
HAL Id: hal-04189562
https://hal.science/hal-04189562v1

Submitted on 28 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-Slice Privacy-Aware Traffic Forecasting at RAN
Level: A Scalable Federated-Learning Approach

Hnin Pann Phyu, Razvan Stanica, Diala Naboulsi

To cite this version:
Hnin Pann Phyu, Razvan Stanica, Diala Naboulsi. Multi-Slice Privacy-Aware Traffic Forecasting at
RAN Level: A Scalable Federated-Learning Approach. IEEE Transactions on Network and Service
Management, 2023, 20 (4), pp.5038-5052. �10.1109/TNSM.2023.3267725�. �hal-04189562�

https://hal.science/hal-04189562v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Multi-Slice Privacy-Aware Traffic Forecasting at RAN Level: A Scalable
Federated-Learning Approach

Hnin Pann Phyu, Student Member, IEEE, Razvan Stanica, Diala Naboulsi, Member, IEEE,

Abstract—Next-generation mobile networks are expected to
meet the requirements of a wide range of new vertical services.
Hence, the network slicing concept has been introduced, in
which Mobile Virtual Network Operators (MVNOs) are allowed
to provide various types of services over the same physical
infrastructure, owned by an Infrastructure Provider (InP). To
cope with an ever-changing traffic demand, MVNOs seek to pre-
allocate/reconfigure the resources at the base stations in an an-
ticipatory manner, based on traffic demand predictions. Ideally,
conducting per-slice traffic forecasting requires information that
is likely to disclose MVNO confidential information (i.e., business
strategy or private user data). To secure data ownership while
conducting traffic forecasting, we propose the Federated Proximal
Long Short-Term Memory (FPLSTM) framework, which allows
MVNOs to train their local models with their private dataset
at each base station; subsequently, an associated InP global
model can be updated through the aggregation of the local
models. The results obtained by training the models on a real-
world dataset indicate that the forecasting performance of our
proposed approach is as accurate as state-of-the-art centralized
solutions, while improving data privacy. To enable scalability,
we further propose the Information-based Clustering FPLSTM
(IC-FPLSTM) and Random Clustering FPLSTM (RC-FPLSTM)
frameworks, dealing with large-scale cellular networks. These
solutions demonstrate computation and communication cost ef-
ficiency significantly above the state-of-the-art.

Index Terms—Network Slicing, 5G Networks, Machine Learn-
ing, Traffic Forecasting, Federated Learning

I. INTRODUCTION

The mobile communications sector has been witnessing a
tremendous increase in emerging vertical services that require
different types of quality of service (QoS). These vertical
services, in general, fall into three categories: enhanced Mobile
Broadband (eMBB), Ultra-Reliable and Low-Latency commu-
nication (URLLC), and massive Machine-Type Communica-
tion (mMTC) [1]. To cope with the immense development of
vertical services, the concept of network slicing is regarded
as one of the most prominent research directions in future
mobile communication networks [2], which can bring a new
revenue stream to mobile operators [3]. In general, a sliced ar-
chitecture encompasses two main business entities: mobile vir-
tual network operators (MVNOs) and infrastructure providers
(InPs) [4]. Specifically, the physical network infrastructure is
controlled and owned by InPs, who provide the physical and

H. Pann Phyu and D.Naboulsi are with the Département de Génie Logiciel
et des Technologies de l’information, École de Technologie Supérieure,
Université du Québec, Montreal, QC H3C 1K3, Canada (e-mail: hnin.pann-
phyu.1@ens.etsmtl.ca, diala.naboulsi@etsmtl.ca).

Razvan Stanica is with Univ Lyon, INSA Lyon, Inria, CITI, Villeurbanne,
France (e-mail: razvan.stanica@insa-lyon.fr).

This work was supported by the École de Technologie Supérieure (ÉTS),
the National Natural Sciences and Engineering Research Council of Canada
(NSERC) through research grant RGPIN-2020-06050 and by the French
Government through the France Relance program.

virtual resources to MVNOs, offering various services with
heterogeneous requirements to end-users, through network
slicing technology [5]. While all the MVNOs are sharing the
same physical resources, slice isolation in terms of processing
and data storage is provided by the InP [6], to guarantee
performance and ensure data privacy among slices.

Faced with dynamic service demands in a sliced architec-
ture, the main challenge of MVNOs is the ability to offer
efficient resource allocation while respecting the diverse QoS
requirements [7]. This is especially the case in Radio Access
Networks (RANs) [8], where static and dynamic approaches
can be adopted. While a static strategy is straightforward to
implement, resources assigned at base stations for a specific
slice instance may be unused or in surplus during the slice
lifetime. Conversely, in a dynamic strategy, the assigned
resources are reconfigured based on the traffic demand on each
slice [9], enabling a more efficient utilization of resources [10].
However, for this, accurate traffic forecasting information is
required at the beginning, and for the duration, of the recon-
figuration interval of each slice instance [11]. The gain brought
by forecasting mobile traffic, when integrated in so-called
anticipatory network mechanisms, has been quantified in [12],
where a perfect predictor improves the RAN throughput by
35-40% compared to a non-anticipatory approach.

Three potential multi-slice traffic forecasting options ex-
ist [13], [14]: i) MVNOs with their own centralized forecasting
models, ii) MVNOs using their own decentralized forecasting
models, and iii) MVNOs that share their data with the InP
to train a centralized forecasting model. The first approach
results in high communication costs for the MVNOs, due to
the need to transfer large datasets to the central node. In the
second approach, possible correlations among base stations
are more likely to remain unexploited, as the local models
are trained separately. Such a situation could lead to longer
training time and hence incur additional computation cost. In
the third approach, sensitive and possibly private MVNO data
needs to be transmitted to the InP.

Indeed, since MVNO slices are attached to diverse types
of base stations (i.e., macro, micro, pico, and femto) [15],
the dataset shared with the centralised InP model may include
either private domain data or personal domain data. Private
domain data covers all the generated/collected data belonging
to a private organization, such as the aggregated traffic data
of macro base stations. Even though there is only a small
chance of exposing the identity of an individual user through
aggregated macro base station traffic, the business strategy and
the potential revenue streams of MVNOs could be revealed.

On the other hand, personal domain data covers all individ-
ual or household data that can expose private user information
(identity, habits, preferences, beliefs). For instance, aggregated

1

data from small-cell base stations (i.e. pico or femto) belong-
ing to one household falls into the category of personal domain
data. Indeed, such sensitive information shall not be accessible
to any third-party organizations. Therefore, MVNOs should
safeguard their data only within their isolated premises, not
only to secure their business strategy, but also to respect the
privacy of individual users.

Over the years, classical solutions like ARIMA [12] and
Holt-Winters [16] have been widely applied for mobile traffic
forecasting, although they are not suitable to extract and
predict the complicated spatiotemporal features of mobile
traffic in presence of user mobility [17]. Solid forecasting
performance in this field has been demonstrated in the recent
years by machine learning based forecasting solutions, deep
learning based techniques in particular. Two deep learning
approaches seem particularly suitable for the traffic forecasting
problem. Recurrent neural networks are largely used for time
series forecasting [18], while convolutional neural networks
are able to exploit the spatial correlations between base
stations [13]. However, these solutions are generally integrated
in centralized forecasting frameworks in the literature.

Federated learning (FL) is a collaborative decentralized
machine learning scheme which can overcome the privacy and
communication cost challenges mentioned above. In essence,
FL implies training local decentralized models with the help
of a global model, located on a centralized controller, without
the local models sharing sensitive data among each other or
with the global model. With respect to network slicing, FL
can enable by that a privacy-preserving forecasting framework
where MVNOs can collaboratively train their local forecasting
models, at the level of base stations, with low communication
cost. In this case, the InP is considered as the most appropriate
candidate for being a centralized coordinator, holding the
global agent, as it is connected to all the different MVNOs, and
it does not need to access any sensitive information. Needless
to say, the InP has a strong motivation in improving the
forecasting accuracy of the MVNOs, since this would optimize
the overall resource demands of the network and allow the InP
to minimise its capital expenditure.

The configurations of different types of base stations vary
in terms of hardware (i.e., CPU, storage) and link con-
nectivity (i.e., optical fiber, microwave). Such system-level
heterogeneity may cause a negative impact on collaborative
model training, as some local agents may drop out during
this phase if their computation or communication resources
are not sufficient. Moreover, data samples produced by the
different base stations are temporally dependent upon each
other. Therefore, the data used in the studied scenario is non
independent and identically distributed (non-IID), not only
between slices, but also between base stations, resulting in
significant statistical heterogeneity. To address these issues,
we rely on the federated proximal (FedProx) framework [19]
as global model aggregation strategy, to deal with both system
and data heterogeneity issues.

However, when applying FL at the country-scale of an
operator network, hundreds of thousands of local agents are
simultaneously taking part in the federated training, which
creates a significant computational demand. We therefore

introduce a clustering-based FL solution, to offset these scala-
bility issues. Each MVNO clusters its associated base stations
and a global cluster model is integrated to perform the cluster-
wise collaborative learning for each MVNO.

The detailed contributions of this paper are listed below:
• We propose a Federated Proximal Long Short-Term

Memory (FPLSTM) framework which can be used by
MVNOs for base station-level predictions. Our solution
integrates FL with the well known Long Short-Term
Memory (LSTM) technique, to enhance the forecasting
accuracy of multi-slice network traffic.

• We rely on clustering-based approaches to achieve scal-
ability in terms of network size. To cluster the base sta-
tions, different approaches are investigated to determine
if the performance can be improved. Specifically, our
clustering decision is based on three different factors:
i) the traffic trend of a slice, ii) the geographical coor-
dinates of base stations, those two approaches denoted
as Information-based Clustering FPLSTM (IC-FPLSTM),
and iii) random clustering FPLSTM (RC-FPLSTM).

• To solve the heterogeneity issue in federated networks,
our FL global aggregation strategy relies on the FedProx
framework, which adds the proximal term to the local
sub-problem to limit the effect of local models on the
overall global model.

• We conduct an extensive evaluation of our solution on
a real-world traffic dataset to evaluate the effectiveness
of our proposed approaches compared to the existing
state-of-the-art solutions. Our results show that the pro-
posed frameworks (i.e. FPLSTM, IC-FPLSTM and RC-
FPLSTM) guarantee a forecasting accuracy comparable
to the best centralized solutions in the literature and
baseline solutions, while preserving data ownership. In
addition, we show that our proposed approaches signifi-
cantly reduce the communication and computation costs.

The remaining part of this paper is assembled as follows.
Section II reviews the related works on traffic forecasting and
decentralized solutions in network slicing resource manage-
ment. Section III introduces the system model and problem
statement. In Section IV, we provide the detailed design of
our proposed solution, including the dimension scaling of the
model and the FPLSTM framework. Next, we articulate our
extended clustering approaches in Section V and then discuss
the results in Section VI. We summarize our conclusions and
offer directions for future work in Section VII.

II. RELATED WORK

A number of studies have investigated the traffic forecasting
problems in network slicing, by exploring a wide range of ma-
chine learning techniques. The authors of [13] introduce a cen-
tralized framework employing the three-dimensional convolu-
tional neural network (3DCNN) method for resource demand
forecasting in slices, with the purpose of diminishing the over-
all resource provisioning costs. Similarly, the authors in [18]
establish a modified version of LSTM to study the problem
of future demand forecasting for individual slice services.
By combining the sequence-to-sequence learning paradigm

2

TABLE I: SUMMARY OF RELATED WORKS

Ref Network Slicing Traffic Forecasting Per Base Station Privacy Scope
[13] ✓ ✓ ✗ ✗ Centralized multi-slice traffic forecasting
[18] ✓ ✓ ✗ ✗ Centralized multi-slice traffic forecasting
[20] ✓ ✓ ✗ ✗ Centralized multi-slice traffic forecasting

[21] ✓ ✓ ✗ ✗
Centralized multi-slice traffic forecasting
and resource scheduling

[22] ✓ ✓ ✗ ✗
Centralized multi-slice traffic forecasting
and resource allocation

[23] ✓ ✓ ✗ ✓ Decentralized multi-slice traffic forecasting

[8] ✓ ✗ ✓ ✓
Decentralized user association per base sta-
tion

[14] ✓ ✗ ✗ ✓ Decentralized resource allocation per slice

[24] ✗ ✓ ✓ ✓
Decentralized traffic forecasting per base
station

[25] ✗ ✓ ✓ ✓
Decentralized traffic forecasting per base
station

[26] ✗ ✓ ✗ ✓
Decentralized traffic forecasting in trans-
portation

Our Work ✓ ✓ ✓ ✓
Decentralized multi-slice traffic forecasting
per base station

and a convolutional long short-term memory (S2SConvLSTM)
network, high accuracy is achieved for hourly traffic forecast-
ing. For the same objectives, in [20], two common machine
learning approaches, deep neural networks (DNN) and LSTM,
are explored to enrich an efficient resource reservation strategy
in the network slicing paradigm. The authors validate the
superiority of their proposed models over a classical Auto-
Regressive Integrated Moving Average (ARIMA) approach,
based on a real-world traffic footprint.

Traffic forecasting functions have been integrated into re-
source management frameworks for network slicing. More
specifically, the authors in [21] build a collaborative learning
framework using LSTM (used for large-timescale hourly traffic
forecasting of each slice) and Asynchronous Actor-Critic
Agent (A3C) (for small-timescale traffic scheduling in the
order of milliseconds) to enable efficient resource utilization
while considering performance isolation among slices. Also,
in [22], the authors couple LSTM with a heuristic-based
solution to maximize the user acceptance rate in their resource
management framework, in which LSTM provides the forecast
bandwidth requirement of each slice and thus enhances the
decision making process of the overall framework. All of the
above attempts are centralized forecasting approaches; the data
privacy of slice tenants and end-users is not considered. It
should also be noted that these studies consider slice-level
aggregated traffic rather than traffic at the base station level.

Due to the growing concerns, more and more studies
have addressed the privacy issue in multi-stakeholder net-
work slicing, with several proposals of decentralized learning
approaches in the resource management model of network
slicing. Specifically, the authors in [23] emphasize the efficient
forecasting of the service performance of different slices by
training the corresponding local models with private datasets
at the premises and only sharing the weight matrices of

the trained local models to the central node for aggrega-
tion. Hence, no private data is exposed. The authors employ
an Artificial Neural Network (ANN) driven FL forecasting
scheme. In [8], the authors attempt to solve the user association
problem at the RAN by using a FL-based two layer model
aggregation approach, with a horizontal aggregation for user
devices accessing the same type of services, and with a vertical
aggregation for different services. Again, in their approach,
only the features of the models are transferred for aggregation,
instead of local resources, to protect the user privacy.

Similarly, having concerns for the data privacy, the study
presented in [14] advocates for an online decentralized learn-
ing heuristic framework to find the optimal resource utilization
of the overall network, while maximizing the social welfare
of all the stakeholders. The proposed solution emphasizes
guaranteeing secure business transactions between InP and
MVNOs. In all the above-mentioned works based on FL,
network heterogeneity issues get little to no attention. It is
also worth noting that there is an open question regarding
the scalability of the proposed schemes in networks that can
involve tens of thousands of base stations.

On top of the conventional FL approach, clustering-based
FL has been used in traffic forecasting in the context of
wireless and transportation networks to enhance the prediction
accuracy [24], [25] or to rectify a scalability issue [26]. More
specifically, the authors in [24] first cluster the candidates
based on both the average traffic trend and the geographical
location of base station using the k-means method. Since an
average trend is used instead of the actual data, it is less likely
to expose any sensitive information. Collaborative training is
then performed in each cluster, followed by intra-cluster and
inter-cluster global model aggregation. For a similar purpose,
but focusing more on the nature of dynamic networks and
data privacy, the work in [25] designs dynamic clustering

3

based on a generative adversarial network by sharing zero
raw data and adjusting the clusters based on the network
dynamics. To offset the scalability challenge in FL, the authors
in [26] couple k-means with FL for traffic forecasting in the
transportation system. Specifically, small-scale organizations
are clustered based on their location information and then
intra-cluster aggregation is performed to update the respective
global models. Finally, the optimal global model is selected
via the ensemble learning technique, thereby showing a better
forecasting performance. Hence, it is reasonable to conclude
that clustering-based FL exhibits better performance in terms
of forecasting accuracy while addressing scalability issues.

Table I summarizes the contributions in the related works
and the positioning of our proposal. We focus on slice traffic
forecasting at the level of individual base stations, a critical
aspect for MVNOs to enable efficient resource allocation
at individual base stations. We propose a clustering-based
federated learning approach considering the scalability of the
network, that allows MVNOs to collectively and efficiently
forecast traffic, benefiting from each others’ knowledge while
preserving their data privacy.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present our system model and outline
the challenges of forecasting mobile traffic per slice and per
base station.

A. System Model

We consider a multi-service network that includes an InP
and one or more MVNOs sharing the physical and virtual
resources of the InP, with B a set of heterogeneous base
stations, managed by the InP. A base station b ∈ B could
thus cover a macro-, micro-, pico-, or femto-cell. Without loss
of generality, we consider that each MVNO offers only one
specific type of service, through one slice instance. We assume
each slice instance has its own virtual protocol stack [27],
which ensures the isolation of the data and control planes.

We use s ∈ S to represent a slice instance and S to represent
the set of slice instances. We consider that each MVNO offers
its service through a slice instance s on a set of base stations
Bs ⊆ B. The user data traffic on each slice s varies over
time. We consider time to be slotted, and we use t to refer
to one time interval and T to refer to a set of time intervals
of interest. We denote vsb(t) as the generated traffic volume at
base station b ∈ Bs of slice instance s ∈ S at time t ∈ T .

Fig. 1: Observation time window and prediction time window.

Since our focus is on forecasting the mobile traffic volume
vsb(t), aggregated at the base station level for all the users,
we do not model in detail the radio channel and the RAN
functions. While the radio channel is an important feature
when trying to forecast the individual throughput of each

TABLE II: DEFINITION OF SYMBOLS

Notation Description
b ∈ B a base station in the set of heterogeneous base stations
s ∈ S an instance in the set of slices
Bs ⊆ B set of base stations where a slice instance is attached
T set of time intervals of interest
vsb(t) traffic volume at base station b for slice s at time t
Xs

b historical traffic dataset at base station b for slice s
Xs

b (t,H) traffic trend for observation window H at time t
Xs

b (t,W) forecast traffic demand over the prediction window W
N set of local agents in the FL framework
GL(.) global loss function
LL(.) local loss function

wc
J

weight matrix of the neural network in the global model J
at communication round c

wc
Js
b

weight matrix of the neural network in the local model Js
b

at communication round c
µ hyper-parameter to define the effect of the proximal term

user [12], the problem we tackle is situated at a higher level.
In a sliced mobile network architecture, our forecasting frame-
work is part of the management and orchestration (MANO)
function, responsible for dynamically initiating, terminating,
dimensioning and monitoring a network slice.

B. Problem Statement

Considering our system model, we study the problem of
MVNOs traffic forecasting for each base station. We assume
an MVNO stores the historical traffic evolution for its slice
instance, at every base station in Bs. Here, Xs

b denotes the
private dataset of base station b for slice s. Moreover, we define
Xs
b (t,H) = {vsb(t−H), ..., vsb(t− 1)} as the historical evolu-

tion of the traffic of slice s over base station b between time
instants t−H and t− 1, with H representing an observation
window. We define as well X̃s

b (t,W) = {ṽsb(t), ..., ṽsb(t+W)}
to represent the forecast traffic over a prediction window W ,
between time instants t and t + W . Figure 1 visualizes the
observation and prediction time windows. We summarize the
main variables and symbols in our system in Table II.

Our objective is to compute a forecast value X̃s
b (t,W) as

accurate as possible to the real traffic demand. This forecast
information can be used by the MVNO when interacting with
the MANO function hosted by the InP, to reserve only the
amount of resources actually needed by the MVNO during the
W time window. In our approach, the prediction is conducted
by the MVNO using isolated computation resources, and no
raw data is shared with the InP or other MVNOs. Therefore,
the InP will not have any direct information regarding the type
of service or the end users served by the slices of each MVNO.
This results in a higher level of privacy and, as we will show,
in reduced communication and computation costs.

IV. ALGORITHM DESIGN

In this section, we introduce the FPLSTM solution, com-
bining an FL approach, known as the Federated Proximal
approach, and LSTM to overcome the issues of privacy and
heterogeneity. We begin by discussing the number of dimen-
sions in our problem, followed by the design of the employed
federated learning approach.

4

A. Problem Dimensions

Solving our problem with a centralized approach requires a
single global agent operating with three-dimensional objects,
represented as < S ,B , T >. In this approach, represented
on the left side of Figure 2, the global agent tries to exploit
the correlations with respect to these three dimensions, which
implies a high system complexity and usually requires a
significant training time.

Fig. 2: Problem dimension comparisons of Centralized and
Federated Learning approaches.

Alternatively, the problem can be solved with a two-
dimensional FL approach, with multiple local agents, each
assigned to one slice instance, and a global agent assuring
coordination among them, as exemplified in the middle of
Figure 2. This solution eliminates the S dimension from the
vectors and transforms the problem into a two-dimensional
problem < Bs, T >. Accordingly, all local agents train
their local models and coordinate through the global agent,
within the collective FL framework. The system complexity
is thus reduced, as well as the computation load on each
local agent, while collaboration between slices is provided
by the global agent. However, each FL agent covers multiple
base stations, so data collection needs to be conducted on a
centralized server. Similarly, local agents need to operate on
the centralized server. As a result, an important communication
cost is implied with the two-dimensional FL approach.

Mindful of the communication cost, a one-dimensional FL
approach can be considered. Accordingly, the input of the
problem is a one-dimensional vector < T >, which practically
represents the time series of the traffic demand for a given slice
and base station, as shown on the right side of Figure 2. This
simplification also reduces the computation load for the local
agents, each assigned to a slice instance s ∈ S over a single
base station b ∈ Bs. All the local agents then get trained in
parallel and coordinate through the global agent. Local agents
rely on the classical LSTM method, which is the de facto
standard of learning sequential time series data [28].

B. Federated Learning Approach

We employ the one-dimensional FL approach discussed in
Section IV-A, so that each local agent trains its own local

model with its own local dataset. Meanwhile, the global agent
aggregates the weights of the local models in order to update
its global model. The overall objective is to minimize the
global loss function GL(.) and local loss function LL(.) of
the global model and the local model, respectively. Mathemat-
ically, this objective can be represented as:

minwJ
GL(wJ) =

∑
s∈S

∑
b∈Bs

ρsb LL(wJs
b
) (1)

where wJ is the weight matrix of the neural network acting
as a global model J (LSTM in this case) and wJs

b
is the

weight matrix of the local model Jsb , performing forecasting
based on the input dataset Xs

b . Parameter ρsb is the relative
impact of each local agent, where ρsb ≥ 0,∀b ∈ Bs and∑
s∈S

∑
b∈Bs

ρsb = 1. We calculate it as ρsb =
asb
a , where asb is

the total number of samples in dataset Xs
b and a is the overall

total number of samples a =
∑
s∈S

∑
b∈Bs

asb .

C. Proposed Model

The proposed framework consists of two functions:
Global Agent(GA) and Local Agent(LA). A single
GA function runs in the system (at the InP), whereas multiple
LA functions are executed, one for each MVNO, at each base
station, thereby conducting federated learning for the given
communication rounds. Figure 3 illustrates the procedure of
an FL-based multi-slice forecasting framework, in which the
weight matrix of the different models is made visible with a
graph network.

Fig. 3: Federated Learning driven slices traffic demand fore-
casting architecture.

Our dataset, and sliced network data in general, presents
statistical heterogeneity, with non-IID data, as well as system
heterogeneity, with base stations showing a diversity in terms
of hardware and software. To address this heterogeneity, we
use the federated proximal (FedProx) [19] approach as a global
aggregation strategy. FedProx integrates a proximal term into
the local sub-problems, allowing it to handle training data
heterogeneity, unlike other FL methods [29]. The complete
model training processes of the FPLSTM framework are
formally described in Algorithm 1 Global Agent(GA) and
Algorithm 2 Local Agent(LA).

5

The inputs for Algorithm 1 are the number of communica-
tion rounds C, the set of local agents N , where each local
agent is associated to a slice instance s ∈ S over a single base
station b ∈ Bs, the hyper-parameter µ to define the impact
of the proximal term on the sub-problem, the initial global
weight matrix w0 with any arbitrary values, and the fraction
Ω of local agents to take part in each communication round.

The algorithm starts by initializing the global model weight
matrix wcJ with w0 for c = 0 (Line 1). For each communi-
cation round, the GA randomly selects a fraction Ω of local
agents, denoted as N c, from the set N (Line 3). At the same
time, the GA shares the latest global weight matrix wcJ with
all the chosen local agents N c (Line 4). We denote nsb ∈ N c

as the local agent of slice s associated to base station b. Next,
each local agent trains its own local model in parallel at each
base station to find the local weight for that communication
round (Line 5). The detailed steps of the Local Agent
function are shown in Algorithm 2.

Algorithm 1: Global Agent(GA)

Input: C,N , µ, w0,Ω
1 Initially wcJ = w0 , c = 0
2 for each communication round c = 0, 1, .., C − 1 do
3 GA randomly selects Ω of local agents N c ⊆ N
4 GA sends wcJ to all chosen local agents N c

5 /* Chosen Local Agents perform the
training in parallel at each
base station (Algorithm 2) */

6 GA receives wc+1
Js
b

from all local agents N c

7 GA updates wc+1
J = 1

|N c|
∑
ns
b∈N c w

c+1
Js
b

8 GA updates global_model(wc+1
J) ◁ No

Dataset is required
9 end for

The input for Algorithm 2 includes a dataset Xs
b , the batch

size β, the local epochs E , the global model weight wcJ ,
the learning rate η, the hyper-parameter µ and the global
communication round c. First, the LA updates its local model
weights matrix wcJs

b
with the latest available global model

weights matrix wcJ (Line 1). Afterwards, the LA trains its
local_model(wcJs

b
,Xs

b) according to the defined local
epochs E and batch size β (Line 2 - Line 8). We rely on
the Stochastic Gradient Descent (SGD) approach to update the
local model weight matrix, where w∗

Js
b

is the optimized local
weight matrix , and▽ is the gradient of loss function l(wJs

b
, β)

of batch size β with the learning rate η (Line 6). Next, instead
of updating the local model weight matrix wc+1

Js
b

with the
weight matrix w∗

Js
b

of minimized local loss function LL(w∗
Js
b
),

the proximal term is integrated into LL(w∗
Js
b
) to limit the

effect of local model updates on the overall global model.
The local model weights matrix wc+1

Js
b

is then updated with
the minimum weights matrix: wc+1

Js
b
≈ argminwJs

b
h(w∗

Js
b
, wcJ)

(Line 9). Parameter µ in the proximal term is used to control
the effect of local updates on the global model (for instance,
µ = 1 implies a more significant effect of the local models
than µ = 0.01). Finally, the LA sends the local model weight

matrix back to the Global Agent (Line 10).

Algorithm 2: Local Agent(LA)

Input: Xs
b , β, E , wcJ , η, µ, c

1 Initially wcJs
b

= wcJ ◁ Adapt global weight matrix
2 LA trains local_model(wcJs

b
,Xs

b) ◁ Feed local
Datasets

3 Batch ← Split Xs
b into batch size β

4 for local epoch i = 1, ..., E do
5 for each batch β ∈ Batch do
6 w∗

Js
b
← wJs

b
- η ▽ l(wJs

b
, β)

7 end for
8 end for
9 Obtain local weight wc+1

Js
b
≈ argminwJs

b
h(w∗

Js
b
, wcJ) =

LL(w∗
Js
b
) +

µ

2

∥∥∥w∗
Js
b
− wcJ

∥∥∥2︸ ︷︷ ︸
Proximal term

10 LA uploads wc+1
Js
b

to GA

Next, the GA receives the weight matrices of the updated
local models, wc+1

Js
b

, and averages them to update the global
model weights, wc+1

J (Line 6 - Line 7 in Algorithm 1). Finally,
the GA updates the global_model(wc+1

J) with the local
models weight matrices wc+1

J for s ∈ S and b ∈ Bs (Line 8
in Algorithm 1). The algorithm is terminated at the end of all
communication rounds or once it converges.

To assess the complexity of our FPLSTM approach, we
first observe that the computation complexity of federated
learning depends on the number of agents N c participating
in each round of the federated training as O(log(N c)) [30].
The computation complexity of each local agent, in order to
update the weights matrix by the means of the LSTM model,
is O(WE +W), where W is the total number of parameters
in the LSTM model and can be calculated as follow [31]:

W = 4IH + 4H2 + 3H + ZH (2)

where I is the number of LSTM input units, H is the
number of hidden units and Z stands for the number of output
units. We also empirically evaluate the computing time of our
proposed solution (and benchmarks) in Section VI-F.

V. CLUSTERING SOLUTIONS

An MVNO generally covers large, country-wide geograph-
ical areas, with a number of base stations that can reach
hundreds of thousands. Having only one global agent in an FL
framework in such a scenario is not scalable, for two reasons:
i) the high computation load required from the global agent,
and ii) the high communication delay between local agents
and the only global agent in the system. In this section, to
offset this scalability issue, we add to the FPLSTM framework
a clustering approach, while ensuring forecasting accuracy in
line with the best options found in the literature. With this,
we first outline the motivation of our clustering approach,
and then we provide a detailed description of clustering-based
FPLSTM with different decision mechanisms in Algorithm 3
and Algorithm 4.

6

A. Clustering

Despite the distinct benefits of FPLSTM, our approach
presents a practical limitation in terms of scalability, especially
with respect to ultra dense network deployment of 5G and be-
yond networks. We therefore consider designing a clustering-
based approach to cope with this scalability issue. This extends
the essence of FPLSTM, by clustering local models on an
MVNO basis.

Fig. 4: Problem dimensions of the Clustering-based FPLSTM
framework.

Figure 4 and Figure 5 illustrate the framework. Instead
of having one global model, the FL process now runs on
a per-cluster basis. Therefore, the MVNO first proceeds to
clustering the base stations it is attached to. Each cluster is
then handled by its own associated global model. As can be
seen in Figure 4, once the clustering is done, the forecasting
process still operates over one-dimensional vectors < T >.
Therefore, a set of base stations belonging to the same cluster
conducts the collaborative learning. In fact, this process gives
better flexibility to the MVNOs, as their global models could
either be run all together in a central node or distributed in
nearby edge nodes (further reducing the communication cost
of the overall network).

Fig. 5: Clustering-based FPLSTM framework.

We investigate three different clustering schemes: i) cluster-

ing based on traffic trends, ii) clustering based on geographical
information, and iii) random clustering. Intuitively, the first
approach should yield better forecasting accuracy, as more
correlated base stations are involved in the corresponding fed-
erated training process. The second approach is also expected
to lead to good forecasting results, since some traffic corre-
lation is implicit for geographically close base stations. Also,
the communication delay between the local agents and the
global agent can be minimised in this case, through a careful
deployment of the geographical global agents. Conversely,
the third approach does not exploit any traffic correlations to
improve forecasting accuracy, but still solves the computation
scalability problem in an easy way.

Algorithm 3: IC-FPLSTM: Information-based
Clustering FPLSTM

Input : Y , Z, trend
// Y is a set of base station vectors.
// Z is the maximum number of iterations.
// trend is a boolean equal to true if
IC-FPLSTM targets traffic trend clustering
and false otherwise.

Output: G
// G is a set of clusters, where each cluster is
itself a set of base stations.

1 if trend = TRUE then
2 Y = PCA (Y)

// Apply PCA for dimensionality reduction of
high dimensional base station traffic trend vectors

3 end if
4 K= Elbow(Y) //Determine the target number of

clusters K
5 C = {c1 · · · cK} ⊆ Y // Intialize centroids set as a

random subset of Y
6 for z : 1 · · ·Z do
7 G = {∅, ..., ∅} // Initialize G as a set of K empty

sets
8 for b : 1 · · · |Y| do
9 k∗ = argmin

k
∥ck − yb∥2

10 Gk∗ ← Gk∗ ∪ {yb}
11 end for
12 for k : 1 · · ·K do
13 ck ← 1

|Gk|
∑
ybϵGk

yb ◁ Update the centroids
14 end for
15 end for

B. Extended Models

We extend our prior FPLSTM approach by integrating the
clustering approach, in which base stations are clustered by
the MVNO based on the three schemes described above (i.e.,
traffic trends, latitude/longitude and random), followed by the
FL process. To this end, we denote them as: i) Information-
based Clustering FPLSTM (IC-FPLSTM) approach, covering
for simplicity both clustering based on traffic trends and
clustering based on geographical information of base stations,

7

shown in Algorithm 3, and ii) Random Clustering FPLSTM
(RC-FPLSTM) approach, as shown in Algorithm 4.

As the name implies, the input of Algorithm 3 includes: i) Y
the information of the base stations in Bs, with respect to slice
s of the MVNO, ii) Z the maximum number of iterations for
the algorithm, and iii) trend a boolean representing the choice
of IC-FPLSTM scheme (i.e. slice traffic-based or geographical
location-based). More precisely, Y is a set of base station
vectors, with each vector representing for its base station:
i) the slice traffic volume over different time slots or ii)
its latitude/longitude coordinates. Z represents the number of
iterations for which the algorithm should be trained. trend
is equal to true if IC-FPLSTM applies slice traffic volume
information for clustering the base stations and false if IC-
FPLSTM applies the latitude/longitude coordinates instead.
The output of the algorithm, G, is a set of clusters, where
each cluster is composed of a set of base stations.

In the algorithm, we first check the value of trend. If it is
set to true, we proceed to reducing the dimensionality of the
slice traffic vectors Y , using the principal component analysis
(PCA) technique (Lines 1-3). Our clustering approach is based
on the k-means clustering method. Before applying it, we thus
determine the adequate number of clusters K by using the
elbow method (Line 4). Given the desired number of clusters
K, the set C of cluster centroids (i.e. centers of clusters) is
initialized randomly forming a subset of Y (Line 5). With ck
representing the centroid of cluster Gk, the next step assigns
each data point yb to the cluster with the closest centroid,
using the euclidean distance (Lines 8-11). This allows to form
clusters of base stations that either present similar slice traffic
trends or are geographically close. Next, the centroids are
updated by computing the average of the points in each cluster
(Lines 12-14). The last two steps are repeated Z times.

In the case of Algorithm 4, the inputs are simply the set
of base stations Bs and the desired number of clusters K.
The output is the same as in Algorithm 3. Here, we pick the
base stations randomly from the set Bs and place them in a
balanced way into each cluster (Lines 2-8). Finally, we put the
surplus base stations from Bs into clusters selected randomly
(Lines 9-14).

VI. EVALUATION

In this section we present the evaluation of our proposed
methodologies. We begin by introducing the nature of the
dataset we used, followed by the benchmarks and performance
metrics that we study. We then discuss the results obtained,
where the benefits of the FL are elaborated from diverse
perspectives (i.e. forecasting accuracy, computation, commu-
nication efficiency, sample efficiency, heterogeneity, scalability
and global agent performance).

A. Dataset

We evaluate the three proposed approaches (FPLSTM,
IC-FPLSTM and RC-FPLSTM) using a real-world dataset
collected from the Orange 4G network in Poitiers, France.
The locations of the 57 cellular sites in the city are shown
in Figure 6. The dataset includes the data traffic demand of

Algorithm 4: RC-FPLSTM: Random Clustering
FPLSTM

Input : Bs, K // Bs is the set of base stations where
slice s is deployed, K is the desired number
of clusters

Output: G // Set of clusters, where each cluster is
itself a set of base stations

1 G = {∅, ..., ∅} // Initialize G as a set of K empty sets
2 for k : 1 · · ·K do
3 while |Gk| < |Bs|

K do
4 b = Random(Bs) // Pick up a random base

station b from Bs
5 Gk ← Gk ∪ {b}
6 Bs ← Bs \ {b}
7 end while
8 end for
9 if Bs ̸= ∅ then

10 for b : 1 · · · |Bs| do
11 k = Random(K) // Pick a random k ≤ K
12 Gk ← Gk ∪ {b}
13 end for
14 end if

different mobile applications at each base station, for a period
of 10 days in May 2019, with a granularity of 10 minutes.

Fig. 6: 4G site locations in Poitiers, France.

Since network slicing has not been deployed yet in real-
world commercial networks, we assume slices are deployed
on an application-basis, i.e., one application maps to one slice
instance. Specifically, Facebook, YouTube, Google, and Insta-
gram have been considered as four different types of slices
attached to the base stations. Indeed, these four applications
are used for quite different purposes and require different
bandwidth and latency [32], which is well aligned with the
concept of network slicing.

For the sake of simplicity, we have considered that all four
slices are attached to all the 57 base stations. Thus, we end up
with 228 local agents in total in our FL approaches. Finally,
we note that we use 80% of the data for training of the models,
and keep the remaining 20% for testing purposes.

8

B. Benchmarking

Our ultimate goal is to show the benefits of our proposed
schemes compared to state-of-the-art baselines, four of which
are described below:

• Centralized 3DCNN (Deepcog): Deepcog [13], based on
a 3DCNN model, is one of the best known centralized
mobile traffic forecasting frameworks. It uses as input a
tensor description of network traffic for all the slices in
the network. The loss function tries to find a balance
between resource overprovisioning and unserviced de-
mands. The whole dataset is shared and aggregated at
the centralized server and the model is trained centrally.
Our main purpose is to compare the accuracy of Deepcog
and FPLSTM, with the former being one of the best
centralised solutions in the literature.

• Decentralized LSTM (DLSTM): For DLSTM, we train
all the local agents in a fully isolated manner, with no
collaboration among local agents. We use LSTM as our
local models. There is no global model in this case, as
it is widely used for time series forecasting. DLSTM
guarantees data privacy, as no data leaves the premises.
However, new slices could be deployed in the network at
any time and DLSTM, as a non-collaborative approach,
will need to train new models for those new slices from
scratch, a process with high computation costs.

• Federated Averaging LSTM (FALSTM): Federated
Averaging is an alternative FL solution to our Federated
Proximal approach. The training process and problem
dimension of FALSTM is the same as that of FPLSTM.
The main difference comes from the fact that federated
averaging is used as the global aggregation strategy in
FALSTM. Simply put, all the weights matrices received
from the local models are averaged to update the global
model, without using any proximal term. The objective is
to verify the expected benefits of the federated proximal
approach in managing data heterogeneity.

• Two Dimensional FL (2DFL): We employ the two-
dimensional FL (as visualized in the middle of Figure 2).
We use two-dimensional convolutional neural networks
(2DCNN) as our local models and as a global model.
Accordingly, the 2DFL model builds on spatio-temporal
correlations to derive predictions, while allowing local
agents to benefit from each other’s knowledge. Since
we consider four different slice instances, in this 2DFL
approach a total of four local agents and one global agent
participate in the training. 2DFL is expected to incur in
higher communication costs because data needs to be
transferred to a central node to train the local agents
(which represent one slice each).

C. Performance Metrics

We rely on the Root-Mean-Square Error (RMSE) to measure
the forecasting accuracy performance of the algorithms. All the
models are trained with the objective of minimising the RMSE
value between predictions and ground truth. In the following,
all the average RMSE results refer to the test dataset only.

TABLE III: LIST OF PARAMETERS

Parameter Description Value
Number of local agents N 228

Global model
LSTM:64 hidden units,

flatten and fully-connected layers

Local model
LSTM:64 hidden units,

flatten and fully-connected layers
Percentage of training set 80 % of the dataset
Percentage of testing set 20 % of the dataset
Communication round C 20
Loss functions RMSE
µ [0.001, 0.01, 0.1, 0.5, 1]
Fraction of local agents Ω [0.1, 0.3, 0.5, 0.7, 1]
Local epoch E 200
Batch size β 16 samples
Learning rate η 0.001

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

Facebook YouTube Instagram Google
R
M
SE

FPLSTM DLSTM Deepcog 2DFL

Fig. 7: RMSE values comparisons of FPLSTM, DLSTM,
Deepcog and 2DFL.

To further evaluate the effectiveness of our proposed frame-
work, we use two additional metrics: communication cost
and computation cost. With this intent, we use the model
proposed in [33] for the calculation of the communication cost,
expressed as: 2 ·C · N ·Ω ·ψ, where C is the total number of
global communication rounds, N is the total number of local
agents, Ω is the local agent selection rate and ψ is the size
of the transverse object (i.e., the size of the machine learning
model or of the raw dataset). On the one hand, for FPLSTM,
ψ is the size of the machine learning model and it can be
calculated as ψ = Pψ · Υ, where Pψ is the total trainable
parameter and Υ is the size, in bits (i.e., 4bits, 8bits, 16bits,
32bits), of the model parameter. For instance, the size of the
typical LSTM model with approximately 70 million 32-bits
real value parameters is 134.4MB if the input and hidden layer
size is 1024 [34]. On the other hand, ψ is the size of the raw
datasets for a centralized approach. For the computation cost,
we rely on the CPU utilization status of the Compute Canada
servers that we used to train our models.

D. Implementations

We implemented our proposed federated approaches using
the Flower Federated Framework [35]. All the models (i.e.
FPLSTM, IC-FPLSTM, RC-FPLSTM, Deepcog, DLSTM,
FALSTM and 2DFL) were executed in a Python environment
with open-source TensorFlow libraries. Next, the models were
trained on high-performance Linux servers provided by Com-
pute Canada. Since we considered four different applications
and 57 base stations, there are a total of 228 local models

9

Fig. 8: Forecasting results vs Ground truth for Facebook, YouTube, Google and Instagram for FPLSTM, 2DFL and Deepcog.

participating in the federated training. In addition, there is one
global model for the FPLSTM and the 2DFL, and as many
global agents as clusters in IC-FPLSTM, RC-FPLSTM, IC-
FALSTM. We observed the optimal hyperparameters of our
federated models through more than a hundred trial-and-error
processes. For brevity, we summarized the hyperparameters
of the models associated with our proposed framework in
Table III. Finally, we note that, with respect to the clustering
approach, we select two components with PCA, as they lead
to the best results according to several performance tests.

E. Forecasting Accuracy

We first compare the performance of our FPLSTM solution
with its counterparts. Figure 7 depicts the average RMSE
values of FPLSTM, Deepcog, DLSTM and 2DFL for the
four considered slices. As shown in this figure, the RMSE
values of FPLSTM and DLSTM are indeed generally higher
than those obtained by the Deepcog and 2DFL solutions,
but the difference is rather small and even favorable to the
decentralised solutions for the YouTube slice. It is notable
that 2DFL exhibits the best RMSE values in the three other
applications (i.e. Facebook, Google and Instagram).

Regarding DLSTM, it is fair to say that it shows acceptable
results. However, in a real scenario, the number of slices in
the network is changing dynamically, based on the service
usage and demand [36]. Thus, new slices could be deployed
in the network at any time. In such a scenario, the DLSTM,
as a non-collaborative approach, would have to train new
models for those new slices from scratch. Instead, in federated
approaches, new agents can easily obtain an already-trained
model from the global agent, removing this cold start problem
encountered in DLSTM. Considering this preeminent role of
the global model in the context of multi-slice traffic forecast-
ing, we further investigate the performance of the global agent
in our FL-based approaches in Section VI-J.

The results of the proposed FPLSTM approach are on
pair with a centralised approach such as DeepCog, while not
requiring the MVNO to share any potentially sensitive data. To
visualize the forecasting performance achieved by FPLSTM,
Deepcog and 2DFL, we plot their resulting predicted traffic

trend and associated ground truth for different applications in
Figure 8. Once again, we can observe that FPLSTM achieves
very similar results to Deepcog and 2DFL, following quite
well the general trend of the ground truth time series.

Considering the four different slice types, the four applica-
tions have a certain regularity in the traffic demand, which is
due to the day/night cycle. However, their patterns are quite
different. If we consider the two extreme examples, Facebook
presents a more complex shape, with a slower variation, while
Google traffic presents a simpler shape, but much noisy,
with more significant peaks. The two other applications show
an intermediate behavior, with Instagram closer to Facebook
and YouTube closer to Google. The behavior of RMSE with
respect to the application type indicates a higher prediction
error for the more complex Facebook shape, and a lower one
for the simpler, but noisy, Google traffic. However, the results
in Figure 8 indicate that the more frequent and intense peaks
in the Google dataset are actually more difficult to predict.

To further appreciate the performance of FPLSTM, we
conduct in-depth investigations by varying the observation
time window W and the prediction time window H . Table IV
and Table V represent the RMSE value comparisons of four
applications under different W and H settings for FPLSTM,
Deepcog and 2DFL. Since we use 10-minutes granularity, a
prediction window W = 3 means that the models conduct
predictions over the next 30 minutes, and so forth. Similarly,
an observation window H = 2 means that the models consider
the last two 10-minutes intervals to conduct predictions. As it
can be seen in Table IV, the performance of our proposed
mechanism is even better than that of its counterparts for the
larger prediction time windows W = [5, 10, 15]. This is really
impressive, considering the centralisation used in Deepcog and
the supplementary features used by 2DFL.

F. Communication, Computation and Sample Efficiency

Next, we compare the communication cost of FPLSTM
and that of the centralized Deepcog and 2DFL approaches.
Moreover, we vary the fraction of the dataset used by the
training process. We consider the 10-days dataset as a full

10

TABLE IV: PERFORMANCE OF FPLSTM VS 2DFL VS Deepcog UNDER DIFFERENT PREDICTION TIME WINDOWS W

Facebook YouTube Google Instagram

W FPLSTM Deepcog 2DFL FPLSTM Deepcog 2DFL FPLSTM Deepcog 2DFL FPLSTM Deepcog 2DFL

1 0.0981 0.0943 0.0933 0.0605 0.0640 0.0625 0.0581 0.0578 0.0580 0.0963 0.0964 0.0929
3 0.1093 0.1077 0.1075 0.0693 0.0735 0.0737 0.0602 0.0606 0.0605 0.1083 0.1086 0.1062
5 0.1149 0.1166 0.1160 0.0722 0.0761 0.0763 0.0609 0.0615 0.0614 0.1125 0.1135 0.1112
10 0.1258 0.1333 0.1331 0.0752 0.0780 0.0782 0.0632 0.0637 0.0635 0.1183 0.1220 0.1193
15 0.1331 0.1420 0.1414 0.0777 0.0794 0.0799 0.0650 0.0657 0.0657 0.1227 0.1278 0.1253

TABLE V: PERFORMANCE OF FPLSTM VS 2DFL VS Deepcog UNDER DIFFERENT OBSERVATION TIME WINDOWS H

Facebook YouTube Google Instagram

H FPLSTM Deepcog 2DFL FPLSTM Deepcog 2DFL FPLSTM Deepcog 2DFL FPLSTM Deepcog 2DFL

2 0.1030 0.0932 0.0923 0.0615 0.0629 0.0619 0.0594 0.0575 0.0570 0.0962 0.0945 0.0920
5 0.0981 0.0943 0.0933 0.0605 0.0640 0.0625 0.0581 0.0578 0.0580 0.0963 0.0964 0.0929
10 0.0976 0.0948 0.0947 0.0607 0.0642 0.0641 0.0589 0.0583 0.0581 0.0971 0.0968 0.0949
15 0.0982 0.0958 0.0953 0.0609 0.0654 0.0647 0.0590 0.0589 0.0589 0.0976 0.0977 0.0954
20 0.0986 0.0963 0.0964 0.0623 0.0660 0.0658 0.0595 0.0599 0.0601 0.0984 0.0987 0.0968

dataset (i.e. 100%). Thus, a fraction of the dataset of 0.1
represents a 1-day dataset, and so on.

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

0.1 0.3 0.5 0.7 1

C
o

m
m

u
n

ic
at

io
n

 C
o

st

Fraction of Dataset
2DFL FPLSTM Deepcog

(a) Communication cost.

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

0.1 0.3 0.5 0.7 1

R
M

SE

Fraction of Dataset

2DFL FPLSTM Deepcog
(b) RMSE.

Fig. 9: Comparisons of FPLSTM, 2DFL and Deepcog under different fractions of training
data.

As seen in Figure 9a, the communication cost of FPLSTM
is the same for a different fraction of the dataset, as no actual
dataset is transferred between nodes, but only the updates
of the global and local agents, representing a constant cost.
However, the communication costs of Deepcog and 2DFL
increase significantly with the fraction of the dataset used in
the training process. 2DFL shows the highest communication

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1 0.3 0.5 0.7 1.0

R
M

SE

Facebook

0.0000

0.0200

0.0400

0.0600

0.0800

0.1 0.3 0.5 0.7 1.0

Fraction of Local Agents

YouTube

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1 0.3 0.5 0.7 1.0

Instagram

0.0000

0.0200

0.0400

0.0600

0.0800

0.1 0.3 0.5 0.7 1.0

R
M

SE

Fraction of Local Agents

Google

Fig. 10: RMSE value comparison for different fractions of local agents participation for
FPLSTM training.

cost, as it is in fact the hybrid of the decentralized and
centralized approaches.

When we only use a small fraction of the dataset for
training, the communication costs of both Deepcog and 2DFL
actually become lower than that of FPLSTM. However, in
these cases, the RMSE values of both Deepcog and 2DFL
are less than those of FPLSTM, as shown in Figure 9b.
This finding shows that FPLSTM leverages the learning of
local models by exchanging knowledge through the global
agent, resulting in better sample efficiency than Deepcog and
2DFL. Indeed, Deepcog and 2DFL only achieve slightly better
RMSE than FPLSTM when 100% of the training dataset
is used, which implies a communication cost that is more
than twice as high as that of FPLSTM. It is worth stressing
that, although it is the best in forecasting accuracy, 2DFL is
probably unrealistic to deploy in a commercial network due
to its significantly heavy communication cost.

While FPLSTM shows better communication cost than the
benchmarks, there is certainly space for further optimisation.
Indeed, the number of local agents participating in each train-

11

ing round has a significant direct impact on the communication
overhead [26] and might even transform the global agent in
a communication bottleneck. In this light, we investigate the
performance of FPLSTM by varying the fraction of local
agents participating in the federated training process. We de-
liberately used different fractions of local agents participation
(i.e., 0.1, 0.3, 0.5, 0.7 and 1) in each federated training and
generated the results accordingly. Needless to say, a lower
fraction of local agents induce lower communication and
computation costs. However, those benefits come with the cost
of a slight degradation in forecasting accuracy, as not enough
local agents take part in the collaborative learning. According
to the results shown in Figure 10, our prior arguments are
validated. However, it is worth noting that the performance
degradation is hardly noticeable up to a fraction of 0.5 of local
agents. Hence, to aim at further reducing the overall network
cost, using a smaller fraction of local agents could be one of
the best alternatives to consider.

Figure 11 depicts the per CPU utilization time of FPLSTM,
Deepcog and 2DFL for the four considered slices. Intuitively,
since FPLSTM and 2DFL train all of their local models
in parallel, they offer better utilization of CPU time than
Deepcog, where training is done sequentially. Furthermore,
a very light-weight LSTM model with optimal hidden units is
used in our FPLSTM, and we adapted a simple 2DCNN model
for the 2DFL approach. In contrast, Deepcog has a much
more complex model design with three layers of 3DCNNs.
The results shown in Figure 11 reveal that the CPU utilization
of FPLSTM and 2DFL is much lower than that of Deepcog.
Deepcog requires approximately 18 and 9 times the CPU time
of 2DFL and FPLSTM, respectively. It is also notable in Figure
11 that CPU utilization of Deepcog model varies for each slice.
This is due to the fact that different slices exhibit different
temporal patterns, affecting the convergence time of the ML
model. The computation time does not seem correlated with
the RMSE values obtained for each application.

0

100

200

300

400

500

600

2DFL FPLSTM Deepcog
For

Facebook

Deepcog
For

YouTube

Deepcog
For Google

Deepcog
For

Instagram

C
P

U
 U

ti
liz

ed
 [

H
o

u
r]

Fig. 11: Per CPU time utilization comparison of FPLSTM, 2DFL and Deepcog.

G. Heterogeneity

The main reason for using a proximal term in our FL
approach was the impact we expected from network het-
erogeneity on forecasting accuracy. Therefore, we evaluate
the capabilities of FPLSTM to handle data heterogeneity, by
comparing its performance with the one of FALSTM, where
federated averaging is applied for global strategy. Figure 12

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

FALSTM µ=0.001 µ=0.01 µ=0.1 µ=0.5 µ=1

YouTube

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

FALSTM µ=0.001 µ=0.01 µ=0.1 µ=0.5 µ=1

R
M
SE

Google

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

FALSTM µ=0.001 µ=0.01 µ=0.1 µ=0.5 µ=1

Instagram

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

FALSTMµ=0.001 µ=0.01 µ=0.1 µ=0.5 µ=1

R
M
SE

Facebook

Fig. 12: RMSE values compared to those of FALSTM and FPLSTM (different µ) values.

shows FPLSTM (with different µ values) behaving well in
our heterogeneous network environment, and producing a
lower RMSE than FALSTM in all scenarios. Just for ex-
perimental purposes, we apply different µ values, such as
µ = [0.001, 0.01.0.1, 0.5, 1], in our proximal equation (Line 9
of Algorithm 2). We can see that µ = 1 provides slightly better
RMSE values than the other µ values.

H. Service Level Agreement Violations

To fully comprehend the benefits of our proposed forecast-
ing solutions in network slicing, we turn our attention to a
network-related metric, namely the number of service level
agreement (SLA) violations. Practically, an SLA violation
occurs when the MVNO reserves too few resources and can
not satisfy the user traffic demand. In anticipatory networking,
resource reservation is based on the traffic demand forecasting
function, so this metric quantifies the impact of our studied
forecasting approaches on the network performance.

0%

5%

10%

15%

20%

25%

0 10% 20% 25%

SL
A

 V
io

la
ti

o
n

s
%

ϒ

Facebook

FPLSTM DeepCog

0%

5%

10%

15%

20%

25%

0 10% 20% 25%

SL
A

 V
io

la
ti

o
n

s
%

ϒ

YouTube

FPLSTM DeepCog

0%

5%

10%

15%

20%

25%

0 10% 20% 25%

SL
A

 V
io

la
ti

o
n

s
%

ϒ

Google

FPLSTM DeepCog

0%

5%

10%

15%

20%

25%

0 10% 20% 25%

SL
A

 V
io

la
ti

o
n

s
%

ϒ

Instagram

FPLSTM DeepCog

Fig. 13: SLA violations comparison of FPLSTM and DeepCog under different γ.

Figure 13 shows the percentage of time intervals where
the MVNO encounters an SLA violation, using FPLSTM
and DeepCog. Of course, if the MVNO uses no margin and
reserves precisely the amount of predicted resources, even
a very low forecasting error produces an SLA violation.
This results in SLA violations 20% of the time. For this
reason, we use a parameter, γ, which represents an over-
provisioning margin the MVNO will consider with respect to

12

the predicted traffic value. This highly reduces the number
of SLA violations, for both DeepCog and FPLSTM. The two
approaches actually give very similar results, showing once
again that a well designed FL solution can be on par with a
state of the art centralised approach.

Analysing the four applications individually, we notice that
the Google slice, with more frequent and significant peaks,
produces more SLA violations. Even for higher values of the
γ over-provisioning margin, the number of SLA violations is
more than double when compared to the other slices. However,
at the same time, this is the only slice for which FPLSTM
outperforms DeepCog with respect to this metric.

I. Scalability
Regardless of its solid performance, as explained in Sec-

tion V, FPLSTM can run into scalability issues if only one
single global model is used for an entire network of local
agents. Thus, we put forward the clustering-based FPLSTM
in which base stations are clustered based on their traffic
trend, their location or at random. Accordingly, in Figure 14,
we compare the extended clustering-based techniques, IC-
FPLSTM (Traffic Trend), IC-FPLSTM (Latitude/Longitude)
and RC-FPLSTM, with our prior FPLSTM proposal. As
expected, IC-FPLSTM approaches, in general, show better
performance than FPLSTM and RC-FPLSTM. This is mainly
because the datasets used by local agents in IC-FPLSTM
at each cluster are somewhat correlated and developing a
corresponding global model with such data accelerates the
convergence and increases the performance of IC-FPLSTM.
Since the bars in Figure 14 are very close, we also plot in the
figure the percentage of improvement of IC-FPLSTM (Traffic
Trend) over FPLSTM, denoted as α. This shows that the
performance of the former approach is approximately 0.4%
to 1.5% better than that of the latter. It is fair to say that the
results of clustering-based approaches are able to perform as
good as or even better than FPLSTM in most cases.

Interestingly, RMSE values of RC-FPLSTM are only
slightly higher than their counterparts (even slightly better than
FPLSTM in Facebook slice). The random clustering approach
has two operational advantages: i) it does not require storing
any additional information, such as traffic trends, and ii) the
clustering algorithm itself is straightforward. While we focus
on the better performing IC-FPLSTM in the following, the
results obtained for RC-FPLSTM demonstrate that even a
simple clustering step can efficiently manage any scalability
issues in our FPLSTM framework.

The two IC-FPLSTM flavors, the one based on traffic trend
and the one based on geographical coordinates, perform very
similarly, with a slight advantage for the traffic-trend version.
Therefore, in the following, we focus on the results of the
traffic-trend solution, as the best performing one. However,
we also need to consider that traffic-trend clustering is more
challenging, since it requires storing historical data and poten-
tially presents data privacy issues. Nevertheless, the objective
of this work is to show that clustering-based approaches can be
efficiently included in the forecasting framework. The precise
choice and parameters of the clustering process will depend
on the operational context.

While IC-FPLSTM is a good rival for FPLSTM in terms
of forecasting accuracy, we measure the CPU time of IC-
FPLSTM to really state if it is an efficient solution for the
large-scale network. In this regard, Figure 15 depicts the
per CPU time utilization comparison of FPLSTM and IC-
FPLSTM for different number of local agents. In general, the
CPU time of IC-FPLSTM is much preferable to that of the
FPLSTM approach, as IC-FPLSTM presents 4-6 times better
CPU utilization than FPLSTM. Specifically, the CPU utiliza-
tion of FPLSTM increases significantly, reaching 65 hours,
while the CPU utilization of IC-FPLSTM increase gradually,
only 15 hours with 228 local agents. This demonstrates that
the proposed clustering-based approach can scale our federated
proximal approach to an actual real-world deployment.

The communication cost of IC-FPLSTM is the same as the
one of FPLSTM if the corresponding global models reside at
the central core node. On the other hand, if each global agent
is placed at the edge, which is located in close proximity to
local agents, IC-FPLSTM would bring better communication
efficiency than FPLSTM. However, the communication model
we use in this work does not account for the placement of the
agents in the networks, so we can not evaluate the impact of
the clustering approach in this case.

0.0%

0.5%

1.0%

1.5%

2.0%

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

Facebook YouTube Instagram Google

%
 im

p
ro

ve
m

e
n

t
o

ve
r

FP
LS

TM

R
M

SE

IC-FPLSTM (Traffic Trend) IC-FPLSTM (Lat/Long)

RC-FPLSTM FPLSTM

α

Fig. 14: RMSE values comparisons of IC-FPLSTM (Traffic Trend), IC-FPLSTM (Lati-
tude/Longitude), RC-FPLSTM and FPLSTM.

0

10

20

30

40

50

60

70

40 100 160 228

C
P

U
 U

ti
liz

ed
 [

H
o

u
r]

Number of Local Agents

FPLSTM IC-FPLSTM

Fig. 15: Per CPU time utilization comparison of FPLSTM and IC-FPLSTM under
different number of local agents.

J. Global Agent Performance

Very few studies focusing on FL evaluate the performance
of the global model. However, in our case, the performance of

13

the global model is important. As explained, slice activation
and deactivation are dynamic, so our system faces a cold
start issue, where local agents, associated with slice instances,
need to perform forecasting without actually having significant
historical data. In this vein, to strengthen the effectiveness
of our extended mechanism, we evaluate not only the local
models performance but also the one of the global model.

Therewith, Figure 16 depicts the global model perfor-
mance comparison of the traffic-trend based IC-FPLSTM and
FPLSTM in terms of average RMSE over four different slice
instances. In general, the global model performance of IC-
FPLSTM is 6% better than FPLSTM. The superior perfor-
mance of IC-FPLSTM can be attributed to the clustering-based
approach that we adopt. Recall that the local models of IC-
FPLSTM are grouped based on their temporal similarity before
performing the collective training. With this, it is sensible to
highlight that if the global models are updated by local models
with more similarity, better RMSE is achieved at global model.

0.000 0.020 0.040 0.060 0.080 0.100

FPLSTM (Global Model)

IC-FPLSTM(Global Model)

RMSE

Fig. 16: Global model performance comparison of IC-FPLSTM (traffic trend) and
FPLSTM.

VII. CONCLUSION

In this paper, we propose the federated learning-based
FPLSTM framework, in which MVNO local models are
allowed to train with their own datasets and only share the
weight of the models with a central entity. This allows each
MVNO to gain knowledge from their peers and leverage
the training of their respective models, while respecting data
privacy. Our results, obtained using real mobile network data,
show that FPLSTM obtains a similar forecasting accuracy
when compared with centralised solutions, with a reduced
communication and computation cost. However, these costs
can still be prohibitive in ultra dense network deployments
of beyond 5G networks. Therefore, we further propose the
IC-FPLSTM clustering approach to cope with the large-scale
network and computation cost efficiency. Based on a series
of simulations on a real-world dataset, the advantages of IC-
FPLSTM in terms of accuracy, scalability and robustness are
clear; the IC-FPLSTM outperforms the contemporary state-
of-the-art centralized solutions and baseline models. Overall,
we can state that our proposed approach is able to achieve
similar accuracy to a centralized approach, while ensuring
data privacy, scalability, data heterogeneity, sample efficiency,
communication, and computation efficiency. While the pro-
posed methods are well grounded for multi-slice traffic fore-
casting, we plan to integrate them into a resource management

framework to further appreciate their feasibility in the resource
efficiency perspective of network slicing.

REFERENCES

[1] NGMN, “Description of Network Slicing Concept,” NGMN 5G Project
Requirements & Architecture – Work Stream E2E Architecture, vol. 1,
pp. 1–7, January 2016.

[2] GSMA, “From Vertical Industry Requirements to Network Slice Char-
acteristics,” August 2018.

[3] Ericsson, “Network Slicing: A Go-To-Market Guide to Capture the High
Revenue Potential,” Tech. Rep., 2021.

[4] T. Shimojo, M. R. Sama, A. Khan, and S. Iwashina, “Cost-efficient
Method for Managing Network Slices in a Multi-service 5G Core
Network,” Proceedings of IFIP/IEEE International Symposium on In-
tegrated Network and Service Management (IM), pp. 1121–1126, 2017.

[5] S. O. Oladejo and O. E. Falowo, “5G Network Slicing : A Multi-Tenancy
Scenario,” Proc. of Global Wireless Summit (GWS), pp. 88–92, 2017.

[6] A. J. Gonzalez, J. Ordonez-Lucena, B. E. Helvik, G. Nencioni, M. Xie,
D. R. Lopez, and P. Grønsund, “The isolation concept in the 5g network
slicing,” in European Conference on Networks and Communications
(EuCNC), 2020, pp. 12–16.

[7] W. Guan, H. Zhang, and V. C. Leung, “Slice Reconfiguration based
on Demand Prediction with Dueling Deep Reinforcement Learning,” in
IEEE Global Communications Conference (GlobeCom), 2020, pp. 1–6.

[8] Y.-J. Liu, G. Feng, Y. Sun, S. Qin, and Y.-C. Liang, “Device Association
for RAN Slicing Based on Hybrid Federated Deep Reinforcement
Learning,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 15 731–15 745, 2020.

[9] Y. Kim, S. Kim, and H. Lim, “Reinforcement Learning based Resource
Management for Network Slicing,” MDPI Applied Sciences, vol. 9,
no. 11, 2019.

[10] G. Sun, K. Xiong, G. O. Boateng, G. Liu, and W. Jiang, “Resource
Slicing and Customization in RAN with Dueling Deep Q-Network,”
Elsevier Journal of Network and Computer Applications, vol. 157, no.
102573, 2020.

[11] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez,
“Resource Sharing Efficiency in Network Slicing,” IEEE Transactions
on Network and Service Management, vol. 16, no. 3, pp. 909–923, 2019.

[12] N. Bui and J. Widmer, “Data-Driven Evaluation of Anticipatory Net-
working in LTE Networks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 10, pp. 2252–2265, 2018.

[13] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Optimizing Resource Provisioning in Network Slicing with
AI-Based Capacity Forecasting,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 361–376, 2020.

[14] H. Zhao, S. Deng, Z. Liu, Z. Xiang, J. Yin, S. Dustdar, and A. Zomaya,
“DPoS: Decentralized, Privacy-Preserving, and Low-Complexity Online
Slicing for Multi-Tenant Networks,” IEEE Transactions on Mobile
Computing, vol. 21, no. 12, pp. 4296–4309, 2022.

[15] S. Redana, O. Bulakci, C. Mannweiler, L. Gallo, A. Kousaridas,
D. Navrátil, A. Tzanakaki, J. Gutiérrez, H. Karl, P. Hasselmeyer,
A. Gavras, S. Parker, and E. Mutafungwa, “5G PPP Architecture
Working Group - View on 5G Architecture, Version 3.0,” June 2019.

[16] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile Traffic Forecasting for Maximizing 5G Network
Slicing Resource Utilization,” Proc. IEEE Conference on Computer
Communications (Infocom), May 2017.

[17] J. Mei, X. Wang, and K. Zheng, “An Intelligent Self-sustained RAN
Slicing Framework for Diverse Service Provisioning in 5G-beyond and
6G Networks,” Intelligent and Converged Networks, vol. 1, pp. 281–294,
December 2020.

[18] C. Zhang, M. Fiore, and P. Patras, “Multi-service Mobile Traffic
Forecasting via Convolutional Long Short-Term Memories,” Proc. IEEE
International Symposium on Measurements & Networking (M&N), pp.
1–6, 2019.

[19] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in Proc. Confer-
ence on Machine Learning and Systems (MLSys), 2020.

[20] J. B. Monteil, J. Hribar, P. Barnard, Y. Li, and L. A. Dasilva, “Resource
Reservation within Sliced 5G Networks: A Cost-Reduction Strategy for
Service Providers,” Proc. IEEE International Conference on Communi-
cations Workshops (ICC Workshops), 2020.

[21] M. Yan, G. Feng, J. Zhou, Y. Sun, and Y.-C. Liang, “Intelligent Resource
Scheduling for 5G Radio Access Network Slicing,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 8, pp. 7691–7703, 2019.

14

[22] T. V. K. Buyakar, H. Agarwal, B. R. Tamma, and A. A. Franklin, “Re-
source Allocation with Admission Control for GBR and Delay QoS in
5G Network Slices,” Proc. International Conference on Communication
Systems and Networks (COMSNETS), pp. 213–220, 2020.

[23] B. Brik and A. Ksentini, “On Predicting Service-oriented Network Slices
Performances in 5G: A Federated Learning Approach,” in Proc. IEEE
45th Conference on Local Computer Networks (LCN), November 2020,
pp. 164–171.

[24] C. Zhang, S. Dang, B. Shihada, and M. S. Alouini, “Dual Attention-
based Federated Learning for Wireless Traffic Prediction,” Proc. IEEE
Conference on Computer Communications (Infocom), 2021.

[25] Y. Kim, E. A. Hakim, J. Haraldson, H. Eriksson, J. M. B. Da Silva, and
C. Fischione, “Dynamic Clustering in Federated Learning,” Proc. IEEE
International Conference on Communications (ICC), pp. 16–21, 2021.

[26] Y. Liu, J. J. Yu, J. Kang, D. Niyato, and S. Zhang, “Privacy-Preserving
Traffic Flow Prediction : A Federated Learning Approach,” IEEE
Internet of Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[27] H. Hirayama, Y. Tsukamoto, S. Nanba, and K. Nishimura, “RAN
Slicing in Multi-CU/DU Architecture for 5G Services,” IEEE Vehicular
Technology Conference (VTC Fall), 2019.

[28] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU Neural Network
Performance Comparison Study: Taking Yelp Review Dataset as an
Example,” in International Workshop on Electronic Communication and
Artificial Intelligence (IWECAI), 2020, pp. 98–101.

[29] K. Hu, Y. Li, M. Xia, J. Wu, M. Lu, S. Zhang, and L. Weng, “Federated
Learning: A Distributed Shared Machine Learning Method,” Complexity,
no. 8261663, 2021.

[30] M. Zhang, E. Wei, and R. Berry, “Faithful Edge Federated Learning :
Scalability and Privacy,” IEEE Journal on Selected Areas in Communi-
cations, vol. 39, no. 12, pp. 3790–3804, 2021.

[31] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based
Recurrent Neural Network Architectures for Large Vocabulary Speech
Recognition,” arXiv, 2014.

[32] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, C. Ziemlicki, and
Z. Smoreda, “Not All Apps Are Created Equal: Analysis of Spatiotem-
poral Heterogeneity in Nationwide Mobile Service Usage,” in Proc.
13th International Conference on Emerging Networking EXperiments
and Technologies (CoNEXT), 2017, p. 180–186.

[33] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A Survey of Federated
Learning for Edge Computing: Research Problems and Solutions,” High-
Confidence Computing, vol. 1, no. 1, p. 100008, June 2021.

[34] Z. Que, Y. Zhu, H. Fan, J. Meng, X. Niu, and W. Luk, “Mapping Large
LSTMs to FPGAs with Weight Reuse,” Journal of Signal Processing
Systems, vol. 92, no. 9, pp. 965–979, 2020.

[35] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D. Lane,
“Flower: A Friendly Federated Learning Research Framework,” arXiv,
2020.

[36] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and H. Mineno,
“Flexible Resource Block Allocation to Multiple Slices for Radio Access
Network Slicing Using Deep Reinforcement Learning,” IEEE Access,
vol. 8, pp. 68 183–68 198, 2020.

Hnin Pann Phyu received the M.Sc. degree in com-
munication networks and services from the Institut
Mines-Telecom, France, in 2016, and the M.Eng.
degree in telecommunications from the Asian In-
stitute of Technology, Thailand, in 2016. From
2016 to 2020, she was a Network Strategist and
Architect Engineer with Telenor, Myanmar. She is
currently pursuing a Ph.D. degree in Software and IT
Engineering with École de Technologie Supérieure
University, Montreal, Canada. Her current research
interests include next-generation mobile communi-

cation systems, machine learning, big data analytics, resource management
and network slicing.

Razvan Stanica is an associate professor at INSA
Lyon, France, and a research scientist with the Inria
Agora team of the CITI laboratory. He obtained a
M.Eng. degree and a Ph.D. in computer science,
both from INP Toulouse, France, in 2008 and 2011
respectively. His research interests include wireless
mobile networks, with a special focus on communi-
cation networks in urban environments.

Diala Naboulsi is an Assistant Professor at the
École de Technologie Supérieure (ÉTS), Canada.
Before that, she held a Research Professional po-
sition in the Ultra-TCS research chair, at ÉTS,
Canada, and a Research Associate position and a
Postdoctoral Researcher position at Concordia Uni-
versity, Canada. She was also a Visiting Researcher
at Ericsson, Canada. She held Course Lecturer po-
sitions at McGill University, Canada and Concordia
University, Canada. She obtained the Ph.D. degree
in Computer Science from INSA Lyon, France in

2015. As part of a double degree program, she received in 2012 the M.Sc.
degree in Computer Science from INSA Lyon, France and the M.Eng. degree
in Telecommunications from the Lebanese University, Lebanon. Her research
interests are in mobile networks, virtualized networks, and wireless networks.
She holds an NSERC Discovery Grant (2020-2026) on network slicing in
future mobile networks. She has collaborations with several providers in
communications technology such as Ultra Intelligence & Communications
and Octasic.

15

