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Sixth-generation and mobile edge computing (MEC) systems are expected to empower a wide range of applications. Unmanned aerial vehicles (UAVs) can play a vital role in improving network connectivity. Hence, our problem is to minimize the user equipment (UE) energy consumption during task offloading in a UAV assisted MEC system. To address the formulated NP-hard problem, we propose task scheduling and assignment algorithms for mapping UE tasks to fixed edge servers using UAV. Lastly, the simulation results demonstrate that the proposed algorithms yield better results than other benchmark methods in terms of total UE energy consumption.

I. INTRODUCTION

Upcoming sixth-generation (6G) mobile networks are expected to give rise to a slew of new mobile applications, including mobile online gaming, augmented reality, and smart navigation, among others [1]- [3]. Due to low battery capacity, user equipment (UE) is unable to perform all computational tasks locally at their end. To remedy this problem, a UE can offload resource-intensive computational work to a nearby server that can perform the tasks on the UE behalf, significantly increasing the UE capabilities by reducing its energy consumption. In such a case, the UE can transmit its computation tasks to the nearest base station (BS) hosting a mobile edge computing (MEC) server and wait for the result [4].

Leveraging an unmanned aerial vehicle (UAV)-assisted MEC system is envisioned to be a feasible solution in case there are no available reachable servers [START_REF] Huda | Survey on computation offloading in UAVenabled mobile edge computing[END_REF]. This solution is crucial for providing communication at places with inadequate infrastructure [START_REF] Shao | Delay and energy consumption oriented UAV inspection business collaboration computing mechanism in edge computing based electric power IoT[END_REF]. In this regard, some challenges arise concerning task offloading in UAV-assisted MEC systems, including UAV deployment, device association between UE and UAVs, as well as task scheduling [START_REF] Wang | Online UAV-mounted edge server dispatching for mobile-to-mobile edge computing[END_REF]. Addressing these challenges can help guarantee UE quality-of-service (QoS) during task offloading and lower its energy consumption by matching tasks with computing resources [START_REF] Jeong | Mobile edge computing via a UAVmounted cloudlet: Optimization of bit allocation and path planning[END_REF]. Furthermore, task offloading is constrained by UE mobility, resulting in processing tasks with non-uniform arrival, and network scalability issues, produced by numerous UEs simultaneously offloading tasks. Therefore, efficient UAV deployment is critical to allow UEs to reach fixed servers at the BSs to offload their tasks and reduce their energy consumption [START_REF] Zhou | Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems[END_REF].

Recently, the problem of task offloading in UAV-based MEC systems has gained a lot of attention from the research community. Yet, researchers have focused more in their studies on the UAV performance than on the UE performance. Therefore, in our work, we study the problem, with the objective of minimizing the UE energy consumption. We prove this problem to be NP-hard. This inspired us to implement an earliest deadline first (EDF) algorithm to prioritize UE tasks based on their deadline, and a meta-heuristic differential evolution algorithm (DEA) to plan the UAV trajectory, providing UEs with feasible routes to unreachable BSs (and servers). Our results show that the proposed algorithms eventually reduce the UE energy consumption and yield better performance when compared to non-UAV-assisted benchmark methods.

The rest of this paper is organized as follows. In Section II, we present the related work and the literature review. Section III presents the system model and the problem formulation. Section IV describes our proposed algorithms. In Section V, we evaluate the performance of the proposed algorithms. Finally, in Section VI, we conclude the paper.

II. RELATED WORK

As mentioned above, only a few researchers focused on the performance on the UE side, with contributions aimed at minimizing the end to end task execution delay [START_REF] Ma | Machine learning based joint offloading and trajectory design in UAV based MEC system for IoT devices[END_REF], [START_REF] Nguyen | Reinforcement learning-based deadline and batteryaware offloading in smart farm IoT-UAV networks[END_REF]. In [START_REF] Ma | Machine learning based joint offloading and trajectory design in UAV based MEC system for IoT devices[END_REF], the authors studied the minimization problem of the total system delay including flying delay, transmission delay, UE local computing delay and UAV-aided edge computing delay through joint optimization of the flying UAV trajectory and the ratio of the offloading tasks using UAV passive fault tolerant control. To solve this problem, a machine learning framework based on Q-Learning algorithm is proposed to minimize the total delay of the system. Similarly, in [START_REF] Nguyen | Reinforcement learning-based deadline and batteryaware offloading in smart farm IoT-UAV networks[END_REF], the authors sought to execute the offloaded tasks before their deadline while simultaneously considering the UAV hover time for a passive fault tolerant control. To achieve this, the authors introduced a multi objective maximization problem and a Q-Learning based method.

While these works [START_REF] Ma | Machine learning based joint offloading and trajectory design in UAV based MEC system for IoT devices[END_REF]- [START_REF] Sun | Cooperative task scheduling for computation offloading in vehicular cloud[END_REF] focused on the delay and the response time on UE side, other targeted minimizing the energy consumption of both the UEs and UAVs in a multi UAV-assisted framework. In [START_REF] Abkenar | Energent: An energy-efficient uav-assisted fog-iot framework for disaster management[END_REF], authors proposed ENergyefficient disastER manaGmENT (ENERGENT) as a novel framework for disaster management in the UAV-assisted Internet of Things (IoT) Fog networks. ENERGENT optimizes the energy consumption of the UEs, as well as the UAVs, using three proposed algorithms.The first algorithm adjusts the 3D placement of the UAVs such that these nodes consume the minimum energy to reach the desired cluster of the TNs. Besides, the transmit power and the transmission rate of the UEs are set in a way that their energy consumption is minimized and the outage probability requirements are met in the network. In the second algorithm, a task offloading scheme is proposed where tasks are offloaded to the UAVs in order to meet the network delay constraints. Finally, the third algorithm takes advantage of wireless power transfer to transfer energy to the UEs when their remaining energy degrades below a predefined threshold.

Moreover, in [START_REF] Liu | An uav-enabled intelligent connected transportation system with 6g communications for internet of vehicles[END_REF], a UAV-enabled Computing-Communications Intelligent Offloading scheme is proposed to offload tasks energy-efficiently. First, some nodes with a large amount of data (i.e. numerous tasks) are selected as Task Gathering Nodes (TGNs). TGNs further collect all the tasks of the remaining nodes. In this way, the UAV can gather all the IoT devices' tasks through the TGNs. The travel distance needed for the UAV can be greatly reduced and both UAV and IoT energies are saved. On the other hand, tasks that are routed to TGNs have a relatively small amount of data, while nodes with a large amount of data have already been selected as TGNs without routing. Second, an optimization strategy for collection tasks is proposed to reduce UAV energy consumption.

Similarly, in [START_REF] Liu | Energy efficient computation offloading in aerial edge networks with multi-agent cooperation[END_REF], digital twin (DT) technology is used to map the physical entities to virtual models, and reflect the MEC network state in real-time. In this paper, authors proposed a MEC network with multiple movable UAVs and one DT-empowered ground base station to enhance the MEC service for the UEs. Considering the limited energy resource of both UEs and UAVs, an online problem of resource scheduling is formulated to minimize their total weighted energy consumption. To solve the resulting combinatorial problem, a Markov decision process (MDP) modeling is considered, with multiple types of agents. Since the proposed MDP has large state and action spaces, a deep reinforcement learning approach is proposed, based on multi-agent proximal policy optimization with Beta distribution and attention mechanism to pursue the optimal computation offloading policy.

Furthermore, in [START_REF] Apostolopoulos | Data offloading in uav-assisted multi-access edge computing systems under resource uncertainty[END_REF], a novel data offloading decisionmaking framework is proposed, where users have the option to partially offload their data to a complex MEC environment, consisting of both ground and UAV-mounted MEC servers. The problem is treated under the perspective of risk-aware user behavior as captured via prospect-theoretic utility functions, while accounting for the inherent computing environment uncertainties. The UAV-mounted MEC servers act as a common pool of resources with potentially superior, but uncertain, payoff for the users, while the local computation and ground server alternatives constitute safe and guaranteed options. The optimal user task offloading to the available computing choices is formulated as a maximization problem of each user's satisfaction, and confronted as a non-cooperative game. The existence and uniqueness of a Pure Nash Equilibrium (PNE) are proven, and convergence to the PNE is shown.

Overall, we observe that none of the existing works focused solely on the UE energy consumption in a single UAV-assisted MEC system. Therefore, in our paper, we study UE task offloading and plan the UAV trajectory in a UAV-assisted MEC system, with on-ground computing servers, with the objective of minimizing UE energy consumption. The considered problem is NP-hard. In this regard, an EDF algorithm is implemented to sort tasks for offloading based on their deadline. Thereafter, a meta-heuristic DEA is proposed to plan the UAV trajectory and provide UEs with shortest distances to BSs, resulting in a reduction of the UE energy consumption during task offloading. In addition, the UAV reports to the UE any changes in the feasible distances to the BS, e.g. when a BS server is down or busy, yielding better results than non UAV-assisted benchmark methods.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set of UE devices in a certain geographical area. We use d to denote one UE device, and D to refer to the set of all UE devices, as shown in Fig. 1. Moreover, we consider a set of BSs is deployed in the area with each one hosting one MEC server. In this regard, we use s to refer to one server and S to refer to all MEC servers. Additionally, we consider a single UAV U is available and can help offload tasks from UE devices to servers. Without loss of generality, we consider each UE device has a set of computational tasks to offload. The tasks can be offloaded directly to nearby MEC servers or to farther ones, with the UAV acting as a relay, in case nearby MEC servers are not available. We use j to denote one computational task and J to refer to the set of all computation tasks. Furthermore, J d denotes the set of tasks of a device d.

Additionally, the set P contains two types of routes including P static , which refers to the set of static routes, and P dynamic , referring to the set of dynamic routes. P static includes routes between UEs and BSs configured in advance of any UAV involvement. P dynamic is the set of routes that result from the deployment of the UAV, i.e. routes that involve the UAV as a relay. The main mathematical notations are summarized in Table 1. The route to server reported by UAV deployed in a mutated location.

U (g + 1)

The UAV new mutated location

P OP (X, g)
The population in the g th generation, where X represents the UAV location

X(g)
The x and y coordinates of the UAV obtained in the g th generation.

P F easible

Denotes the best feasible route for set of devices D to offload their tasks J d

We assume time is slotted and use t to refer to a single time slot and T to refer to a set of time instants of interest. Accordingly, we want to ensure that the end to end delay T E2E j of a task j is less than or equal to the task expiry time T Exp j minus the task arrival time T Arr j , which is mathematically modelled as:

C 1 : T E2E j ≤ T Exp j -T Arr j , ∀j ∈ J, (1) 
We limit the UE energy consumption E d to a minimum E min and maximum E max threshold to maintain the UE battery level. These two constraints are represented as:

C 2 : E d ≤ E max , ∀d ∈ D, (2) 
C 3 : E d ≥ E min , ∀d ∈ D. (3) 
We define a t p as a decision variable that is set to 1 if a path p at time slot t is activated and 0 otherwise. For a dynamic path, we consider that having a t p = 1 implies that the UAV is positioned adequately so as to make the path available. For static ground paths, we assume they are available at all time by enforcing the activation of a t p , through the following equation:

C 4 : a t p = 1, ∀p ∈ P static , ∀t ∈ T, (4) 
Furthermore, we define x t js as the server selection decision variable, which is equal to 1 if task j is executed over server s at time slot t and 0 otherwise. We define accordingly the following constraint to ensure a task j is executed only once over a single server s and over one time slot t:

C 5 : s∈S t∈T x t js = 1, ∀j ∈ J, (5) 
Moreover, we define t route j as the task routing time from UE to BS. It can be obtained by considering the number of hops H dsp from UE d to server s through path p. We also define y t jsp as a decision variable that is equal to 1 if task j, executed on server s, will be routed through path p at time t and otherwise 0. t route j can thus be obtained and controlled by the following equations:

t route j = p∈P s∈S t∈T d∈D y t jsp • x t js • H dsp • a t-1 p , (6) 
C 6 :

s∈S t∈T p∈P

y t jsp = 1, ∀j ∈ J. (7) 
Now, t return j is defined as the task result return time. Similarly to t route j , it can be obtained based on z t jsp , a decision variable that is equal to 1 if the result of task j, executed on server s, will be routed through path p at time t and otherwise 0. t return j can thus be obtained and controlled by the following equations:

t return j = p∈P s∈S t∈T d∈D z t jsp • x t js • H dsp • a t+1 p . (8) 
C 7 :

s∈S t∈T p∈P

z t jsp = 1, ∀j ∈ J, (9) 
Thereafter, t execute j is defined as the task execution time and is obtained based on x t js . We assume that a task is executed in one time slot by the server, t execute j is then calculated as:

t execute j = p∈P s∈S t∈T d∈D x t js , (10) 
Thus, the end-to-end (E2E) delay is given as :

T E2E j = t route j + t execute j + t return j , (11) 
Additionally, we define the UE total energy consumption E d divided into two components: the energy consumption in case of offloading the task to other node E of f load d and the energy consumption in case of computing the task locally on the UE E local d , which is given as:

E d = E of f load d + E local d , E of f load d = E tx d + E rx d , E tx d = p∈P s∈S j∈J d t∈T y t jsp • E transmit j , E rx d = p∈P s∈S j∈J d t∈T z t jsp • E receive j , E local d = j∈J (1 - t∈T s∈S x t js ) • E d j . ( 12 
)
where E of f load d is defined as the summation of transmission energy E tx d and the receive energy E rx d . E transmit j is defined as the transmission energy per offloaded task. E tx d is the total transmission energy consumption for offloaded tasks. Similarly, E receive j is defined as the energy consumed to receive the result of an offloaded task and E rx d is the total receiving energy with respect to all offloaded tasks. Finally, E d j is the energy consumed for performing task j locally and E local d is the total energy consumption for all tasks executed locally on device d. E d j is a function of the total number of CPU cycles for task j to be completed k j d , the processing frequency f d of UE device d and the effective switched capacitance C d of end device d processor. Moreover, E transmit j is dependent on the UE transmit power P transmit d , the size of input task I j and the uplink data rate r ds between s and d. Similarly, E receive j is dependent on the UE receiving power P receive d , the size of task result R j and the channel downlink data rate r sd . Thus, these three aforementioned equations are defined as:

E d j = k j d • f 2 d • C d , (13) 
E transmit j = P transmit d • I j r ds , (14) 
r ds = B d • log 2 1 + P transmit d • β d 0 B d • N 0 • dist 2 ds , (15) 
E receive j = P receive d • R j r sd , (16) 
r sd = B d • log 2 1 + P receive d • β d 0 B d • N 0 • dist 2 ds ( 17 
)
where r sd is a function of the UE channel bandwidth B d , P transmit d , channel power gain at a reference distance 1 m, β d 0 , noise power spectrum density N 0 , and dist ds denoting the Euclidean distance between d and s. Now, our main objective is to minimize the UE energy consumption while respecting the previously indicated constraints. The problem can thus be formulated as follows:

min D d=1 E d , (18a) s 
.t. C 1 -C 7 , (18b) 
It is to be noted that, in our problem, the tasks are independently assigned to the UEs, where each task has a unique arrival time and deadline. Thus, a simpler version of this problem is a generalized assignment problem (GAP) [START_REF] Nguyen | Dependency tasks offloading and communication resource allocation in collaborative UAVs networks: A meta-heuristic approach[END_REF], which is a known NP-hard problem and therefore, our problem is also NP-hard. Resultantly, we cannot find the optimal solution in polynomial time. Therefore a meta-heuristic algorithm will be the best way to solve the problem [START_REF] Chu | A genetic algorithm for the generalised assignment problem[END_REF].

IV. PROPOSED ALGORITHMS

To address the formulated NP-hard problem, we first decompose the problem into two sub-problems including UAV trajectory design problem and task offloading problem. In this regard, Algorithm 1 outlines the UAV trajectory mapping, which aims at providing feasible route to a UE to offload their tasks. In this context, DEA is considered to be a viable strategy to address this issue and it can reach to a sub-optimal solution [START_REF] Fesehaye | Impact of cloudlets on interactive mobile cloud applications[END_REF], [START_REF] Bonomi | Fog computing and its role in the internet of things[END_REF]. Thereafter, the second sub-problem is the task offloading, for which Algorithm 2 provides static routes to UE to offload their tasks based on the EDF algorithm. Moreover, it compares the route provided from the UAV in Algorithm 1 with the static routes previously calculated. If the UAV route is shorter than the static route, the UE will offload its task through the UAV. Otherwise, the UE will use the static route.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, using an in house simulator, we show performance evaluation results for our proposed algorithms. As such, we set UE = 5 users, and we consider that BSs and the UAV are randomly distributed in a square area with the length of 1000 m. Moreover, the UAV is flying at a fixed height of 100 m and we consider 15 tasks in total, where each UE has to process 3 tasks, respectively. Furthermore, Return:

k j d = 10 -27 volts, f d is set to a range of [0, 0.8] GHz, C d is
• Next hop for offloading the task.

• Selected destination server for offloading.

16 end 17 end assistance (SPUA), where both Algorithm 1 and Algorithm 2 are used to illustrate the proposed solution. In this regard, it is clearly seen in Fig. 2 that, for all UEs, the energy consumption is the lowest in the SPUA case. This is due to the dynamic feasible routes given to the UE via the UAV. Comparably, in the SP case, high energy consumption fluctuations are seen due to unavailability of nearby BSs. Hence, UEs take the decision of offloading their tasks to farther BSs, which results in consuming more energy. Now, the total UE energy consumption is shown in Fig. 3, where three cases are considered: Case 1: shortest path (SP), Case 2: shortest path with UAV assistance (SPUA) and Case 3: random assignment (RA). As the name implies, SP and SPUA consider the problem without and with UAV assistance whereas, in RA case, the UE chooses any path to offload its task without satisfying any constraints. As illustrated in Fig. 3, SPUA achieves the lowest value of energy consumption compared with the other benchmark cases or methods. Therefore, it is essential to consider UAVs for task offloading as Algorithm 2: UAV trajectory mapping using DEA 1 Set:

• mut p as the route to server reported by UAV deployed in a mutated location. • T as the set of simulation time slots.

• U (g + 1) as the UAV new mutated location.

• P OP (X, g) as the population in the g th generation, where X represents the UAV location. As such, we have P OP (X, g) = X(1), ..., X(g). Furthermore, we set X(g) as the x and y coordinates of the UAV obtained in the g th generation. Generate: A random location for UAV to be X(g) Set: Initial population as P OP (X, 1) for t execute in T do Calculate: mut p using mutation process if EuclideanDistance(mut p ) < EuclideanDistance(dist ds ) then Set: X(g + 1) = U (g + 1) , UAV updates location end else Set: X(g + 1) = X(g) , UAV stands still end end UAVs provides better feasible paths to UEs to offload their tasks, which in turn minimizes the energy consumption. Lastly, an example of UAV trajectory is shown in Fig. 4, whereas the UAV is flying between UE in a semi-elliptical trajectory providing the UEs feasible shortest paths to the destined BSs. As such, the UAV provides such paths to the UEs, which consume a lower amount of energy.

VI. CONCLUSION

In this paper, we studied energy-efficient task offloading and trajectory design for UAV-based MEC systems. The goal was to minimize the UE energy consumption during task offloading process via UAV involvement, by bringing the computing capabilities near the UE via shortened paths to the available BSs. To solve the formulated NP-hard problem, we divided the main problem into two sub-problems of UAV task offloading and UAV trajectory mapping, which are solved using Algorithm 1 and Algorithm 2, respectively. In this regard, Algorithm 1 tends to provide a UE with the shortest path towards BS for offloading the assigned task, whereas Algorithm 2 is responsible for deploying the UAV for efficient trajectory mapping in order to provide better feasible paths to the UE with respect to energy consumption. Our simulation results showed that our proposed algorithm yields better results than the benchmark methods and maps an energy-efficient UAV trajectory. *Acknowledgement This work was supported by Mitacs/Ultra Intelligence Communications through project IT25839. 
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 1 Fig. 1: System Model of the UAV-based MEC system.

  set to a range of [16, 1600] Hz, P transmit d = 1 W, whereas P receive d = 0.2 W, I j is set to a range of [10, 1000] KB, B d = 1 dB, β d 0 = 1.42 • 10 -4 dB, positive constant G 0 = 2.2846, and N 0 = 10 -20
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 234 Fig. 2: UE Energy Consumption using SP and SPUA.

TABLE I :

 I Table of Notations

	Notation	Definition	Notation	Definition
	D	Set of all UE devices	J	Set of all computation tasks
	S	Set of MEC servers	U	UAV
	J d	Set of tasks of a device d	P	Set of routes
	t route j	Task j routing time from UE to BS	T	Set of time instants of interest
	T E2E j	End to End delay for task j	T Exp j	Task j expiry time
	T Arr j	Task j arrival time	E d	UE d energy consumption
	H dsp	Number of hops from UE d to server s	G 0	Positive constant
	t execute j	Task j execution time	t return j	Task j result return time
	E of f load d	UE energy consumption in case of offloading the task	E tx d	UE d transmission energy per offloaded task
	E rx d	Total UE d receive energy for its offloaded tasks	E d j	The energy consumed for performing task j locally
	E local d	Total UE d energy consumption for all its locally executed tasks	k j d	Total number of CPU cycles for task j to be completed
	f d	The processing frequency of UE device d	C d	The effective switched capacitance of end
				device d processor
	r ds	The uplink data rate between d and s	r sd	The channel downlink data rate
	B d	UE d channel bandwidth	β d 0	channel power gain at a reference distance
				1 m
	N 0	Noise power spectrum density	dist ds	Euclidean distance between d and s
	mutp			

  W/Hz. Additionally, in Fig.2, we show the UE energy consumption of the five users under two given cases: shortest path (SP) where Algorithm 1 is deployed without UAV assistance and shortest path with UAV Algorithm 1: UAV task offloading using EDF 1 Set: Values for d, D, j, J, dist ds , and P F easible , which denotes the best feasible route for set of devices D to offload their tasks J d 2 for each d candidate in D do 3 for each j task in J d do 4 Calculate: dist ds for shortest static route from d to any server s is calculated, where dist ds ∈ P static . F easible = dist ds • UE rejects UAV dynamic route. • UAV is busy serving other UE hence mut p provided to d is large.

	5	Moreover, d includes the corresponding
		Euclidean distance in its own routing table.
		Now, server s is selected as the offload server.
	6	Calculate: mut p is the dynamic route to server
		s, which is provided to UE by UAV once
		deployed using Algorithm 1.
	7	if EuclideanDistance(mut p ) <
		EuclideanDistance(dist ds ) AND
		E min < E d < E max then
	8	Set: P F easible = mut p
	9	Calculate: using Eqn. (6), (8) and (10) ,
		the E2E task delay offered by UAV.
	11	end
	12	else
	13 Set: P 14 end
	15	

10 Update: routing table of d with new route.