.
[22] X. Li, W. Zhang, and Z. Xu, “A multivariate time series lstm model for

short-term load forecasting,” in 2017 3rd International Conference on
Systems and Informatics (ICSAI), 2017, pp. 852–856.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] “Nvidia tesla t4,” NVIDIA Website, accessed 2023. [Online]. Available:
https://www.nvidia.com/en-gb/data-center/tesla-t4/

[25] “Tensorflow,” Website, accessed 2023. [Online]. Available:
https://www.tensorflow.org/

