
HAL Id: hal-04189566
https://hal.science/hal-04189566v1

Preprint submitted on 28 Aug 2023 (v1), last revised 2 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Dataset Reconstruction from Interpretable
Models

Julien Ferry, Ulrich Aïvodji, Sébastien Gambs, Marie-José Huguet, Mohamed
Siala

To cite this version:
Julien Ferry, Ulrich Aïvodji, Sébastien Gambs, Marie-José Huguet, Mohamed Siala. Probabilistic
Dataset Reconstruction from Interpretable Models. 2023. �hal-04189566v1�

https://hal.science/hal-04189566v1
https://hal.archives-ouvertes.fr

Probabilistic Dataset Reconstruction from
Interpretable Models

1st Julien Ferry
LAAS-CNRS, Université de Toulouse, CNRS

Toulouse, France
jferry@laas.fr

2nd Ulrich Aı̈vodji
École de Technologie Supérieure

Montréal, Canada
Ulrich.Aivodji@etsmtl.ca

3rd Sébastien Gambs
Université du Québec à Montréal

Montréal, Canada
gambs.sebastien@uqam.ca

4th Marie-José Huguet
LAAS-CNRS, Université de Toulouse, CNRS, INSA

Toulouse, France
huguet@laas.fr

5th Mohamed Siala
LAAS-CNRS, Université de Toulouse, CNRS, INSA

Toulouse, France
msiala@laas.fr

Abstract—Interpretability is often pointed out as a key require-
ment for trustworthy machine learning. However, learning and
releasing models that are inherently interpretable leaks informa-
tion regarding the underlying training data. As such disclosure
may directly conflict with privacy, a precise quantification of
the privacy impact of such breach is a fundamental problem.
For instance, previous work [1] have shown that the structure
of a decision tree can be leveraged to build a probabilistic
reconstruction of its training dataset, with the uncertainty of the
reconstruction being a relevant metric for the information leak.
In this paper, we propose of a novel framework generalizing
these probabilistic reconstructions in the sense that it can handle
other forms of interpretable models and more generic types
of knowledge. In addition, we demonstrate that under realistic
assumptions regarding the interpretable models’ structure, the
uncertainty of the reconstruction can be computed efficiently.
Finally, we illustrate the applicability of our approach on
both decision trees and rule lists, by comparing the theoretical
information leak associated to either exact or heuristic learning
algorithms. Our results suggest that optimal interpretable models
are often more compact and leak less information regarding their
training data than greedily-built ones, for a given accuracy level.

Index Terms—Reconstruction Attack, Privacy, Interpretability,
Machine Learning

I. INTRODUCTION

The growing deployment of machine learning systems in
real-world decision making systems raises several ethical
concerns. Among them, transparency is often pointed out as a
fundamental requirement. On the one hand, some approaches
consist in explaining black-box models, whose internals are
either hidden or too complex to be understood by the user.
Such post-hoc explainability techniques [2] include global
explanations [3], [4] approximating the entire black-box and
local explanations [5], [6] of individual predictions. One
important drawback with these approaches is that they may be
misleading by not reflecting the actual black-box model be-
havior, and can even be manipulated by malicious entities [7]–
[11]. On the other hand, it is possible to learn inherently inter-
pretable models, whose structure can be understood by human

users. Common types of interpretable models [12] include rule
lists [13], [14], rule sets [15] and decision trees [16].

Another key requirement for the deployment of machine
learning models is privacy. Indeed, such models are often
trained on large amounts of personal data, and it is necessary to
ensure that they learn useful generic patterns without leaking
private information about individuals. In this context, inference
attacks [17]–[19] leverage the output of a computation (e.g., a
trained model) to retrieve information regarding its inputs (e.g.,
a training dataset). Among other types of inferences attacks,
reconstruction attacks [17]–[19], aim at reconstructing partly
or entirely a model’s training set.

While releasing interpretable models can be desirable from
a transparency perspective, it intrinsically leaks information
regarding the model’s training data. For instance, previous
work [1] exploited this information to build a probabilistic
reconstruction of a decision tree’s training set - effectively im-
plementing a form of reconstruction attack. It is then possible
to quantify the amount of information leaked by the model by
measuring the uncertainty remaining within the reconstructed
probabilistic dataset. However, the proposed approach relies
on strong assumptions, such as statistical independence and
uniform distribution of the random variables modeling the
probabilistic dataset. While it allows probabilistic reconstruc-
tions from decision trees, it is not generic enough to encode
more general types of knowledge, and cannot be used with
other types of interpretable models, such as rule lists. In
this work, we generalize the notion of probabilistic dataset
by relaxing the aforementioned assumptions. In particular,
we show how the success of such generalized probabilistic
reconstructions can be assessed, and illustrate it theoretically
and empirically on several forms of interpretable models. Our
contributions can be summarized as follows:
• We generalize probabilistic datasets to represent any type

of knowledge acquired from an interpretable model’s
structure.

• We extend the metric for quantifying the success of
probabilistic reconstruction attacks in a more generic

setting.
• Although computationally expensive in the generic set-

ting, we show how the success of a probabilistic re-
construction attack may be decomposed under realistic
assumptions regarding the structure of the interpretable
model considered.

• We demonstrate that in the specific case of decision trees
and rule lists, the success of a probabilistic reconstruc-
tion attack can be estimated efficiently, and theoretically
compare the reconstruction quality between these two
hypothesis classes.

• We implement the proposed approach and compare the
reconstruction quality from optimal and heuristically-built
models, for both decision trees and rule lists.

The outline of the paper is as follows. First in Section II,
we review the related work on reconstruction attacks before
introducing the key notions regarding probabilistic dataset
reconstructions. In Section III, we generalize these notions
to handle more generic forms of knowledge. We show in
Section IV how the success of such generalized probabilistic
reconstructions from interpretable models can be assessed.
Finally, we illustrate the applicability of the approach by
demonstrating how it can be used to compare the amount of
information optimal models carry compared to greedily-built
ones.

II. RELATED WORK

In this section, we first provide a brief overview of the
existing work with respect to reconstruction attacks. As this
term has been used in the literature to encompass a wide
variety of problems and approaches, we then focus on the
state-of-the-art on probabilistic datasets reconstruction from
interpretable models.

A. Reconstruction Attacks

Ensuring that the output of a computation over a dataset
V cannot be used to retrieve private information about it is a
fundamental objective in privacy [20]. In particular, inference
attacks [17], [18] aim at retrieving information regarding V
by only observing the outputs of the computation. In machine
learning, such computation is usually a learning algorithm
whose output is a trained model. Two distinct adversarial
settings are generally considered [18], [19]. In the black-
box setting, the adversary does not know the trained model’s
internals and can only query it through an API. In contrast,
in the white-box setting, the adversary has full knowledge of
the model parameters. Diverse types of inference attacks have
been proposed against machine learning models [19]. In this
paper, we focus on reconstruction attacks [17]–[19], in which
an adversary aims at recovering parts of a model’s training
data.

Reconstruction attacks have first been studied in the context
of database access mechanisms. In this setup, a database
contains records about individuals, with each record being
composed of non-private information along with a private
bit [17]. The adversary performs queries to a database access

mechanism, whose outputs are aggregate and noisy statistics
about private bits of individuals in the database. An efficient
linear program for reconstructing private bits of the database
leveraging counting queries was proposed [20] and later im-
proved and generalized to handle other types of queries [21].
The practical effectiveness of such approaches was demon-
strated in several real-world applications [22]–[24].

Other previous works have also tackled reconstruction prob-
lems in other settings. For example in the pharmacogenetics
field, machine learning models predict medical treatments spe-
cific to a patient’s genotype and background. In this sensitive
context, a reconstruction attack was proposed, taking as input
a trained model and some demographic (non-private) infor-
mation about a patient whose records were used for training
and predicting its sensitive attributes [25]. Subsequent works
have designed reconstruction attacks leveraging confidence
values output by machine learning models to infer private
information about training examples given some information
about them [26]. Other works have studied the intended [27]
and unintended [28] training data memorization of machine
learning models, along with different ways to exploit it in a
white-box or black-box setting. In collaborative deep learning,
it was also shown that an adversarial server can exploit the
collected gradient updates to recover parts of the participants’
data [29]. In addition, in the context of online learning, a
reconstruction attack was developed to infer the updating
set (i.e., newly-collected data used to re-train the deployed
model) information using a generative adversarial network
leveraging the difference between the model before and after
its update [30].

Finally, recent works have considered the special case of
training set sensitive attributes reconstruction in the context of
fair learning [31]–[34]. The key challenge here is that while
sensitive attributes are usually known at training time to ensure
the resulting model’s fairness, they cannot be used explicitly
for inference to avoid disparate treatment [35]. More precisely,
[32] proposed a machine learning based attack leveraging
an auxiliary dataset whose sensitive attributes are known,
while [31], [34] explicitly exploit fairness by encoding it
within declarative programming frameworks to enhance the
reconstruction. Both [31] and [33] consider a particular setup
in which a learner can query an auditor (owning the training
set sensitive attributes) to known whether some model’s pa-
rameters satisfy the fairness constraints. They show that the
auditor’s answers can be leveraged to conduct the attack.

To the best of our knowledge, the only attack leveraging
the structure of a trained interpretable model to build a
probabilistic reconstruction of its training set was proposed
in [1]. Our white-box approach builds upon this baseline work
whose key notions are introduced in details hereafter.

B. Probabilistic Dataset Reconstruction from Interpretable
Models

A trained interpretable machine learning model, such as
the decision tree presented in Figure 1, inherently encodes
information regarding its training set. In [1], this information

TABLE I: Example of deterministic dataset VOrig.

a1 a2 a3 Label
x1 12 0 3 0
x2 14 1 2 0
x3 11 1 2 1
x4 14 0 1 1

TABLE II: Example of probabilistic dataset VDT

reconstructed from a Decision Tree (Figure 1).

a1 a2 a3 Label
x1 ∈ {12, 13, 14, 15} ∈ {0, 1} ∈ {2, 3} 0
x2 ∈ {12, 13, 14, 15} ∈ {0, 1} ∈ {2, 3} 0
x3 ∈ {10, 11} ∈ {0, 1} ∈ {2, 3} 1
x4 ∈ {10, 11, 12, 13, 14, 15} ∈ {0, 1} ∈ {1} 1

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

a1 <= 11.5
samples = 3
value = [2, 1]

a3 <= 1.5
samples = 4
value = [2, 2]

Fig. 1: Example of Decision Tree DT trained using
scikit-learn [36], with 1.0 accuracy on VOrig (Table I).

is extracted and used to build a probabilistic reconstruction of
the training dataset, in the form of a probabilistic dataset, as
introduced in Definition 1.

Definition 1: (Probabilistic Dataset) [1]. A probabilistic
dataset V is composed of n examples {x1, . . . , xn} (the
dataset’s rows), each consisting in a vector of d attributes
{a1, . . . , ad} (the dataset’s columns). Each attribute ak has
a domain of definition Vk that includes all the possible
values of this attribute. The knowledge about attribute ak of
example xi is modeled by a probability distribution over all the
possible values of this attribute, using random variable Vi,k.
Importantly, variables {Vi∈[1..n],k∈[1...d]} are assumed to be
statistically independent from each other and their probability
distribution to be uniform.

In practice, if a particular value vi,k ∈ Vk of an attribute
gathers all the probability mass (i.e., it is perfectly determined:
P(Vi,k = vi,k) = 1), then the attribute is said to be determin-
istic. By extension, a probabilistic dataset whose attributes are
all deterministic (i.e., the knowledge about the dataset is per-
fect) is called a deterministic dataset. Previous work [1] pro-
poses a procedure to build a probabilistic dataset VDT given
the structure of a trained decision tree DT . Such probabilistic
dataset gathers the knowledge that the decision tree inherently
encodes about its (deterministic) training dataset VOrig. The
construction of this probabilistic dataset can then be coined as
a probabilistic reconstruction attack. By construction, VDT is
compatible with VOrig: the true value vOrig

i,k of any attribute
ak for any example xi is always contained within the set
of possible values for this attribute and this example in the
probabilistic reconstruction: P

(
VDT
i,k = vOrig

i,k

)
> 0. A natural

way to quantify the success of the probabilistic reconstruction
attack is in terms of the average amount of uncertainty that
remains in the built probabilistic dataset VDT , as stated in the

following definition.
Definition 2: (Measure of success of a probabilistic re-

construction attack) [1]. Let VOrig be a deterministic dataset
composed of n examples and d attributes, used to train a
machine learning model M . Let VM be a probabilistic dataset
reconstructed from M . By construction, VM is compatible
with VOrig. The success of the reconstruction is quantified
as the average uncertainty reduction over all attributes of all
examples in the dataset:

Dist(VM ,VOrig) =
1

n · d

n∑
i=1

d∑
k=1

H(VM
i,k)

H(Vi,k)
(1)

in which random variable Vi,k corresponds to an uninformed
reconstruction, uniformly distributed over all possible values
Vk of attribute ak, and H denotes the Shannon entropy.

Smaller values of Dist(VM ,VOrig) indicate better recon-
struction performance (i.e., a more successful attack). In
particular, if VM = VOrig, Dist(VM ,VOrig) = 0: the
reconstruction is perfect and there is no uncertainty at all. In
contrast, in other extreme in which VM contains no knowledge
at all, Dist(VM ,VOrig) = 1.

Remark 1: Definitions 1 and 2 are slightly more general than
in [1]. Indeed, both use actual random variables while in [1]
each attribute of each example is simply modeled via a set
of possible values, which is only suitable under the assumed
hypothesis of statistical independence and uniform distribution
of the random variables. Thus, our extended formulation eases
the generalization we further provide in Section III while
encompassing this particular case.

We illustrate the reconstruction process proposed in [1]
with a toy example. A deterministic dataset VOrig, provided
in Table I is used to train a decision tree classifier DT
depicted in Figure 1. This dataset includes four examples
xi∈{1,2,3,4} with three attributes ak∈{1,2,3} with domains V1 =
{10, 11, 12, 13, 14, 15}, V2 = {0, 1} and V3 = {1, 2, 3}. This
decision tree, learnt using the scikit-learn python li-
brary [36], provides the per-label number of training examples
in each internal node and each leaf. Intuitively, its structure can
then be used to reconstruct a probabilistic version of its train-
ing dataset VDT , given in Table II. The algorithm used to build
VDT simply follows each branch and performs the domains’
reductions associated to each split along the branch [1]. Using
Definition 2, we can compute the success of the reconstruction
as the average amount of uncertainty contained within VDT .
For instance, if we have V1 = {10, 11, 12, 13, 14, 15} and
VDT

3,1 takes values in {10, 11}.

TABLE III: Example of deterministic dataset VOrig′
.

a′1 a′2 a′3 Label
x′
1 1 1 1 1

x′
2 1 1 0 1

x′
3 0 1 1 0

x′
4 1 0 1 0

x′
5 1 0 0 1

TABLE IV: Example of (generalized) probabilistic dataset
WRL reconstructed from Rule List 1.

a′1 a′2 a′3 Label
x′
1 1 1 ∈ {0, 1} 1

x′
2 1 1 ∈ {0, 1} 1

x′
3 ∈ {(0, 0), (0, 1), (1, 0)} 1 0

x′
4 ∈ {(0, 0), (0, 1), (1, 0)} 1 0

x′
5 ∈ {(0, 0), (0, 1), (1, 0)} 0 1

Rule list 1: Example rule list RL trained using CORELS [14],
[37], with 1.0 accuracy on VOrig′

(Table III).
i f [a′1] and [a′2] then [t r u e] ([0 ; 2] examples)
e l s e i f [a′3] then [f a l s e] ([2 ; 0] example)
e l s e [t r u e] ([0 ; 1] example)

Then, considering that all the possible values are equally
probable, the uncertainty reduction for attribute a1 of example
x3 is:

H(VDT
3,1)

H(V3,1) =
−log2(1

2)

−log2(1
6)
≈ 0.387. By averaging such com-

putation over the entire dataset (i.e., over all attributes of all
examples), we obtain Dist(VDT ,VOrig) ≈ 0.736. To facilitate
reading, we aligned VOrig and VDT . In practice, such align-
ment can be performed using the Hungarian algorithm [38],
[39] as is done in [1]. In a nutshell, it consists in performing a
minimum cost matching between the examples of VOrig and
those of VDT , where the assignment cost is computed as the
sum of the distances between the paired examples. Intuitively,
the objective is to determine to which example within VOrig

corresponds each reconstructed example in VDT . However,
this would not be needed in scenarios in which VOrig is
unknown, as VDT is compatible with VOrig by construction,
and Dist (1) does not require further information regarding
VOrig.

Hereafter, we generalize the notions introduced in this
section to be able to handle more general type of knowledge,
corresponding to other types of interpretable models.

III. GENERALIZING PROBABILISTIC DATASETS
RECONSTRUCTION

In this section, we first illustrate the limits of probabilistic
datasets and motivate the need to relax some of their under-
lying assumptions. Consequently, we introduce generalized
probabilistic datasets, which can be used to encode any
arbitrary knowledge regarding a dataset. Finally, we define
a generalized metric DistG that can be used to quantify
uncertainty reduction within such datasets.

A. Motivation

The concept of probabilistic dataset as described in Defini-
tion 1 is suitable to encode knowledge regarding a dataset,
as long as this knowledge involves each cell (i.e., which
corresponds to one attribute for one example) individually.
For instance, this is appropriate for decision trees in which an
example is classified exactly by one branch. Furthermore, each
branch corresponds to a conjunction (i.e., logical AND) of
conditions (splits) over features, which all have to be satisfied.
These conditions allow for the reduction of each such feature’s
domains individually. However, for other representations of

interpretable classifiers, such as rule lists or rule sets, this con-
dition will not be valid. Again, we illustrate this observation
using a toy example.

More precisely, Rule List 1 was trained on (deterministic)
dataset VOrig′

, shown in Table III. It gathers five exam-
ples x′i∈{1,2,3,4,5} described by three binary attributes, named
a′k∈{1,2,3} (with domains V ′k∈{1,2,3} = {0, 1}). For each
rule (including the default rule), RL indicates the number of
training examples it captures, for each class. For example, the
second rule captures two training examples belonging to class
0 (here, x′3 and x′4).

The algorithm reconstructing a probabilistic version of a
rule list RL’s training set from RL itself simply follows the
path of each example. For an example classified by the jth
rule, it reduces the domains of the attributes involved in the jth
rule accordingly. It also eliminates all attributes’ conjunctions
contradicting the fact that the example did not match the pre-
vious rules within RL. For instance, the following knowledge
can be extracted from Rule List 1:
• The first rule indicates that for 2 (positive) examples, the

two Boolean attributes a′1 and a′2 are true.
• Using the second rule, we know that the Boolean at-

tribute a′3 is true for 2 (negatively-labelled) examples.
Furthermore, we know that a′1 and a′2 can not be si-
multaneously true for these examples (or else they would
have been captured by the first rule).

• Finally, the default rule states that for 1 (positively-
labelled) example, a′3 is false, and a′1 and a′2 can not
be simultaneously true.

Using such knowledge, one can build a (generalized) prob-
abilistic dataset as shown in Table IV. In this example, part
of the model’s knowledge directly reduces the individual
domains of some attributes for the concerned examples. As
such, the information it brings will successfully be quantified
by Dist and encoded in a probabilistic dataset. However,
other information (specified in italic) does not reduce any
attribute’s domain individually. For instance, as shown in
Table IV, one knows that for examples x′3 and x′4, a′1 and
a′2 can not simultaneously be true. Nevertheless, taken apart,
their respective domains would be unchanged as both binary
attributes can still take values in {0, 1}. While such knowledge
brings information for reconstruction, this cannot be quantified
using Dist nor represented using a probabilistic dataset as
formalized in Definition 1.

Indeed, one key assumption with Definition 1 is that the
random variables representing each attribute for each example
are independent from each other. This is leveraged by Dist,

which computes the reductions of the individual entropies.
However, this representation cannot handle more generic
knowledge, in which uncertainty can be spread jointly across
multiple random variables. This limitation is also pointed
out in the theory of probabilistic databases. More precisely,
quoting [40], this representation (talking about a scheme
similar to probabilistic datasets as formalized in Definition 1
and illustrated in Figure II) is “more compact”, as we do
not need to expand all possible combinations of the different
variables’ values explicitly. However, “it cannot account for
correlations across possible readings of different fields, such
as when we know that no two persons can have the same social
security number”. In this particular case, this corresponds to
a correlation across examples, while in the aforementioned
example of Rule List 1 we observed correlations between
attributes within the same example. For instance, to encode
the knowledge regarding attributes a′1 and a′2 of examples x′3
and x′4, we had to enumerate all the possible combinations of
these two attributes’ values (Table IV).

B. Generalized Probabilistic Datasets

As illustrated in the previous subsection, the assumptions
underlying probabilistic datasets (Definition 1) - namely sta-
tistical independence and uniform distribution of their random
variables - make them inappropriate in the general case.
Generalized probabilistic datasets remove these assumptions
as stated in Definition 3.

Definition 3: (Generalized probabilistic dataset). A gen-
eralized probabilistic dataset W is composed of n examples
{x1, . . . , xn} (the dataset’s rows), each consisting in a vector
of d attributes {a1, . . . , ad} (the dataset’s columns). The
knowledge about attribute ak of example xi is modeled by
a probability distribution over all the possible values of this
attribute, using random variable Wi,k. Importantly, variables
{Wi∈[1..n],k∈[1..d]} are not necessarily statistically independent
from each other and can follow any arbitrary distribution.
Each possible instantiation w = {wi∈[1..n],k∈[1..d]} of the
Wi∈[1..n],k∈[1..d] variables (i.e., each deterministic dataset
compatible with W) is named a possible world. We let
Π(W) denote the set of possible worlds within W: Π(W) =
{w | P(Wi∈[1..n],k∈[1..d] = wi∈[1..n],k∈[1..d]) > 0}.

Again, if all its variables are determined, a generalized
probabilistic dataset is said to deterministic. A key difference
between probabilistic datasets and their generalized counter-
parts is that the set of possible worlds of a probabilistic dataset
simply consists in all combinations of the possible variables’
values, all random variables being statistically independent.
For generalized probabilistic datasets, it is not the case as
there can exist complex inter-dependencies between the ran-
dom variables that directly influence Π(W) (as illustrated in
Section III-A). Importantly, note that generalized probabilistic
datasets as introduced in Definition 3 can encode any knowl-
edge regarding the inferred reconstruction, as they simply
consist in a set of random variables {Wi∈[1..n],k∈[1..d]} with no
further assumption regarding their distribution. Furthermore,
because these variables can be categorical, but also continuous,

there is no particular restriction regarding the type of attributes
contained in the reconstructed dataset.

Our generalized probabilistic dataset definition matches the
notions of probabilistic or incomplete databases that are used
in the theory of probabilistic databases [40]. Both correspond
to database representations in which some values are uncertain.
More precisely, an incomplete database defines a set of
possible worlds, denoting the possible states of the database
(i.e., set of values for the different relations). Such worlds
are also called relational database instances, and correspond
to all deterministic datasets compatible with our generalized
probabilistic dataset in the context of this work. If one
can associate a probability to each possible world, then the
database is called a probabilistic database - which generalizes
incomplete databases. In the context of this work, one could
leverage external knowledge (e.g., demographic information
about the data distribution) to associate probabilities to the
possible worlds in Π(W). This would lead to a reduction of
the uncertainty of the dataset (thus lowering its joint entropy
and raising the reconstruction success).

Both incomplete and probabilistic databases are semantic
definitions for which designing a practical representation is
challenging [40]. To circumvent this issue, some compact rep-
resentations have been proposed. For instance, in conditional
tables (or c-tables), the different values of the database cells
are associated to a propositional formula, called condition,
over some random variables. The different assignments of the
random variables define the different states of the database
(i.e., possible worlds). Probabilistic conditional tables (or
pc-tables) extend this concept by assigning probabilities to
the conditional variables assignments. While (p)c-tables may
be an interesting representation for generalized probabilistic
datasets, we do not assume any specific representation for
our generalized probabilistic datasets in this work. Rather, we
demonstrate in Section IV that in the context of training set
reconstruction from an interpretable model, we can quantify
the amount of uncertainty that remains in the resulting general-
ized probabilistic dataset without building it explicitly (which
in practice may be infeasible even with efficient structures
such as c-tables).

C. Generalized Measure of the Attack Success

We now generalize the metric introduced in Definition 2 to
quantify the success of a probabilistic reconstruction attack. As
stated in Definition 4, our new metric DistG is more general
as it quantifies the uncertainty reduction on the entire dataset
using the joint entropy of the underlying random variables.

Definition 4: (Generalized measure of success of a proba-
bilistic reconstruction attack). Let WOrig be a deterministic
dataset composed of n examples and d attributes, used to
train a machine learning model M . Let WM be a generalized
probabilistic dataset reconstructed from M . By construction,
WM is compatible withWOrig (i.e.,WOrig ∈ Π(WM)). The
success of the performed reconstruction is quantified as the

overall uncertainty reduction in the dataset:

DistG(WM ,WOrig) =
H
(
{WM

i,k | i ∈ [1..n], k ∈ [1..d]}
)

H ({Wi,k | i ∈ [1..n], k ∈ [1..d]})
(2)

=

∑
w∈Π(WM)−P(w) · log2(P(w))∑n

i=1

∑d
k=1 H(Wi,k)

(3)

in which H denotes the Shannon entropy (or joint entropy,
when applied to a set of variables, as in (2)), and random
variable Wi,k corresponds to an uninformed reconstruction,
uniformly distributed over all possible values of attribute ak.

The denominator in Equation (2) can be decomposed
as a sum in Equation (3) because the random variables
Wi∈[1..n],k∈[1..d] are independent from each other, and the
joint entropy of a set of variables is equal to the sum of the
individual entropies of the variables in the set if and only
if the variables are statistically independent. This is not the
case for variables WM

i∈[1..n],k∈[1..d], and thus the generalized
probabilistic dataset has to be considered as a whole through
its set of possible worlds Π(WM). Again, note that Defini-
tion 4 is general enough to quantify the uncertainty reduction
brought by any type of knowledge, as no assumption is
made regarding the distribution of the generalized probabilistic
dataset variables, and DistG considers their joint entropy.
Furthermore, to handle continuous attributes, the sum over the
set of possible worlds Π(WM) in Equation (3) can be changed
into an integral calculation.

The key properties of Dist also hold for DistG. In
particular, for any deterministic dataset WOrig, we have
DistG(WOrig,WOrig) = 0. Furthermore, if WM contains no
knowledge at all, we have that DistG(WM ,WOrig) = 1 for
any deterministic dataset WOrig.

One important difference between Dist and DistG is the fact,
that due to its averaging over the per-example-per-attribute
individual uncertainty reductions, Dist considers all features
equal (in terms of contribution to the overall uncertainty) while
it is not the case for DistG. To illustrate this, let us assume a
toy scenario with a (deterministic) dataset VOrig with a single
record x1 = (1, 1) and two attributes a1 and a2 with domains
V1 = {0, 1} and V2 = {1, 2, 3}. Consider the two probabilistic
datasets Vrec1, in which we know that for x1, a1 = 1, and
Vrec2, in which we know that for x1, a2 = 1. These datasets
are summarized in Tables V, VI and VII.

TABLE V: VOrig

a1 a2
x1 1 1

TABLE VI: Vrec1

a1 a2
x1 1 ∈ {1, 2, 3}

TABLE VII: Vrec2

a1 a2
x1 ∈ {0, 1} 1

Using Definition 2, we have: Dist(Vrec1,VOrig) = 0.5, as:

H(Vrec1
1,1)

H(V1,1)
=
−log2(1)
−log2(1

2
)
= 0 and

H(Vrec1
1,2)

H(V1,2)
=
−log2(1

3
)

−log2(1
3
)
= 1.

Conversely, we also have Dist(Vrec2,VOrig) = 0.5 because:

H(Vrec2
1,1)

H(V1,1)
=
−log2(1

2
)

−log2(1
2
)
= 1 and

H(Vrec2
1,2)

H(V1,2)
=
−log2(1)
−log2(1

3
)
= 0.

However, out of 6 possible reconstructions for x1 (without
any knowledge), 3 are possible within Vrec1 while only 2 are
possible with Vrec2. Intuitively, Vrec2 yields more information
(or, conversely, less uncertainty) than Vrec1, but Dist cannot
account for this difference due to normalization and individual
measure of entropy across examples’ attributes. For notation
consistency, we associate to these datasets their generalized
counterparts WOrig, Wrec1 and Wrec2, containing the exact
same information (recall that probabilistic datasets are simply
a particular case of generalized probabilistic datasets, in which
the dataset’s variables are statistically independent and uni-
formly distributed). Using our generalized metric introduced
in Definition 4, we have:

DistG(Wrec1,WOrig) =
H

(
{Wrec1

1,1 ,Wrec1
1,2 }

)
H ({W1,1,W1,2})

=
−log2(1

3
)

−log2(1
6
)
≈ 0.613

and DistG(Wrec2,WOrig) =
H

(
{Wrec2

1,1 ,Wrec2
1,2 }

)
H ({W1,1,W1,2})

=
−log2(1

2
)

−log2(1
6
)
≈ 0.387

As lower values indicate less uncertainty (i.e., better recon-
struction performances), we observe that DistG successfully
distinguishes betweenWrec1 andWrec2. Thus by avoiding the
drawbacks of the normalization across dataset cells, the new
metric DistG successfully takes into account the specificities
of the two probabilistic datasets.

IV. GENERALIZED PROBABILISTIC DATASETS
RECONSTRUCTION FROM INTERPRETABLE MODELS

We now investigate how to quantify the success of a
probabilistic reconstruction attack in practice. First, we dis-
cuss how the attack success computation can be decomposed
under reasonable assumptions regarding the structure of the
interpretable model considered. Then, we show how it can be
computed without explicitly building the entire set of possible
worlds, as long as one is able to count them. Finally, we
demonstrate that such simplification is possible for decision
trees as well as rule lists models, and theoretically compare
the reconstruction quality from these two hypothesis classes.

A. General Case
LetWM be a generalized probabilistic dataset reconstructed

from an interpretable model M . As stated in Definition 4,
the success of the probabilistic reconstruction attack can be
quantified using DistG. One can observe that the denominator(∑n

i=1

∑d
k=1 H(Wi,k)

)
is a constant, only depending on the

attributes’ domains Vk∈[1..d]. Indeed, variables Wi∈[1..n],k are
uniformly distributed over Vk (the domain of attribute ak) and
so H(Wi,k) = −log2

(
1
|Vk|

)
. Thus:

n∑
i=1

d∑
k=1

H(Wi,k) = n ·
d∑

k=1

−log2

(
1

|Vk|

)
(4)

As the denominator in Equation (2) is a constant that can
be easily computed, we will focus only on the numerator in
the remaining of this section, using the following notation:

DistG(WM ,WOrig) ∝ H
(
{WM

i∈[1..n],k∈[1..d]}
)

(5)

1) Independence assumptions: decomposing the attack suc-
cess computation.: In the general case, the computation of the
joint entropy of the generalized probabilistic dataset’s cells
must be done through its set of possible worlds Π(WM),
as shown in Equation (3). However, if one can establish the
statistical independence of some of the WM

i,k variables, this
computation can be further decomposed. Indeed, the joint
entropy of a set of statistically independent variables is equal
to the sum of their individual entropies. For instance, if the
knowledge of model M applies to each example xi∈[1..n]

independently, the sets of variables {WM
i,k∈[1..d]}i∈[1..n] are

independent from each other. This condition is satisfied if M is
a decision tree or a rule list, because each example is captured
by exactly one “decision path” (i.e., branch or rule). Indeed,
this decision path reduces the set of possible reconstructions
for each example xi independently from the other examples.
By a slight abuse of notation, we let Πi(WM) denote the set
of possible worlds (i.e., reconstructions) for example (row) xi.
As a consequence, we have:

DistG(WM ,WOrig) ∝
n∑

i=1

H
(
{WM

i,k∈[1..d]}
)

(6)

∝
n∑

i=1

 ∑
wi∈Πi(WM)

−P(wi) · log2(P(wi))

 (7)

While Equation (7) holds for both rule lists and decision
trees, its computation can be further decomposed for the
later. Indeed, in a decision tree each example is classified by
exactly one branch, and such branch defines a conjunction of
Boolean conditions over attributes’ values, called splits. Such
conditions must all be satisfied for the example to be captured
by the branch - hence all the concerned attributes’ domains
can be reduced individually. As a consequence, this implies
that all variables WM

i∈[1..n],k∈[1..d] are actually statistically
independent resulting in:

DistG(WM ,WOrig) ∝
n∑

i=1

d∑
k=1

H
(
WM

i,k

)
(8)

Note that Equation (8) corresponds to the particular case
studied in [1], with the computation being exactly as for their
proposed Dist metric (Definition 2), with the only difference
being the absence of normalization. Observe that Equation (8)
does not hold in general for rule list models due to the fact
that for a given example, the information that it did not match
previous rules within the rule list corresponds to negating a
conjunction, hence producing a disjunction. As a result, this
potentially breaks the statistical independence between some
of the {WM

i,k∈[1..d]} variables.

2) Uniform distribution assumptions: efficient attack suc-
cess computation.: The explicit enumeration of the possible
worlds Π(WM) is not practically conceivable for real-size
datasets. However, quantifying a probabilistic reconstruction
attack success can sometimes be done only by computing their
number |Π(WM)|. Indeed, assuming a uniform probability
distribution between them, one can then easily quantify the
amount of uncertainty using DistG (Definition 4), as ∀w ∈
Π(WM),P(w) = 1

|Π(WM)| , resulting in:∑
w∈Π(WM)

−P(w) · log2(P(w)) = −log2

(
1

|Π(WM)|

)
(9)

Remark that only the number of possible worlds |Π(WM)|
is needed to compute Equation (9). In the general case, this
number cannot be retrieved without building Π(WM) explic-
itly. However, several types of interpretable models enable to
compute |Π(WM)| efficiently (i.e., without building Π(WM)).
For instance, this is the case when reconstructing generalized
probabilistic datasets from decision tree or rule list models.
Plugging together Equations (7) and (9), we have:

DistG(WM ,WOrig) ∝
n∑

i=1

−log2

(
1

|Πi(WM)|

)
(10)

In the next subsections, we demonstrate how
|Πi(WM)|i∈[1..n] can be computed in polynomial time
(with respect to the model’s size) for decision trees and rule
lists. Note that the assumptions performed in this subsection
are realistic. In particular, the uniform distribution assumption
simply means that if the model at hand is compatible with
several reconstructions (deterministic datasets), they are all
equally likely (one can note state whether one is more likely
than the others). Furthermore, the independence assumption
(between the dataset rows, as in (6)) is mainly challenging
when dealing with ensemble models (and matching the
knowledge of the different base learners is an additional
challenge).

B. Decision Trees

Let DT be a decision tree with r branches, in which each
branch fj∈[1..r] is a conjunction of Boolean assertions over
attributes’ values ending with a leaf prediction. The value
num(fj) represents the number of different examples (i.e.,
number of different combinations of attributes values) that
satisfy fj . It can be computed by multiplying the cardinalities
of the reduced domains. Thus, for each example xi classified
by branch fj , we have |Πi(WDT)| = num(fj). Additionally,
Cj∈[1..r] is defined as the support of each leaf (i.e., the number
of training examples captured by the leaf, as indicated in
the decision tree of Figure 1). Importantly, the tree branches
partition the set of examples (as the leaves’ supports are all
disjoints), so we have

∑
j∈[1..r] Cj = n. Furthermore, the sum

of Equation (10) which was performed over all n examples can
be replaced with a sum over the r branches, with the entropy
of each branch fj being weighted by its support Cj . Plugging
these new notions into Equation (10), we obtain that the overall

joint entropy of the reconstructed probabilistic version of DT ’s
training set is:

DistG(WDT ,WOrig) ∝
r∑

j=1

−Cj · log2

(
1

num(fj)

)
(11)

C. Rule Lists

Let RL = (f1, v1) . . . (fr′ , vr′) be a rule list, following the
notation introduced in [13]. Each term fj∈[1..r′] is a conjunc-
tion of Boolean assertions over attributes’ values and vj∈[1..r′]

is a prediction. Rule r′ is the default decision, with fr′ being
the constant value True. Similarly to the leaves of a decision
tree, each rule j is associated with its support Cj . Again,
let num(fj) denote the number of different examples (i.e.,
number of different combinations of attributes values) that
satisfy fj . As a branch, a rule corresponds to a conjunction,
hence num(fj) can be computed easily by simply multiplying
the cardinalities of the attributes’ reduced domains.

Finally, we define ∀1 ≤ j ≤ r′, CaptRL(fj) as the number
of possible different examples (i.e., number of different com-
binations of attributes values) that fj captures within RL (i.e.,
examples satisfying fj while not matching the antecedents
of the previous rules within RL). As a particular case, note
that we always have CaptRL(f1) = num(f1) as the first rule
of any rule list is always applied first. For 1 ≤ j ≤ r′, a
straightforward general formulation is:

CaptRL(fj) = num(fj ∧
j−1∧
l=1

¬fl) (12)

The main challenge is that num(
∧j−1

l=1 ¬fl), in which∧j−1
l=1 ¬fl is the conjunction of the negations of the previous

rules’ antecedents, cannot be computed directly as fl∈[1..j−1]

may overlap. Indeed, each antecedent fl is a conjunction -
hence its negation is a disjunction. More precisely, overall we
get a conjunction of disjunctions, which means that the number
of possible examples it characterizes cannot be computed by
simply multiplying attributes’ cardinalities as the different dis-
junctions may overlap. By a slight abuse of notation, we define
for 1 ≤ l ≤ j ≤ r′, CaptRL(fl, fj) as the number of possible
different examples (i.e., number of different combinations of
features values) that fj could capture but that are actually
captured by fl in RL:

CaptRL(fl, fj) = num(fl ∧ fj)−
l−1∑
h=1

CaptRL(fh, (fl ∧ fj))

(13)

The first term corresponds to the overlap between fl and fj ,
while the second one subtracts the unique examples within
this overlap that are actually captured by rules placed before
fl in RL. Then:

CaptRL(fj) = CaptRL(fj , fj) (14)

= num(fj)−
j−1∑
l=1

CaptRL(fl, fj) (15)

Just like the branches of a decision tree, the rules within
a rule list partition the set of examples (as each example is
captured by exactly one rule in the rule list). Then, the sum
over all n examples in Equation (10) can be reformulated
using a sum over the r′ rules, with each rule’s entropy being
weighted by its support. Then, plugging (15) into (10), we
obtain:

DistG(WRL,WOrig)

∝
r′∑

j=1

−Cj · log2

 1

num(fj)−
j−1∑
l=1

CaptRL(fl, fj)

 (16)

Comparing Decision Trees and Rule Lists.: Compar-
ing (16) to (11), we observe that an additional term is
subtracted to the denominator of (16). This term corresponds
to the information that the examples captured by rule j did
not match any of the previous rules l < j within RL. By
lowering the denominator, it raises the overall success of
the probabilistic reconstruction attack. There is no such term
in (11) because there can be no overlap between a decision
tree’s leaves’ supports. On the contrary, the rules within a
rule list can overlap because they are ordered. Overall, these
theoretical results confirm that rule lists are more expressive
than decision trees, encoding more information than a decision
tree of equivalent size [13].

V. EXPERIMENTS

While our proposed metric quantifies precisely and theo-
retically the amount of information an interpretable model
carries regarding its training dataset, the aim of this section is
to illustrate its practical usefulness through an example use.
More precisely, we will investigate the differences between
optimal and heuristically-built models, for both rule lists and
decision trees.

A. Setup

In these experiments, we use both optimal and heuristic
learning algorithms to compute decision trees and rule lists of
varied sizes. Furthermore, optimal models are learnt optimiz-
ing solely accuracy, to avoid interference with other regulariza-
tion terms. All details regarding the considered experimental
setup are provided hereafter.

a) Learning algorithms.: We use the following learning
algorithms:
• Optimal decision trees. We use the DL8.5 algo-

rithm [41], [42] through its Python binding1.
• Heuristic decision trees. We use an optimized version

of the CART greedy algorithm [16], as implemented
within the scikit-learn2 Python library [36] with
its DecisionTreeClassifier object. We coin this
method sklearn_DT.

1https://github.com/aia-uclouvain/pydl8.5
2https://scikit-learn.org/

• Optimal rule lists. We use the CORELS algorithm [14],
[37] through its Python binding3.

• Heuristic rule lists. While some implementations exist in
the literature for building heuristic rule lists (for example,
one is provided within the imodels4 library5 [43]), they
do not offer precise control over the desired rule support
and/or maximum rule list depth. For this reason, we
implemented a CART-like greedy algorithm (close to the
imodels’ implementation), that we coin GreedyRL. In
a nutshell, this algorithm selects the rule yielding to the
best Gini impurity improvement at each level of the rule
list, in a top-down manner.
b) Datasets.: We use two datasets (binarized, as required

by CORELS) which are very popular in the trustworthy
machine learning literature. First, the UCI Adult Income
dataset6 [44] contains data regarding the 1994 U.S. census,
with the objective of predicting whether a person earns
more than $50K/year. Numerical features are discretized using
quantiles and categorical features are one-hot encoded. The
resulting dataset includes 48, 842 examples and 24 binary
features. As DL8.5 was unable to learn optimal models
within the specified time and memory limits for the largest
size constraints, we randomly sub-sample 10% of the whole
dataset. Second, the COMPAS dataset (analyzed by [45]) gath-
ers records about criminal offenders in the Broward County
of Florida collected from 2013 and 2014, with the task being
recidivism prediction. We consider its discretized version used
to evaluate CORELS in [14], consisting in 7, 214 examples
characterized with 27 binary features7.

c) Experimental Parameters.: For each experiment, we
randomly select 80% of the dataset to form a training set, and
use the remaining 20% as a test set to ensure that models
generalize well. We repeat the experiment five times using
different seeds for the random train/test split, and report results
averaged across the five runs. All experiments are run on a
computing cluster over a set of homogeneous nodes using Intel
Platinum 8260 Cascade Lake @ 2.4Ghz CPU. Each training
phase is limited to one hour of CPU time and 12 GB of RAM.
Within the proposed experimental setup, all models produced
by the optimal learning algorithms (DL8.5 for decision trees
or CORELS for rule lists) are certifiably optimal.

d) Models Learning.: We set various constraints to the
decision tree building algorithms, using maximum tree depths
between 1 and 10 (ranging linearly by steps of 1) and (rela-
tive) minimum leaf supports between 0.01 and 0.05 (ranging
linearly by steps of 0.01). For the rule list learning algorithms,
we proceed identically and generate rule lists with various size
constraints, using maximum depths (number of rules within the
rule list) between 1 and 10 (ranging linearly by steps of 1)

3https://github.com/corels/pycorels
4https://github.com/csinva/imodels
5imodels is a Python library gathering tools to learn different types of

popular interpretable machine learning models, such as decision trees, rule
lists, rule sets, or scoring systems.

6https://archive.ics.uci.edu/ml/datasets/adult
7https://github.com/corels/pycorels/blob/master/examples/data/compas.csv

and (relative) minimum rule supports between 0.01 and 0.05
(ranging linearly by steps of 0.01). As we are interested in the
optimality guarantee, we consider rules consisting in a single
binary attribute (or its negation). Indeed, in our experiments,
CORELS was unable to reach and certify optimality while
also considering conjunction of features, as it dramatically
increases the number of rules - and consequently, the algorithm
search space. Finally, we set CORELS’s sparsity regularization
coefficient to a value small enough (i.e., smaller than 1

n) to en-
sure that only accuracy is optimized. All methods’ parameters
are left to their default value.

e) Resources.: Source code for our implementation of
the CART-like greedy rule list learning algorithm GreedyRL
is provided on our repository8. We also provide the binarized
datasets, and all scripts needed to reproduce our experiments,
along with the results and plots themselves.

B. Results

After having learnt optimal and heuristic decision trees
and rule lists under various constraints, we compute the
amount of information they contain regarding their training
sets using DistG, leveraging the computational tricks presented
in Equations (11) and (16). Recall that lower uncertainty
values indicate better reconstruction performances. We relate
this value to two dimensions: the sizes of the models and their
training accuracy. The former corresponds respectively to the
number of splits performed in a decision tree or to the number
of rules for a width-1 rule list. The later indicates the model’s
performance on its training set - i.e., exactly what we aim at
optimizing.

Results are provided for our experiments comparing exact
and greedily-built decision trees and rule lists respectively in
Figures 2 and 3. We observe the same trends for the two types
of models. First, one can observe in Figures 2a and 3a that
optimal models usually represent more information in a more
compact way: the reconstruction uncertainty decreases faster
for optimal models than with greedily-built ones. However,
while for a given size optimal models contain more informa-
tion regarding their training data, they are also way more accu-
rate. This dimension is observed in Figures 2b and 3b. More
precisely, we consistently observe that for a given accuracy
level, optimal models always leak less information regarding
their training data. These observations can be explained by
the nature of the learning algorithms. On the one side, greedy
algorithms make heuristic choices iteratively. These choices
are usually sub-optimal, and thus while leading to sub-optimal
models (in terms of accuracy), they can also cause unnecessary
leaks regarding their training data. On the other side, because
they perform global optimization, optimal learning algorithms
encode exactly the information needed in the most effective
way.

For both datasets and types of models, the entropy reduction
is not uniformly distributed across all training examples.
Indeed, we plot in Figure 4 the minimum entropy reduction

8https://github.com/ferryjul/ProbabilisticDatasetsReconstruction

0 10 20 30 40 50
internal nodes

0.70

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

0 10 20 30 40 50 60
internal nodes

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

(a) Entropy reduction as a function of the tree size (number of splits/internal nodes). Note that the number of internal nodes is restricted
by the maximum depth constraint, but also by the enforced minimum leaf support (as mentioned in section V-A), which explains why the
largest trees only have slightly more than 60 nodes.

0.77 0.78 0.79 0.80 0.81 0.82 0.83
Training accuracy

0.70

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

0.63 0.64 0.65 0.66 0.67 0.68 0.69
Training accuracy

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

(b) Entropy reduction as a function of training accuracy.

DL8.5
sklearn_DT

min support 0.01
min support 0.02

min support 0.03
min support 0.04

min support 0.05

Fig. 2: Results of our experiments comparing optimal and greedily-built decision trees (learnt respectively with DL8.5 and
sklearn_DT), for different (relative) minimum leaf support values. Left: Adult Income dataset, Right: COMPAS dataset.

ratio as a function of the proportion of concerned training
examples. One can observe that the amount of information
contained by the learnt models varies significantly between
different training examples. For instance, in the experiments
using optimal rule lists with maximum size 10 and minimum
support 0.01 on the Adult Income dataset (Figure 4b (left)), the
less exposed training examples have an entropy reduction ratio
above 0.95: knowledge of the rule list removes only 5% of
the uncertainty regarding such samples. For the most exposed
examples, this number becomes smaller than 0.60: knowledge
of the rule list removes more then 40% of the uncertainty
regarding such samples. This disparate information leak is
intuitive: an example classified by a very long branch of a
tree goes through many nodes, which gives more information
regarding its features. This phenomenon is observed in all
our experiments, with roughly identical distribution of the
uncertainty reduction over the training datasets. It suggests
that, behind average-case uncertainty reduction as reported

in Figures 2 and 3, investigating per-example uncertainty
reductions can also be insightful.

One can note that averaging the curves of Figure 4 leads to
the computation of dataset-wide metrics as shown in Figures 2
and 3. For instance, we observe in Figure 4b that for most
proportions of training samples, rule lists learnt using CORELS
exhibit a lower entropy reduction ratio than those produced
by GreedyRL. As aforementioned, these experiments use the
largest considered rule lists (learned with maximum depth 10
and minimum support 0.01) for both methods, corresponding
to the rightmost points on Figure 3a. Observing these par-
ticular points, one can see that rule lists built with CORELS
indeed exhibit lower entropy reduction ratios than those built
by GreedyRL, which is consistent with Figure 4b.

We observe a different trend for the decision trees learnt
on the Adult Income dataset (Figure 4a (left)): the models
built with the greedy sklearn_DT algorithm exhibit lower
entropy reduction ratios than the optimal ones produced by

2 4 6 8 10
rules

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Di
st

G
(

,
O

rig
)

2 4 6 8 10
rules

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Di
st

G
(

,
O

rig
)

(a) Entropy reduction as a function of the rule list size (number of rules).

0.77 0.78 0.79 0.80 0.81 0.82
Training accuracy

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Di
st

G
(

,
O

rig
)

0.63 0.64 0.65 0.66 0.67 0.68
Training accuracy

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Di
st

G
(

,
O

rig
)

(b) Entropy reduction as a function of training accuracy.

CORELS
GreedyRL

min support 0.01
min support 0.02

min support 0.03
min support 0.04

min support 0.05

Fig. 3: Results of our experiments comparing optimal and greedily-built rule lists (learnt respectively with the CORELS and
GreedyRL algorithms), for different (relative) minimum rule support values. Left: Adult Income dataset, Right: COMPAS
dataset.

DL8.5, hence containing more information. Again, these
models correspond to the rightmost points on Figure 2a
(left). For these experiments, the optimal models learnt with
the DL8.5 algorithm with the largest size constraint are
indeed more compact than those produced by sklearn_DT
and contain less information overall. As aforementioned, this
illustrates a drawback of greedy learning algorithms: by per-
forming local (possibly sub-optimal) choices, they can produce
models performing non-necessary or redundant operations,
leaking additional information regarding their training data.
This dimension is further explored in the Appendix A, where
we relate the actual models’ sizes and entropy reduction ratios
to the constraints enforced during learning.

Finally, comparing decision trees and rule lists empirically
as was done theoretically in Section IV-C could also be
insightful. In particular, one could assess whether the rules’
ordering, which allows the rules within a rule list to overlap
(while the branches of a decision tree are all disjoint), empir-
ically provides more information regarding the training data

as was expected theoretically. However, such an experiment
requires learning optimal rule lists whose rules’ widths (i.e.,
number of attributes involved in a rule’s conjunction) match
the depth of the tree’s branches, which is computationally
challenging. Indeed, considering sub-optimal models would
bias the comparison as the results would depend on the
performances of the learning algorithms rather than those of
the models themselves.

VI. CONCLUSION

We extended previous work and proposed generic tools to
represent and precisely quantify the amount of information an
interpretable model encodes regarding its training data. Such
tools, and in particular the proposed generalized probabilistic
datasets and the metric quantifying their amount of uncertainty,
are generic enough to encode any type of knowledge - and
hence are suitable to model a reconstructed dataset from any
type of interpretable models. While their practical use may be
computationally challenging in the general case, we demon-

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of training examples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Di
st

G
(

,
O

rig
)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of training examples

0.65

0.70

0.75

0.80

0.85

0.90

Di
st

G
(

,
O

rig
)

DL8.5 sklearn_DT

(a) Optimal and greedily-built decision trees, learned respectively with the DL8.5 and sklearn_DT algorithms.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of training examples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of training examples

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

CORELS GreedyRL

(b) Optimal and greedily-built rule lists, learned respectively with the CORELS and GreedyRL algorithms.

Fig. 4: Illustration of the disparate information leak phenomenon, for both optimal and greedily-built decision trees and rule
lists, learned with the largest considered size constraints, i.e., maximum depth 10 and minimum (relative) support 0.01. More
precisely, we report the proportion of training examples for which the entropy reduction ratio is at most at a given value. Left:
Adult Income dataset, Right: COMPAS dataset.

strated theoretically that they can be employed efficiently
under reasonable assumptions. We empirically illustrated their
usefulness through an example use case: assessing the effect
of optimality in training machine learning models.

A promising extension of our study consists in leveraging
the knowledge of the learning algorithm’s internals to lower
the reconstructed generalized probabilistic dataset entropy. For
instance, if a greedy algorithm uses the Gini impurity as a
splitting criterion, we know that at a given node no feature
other than the chosen one can yield a better Gini impurity
value in the training set. Additionally, optimality itself gives
information: some combinations of the attributes not used
within an optimal decision tree can be discarded if they could
allow the building of a better decision tree.

We observed in our experiments that the entropy reduction

brought by the knowledge of some interpretable model is
not uniform across all examples of the probabilistic dataset.
Investigating whether it disproportionately affects some sub-
group of the population is an interesting direction. Another
promising future work consists in combining the knowledge
of different generalized probabilistic datasets, as was proposed
in [1]. This would require aligning them, as well as merging
several probability distributions, while in the original setup it
simply consisted in union of sets. Finally, investigating the
effect of privacy-preserving methods such as the widely used
Differential Privacy [46] on the quality of the built probabilis-
tic datasets (such as the differentially private decision trees
proposed in [47]) is also an insightful research avenue.

REFERENCES

[1] S. Gambs, A. Gmati, and M. Hurfin, “Reconstruction attack through
classifier analysis,” in Data and Applications Security and Privacy
XXVI - 26th Annual IFIP WG 11.3 Conference, DBSec 2012, Paris,
France, July 11-13,2012. Proceedings, ser. Lecture Notes in Computer
Science, N. Cuppens-Boulahia, F. Cuppens, and J. Garcı́a-Alfaro,
Eds., vol. 7371. Springer, 2012, pp. 274–281. [Online]. Available:
https://doi.org/10.1007/978-3-642-31540-4\ 21

[2] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[3] M. Craven and J. Shavlik, “Extracting tree-structured representations of
trained networks,” Advances in neural information processing systems,
vol. 8, 1995.

[4] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Interpretable
& explorable approximations of black box models,” arXiv preprint
arXiv:1707.01154, 2017.

[5] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[6] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[7] U. Aı̈vodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp,
“Fairwashing: the risk of rationalization,” in International Conference
on Machine Learning. PMLR, 2019, pp. 161–170.

[8] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling lime
and shap: Adversarial attacks on post hoc explanation methods,” in
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
2020, pp. 180–186.

[9] B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller, “You shouldn’t
trust me: Learning models which conceal unfairness from multiple
explanation methods.” 2020.

[10] G. Laberge, U. Aı̈vodji, and S. Hara, “Fooling shap with stealthily biased
sampling,” arXiv preprint arXiv:2205.15419, 2022.

[11] U. Aı̈vodji, H. Arai, S. Gambs, and S. Hara, “Characterizing the risk
of fairwashing,” Advances in Neural Information Processing Systems,
vol. 34, pp. 14 822–14 834, 2021.

[12] A. A. Freitas, “Comprehensible classification models: a position paper,”
ACM SIGKDD explorations newsletter, vol. 15, no. 1, pp. 1–10, 2014.

[13] R. L. Rivest, “Learning decision lists,” Mach. Learn., vol. 2,
no. 3, pp. 229–246, 1987. [Online]. Available: https://doi.org/10.1007/
BF00058680

[14] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin,
“Learning certifiably optimal rule lists,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2017, pp. 35–44.

[15] P. R. Rijnbeek and J. A. Kors, “Finding a short and accurate decision
rule in disjunctive normal form by exhaustive search,” Machine learning,
vol. 80, no. 1, pp. 33–62, 2010.

[16] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[17] C. Dwork, A. Smith, T. Steinke, and J. Ullman, “Exposed! a survey
of attacks on private data,” Annual Review of Statistics and Its
Application, vol. 4, no. 1, pp. 61–84, 2017. [Online]. Available:
https://doi.org/10.1146/annurev-statistics-060116-054123

[18] M. Rigaki and S. Garcia, “A survey of privacy attacks in machine
learning,” CoRR, vol. abs/2007.07646, 2020. [Online]. Available:
https://arxiv.org/abs/2007.07646

[19] E. D. Cristofaro, “An overview of privacy in machine learning,” CoRR,
vol. abs/2005.08679, 2020. [Online]. Available: https://arxiv.org/abs/
2005.08679

[20] I. Dinur and K. Nissim, “Revealing information while preserving
privacy,” in Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
June 9-12, 2003, San Diego, CA, USA, F. Neven, C. Beeri, and
T. Milo, Eds. ACM, 2003, pp. 202–210. [Online]. Available:
https://doi.org/10.1145/773153.773173

[21] C. Dwork, F. McSherry, and K. Talwar, “The price of privacy and the
limits of lp decoding,” in Proceedings of the Thirty-Ninth Annual ACM
Symposium on Theory of Computing, ser. STOC ’07. New York, NY,

USA: Association for Computing Machinery, 2007, p. 85–94. [Online].
Available: https://doi.org/10.1145/1250790.1250804

[22] A. Cohen and K. Nissim, “Linear program reconstruction in practice,”
J. Priv. Confidentiality, vol. 10, no. 1, 2020. [Online]. Available:
https://doi.org/10.29012/jpc.711

[23] A. Gadotti, F. Houssiau, L. Rocher, B. Livshits, and Y. de Montjoye,
“When the signal is in the noise: Exploiting diffix’s sticky noise,”
in 28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, N. Heninger and P. Traynor, Eds.
USENIX Association, 2019, pp. 1081–1098. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/gadotti

[24] S. Garfinkel, J. M. Abowd, and C. Martindale, “Understanding
database reconstruction attacks on public data: These attacks on
statistical databases are no longer a theoretical danger.” Queue,
vol. 16, no. 5, p. 28–53, oct 2018. [Online]. Available: https:
//doi.org/10.1145/3291276.3295691

[25] M. Fredrikson, E. Lantz, S. Jha, S. M. Lin, D. Page, and
T. Ristenpart, “Privacy in pharmacogenetics: An end-to-end case
study of personalized warfarin dosing,” in Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014, K. Fu and J. Jung, Eds. USENIX Association, 2014,
pp. 17–32. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/fredrikson\ matthew

[26] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015,
I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 1322–1333.
[Online]. Available: https://doi.org/10.1145/2810103.2813677

[27] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM, 2017, pp.
587–601. [Online]. Available: https://doi.org/10.1145/3133956.3134077

[28] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The
secret sharer: Evaluating and testing unintended memorization in neural
networks,” in 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, N. Heninger and P. Traynor,
Eds. USENIX Association, 2019, pp. 267–284. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini

[29] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning: Revisited and enhanced,” in Applications
and Techniques in Information Security - 8th International Conference,
ATIS 2017, Auckland, New Zealand, July 6-7, 2017, Proceedings, ser.
Communications in Computer and Information Science, L. Batten, D. S.
Kim, X. Zhang, and G. Li, Eds., vol. 719. Springer, 2017, pp. 100–110.
[Online]. Available: https://doi.org/10.1007/978-981-10-5421-1\ 9

[30] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-leak: Data set inference and reconstruction attacks in
online learning,” in 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, S. Capkun and F. Roesner,
Eds. USENIX Association, 2020, pp. 1291–1308. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/salem

[31] H. Hu and C. Lan, “Inference attack and defense on the distributed
private fair learning framework,” in The AAAI Workshop on Privacy-
Preserving Artificial Intelligence, 2020.

[32] J. Aalmoes, V. Duddu, and A. Boutet, “Dikaios: Privacy auditing
of algorithmic fairness via attribute inference attacks,” arXiv preprint
arXiv:2202.02242, 2022.

[33] F. Hamman, J. Chen, and S. Dutta, “Can querying for bias leak protected
attributes? achieving privacy with smooth sensitivity,” in NeurIPS 2022
Workshop on Algorithmic Fairness through the Lens of Causality and
Privacy, 2022.

[34] J. Ferry, U. Aı̈vodji, S. Gambs, M.-J. Huguet, and M. Siala, “Exploiting
fairness to enhance sensitive attributes reconstruction,” in First IEEE
Conference on Secure and Trustworthy Machine Learning, 2023.
[Online]. Available: https://openreview.net/forum?id=tOVr0HLaFz0

[35] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” California
Law Review, vol. 104, no. 3, pp. 671–732, 2016. [Online]. Available:
http://www.jstor.org/stable/24758720

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[37] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin,
“Learning certifiably optimal rule lists for categorical data,” Journal
of Machine Learning Research, vol. 18, no. 234, pp. 1–78, 2018.

[38] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[39] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[40] D. Suciu, D. Olteanu, C. Ré, and C. Koch, Probabilistic
Databases, ser. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011. [Online]. Available:
https://doi.org/10.2200/S00362ED1V01Y201105DTM016

[41] G. Aglin, S. Nijssen, and P. Schaus, “Learning optimal decision trees
using caching branch-and-bound search,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. AAAI Press, 2020, pp. 3146–3153. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/5711

[42] ——, “Pydl8.5: a library for learning optimal decision trees,” in
Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, C. Bessiere, Ed. ijcai.org, 2020, pp.
5222–5224. [Online]. Available: https://doi.org/10.24963/ijcai.2020/750

[43] C. Singh, K. Nasseri, Y. S. Tan, T. Tang, and B. Yu, “imodels: a python
package for fitting interpretable models,” p. 3192, 2021. [Online].
Available: https://doi.org/10.21105/joss.03192

[44] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[45] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias: There’s
software used across the country to predict future criminals. and it’s
biased against blacks. propublica (2016),” ProPublica, May, vol. 23,
2016.

[46] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[47] A. Friedman and A. Schuster, “Data mining with differential privacy,”
in Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 493–502.
[Online]. Available: https://doi.org/10.1145/1835804.1835868

APPENDIX A
ADDITIONAL RESULTS

We observed in Section V-B that optimal models (either
decision trees or rule lists) usually contain more information
than greedily-built ones of the same size. However, when
related to the models’ utility (accuracy on the training data),
this trend is reversed, and optimal models leak less information
regarding their training data than greedily-built ones for the
same performances level. This was explained by the fact that
greedy learning algorithms iteratively make local choices that
are sub-optimal, overall adding unnecessary information to the
resulting model (e.g., performing more splits than necessary
within decision trees).

In this appendix section, we relate the amount of infor-
mation an interpretable model carries to the size constraints
that were enforced to build it. More precisely, we report in
Figures 5a and 6a the resulting model size as a function of the
maximum depth constraint, for the different minimum support
constraints. Again, the model size is quantified as the number
of internal nodes for a decision tree, or as the number of rules
for width-1 rule lists. We also report in Figures 5b and 6b the

overall entropy reduction ratio, as a function of the maximum
depth constraint.

One can observe in Figure 5a that, as expected, the number
of internal nodes within the built decision trees grows with
the maximum depth value. Enforcing large values of the
(relative) minimum leaf support quickly prevents the trees
from expanding, as no split can be performed while satisfying
the minimum support constraint. Hence, as expected, lowering
the minimum support value leads to the computation of larger
decision trees. Comparing greedily-built and optimal decision
trees, one can note that the models learnt by sklearn_DT
contain more nodes than the optimal ones built using DL8.5,
for the same provided parameters (i.e., minimum leaf support
and maximum depth values). This can be explained by the fact
that sklearn_DT often adds non-necessary splits as it itera-
tively performs local, sub-optimal choices. Meanwhile, many
branches do not reach the enforced maximum depth within
the optimal decision trees thanks to the performed global
optimization which considers a split only if it is necessary. As
a consequence, we observe in Figure 5b (left) that, for fixed
parameters, the decision trees produced by sklearn_DT on
the Adult Income dataset contain more information than those
learnt by DL8.5. For the COMPAS dataset (Figure 5b (right)),
we observe the opposite trend. This can be explained by two
observations. First, the size difference between optimal and
greedily-built decision trees is smaller on the COMPAS dataset
(Figure 5a (right)) than on the Adult dataset (Figure 5a (left)).
Then, in average, we saw within Section V-B (Figure 2a) that,
for equivalent sizes, the optimal decision trees carry more
information than the greedily-built ones.

Figure 6a shows that, as expected, the number of rules
within the built rule lists grows with the enforced maximum
depth value. As for the decision trees, largest values of the
enforced minimum rule support prevent expansion of the rule
lists, when no rule satisfying the minimum support constraint
can be found. This is particularly true for the greedy learning
algorithm. Indeed, at each iteration, the algorithm selects a rule
maximizing a given criterion (i.e., minimizing Gini Impurity).
Then, the examples not captured by the rules fall into the
rest of the rule list, and are used for the next iterations. If
the algorithm selects rules with large supports during the first
iterations, there may be too few remaining examples to be able
to add new rules. This drawback is not observed with CORELS,
as it performs global optimization. As a direct consequence,
one can see in Figure 6b that, for fixed parameters (i.e.,
minimum rule support and maximum depth values), the rule
lists built using CORELS contain more information than those
produced by GreedyRL. This trend is related to the observed
size difference, but is also exacerbated by the fact that, as
observed in Section V-B (Figure 3a), optimal rule lists usually
encode more information that greedily-built ones of equivalent
size.

2 4 6 8 10
Max. depth

0

10

20

30

40

50

in

te
rn

al
 n

od
es

2 4 6 8 10
Max. depth

0

10

20

30

40

50

60

in

te
rn

al
 n

od
es

(a) Experiments relating the actual models’ sizes to the size constraints enforced during learning. We report tree size (number of splits/internal
nodes) as a function of the maximum depth constraint.

2 4 6 8 10
Max. depth

0.70

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

2 4 6 8 10
Max. depth

0.75

0.80

0.85

0.90

0.95

Di
st

G
(

,
O

rig
)

(b) Experiments relating the entropy reduction ratio to the size constraints enforced during learning. We report the entropy reduction as a
function of the maximum depth constraint.

DL8.5
sklearn_DT

min support 0.01
min support 0.02

min support 0.03
min support 0.04

min support 0.05

Fig. 5: Results of our experiments comparing optimal and greedily-built decision trees (learnt respectively with DL8.5 and
sklearn_DT), for different (relative) minimum leaf support values. Left: Adult Income dataset, Right: COMPAS dataset.

2 4 6 8 10
Max. depth

2

4

6

8

10

ru

le
s

2 4 6 8 10
Max. depth

2

4

6

8

10

ru

le
s

(a) Experiments relating the actual models’ sizes to the size constraints enforced during learning. We report rule list size (number of rules)
as a function of the maximum depth constraint.

2 4 6 8 10
Max. depth

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Di
st

G
(

,
O

rig
)

2 4 6 8 10
Max. depth

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Di
st

G
(

,
O

rig
)

(b) Experiments relating the entropy reduction ratio to the size constraints enforced during learning. We report the entropy reduction as a
function of the maximum depth constraint.

CORELS
GreedyRL

min support 0.01
min support 0.02

min support 0.03
min support 0.04

min support 0.05

Fig. 6: Results of our experiments comparing optimal and greedily-built rule lists (learnt respectively with the CORELS and
GreedyRL algorithms), for different (relative) minimum rule support values. Left: Adult Income dataset, Right: COMPAS
dataset.

