
HAL Id: hal-04189558
https://hal.science/hal-04189558

Submitted on 28 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Machine Learning in Network Slicing - A Survey
Hnin Pann Phyu, Diala Naboulsi, Razvan Stanica

To cite this version:
Hnin Pann Phyu, Diala Naboulsi, Razvan Stanica. Machine Learning in Network Slicing - A Survey.
IEEE Access, 2023, 11, pp.39123-39153. �10.1109/ACCESS.2023.3267985�. �hal-04189558�

https://hal.science/hal-04189558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

Digital Object Identifier

Machine Learning in Network Slicing - A
Survey
HNIN PANN PHYU1, (Student Member, IEEE), DIALA NABOULSI1, (Member, IEEE), and
RAZVAN STANICA2
1Département de Génie Logiciel et des Technologies de l’information, École de Technologie Supérieure, Université du Québec, Montreal, QC H3C 1K3, Canada
(e-mail: hnin.pann-phyu.1@ens.etsmtl.ca, diala.naboulsi@etsmtl.ca)
2Univ Lyon, INSA Lyon, Inria, CITI, 69100 Villeurbanne, France (e-mail: razvan.stanica@insa-lyon.fr)

Corresponding author: Hnin Pann Phyu (e-mail: hnin.pann-phyu.1@ens.etsmtl.ca).

This work was supported by the National Natural Sciences and Engineering Research Council of Canada (NSERC) through research grant
RGPIN-2020-06050 and by the Fonds de Recherche du Québec – Nature et Technologies (FRQNT) through research grant FRQNT
2022-NC-297403

ABSTRACT 5G and beyond networks are expected to support a wide range of services, with highly
diverse requirements. Yet, the traditional “one-size-fits-all” network architecture lacks the flexibility to
accommodate these services. In this respect, network slicing has been introduced as a promising paradigm
for 5G and beyond networks, supporting not only traditional mobile services, but also vertical industries
services, with very heterogeneous requirements. Along with its benefits, the practical implementation of
network slicing brings a lot of challenges. Thanks to the recent advances in machine learning (ML), some
of these challenges have been addressed. In particular, the application of ML approaches is enabling the
autonomous management of resources in the network slicing paradigm. Accordingly, this paper presents
a comprehensive survey on contributions on ML in network slicing, identifying major categories and sub-
categories in the literature. Lessons learned are also presented and open research challenges are discussed,
together with potential solutions.

INDEX TERMS Network Slicing, 5G Network, Machine Learning

I. INTRODUCTION

The number of fifth generation (5G) mobile networks
subscribers is forecast to reach 3.5 billion globally by
2026 [1]. The average data usage is estimated to reach
35 GB/month/user, resulting from 400 5G use cases in 70
industries [2]. Indeed, 5G is expected to play a major role
in the digitalization of various vertical markets, such as
automotive, smart grid and the Internet of Things (IoT). A
wide range of use cases with highly diverse requirements
are envisioned to be supported [3]. These use cases can
be roughly grouped into three categories: Extreme Mobile
Broadband (xMBB), Ultra-Reliable and Low-Latency Com-
munications (URLCC), and Massive Machine Type Commu-
nication (mMTC) applications [4].

Previous generations of mobile networks, i.e. 2G, 3G and
4G, were designed to efficiently handle human-type commu-
nication. However, their “one-size-fits-all” architectures lack
the flexibility required to accommodate the diverse require-
ments of future 5G and beyond use cases [5]. As a result, the
concept of network slicing has recently been introduced by
the Next Generation Mobile Network (NGMN) alliance [6]

to allow mobile network operators to support this increasing
variety of use cases. Network slicing consists of creating
multiple logical networks on top of a single physical network,
on a per-service basis [7]. Thus, these logical networks (i.e.
network slices) can be formed and customized to different
scenario requirements in terms of functionality, performance
and isolation, as underlined by the 3rd Generation Partner-
ship Project (3GPP) [8]. From a business point of view, it is
estimated that 30% of 5G operators revenue will be driven by
network slicing [9].

Enabling the vision of network slicing cannot be achieved
without fully automating overall network operations. In re-
cent years, significant effort has been put in this direction,
through the integration of machine learning (ML) tech-
niques [19]. Traffic flows generated from 5G services are
increasingly heterogeneous and exhibit complex correla-
tions [20]. In this case, it is not possible to rely on con-
ventional mathematical models and algorithms to process
them [21]. Conversely, recent advancements in ML tech-
niques, with their ability to process large amounts of data and
their efficiency in unveiling complex correlations in datasets,
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TABLE 1: Comparisons of Existing Surveys on Network Slicing

Ref Resource Management Model Supervised/Unsupervised Reinforcement Learning Scope
[3] 5G network slicing architectures

[10] Network slice creation models and slicing
templates proposed by SDOs

[11] 5G network slicing development and its in-
tegration with the MEC and the cloud

[12] Optimization frameworks for network slic-
ing

[13]
Algorithmic issues for admission control and
resource allocation aspects in network slic-
ing, including RL methods

[14] Importance of network slicing and ML in
5G-enabled IoT applications

[15] 5G network slicing development require-
ments for IoT applications

[16]

Mathematical modelling encompassing
game theory models, prediction models,
failure recovery models in resource
allocation methods

[17]
Admission control, resource allocation and
resource orchestration aspects in network
slicing with DRL approaches

[18] DRL-based contributions in network slicing

Our Survey ML-based algorithmic approaches in net-
work slicing

are positioning ML techniques as very promising solutions in
the automation of network slicing operations.

Accordingly, a large amount of studies has been con-
ducted, introducing ML-driven algorithmic solutions in the
context of network slicing. The number of publications on
the topic keeps growing significantly over the years, with 340
papers in 2022 alone, as shown in Figure 1. In the light of
6G standardisation and the continuous development of ML
techniques, a higher interest in the topic is further expected in
the coming years. Considering the most recent and noticeable
works, this survey thus aims at providing a comprehensive
review of ML solutions in network slicing. In addition, it
underlines clear research directions for those who wish to
further investigate ML techniques to address the complex
problems in network slicing, for existing and future mobile
networks.
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FIGURE 1: Number of yearly publications on machine learn-
ing in network slicing (source: Google Scholar)

A. SCOPE OF THE SURVEY
Several surveys have already been published on the subject
of network slicing. A few of them review network slicing
architectures and principles [3], [10], [11], while others focus
on the algorithmic aspects of network slicing [12], [13] or
on its mathematical modeling [16]. Some surveys [14], [15]
discuss both architecture and algorithmic aspects in network
slicing. Two recent surveys focus on very specific applica-
tions of deep reinforcement learning (DRL) in a network
slicing context [17], [18].

More precisely, in [3], the authors present the architecture
of 5G sliced networks, with its different layers: infrastructure
layer, network function layer, management and orchestration
(MANO), and service layer. The authors in [10] investigate
the network slices ordering and creation models proposed
by different standard developing organizations (SDOs). They
analyze the key attributes and functions of the most com-
mon models and propose unified network slicing models
for efficient end-to-end (E2E) network slicing management.
Furthermore, the authors of [11] discuss the potential and
integration of multi-access edge computing (MEC) and cloud
technologies in network slicing. However, algorithmic as-
pects of resource management perspectives in network slic-
ing have not been studied in these surveys.

In [12], the authors review MANO methods and algo-
rithmic approaches in network slicing. However, their fo-
cus is only on the optimization frameworks and operational
research methodologies. Accordingly, their survey does not
include machine learning-based approaches. In the study
in [13], the authors emphasize the admission control and
resource allocation aspects of network slicing, and recent ap-
proaches for these problems, including reinforcement learn-
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ing (RL), are discussed and documented. Nevertheless, no
other ML methods (i.e. supervised and unsupervised ap-
proaches) are analyzed. The works in [14], [15] emphasize
the role of 5G network slicing in IoT applications. However,
algorithmic aspects, in particular advaned ML-based solu-
tions, are not well-grounded.

In [16], the discussed mathematical models encompass
game theory models, prediction models, and failure recovery
models. Relationships among them are analyzed in the realm
of resource allocation for network slicing across multiple
domains. However, only supervised learning approaches are
discussed, and only in the context of prediction models.

Closer to our scope, the work in [17] goes over a DRL
driven network slicing resource management model, dis-
cussing the objective, the network domains, the Markov de-
cision process (MDP) modelling and the use cases. However,
forecasting related problems are not covered by this study.
Furthermore, the authors in [18] survey a similar topic: the
feasibility of DRL frameworks in the 5G network slicing
paradigm. However, these studies dedicate little to no discus-
sion to other ML techniques, like the role of supervised and
unsupervised learning in the traffic forecasting function, or to
multi-armed bandit techniques which have been widely used
in the network slicing resource management regime. Besides,
the topics of admission control (either inter-slice or intra-
slice) and resource allocation granularity (i.e. coarse-grained
or fine-grained) are not well-elaborated in these prior works.

To summarize, none of the contemporary surveys provides
a comprehensive review of ML-based approaches in network
slicing, with the relevant background information. Specifi-
cally, none of the existing surveys articulated thoroughly the
various business models in network slicing and projected
them with respect to the network slicing architecture, as
we do below. This allows for a clear mapping of ML-
based approaches to the different business entities. Moreover,
unlike other works (i.e. [17], [18]), our survey proposes an
original taxonomy regarding the granularity level of resource
management solutions in the context of network slicing. On
the other hand, we cover at an unprecedented level of detail
the resource management models used in network slicing and
the application of ML-based methods to this end. To say the
least, we extensively cover solutions with unsupervised and
supervised ML techniques, as well as RL techniques, which
is unique in the field. Besides, not only do we extensively
identify the spectrum of research gaps, but also we put
forward the potential ML-based solutions respectively. The
summary of the scope of existing surveys compared to ours
is indicated in Table 1.

B. SURVEY ORGANIZATION
The remainder of this survey paper is organized as follows:
Section II equips the reader with necessary background in-
formation on network slicing. In Section III, the functioning
of ML techniques commonly used in the context of network
slicing is explained. We remark that readers with strong
ML background can completely skip Section III. Section IV

reviews ML contributions in network slicing. Identified open
challenges and opportunities can be found in Section V.
Finally, we conclude the survey in Section VI. The detailed
structure of the survey is further depicted in Figure 2.

II. NETWORK SLICING
A. NETWORK SLICING CONCEPT
The concept of network slicing has been introduced by the
NGMN alliance [6] as a solution for accommodating the di-
verse requirements of 5G and beyond use cases. Technically,
network slicing consists of creating logical networks on top
of a single physical network, across multiple domains, on
a per-service basis. The resulting network slices could be
managed independently, mutually isolated, and created on-
demand [6].

End-to-end network slicing refers to creating network
slices that cover the entire communication path, from the
radio access network (RAN) to the core network (CN). As
network slicing is leveraged based on a virtualized infras-
tructure powered by network function virtualization (NFV)
and software defined networks (SDN), it enables flexible
and programmable control of network resources while re-
specting service level agreements (SLA) [23]. Undoubtedly,
these logical networks (i.e. network slices) could be a game-
changer for potential 5G use cases as they can be established
and customized to different use case requirements in terms
of functionality, performance, and isolation, as emphasized
by the Third Generation Partnership Project (3GPP) [24].
Figure 3 formally illustrates the network slicing architecture
as defined by NGMN [22]. As shown in the figure, the
architecture contains the following three layers:

• Application Layer: It consists of end-user services
(e.g., smart home/city, remote surgery, and ultra High
Definition (HD) video streaming). A Service Instance
has a specific type (i.e. eMBB, URLCC, or mMTC).

• Network Layer: It consists of network slice instances,
including logical and physical resources. A network
slice instance supports one or more service instances
and is composed of one or more sub-network instances.
For brevity, we use in the following the word "slice" to
refer to a network slice instance.

• Resource Layer: It includes shared infrastructure re-
sources with both physical and virtual resources that are
controlled by the NFV/SDN framework. The resource
layer provides all the required resources to the network
slice instance layer.

B. BUSINESS MODELS IN NETWORK SLICING
The business model adopted in most of the existing research
works on network slicing includes three business entities:
application service provider (ASP), mobile virtual network
operator (MVNO) and infrastructure provider (InP) [25],
[26]. An ASP offers a service to end-users by using a
slice operated by an MVNO. For this purpose, the ASP
provides the service quality of service (QoS) requirements
to the MVNO. It also pays the MVNO the cost associated
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FIGURE 2: Structure of the survey.

FIGURE 3: NGMN network slicing concept [22].

to offering the service, based on the slice instance running
time, the number of served customers, and the coverage area.
The MVNO creates the slice based on the received service
requirements. It requests as well from the InP to allocate
physical and virtual resources for implementing the slice. The
MVNO continuously monitors the QoS of each slice instance
to ensure requirements are met. One or more slice instances
may belong to one MVNO. The InP owns the physical
substrate network infrastructure, manages the life-cycle of

physical and virtual resources and provides a complete set of
resources for slices. It is important to stress that it is common
in the literature to have ASP functionalities covered by the
MVNO, especially in the network slicing resource allocation
problem formulation (see for instance [27]–[34] to name just
a few). Figure 4 summarizes the interactions among business
entities according to this business model.

Apart from the previously described business model, more
complex ones, with more business entities, were introduced
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FIGURE 4: Business model of network slicing.

in [35]: i) Single-domain business model, with a single
infrastructure and a single slice provider; ii) Multi-domain
business model, with multiple infrastructure providers and
multiple slice providers. Figure 5 depicts these two business
models. For brevity, we only describe the main entities in
these models, also used in several other works (see for
instance [27], [36]–[40]): slice provider (SIP), slice tenant
(ST), slice customer (SC) and service provider (SP).

• Slice Provider: It creates a slice based on the slice
template endorsed by a slice tenant or a slice customer.
Generally, it obtains the resources required for the slice
from the InP. However, in some cases [36], the Slice
Provider controls directly the infrastructure resources
and its ultimate goal is to efficiently allocate resources
among multiple Slice Tenants.

• Slice Tenant: It requests a slice from the Slice Provider,
according to the received demands from the Slice Cus-
tomers. It also operates the slice. Usually, multiple Slice
Tenants rely on the same InP [27], according to different
SLAs [40].

• Slice Customer: It represents an end user, who can
subscribe to one or more slices simultaneously, possibly
managed by different Slice Tenants [36]. A Slice Cus-
tomer can take the role of a Slice Tenant and, by that,
serve other Slice Customers [35].

• Service Provider: It provides various kinds of slice
services to Slice Customers (i.e. end users). In some
cases [37], [39], a Service Provider plays the role of a
Slice Tenant as well, reserving resources from the InP
and offering services to the Slice Customers. In other
cases [38], the Service Provider also has control over
the infrastructure resources and fulfills slice requests of
Slice Customers.

In a nutshell, the business models applied in the surveyed
studies can be mapped partially or fully into one of the above-
described models. Indeed, a well-defined business model is
a critical component of a research work on network slicing.
In this context, this is especially true for resource allocation
problems, where multiple entities from those listed above are
involved.

(a) Single-domain business model.

(b) Multi-domain business model.

FIGURE 5: Single-domain and multi-domain business mod-
els of network slicing [35].

C. MOBILE NETWORK DOMAINS AND NETWORK
SLICING
End-to-end network slices encompass the three domains
of RAN, CN, and transport network (TN), possibly from
multiple operators [41]. Network slicing can be deployed
on a traditional network consisting of these three domains,
as the concept is defined on a logical level in the 3GPP
functions. However, to fully leverage the slicing concept,
these domains have to be integrated with NFV, SDN, MEC,
and cloud computing [11], the key drivers of network slic-
ing, described in subsection II-D. In fact, one requirement
in network slicing is performance isolation among network
slices [3]. Traditional networks fail to meet this requirement.
For instance, a similar concept to network slicing is that
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FIGURE 6: High-level architecture of end-to-end network slicing.

of data radio bearers (DRBs) in traditional RAN. It allows
to handle traffic with different QoS requirements [42]. Yet,
DRBs of different users are controlled by a shared medium
access control (MAC) protocol and thus do not guarantee
performance isolation [43].

In the realm of 5G network slicing, the technical spec-
ifications of those domains are being developed in differ-
ent SDOs: RAN and CN domains are regulated by the
3GPP [44], [45], while the functioning of the TN domain is
specified by the Internet Engineering Task Force (IETF) [46]
and the Broadband Forum (BBF) [47]. Figure 6 illustrates the
high-level architecture of a 5G sliced network.

1) RAN Slicing

The main question in the RAN domain is how to appro-
priately divide the overall radio spectrum resources for dif-
ferent applications to guarantee the rigid QoS requirements
expressed by some network slices [48]. The degree of com-
plexity is higher in RAN than in CN and TN, due to the
difficulties in the segregation of radio resources. Moreover,
virtualization in the RAN is still in its infancy, unlike at
the CN level [49]. In this respect, in the 3GPP 5G RAN
specifications, eight possible RAN virtual functions splitting
options are considered, based on the Cloud-RAN (C-RAN)
concept [50], where RAN functions are split between Remote
Radio Units (RRUs) and Baseband Units (BBUs) hosted
in the Next Generation Node B (gNB) and a BBU pool,
respectively. The RAN functional split allows network slices
to share certain RAN functions among each other [51].

With these different functional splitting options, it is im-
portant to consider their ability in guaranteeing performance

isolation among slices [52]. In fact, RAN slicing done at
the spectrum level provides the highest degrees of isolation
and customization compared to other RAN slicing options
at the Radio Resource Management (RRM) level (i.e. inter-
cell interference coordination (ICIC) level, packet scheduling
(PS) level, admission control (AC) level) [53]. More specifi-
cally, spectrum resources are organized as carriers (i.e. each
carrier is composed of resource blocks) in RAN slicing at the
spectrum planning level. Each RAN slice tenant is assigned
a separate carrier so as to ensure complete performance
isolation among slices, thereby enabling the customization
of the slices based on the tenant-specific requirements at all
levels of the RRM functionalities.

Notably, many researchers are working on the RAN slicing
system architecture to build a service-oriented network. More
specifically, SoftRAN [54], FlexRAN [55] and Orion [49] so-
lutions present new RAN virtualization models that perform
the abstraction of underlying physical resources and ensure
efficient resource utilization. Furthermore, these SDN-based
RAN architectures decouple the data plane from the control
plane and allow slice customers to have full control of their
own RAN functionalities and yet guarantee performance
isolation [51].

2) CN Slicing

Recent years have witnessed the transformation of the entire
CN network with the help of NFV, SDN, and cloud comput-
ing. As 5G is expected to support a variety of use cases with
diverse requirements, the 5G core (5GC) will adopt a service-
based architecture (SBA), as specified by the 3GPP [56], to
enable multiple virtual networks to run on the same physi-
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cal infrastructure [57]. Moreover, with SDN decoupling the
control plane from the user plane and with NFV virtualizing
physical network resources, these two technologies bring
programmability and flexibility to the deployment, control
and management of CN functions [23].

In fact, control and user plane separation (CUPS) is a
necessity in 5GC to fulfill the automation requirement of
future network operations. Moreover, specific functions are
required in 5GC to enable network slicing. Particularly, the
network slice selection function (NSSF), introduced under
the vision of SBA [56], is responsible for selecting the
appropriate set of network slice instances (NSIs) and deter-
mining the access and mobility management function (AMF)
set to serve UEs. Technically, a UE can be served by a
maximum of up to eight network slices simultaneously [58].
In this case, AMF is in charge of the UE association with
corresponding slices [59]. If some CN functions, like AMF
and NSSF, can be shared by multiple NSIs, others, i.e. user
plane function (UPF) or unified data management (UDM),
are slice-specific [60]. For brevity, we do not describe all the
new 5GC functions in this survey and interested users are
referred to [45] for more information.

Finally, for a fully-fledged network slicing system, 5GC
needs to adopt a cloud-native based design. By that, con-
ventional VNFs, deployed traditionally on virtual machines
(VMs), are transformed into cloud-native network functions
(CNFs) that are deployed on containers instead [11]. Specif-
ically, running CNFs on containers facilitates automation in
the premises of a cloud environment [61].

3) TN Slicing
The TN domain is as important as the RAN and CN domains
to leverage the benefits of network slicing [62]. With 5G, the
TN slices are expected to carry the exponentially-increasing
traffic load and satisfy stringent SLAs [63]. According to the
IETF, a TN slice is a logical network topology connecting
various endpoints in the RAN and the CN, with appropriate
shared or dedicated network links, that are used to ensure
specific SLAs [46].

TN links can be established using different existing tech-
nologies (e.g., optical fiber, Ethernet, microwave) [10]. In
fact, Multi-Protocol Label Switching (MPLS) in TN provides
the adaptation of different TN layer technologies, thereby
enabling the multi-service mobile transmission [52]. In ad-
dition, already developed technologies, such as Flexible Eth-
ernet (FlexE), Wavelength Division Multiplexing (WDM),
and Optical Transport Network (OTN), can be used to en-
sure the performance isolation among slices [64]. Ongoing
research efforts are aiming at evolving these solutions for
the purpose of TN slicing. Particularly, elastic optical net-
works (EONs) [65], Optical Virtual Networks (OVN) [66]
and Open Optical Network (OON) [67] embrace service-
oriented TN slicing by providing scalability, flexibility and
inter-operability on optical TNs. Besides, SDN-driven TN
represent a very prominent solution to leverage the devel-
opment of cloud-based services in 5G systems [68]. In fact,

multiple TN slices are required for the E2E slice provisioning
with different RAN deployment scenarios (i.e. distributed
RAN, centralized RAN and cloud RAN) [46]. Hence, a
unified service orchestrator is required to control multiple
TN slices from multiple network domains and to integrate
fronthaul and backhaul networks [69]. To cope with this,
the IETF establishes a management and control framework
of TN slices, under the name of Abstracting and Control
of Traffic engineer Network (ACTN), to allow an MVNO
to manage multiple network domains with a single abstract
network [70].
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FIGURE 7: An integration of SDN controllers into the ETSI
NFV reference architecture at the two levels required to
achieve network slicing (inspired from [23]).

D. KEY ENABLING TECHNOLOGIES OF NETWORK
SLICING
Virtualization technologies have brought up enormous ad-
vantages in terms of programmability and flexibility for
resource allocation in end-to-end network slicing. Specifi-
cally, NFV, SDN, MEC and cloud computing are the major
catalysts to facilitate network slicing. Hereafter, the role of
each of these enabling technologies in network slicing is
discussed.

1) Network Function Virtualization:
NFV decouples the network functions from their proprietary
hardware and runs them as software on general purpose
servers. The architectural framework of NFV is introduced
by the European Telecommunications Standards Institute
(ETSI) [71]. It is composed of VNFs, NFV infrastructure
(NFVI), and NFV management and orchestration (MANO).
VNFs are the virtualized network elements that can be
chained together in a particular order to form service function
chains (SFC) offering one specific service [72]. A network
slice for one specific service is commonly represented as one
SFC. NFVI encompasses both physical and virtual resources
where VNFs are deployed. Figure 7 depicts the architecture
of ETSI NFV MANO that enables the automation of re-
source management, network services, and VNFs to guar-
antee the network performance requirements of operators.
This architecture consists of three main functional blocks:
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the NFV orchestrator (NFVO), the VNF manager (VNFM),
and the virtualized infrastructure manager (VIM). The NFVO
orchestrates the NFVI resources and manages the life cycle of
network services. The VNFM is in control of the instantiat-
ing, monitoring, and termination of the VNF instances. Each
VNF instance is controlled by a VNFM. Finally, the VIM
is responsible for governing the computation, storage, and
networking resources. Those functional blocks not only com-
municate to other function blocks of the NFV architecture,
but also interact among each other through a set of reference
points [8].

2) Software Defined Networking
SDN decouples the control plane from the data plane and
places it on a logically centralized controller. SDN is one of
the key enablers of network slicing, as it enables programma-
bility, flexibility, service-oriented adaptation, scalability, and
robustness [73]. Besides, SDN allows the MVNOs to manage
and control their allocated resources through the abstract
view of the network. The SDN controller manages network
slices effectively by applying rules when necessary and in
accordance with the corresponding network policy. The con-
vergence of SDN and NFV is a commonly used mechanism
in the deployment of E2E network services. As shown in
Figure 7, ETSI proposed an architecture where NFV MANO
is integrated with two SDN controllers: i) infrastructure
SDN controller (ISDNC) to provide the required connec-
tivity among VNFs and its components by managing the
underlying network resources and, ii) tenant SDN controller
(TSDNC) to manage dynamically the corresponding VNFs.
While the TSDNC provides an overlay comprising tenant
VNFs that define the network service(s), the ISDNC provides
an underlay to support the deployment and connectivity of
VNFs [23].

3) Mobile Edge and Cloud Computing
MEC and cloud computing offer on-demand storage, compu-
tational and networking resources within a single or multiple
platforms [74]. The appealing idea of MEC for network slic-
ing is to bring the network functions and related applications
closer to the end-users, to reduce delays and burdens on the
back-haul. Simply speaking, in the realm of 5G, virtualized
resources of RAN (i.e. BBU and RRU) and some user-plane
functions of the CN could be located in the edge cloud to
provide low-latency services (i.e. URLCC). With the help of
SDN, 5G networks are able to control the VMs distributed in
the cloud core and edge cloud in a centralized manner.

III. MACHINE LEARNING
Most of the network slicing optimization problems have
been formulated as either Mixed-integer Linear Program-
ming (MILP) or Nonlinear Integer Programming (NLP)
problems. Generally, the resulting formulations are proven
to be NP-Hard. Thus, their global optimal solutions cannot
be obtained within a polynomial time, especially for large-
scale instances. To deal with this, the typical approach is to

decompose the complex optimization problem into simpler
sub-problems or relax complicating constraints of the prob-
lem and solve a simpler version. Then, low computational-
complexity algorithms (i.e. heuristics, metaheuristics, genetic
algorithms (GA), and game theory) are applied to derive a
solution close to the optimal one.

Regardless of being less computational expensive, the
major shortcoming of traditional optimization models and
conventional algorithms is that they lack the flexibility to
adapt to today’s highly dynamic and fast-changing network
environment with 5G heterogeneous services and massive
connections [75]. Therefore, algorithms with high adaptabil-
ity are needed to make real-time decisions in network slicing.

When it comes to traffic forecasting, conventional solu-
tions like ARIMA [76] and Holt-Winters [77] have been
widely used over the years. Compared with those solutions
that could not extract and predict the complicated spatiotem-
poral features of mobile traffic in presence of user mo-
bility [78], solid forecasting performance in this field has
been demonstrated in the recent years by machine learning
based forecasting solutions, deep learning based techniques
in particular.

Needless to say, ML-based algorithms are thus envisioned
as a promising solution in the realm of 5G network slicing
problems [79]. That being said, before delving deeper in
the machine learning techniques applied to network slicing
resource control and management problems, we briefly sum-
marise them in Table 2.

IV. MACHINE LEARNING BASED NETWORK SLICING
Works applying ML techniques in the context of network
slicing can be grouped into three categories: i) traffic fore-
casting, ii) admission control, and iii) resource allocation.
These categories reflect three key network slicing building
blocks that together aim at ensuring network slicing SLAs
are respected. Figure 8 illustrates the relationships among
these building blocks, as commonly adopted in resource
management models in the literature (e.g., [77], [80]).

The traffic forecasting block allows to predict the evolution
of traffic load and resource usage for slices, over future time
instants. The outcome of the traffic forecasting solution can
be fed into the slice admission control solution and into the
slice resource allocation solution to enable better decisions
(e.g., maximize system resource utilization).

The admission control block decides on the slices/users
to be served in the future, according to various aspects
(e.g., resource availability, resource efficiency or operator
revenue [77]). It can also build on the outcome of the traf-
fic forecasting block for refining admission decisions in an
anticipatory way. Once a slice/user is admitted, the resource
allocation block assigns the resources to each slice/user by
avoiding the over-provisioning and under-provisioning of the
resources and ensuring the SLAs are respected [81]. Here-

8 VOLUME X, 2023



9

TABLE 2: Summary of common ML techniques in network slicing

ML Technique Learning Approache Role in network slicing Description

Random Forest
Supervised

Classification and regression of network traffic
and QoS KPIs

Decision trees are used to infer the model and derive decisions based on the majority of the votes
from all decisions trees.

K-Nearest Neighbors (K-NN) Classification and regression of network traffic
and QoS KPIs

k-closest labeled data points are identified using Euclidean or Manhanttan distance metrics and
a decision is made based on how close two data points are to each other.

Gradient Boosting Classification and regression of network traffic
and QoS KPIs

The outputs of different decision trees are combined to generate decision. A gradient descent
procedure is used to minimize the loss when combining the decision trees.

k-means

Unsupervised

Clustering of end-users or network nodes Group a set of data points into a predefined number of clusters k. It then assigns the data points
to their respective closest clusters.

Autoencoder Network slicing data dimension reduction Feed-forward neural network is used to learn a representation for un-labelled data. It consists of
three components: encoder (i.e. input layer), code (i.e. hidden layer) and decoder (i.e. output layer).

Generative Adversarial Network (GAN) Generate data with similar characteristics to
the real one

Two neural networks are used in this architecture: the generator and the discriminator. The generator
network creates fake data samples, while considering feedback from the discriminator. The
discriminator network classifies fake samples as either real or fake.

Artificial Neural Network (ANN)

Supervised/unsupervised

Extract complex knowledge from a representative
network dataset

It is composed of three layers: input, hidden and output. It is also a feed-forward neural
network because data flows from the input layer to the output layer only in forward direction,
without going backward.

Deep Neural Network (DNN) Assist DRL algorithms as a function approximator in
network slicing resource control and management A DNN is an ANN with more than three hidden layers.

Recurrent Neural Network (RNN)
Sequential data modeling, traffic forecasting and

capturing the temporal variations of service requests
in user mobility

Feedback loops in RNN allow information to flow back into the previous parts of the neural
network, giving them the capability of processing and capturing sequences in the input data.
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are special kinds
of RNNs.

Convolutional Neural Network (CNN) Spatial data modeling, traffic forecasting and
classification in network slicing problems

The first layer in the CNN network is a convolution layer. It is followed by other convolution
layers or max-pooling layers. Each convolution layer is interleaved by a dropout layer which
is used to reduce the over-fitting. Finally, Fully Connected (FC) layers are used to generate the
final desired output.

Transfer Learning (TL) Extract knowledge from a previous network
environment

TL allows to benefit from a pre-trained ML model to solve a new problem or solve the same
problem in a new environment, as long as similar contexts are considered. Technically, it transfers
as much relevant knowledge as possible from a source pre-trained model to a target model.

Federated Learning (FL) Supervised/unsupervised/
reinforcement learning

Decentralized multi-agents collaborative learning
and privacy preserving for traffic forecasting,

resource control and management

FL allows to train the local models and store the corresponding datasets locally, without
exchanging them. However, local models can gain knowledge from each other via shared global
model parameters.

Q-Learning

Reinforcement Learning

Decision making for network slicing resource
control and management

Q-learning is a value-based learning and relies on a Q-table that reflects the Q-value (quality) of
each action in a given state. The ultimate goal of Q-Learning is to find the maximum Q-table.

epsilon-greedy Decision making for network slicing resource
control and management

Selects an action using the greedy policy with a probability of 1− ε and a random action
with a probability of ε.

Upper confidence bounds (UCB) Decision making for network slicing resource
control and management

Select an action with high potential to get an optimal value, by considering an upper confidence
bound on the reward value.

Thompson Sampling Decision making for network slicing resource
control and management

A probabilistic approach, with an action selected based on its probability of being optimal. It is
also called posterior sampling algorithm as its rewards are estimated from the posterior reward
distribution.

Deep Q Network (DQN)

Deep Reinforcement Learning

Decision making for network slicing resource
control and management with high dimensional inputs

DQN uses two Q-networks: current Q-network is used to select the action and target Q-Network
is used to take the values of the corresponding state-action value. DNN is used to estimate the Q-value
function.

Dueling Deep Q Network (DDQN) Decision making for network slicing resource
control and management with high dimensional inputs

DDQN has a single Q-network with a two-stream Q-function: one stream for the state-value function
and and one stream for the action advantage function.

Policy Gradient (PG) Decision making for network slicing resource
control and management with high dimensional inputs

PG is a policy-based method and seeks to directly optimize in the policy space. There are stochastic
policy gradient (SPG) and deterministic policy gradient (DPG).

Actor-Critic (AC) Decision making for network slicing resource
control and management with high dimensional inputs

In AC, a critic derives the value function (i.e. Q-value or state-value) and the actor instructs the
policy distribution according to the evaluation of state-value by the critic.

Deep Deterministic Policy Gradient
(DDPG)

Decision making for network slicing resource
control and management with high dimensional inputs

DDPG is also called a model free off-policy actor-critic algorithm. To leverage the exploration
phase, noise is added to the original policy.

Twin delayed DDPG (TD3) Decision making for network slicing resource
control and management with high dimensional inputs

TD3 is based on the actor-critic methods. It uses clipped double Q-learning with two pairs of
critic networks, delayed update of target and policy networks, and target policy smoothing and
noise regularization.

Proximal Policy Optimization
(PPO)

Decision making for network slicing resource
control and management with high dimensional inputs

PPO relies on the clipped surrogate objective function to limit having the large policy update by
formalizing a constraint on the difference between the new and the old policy.
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after, we survey existing ML-based contributions in network
slicing under the aforementioned three categories.

FIGURE 8: Resource management model in network slicing.

A. TRAFFIC FORECASTING
It is beneficial to know the required resources per slice in ad-
vance, over a certain time interval. This allows to pre-assign
the resources to the slices and avoid SLAs violations [82].
Over the years, non-ML solutions like ARIMA [76] and Holt-
Winters [77] have been widely used for temporal forecasting,
although they are not suitable to extract and predict the
complicated spatiotemporal features of mobile traffic in pres-
ence of user mobility [78]. Because of this, many alternative
ML-based forecasting techniques, and DL-based techniques
in particular, became popular in recent years to extract the
spatiotemporal dependencies of mobile traffic and to lever-
age the automation of end-to-end resource provisioning for
intelligent network slicing [64]. Moreover, one may come
across some empirical studies about the superiority of DL al-
gorithms (e.g., LSTM) over ARIMA and Holt-Winters ( [83],
[84]). In the following, we divide the contributions on traffic
forecasting in network slicing in two categories: i) CNN-
based forecasting and ii) RNN and ANN-based forecasting.

To keep our discussion consistent, we use the term time
interval to denote the duration covered by one sample, as
part of the forecasting task, and the term time window to
denote the time horizon over which the forecasting will take
place. For example, if at 1 PM, we want to forecast the traffic
demand for samples covering 10 minutes each, for a total
of one hour, then we have a forecasting time interval of 10
minutes and a forecasting time window of one hour.

1) CNN-based Forecasting
According to [85], CNN and 2DCNN have major drawbacks
in recognizing temporal features, since they are specifically
designed to work with images. Therefore, the authors in [86]
put forward the Deepcog cost-aware network capacity fore-
casting framework, based on 3DCNN. In this work, historical
trends of antenna-level data traffic for each base station are

used as input to train the model. The cost on the operator
side is associated with resource over-provisioning and SLA
violations. The proposed model is applied separately for
individual mobile services. The objective is to forecast the
network demand based on the spatiotemporal features, so as
to allow for efficient pre-allocation of resources. The authors
also design a unique cost-aware loss function to train their
ML framework and reduce the overall monetary cost of the
operator. Ultimately, their presented framework demonstrates
better outcomes than baseline methods (i.e. non-ML solu-
tions, LSTM and autoencoder) when tested for forecasting
with a five-minute time interval and a time window of up to 8
hours, in terms of resource overprovisioning, SLA violations,
and overall monetary cost. It is also observed that a larger
forecasting time window generally yields higher SLA vio-
lations and overprovisioning of resources. As evidence, the
reported observations show a percentage of SLA violations
and over-provisioning of 3% and 15%, respectively, for a
given slice, when a five-minute prediction time window is
used. These values reach 10% and 30%, respectively, for a
prediction time window of 8h.

Similarly, the work in [87] uses 3DCNN to conduct
forecasting for the same purpose (i.e. to reduce resource
overprovisioning and to proactively deploy the resources to
meet the future demand of slices). Accordingly, their results
confirm that ML-based forecasting can achieve more than
50% reduction of monetary cost in all tested scenarios when
compared to legacy non-ML forecasting methods.

The Deepcog model [86] is extended in [88] by consid-
ering multiple timescales, with both shared and dedicated
resources: a long-timescale over which the instantiation of
resources takes place, and a short-timescale over which re-
sources are reconfigured. The authors propose the AZTEC
framework, composed of four blocks: three blocks based
on 3DCNN to forecast the resource demand for dedicated
(long-timescale) and shared resources (long-timescale and
short-timescale), and one block for a heuristic algorithm for
resource reconfiguration. The objective is also the same as
in [86]; however, their overall cost accounts for more factors
(i.e. resource over-provisioning, SLA violation fees, resource
instantiating fees, and resource reconfiguration fees). The
numerical results suggest that the proposed framework can
achieve better overall monetary cost than without forecasting
for a 24-hour time window, with a long-timescale interval
of 30 minutes and a short-timescale interval of 5 minutes.
Besides, the authors also study the impact of dedicated and
shared resource allocation strategies on the monetary cost of
operators. In particular, they vary the long-timescale interval
from 30 minutes to 2 hours, showing that lower intervals
result in a lower cost.

2) RNN and ANN-based Forecasting
Many research works apply LSTM or one of its variants
(e.g., ConvLSTM) as a forecasting technique, for resource
management purposes or for the automation of network
slicing processes. Although it is one of the most widely used
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ML techniques, LSTM has a relatively high computation
cost. To deal with this, some papers apply low-complexity
GRU methods or simple two-layer and three-layer ANN as
forecasting solutions for network slicing.

Indeed, LSTM is regarded as a promising forecasting tech-
nique for network slicing problems because of its capacity of
learning spatiotemporal and long-term dependencies in data.
With this motivation, [80] applies LSTM in the resource man-
agement processes to forecast the slice bandwidth demand
over a time window of 200 seconds and a time interval of 20
seconds. Based on the experimental performance evaluation,
the LSTM-based algorithm is shown to allow more users to
access the network.

Furthermore, the authors in [89] build a collaborative
learning framework combining LSTM (for large-timescale
traffic forecasting with a 1 hour time interval) and A3C (for
small-timescale traffic scheduling, time interval of several
milliseconds) to improve resource utilization while consid-
ering a slice performance isolation constraint. The simu-
lations show that much higher resource utilization can be
achieved via the proposed collaborative framework against
Q-Learning and classical AC methods, that do not consider
forecasting.

In [90], LSTM, CNN and DNN are used to forecast
traffic for resource management of a vehicular-specific slice,
based on an SDN-enabled 5G network. The simulations show
that LSTM achieves higher average forecasting accuracy
(99.36%) than DNN and CNN (92.58% and 95%, respec-
tively). Likewise, in [91], traffic forecasting using LSTM for
E2E slices is conducted with a time interval of 5 seconds and
a time window of 300 seconds. In this case, the accuracy of
LSTM is three times higher than that of linear regression.

Again, applying the same LSTM technique but taking a
different angle, the authors in [39] establish an efficient slices
resource reservation strategy from the point of view of the SP
(where MVNO data, i.e. aggregated traffic loads and capacity
of base stations, is unknown to SP). Their proposed solution
performs relatively better than the baseline ARIMA model,
using as metrics the MSE, the number of over-reservations
and under-reservations. Their forecasting time interval and
time window are 10 minutes and 744 hours, respectively.

Aside from forecasting slice traffic, LSTM can also be
utilized for other forecasting problems in the sliced cellular
architecture. More specifically, to facilitate the efficient slice
creation by service providers, the work in [38] uses LSTM
to forecast the transmission channel condition, with a 24-
hour forecasting time window and a one-hour time interval.
In this work, the authors feed the output of the LSTM to
a DNN, to decide whether the network can handle a new
slice request or not. The proposed ML-driven approach is
shown to outperform the standard analytical approach. Also,
in [92], LSTM is utilized to forecast user mobility to generate
the states to be dealt with by an A2C solution in charge
of inter-slice resource allocation. They prove that their joint
LSTM-A2C solution outperforms a GAN-DDQN solution
in terms of resource efficiency in dynamic network slicing

environment.
The work in [93] uses a modified version of LSTM to

address the problem of accuracy in forecasting per-service
traffic demands in sliced networks. The authors design an
S2SConvLSTM solution, that combines the sequence-to-
sequence learning paradigm and a convolutional LSTM ap-
proach. The authors achieve high accuracy for traffic fore-
casting over a one-hour time interval. Since S2SConvLSTM
exploits the advantages of both CNN and LSTM, it outper-
forms them in terms of MSE and peak signal-to-noise ratio
(PSNR). Additionally, the proposed method is shown to lead
to good results, for five different types of services, under a
variety of settings. A prediction time interval ranging from
5 minutes to 1 hour, and a prediction time window up to 3
days, were considered in the evaluations. A similar approach
is proposed in [94], where the authors opt to use ConvLSTM
to forecast the traffic variations on a vehicular slice with a
one-hour time interval and a 100-hour time window. In a sub-
sequent step, the authors evaluate the demand of the vehicular
slice and pre-allocate the necessary resources, using primal-
dual linear programming technique. They do so, under the
constraint of respecting the stringent latency requirements of
vehicular services.

Based on this rich literature, it is reasonable to say that
LSTM and its variants have been widely used for forecasting
network slice traffic and resource utilization. However, the
computation cost of LSTM is relatively higher when com-
pared to other techniques such as GRU for the same forecast-
ing task [95]. With this in mind, the authors of [96] design
a light and simplified GRU solution for forecasting resource
usage per network slice over time. In their solution, the reset
gate is excluded and a different activation function (softplus
instead of tanh) is used in the update gate. This is shown to
allow for a fast forecasting of the hourly resource usage in a
network slice, while considering a time window of 120 hours.
The authors propose to enforce the SLA constraints and
minimize the MSE loss function in their forecasting-based
network slicing resource management model. According to
their experimental outcomes, the light GRU solution has
much shorter computation time than LSTM due to its simpler
architecture.

An even more simplified GRU approach (called soft GRU)
is used in [40] for slice traffic forecasting. Soft GRU uses
the same architecture as light GRU, except for the fact that
input data is optimized by suppressing the historical data.
As illustrated in the paper, while both soft and light GRU
show the same forecasting accuracy in an hourly interval of a
weekly time window, soft GRU has better computation time
than its counterparts (i.e. LSTM, light GRU, and standard
GRU). Equivalently, the work in [97] integrates GRU in
the resource orchestrator of an SDN-based CN to predict
the traffic variation of each slice in the next time interval
of 1 hour. However, no evaluations are conducted for this
presented framework.

In contrast to the previously discussed works, that disre-
gard data privacy in network slicing, the authors of [98]
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TABLE 3: ML-based forecasting techniques in network slicing. "NA" means the required information is "Not Mentioned" in the paper itself.

Ref Focus Forecasting technique Forecasting item Time interval Time window Evaluation method

[86] Minimize resource overprovision
and SLA violations 3DCNN Total traffic per slice 5 minutes 8 hours

Real-world dataset from video streaming (11 eNodeBs) ,
Snapchat (70 eNodeB),
Facebook (470 eNodeB).

[88] Minimize overall monetary
cost of operators 3DCNN Total traffic per slice 5-30 minutes 24 hours

Real-world dataset from video streaming (11 eNodeBs),
Snapchat (70 eNodeB),
Facebook (470 eNodeB)

[87] Miminize resource overprovision
and SLA violations 3DCNN Total traffic per slice NA NA

Real-world dataset from video streaming (11 eNodeBs),
Snapchat (70 eNodeB),
Facebook (470 eNodeB)

[80] Maximize user acceptance LSTM Bandwidth requirement
per slice 20 seconds 200 seconds Traffic dataset is generated using iperf3

[89] Maximize resource utilization LSTM Total traffic per slice one hour NA Traffic dataset is generated based on
Gaussian distribution

[90] Maximize forecasting accuracy LSTM, CNN, DNN Total traffic per slice NA NA Traffic dataset is generated using light-weight fork
of mininet emulator

[91] Maximize throughput, delay and
link utilization LSTM Total traffic per slice 5 seconds 300 seconds Traffic dataset is generated using iperf

[39] Minimize resource reservation
made by Service Provider LSTM, DNN Total traffic per slice 10 minutes 72 hours

Real-world data is collected from 15 base stations
owned by a major MNO within the city of Shanghai,
where data is recorded for 1 month period

[38] Maximize SLA requirements LSTM Transmission channel and
per slice admission decision one hour 24 hours

Traffic dataset is generated using ATERR mechanism
in the NS-3 Network Simulator,
simulated scenario recorded 24 hours

[92] Maximize resource utilization LSTM Track the user mobility
to create the network state NA NA

Traffic dataset is generated from a simulation over an
area of 240m × 240m, with 1200 UEs
within the same slice sharing the moving pattern

[93] Mimimize MAE S2SConvLSTM Total traffic per slice 5, 30,60 minutes3 days Real-world traffic dataset is generated from 792 antennas
aggregated every 5 minutes

[94] Minimize latency ConvoLSTM Total traffic per slice one hour 100 hours Real-world traffic dataset is collected from Milan, Italy
for three types of services SMS, phone and web traffic

[96] Minimize loss function and
maximize SLA Light and simplified GRUResource usage per slice one hour 120 hours Real-world traffic dataset is from a live cellular network

recorded over five days for sites located in a dense urban area

[40] Trade-off between resource over-provisioning
and slices isolation Soft GRU Total traffic per slice one hour 3 days Real-world traffic dataset is from a live cellular network

recorded over five days for sites located in a dense urban area

[97] Minimize reconfiguration penalties
and the power consumption GRU Total traffic per slice one hour NA Real-world traffic dataset is collected from

MBB service of Milan, Italy

[98] Minimize RMSE FPLSTM Total traffic per slice per base station10 minutes 2 days Real-world traffic dataset is collected from
57 eNodeB of Orange network, France

[99] Maximize prediction accuracy three-layer ANN Total traffic per link 15 minutes 24 hours Real-world traffic dataset is from optical network
of China Telecom Corporation

[100]Minimize services degradation three-layer ANN,
two-layer ANN, FL Service KPIs per slice NA NA Traffic dataset is generated using simulator based

on Open-AirInterface (OAI) platform

[101]Minimize MSE TL-based DNN Total traffic per slice one hour one week Real-world traffic dataset is collected from
commercial 5G (Sub-6 GHz and mmWave) networks



13

Phyu et al.: Machine Learning in Network Slicing - A Survey

attempt to forecast the per-slice traffic, at the base station
level, while considering data privacy concerns as well as
communication and computation efficiency. To this end, they
rely on the Federated Proximal LSTM (FPLSTM) approach,
in which slice instances (controlled by MVNOs) train local
models with private datasets at the corresponding base sta-
tions, and only share trained model parameters with a global
model operating on a central node (managed by InP). Hence,
no data is shared among the parties and data privacy of
MVNOs is guarantee. Their results show that the forecasting
accuracy of their model is very close to that of a centralized
model. Besides, since local models benefit from each other’s
knowledge, through the global model, learning rate is accel-
erated and notorious computation cost of LSTM is reduced.

The substantial advantages of RNN techniques, such as
LSTM and GRU, cannot be disregarded when considering
traffic forecasting tasks, as they are specifically designed to
account for temporal dynamic behavior. However, we note
that the feasibility of simple ANN solutions in the context
of slice traffic forecasting was also investigated by some
works. In particular, the work in [99] selects a three-layer
ANN design to forecast the traffic load of each slice, with
a 15-minute interval and a 24-hour time window, to proac-
tively allocate resources in the optical transport network. The
numerical results demonstrate that allocating the adequate
amount of resources in advance provides better delay and
lower blocking probability.

Besides, in [100], two-layer and three-layer ANNs are
employed in a decentralized federated learning framework.
Accordingly, service-oriented KPIs belonging to each slice
are forecasted by local models (managed by SP or ST). The
local models send only the extracted features to the central
model (managed by InP or MVNO) for aggregation purposes.
This approach protects the privacy and sensitivity of the
information related to individual slices. The simulation con-
ducted by the authors suggests that the outcomes of this FL
solution are comparable to the centralized model in terms of
MSE, while respecting the privacy of network slices. Besides,
FL can significantly reduce the communication overhead, up
to five times lower than a centralized model.

Typically, ML models for traffic forecasting are trained
on large datasets, an operation which is time-consuming.
To deal with this, the authors in [101] rely on TL-based
DNN for traffic forecasting per slice. More precisely, they
initialize the weights of their model with the weights of a pre-
trained model on a similar task to perform the per slice traffic
forecasting. Their TL-based forecasting model exhibits better
MSE loss than a baseline ML model (where model weights
are initialized randomly) while ensuring sample efficiency.

3) Lessons Learned
It is quite obvious from the literature that forecasting mo-
bile traffic demand brings significant benefits to resource
management and QoS-oriented mechanisms, enabling an
increased automation in the network slicing process [96].
Therefore, numerous DL-based forecasting solutions have

been proposed, as detailed above. It is noteworthy that differ-
ent forecasting time intervals, associated with different time
windows, are considered in the existing state of the art.

Generally, we observe that the duration of the considered
time interval ranges from a minimum of several seconds to a
maximum of one hour. On the other hand, in terms of the time
window, most of the works consider a minimum of several
seconds and a maximum value in the order of weeks. This is
a consequence of the number of problems that can benefit
from the forecasting function, which are diverse in terms
of requirements. For example, large reconfiguration periods
(i.e. minutes or hours time interval) are acceptable for VNF
dimensioning in the CN (see for instance [40], [86], [88],
[96], [97]), while forecasting of traffic in the RAN needs to
cover the requirements of the radio resource reconfiguration
process (i.e. below-second time interval, see for instance
[80], [89], [91]). Also, while mobile traffic demand shows
significant periodicity at a daily and weekly time scales, it
presents significant dynamics at the minute time scale. This
means that using a large forecasting time window would be
adequate in some cases, and using a smaller one would be
adequate in others.

All in all, it is sensible to stress that, in general, integrating
the forecasting function in the network slicing framework
leads to better outcomes. Notably, LSTM is a quite popular
method, and its modified version S2SConvLSTM outper-
forms CNN, 3DCNN, LSTM in terms of MAE and PSNR
values. It is also worth noting that GRU shall be a better
choice if one is looking for a lower computation time than
LSTM. Overall, each of these forecasting methods has its
benefits and its disadvantages. To the best of our knowl-
edge, none of the papers explicitly answers when to use one
forecasting technique over the others. Therefore, it is hard
to say that one unique method is universal. Table 3 gives a
comprehensive summary of all contributions on ML-driven
forecasting in network slicing.

B. ADMISSION CONTROL
Admission control systems operate at two levels: slice ad-
mission and end-user admission. Slice admission control is
relevant to the InP, whereas end-user admission control is
relevant to the MVNO [13]. Recently, some research works
also study two-level admission control systems whereby both
slices and end-users admissions are covered simultaneously
[102]. We present accordingly contributions on admission
control, under the following three categories: (i) Slice Ad-
mission Control (ii) End-User Admission Control and (iii)
Two-level Admission Control.

1) Slice Admission Control
Slice admission control can be event-driven or periodic [103].
More specifically, as slice requests arrive in the system,
operators might want to trigger a slice admission decision
(i.e., reject or accept) immediately upon slice arrival [80].
Alternatively, operators might want to manage decisions
periodically by holding the slice requests in a queues [87].
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Both the event-driven and periodic slice admission problems
can be modeled as MDP [103].

In terms of event-driven admission control, the authors
in [27] model the RAN slice admission control problem as
sMDP, to deal with the stochastic arrival of slices on the
go. They consider two types of slices: inelastic slices, that
require constant throughput, and elastic slices, that do not
require a constant throughput. The authors utilize the Q-
learning method for deriving decisions. They do so with the
objective of maximizing the long-term revenue, by choosing
an adequate action (i.e. accepting or rejecting slices). As
shown in the simulation results, the algorithm tends to admit
more inelastic slices (which generate higher revenues) than
elastic slices and yet provides a better reward level than other
benchmark solutions. Similarly, the work in [104] models
the slice admission problem in a fog-enabled network using
sMDP. The authors use DDQN to solve the problem. Their
results show that between 10% to 60% higher revenues can
be obtained, with respect to baseline methods.

In [105], the authors also consider an event-driven slice
admission scheme, under a limited network transmission
capacity, in the context of Next-Generation RAN (NG-RAN).
More specifically, their problem is based on the model-aware
MAB problem, with two additional constraints, taking into
account the system capacity and the slice life cycle. To solve
the problem, the authors rely on a low-complexity enhanced
UCB algorithm to select the slices for admission, according
to resource multiplexing gains. To validate the effectiveness
of the proposed framework, the authors run the proposed
algorithm in an LTE commercial system. Their model is
shown to allow accepting more slices and enabling a better
system utilization, when compared to random and greedy
approaches. When it comes to periodic admission control
schemes, slices requests are buffered in a queue over a given
period of time. Requests are then processed sequentially, at
the end of the period [103]. Accordingly, the authors in [79]
employ a DQN approach which observes the system queue
length and resource availability and aims at maximizing
the resource utilization and minimizing the queue length.
Their simulated results reveal that the DQN is superior to
Q-Learning, Greedy, and Random algorithms, in terms of
average utility for each service request.

Yet, in practice, simply admitting slices in a periodic ad-
mission control scheme would not help to increase the profits
of the operator [81]. In fact, during the periodic servicing
time, slices requirements may vary and SLA violations could
occur if the operator doesn’t satisfy potential additional slices
resources requirements on time. With this consideration,
the work in [106] exploits RL for slice admission control
processes, in a C-RAN architecture. The objective is to
reduce the penalty fees, incurred by the violation of SLAs.
Specifically, the RL agent is designed to learn the relationship
between slice acceptance/rejection and the incurred overall
profits. The findings exhibit that RL provides a significant
reduction in losses of the operator (64 to 80 % reduction
for low network loads and 14 to 39 % reduction for high

network loads), with respect to a benchmark model, that
admits slices whenever resources are available. With the
same spirit, in [107], the authors use the policy-based RL
to derive periodic slices admission decisions. They do so,
while considering obtained reward parameters (i.e., a sum
of all rewards from already admitted slice and potential new
slice admission). The evaluation shows that RL achieves
approximately 75% to 30% reduction in penalty for a slice,
than baseline approaches.

Equivalently, the authors in [108] establish a network slice
admission and congestion control system, integrated with
the 3GPP network slice deployment framework [109]. Their
ultimate goal is to maximize the resource utilization, while
reducing the blocking probability of high priority slices.
Eventually, this allows to maximize as well the InP revenue.
To do so, the authors map the incoming slice requests from
the queue into NSIs, which are composed of a set of NFs
spanning across the RAN, TN, and cloud. For slice admis-
sion, SARSA is integrated with Linear Function Approxi-
mation (LFA) to solve the MDP. The proposed approach is
shown to present superior results to the greedy approach, in
terms of long-term reward and slice blocking probability.

While some papers are focusing only on the admission
control part, other papers are coupling the admission con-
trol function with the forecasting or resource allocation
function. We note that periodic decision models are those
combined with the forecasting and resource allocation func-
tions. Accordingly, the empirical study in [77] suggests that
forecasting-aware admission control outperforms admission
control function without forecasting. However, this comes at
the cost of slightly longer computation time (approximately
3514 seconds for 30 slice requests, which remains acceptable
in overall system implementation). In [80], the authors con-
sider a heuristic-based admission control approach, coupled
with an LSTM-based traffic forecasting method. A higher
user acceptance rate is obtained with the proposed scheme,
resulting in approximately 18% more revenues to the InP,
with respect to a baseline scheme.

The authors in [110], jointly consider the problems of slice
admission and resource allocation, with a focus on beyond
5G RAN, with a cell-free mMIMO setup. They assume a
single type of VNF exists per slice and rely on a modified
deterministic actor-critic algorithm (called D-TD3 with state-
action distribution function) for solving the problems. Their
objective is to do so, while minimizing the network deploy-
ment cost. The reward clipping mechanism is utilized in this
work to avoid destabilization in the training period. The sim-
ulation results suggest that, in general, D-TD3 carters better
results than baseline methods (i.e. DDPG, Stochastic AC,
TD-3) in terms of average return level, admission rate, CPU
utilization, average delay, and average power consumption.
With the same objective as in [110], the works in [111], [112]
and [113] formalize the joint slice admission and resource
allocation problem, for network slicing, in a 5G C-RAN
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TABLE 4: Summary table of ML-based Admission Control in Network Slicing. Column Titles: "Input", "Decision" and "Objective" are relevant only for the papers
which use combination of DL and heuristics. "NA" means the required information is "Not Applicable".

Scope Ref Focus ML Technique Model State/Input Action/Decision Reward/Objective
[27] Maximize long-term revenue of InP Q-Learning sMDP Number of slices and new slice arrival and departureAdmit or reject slices Prices per unit time paid by slices

[104]Maximize long-term revenue of InP Dueling DQN sMDP
Slices request arrival,
available InP resources and Fog resources

Admit slice with borrowing
resources from tenants,
Admit slice w/o borrowing
resources from tenants
or reject slice

Reward associated to taking action

[105]Maximize multiplexing gain enhanced UCB algorithm model-aware MABArms are considered as slices Admit or reject slices
Resources asked by slices and
multiplexing gain

[79]
Maximize resource utilization and
minimizing queue length

DQN MDP Queue length and available resources Admit or reject slices
Successfully serving requests minus
the cost of the queue delay

[106]Maximize overall profits ANN MDP Resource utilization and slice requirements Admit or reject slices Overall profits minus penalty cost

[107]Maximize overall profits Policy-based RL MDP Slice requests Admit or reject slices
Total profits from already admitted
slice and potential new slice admission

[108]Maximize overall profits SARSA MDP Queue length and available resources Admit or reject slices
Profit for accepting slices and
loss for dropping slices

[80]
Maximize acceptance of slice and
resource utilization

LSTM-Heuristic NA UE new traffic flow requests Admit or reject slice
To maximize the number of acceptance slice
and resource utilization

[38] Maximize SLA requirements of slices LSTM-DNN NA Characteristic of wireless transmission channel Fulfill new slice SLAs or not To enhance SLA requirements of slices

[110]
Minimizing latency, energy
consumption and VNF instantiation cost

D-TD3 MDP
Number of slice arrivals, allocated CPU resources,
the overall delay, energy status and
the number of users per slice

Scaling up and down of CPU
and beam-forming power

SINR threshold and penalty cost for
violating the pre-defined constraints

[111]
Minimizing latency, energy
consumption and VNF instantiation cost

TD-3 MDP
Number of new UEs, computing resource allocation
to each VNF, number of UEs being served, delay
and energy status, VNF instantiation cost

Scaling up and down of resources Total network cost

[112]
Minimizing latency, energy
consumption and VNF instantiation cost

enhanced TD-3 MDP
Number of new UEs, computing resource allocation
to each VNF, number of UEs being served, delay
and energy status, VNF instantiation cost

Scaling up and down of resources Total network cost

[113]Maximize InP revenue
Slicing agent-PPO
AC agent-PPO

MDP
Type of slice request, operational time
offered revenue, substrate network status

Slicing agent: slice embedded or not
AC agent: admit or reject slice

Slicing agent: Positive reward if slice is
embedded and accepted
AC agent: Positive reward if slice is accepted

[114]
Maximize the revenue of InP and
quality of end-to-end services

GRM: DQN
LRM: DQN

MDP
GRM: The number of accepted slice requests
LRM: QoS of admitted slices

GRM: Admit or Reject Slices
LRM: Permit slice adaptation or not

GRM: Average slice utility
LRM: Net profits of InP

Sl
ic

e
L

ev
el

[115]
Maximize the number of
accepted slice

DDQN sMDP
Number of slices in a given class
and new slice request

Admit or reject Slice Total Slice acceptance

[116]
Maximize successfully transmission
of requested traffic flow

GCN NA Traffic flow requests
Flow requests mapping to
appropriate slice

To improve transmitted success rate
of traffic flows

[117]
Maximize network utilization and
availability

Random Forest-DNN NA Users’ devices KPI datasets Slice selection
To enhance network utilization and
availability

[118]Maximize overall profits DQN sMDP Resource weight assigned to the users by slice Admit or reject users Payment from Slice Tenant

[119]
Maximize caching performance and
throughput and minimize delay

DQN MDP
Channel coefficient, residual bits and slots,
cache feature, cache state, current request

Content selection to cache
and mode selection of users

Constraints satisfaction and
cache hit rate

[120]Maximize network performance Q-Learning MDP Current mode selection of UEs
User selection of
fog-RAN or RRU

Constraints satisfaction and
power-minus-rate function

U
se

r-
L

ev
el

[121]
Maximize the RB utilization and
minimize the operation cost

Ensemble Learning MethodMDP
User throughput fulfilment rate,
request error rate of users,
RB availability ratio

Increase or decrease weight of
resource allocation, modification,
threshold of scale-in and scale-out

Reward associated to taking action

[122]
Maximize resource fulfillment satisfaction
and minimize interference among slices

DQN MDP Network control parameters and KPI report
Increase or decrease or
keep the control parameter

KPI satifaction

Tw
o-

le
ve

l

[123]
Maximize multiplexing gain and
minimize interference among slices

three-layer ANN NA
Network control parameters
and network condition vector

Network KPIs
To improve multiplexing gain
and interference among slices
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network. These works consider more than one VNF per
slice. They apply the TD-3 method [111], an enhanced TD-
3 approach [112] and a multi-agent PPO technique [17]
(i.e. Slicing agent1 and AC agent2) to achieve a more stable
and faster learning process and to meet the desired objec-
tives. The proposed approach is shown to outperform other
baseline methods (i.e. DDPG, Stochastic AC and Greedy
approaches). Similarly, the authors of [114] and [115] rely
on the DQN and DDQN to establish a joint slice admission
and resource allocation framework to achieve higher InP
revenues and QoS. Their presented mechanism outperforms
Q-Learning and Greedy approaches in terms of long-term
revenues and user acceptance rates.

2) End-User Admission Control
As for the end-user admission control problem, it is com-
monly assumed that slices are already deployed in the net-
work, with the slices information (i.e. capacity of slices)
given. Both supervised learning approaches and RL ap-
proaches are used for solving end-user admission control
problem.

The work in [116] attempts to map traffic flows of end-
users to pre-deployed slices, by utilizing a supervised learn-
ing method. Precisely, the authors resort to the edge-based
GCN method to predict to which slice a traffic flow request
should be admitted. They aim to do so, while maximizing
successful transmission of requested traffic, over network
slices. Their results show that GCN-based approach out-
performs random, round-robin, and Multi-Layer Perceptron
(MLP) methods in terms of successful transmission rate and
amount of transmitted data.

In [117], the authors exploit supervised learning and un-
supervised learning techniques, namely random forest and
DNN techniques, to map incoming user requests to the ap-
propriate network slices. They derive their decisions, with the
objective of enabling load balancing among slices. Random
forest is applied to classify well-structured data (i.e. network
KPIs), and DNN is used to classify unstructured ones. Be-
sides, a master slice is considered in this work. In case a
non-master slice (i.e. eMBB or URLLC or mMTC) fails or
gets overloaded, end-users traffic could be redirected to the
master slice. Based on the results, the mechanism is shown
to address slice failure issues, while predicting with a high
accuracy the slice types onto which users should be admitted.

While previously discussed works apply supervised and
unsupervised approaches for end-user admission control, the
study in [118] applies reinforcement learning, and in par-
ticular DQN, to admit users in real-time. The objective is
to maximize MVNOs profits. Accordingly, the problem is
modeled as sMDP. The results show that DQN outperforms
Q-Leaning and random approaches, in terms of system utility
and average system throughput.

1Slicing agent ensures the efficient slice embedding to the substrate
network

2AC agent ensures the slice instances are admitted by means of maximis-
ing the InP revenue

The works in [119] and [120] study the problem of end-
user admission, while considering two types of users (i.e.,
eMBB users and vehicular users). Users are to be admitted
to a hotspot slice instance and a vehicular-to-infrastructure
(V2I) slice instance, in a fog-RAN setting. To solve the
problem, the authors rely on a DQN agent [119] and a Q-
Learning agent [120]. Their objective is to maximize the
reward, encompassing content caching performance in the
fog-RAN, as well as throughput and delay over the slices.
Based on the simulation results, the proposed mechanisms
are shown to be superior to other baseline methods, in terms
of cumulative reward, associated with their objective func-
tions.

Similarly, the authors in [121] address the end-user ad-
mission problem, and rely on a DRL approach to solve it.
In particular, the ensemble learning method (ELM), which
exploits the benefits of SPG and Approximation Framework
(AF), is used. The authors compare the performance of SPG
and AF and show that, as expected, SPG achieves higher
rewards than AF, while AF converges faster than SPG. ELM
is also shown to outperform SPG and AF in terms of resource
block (RB) utilization and user admission rate.

3) Two-Level Admission Control
All works in the previous two subsections tackle one of two
problems of slice admission or end-user admission. None of
them considers the two problems jointly. In fact, by consid-
ering the requirements of both slices and users, it is possible
to build efficient two-level admission control systems [102].

The authors in [122] formulate the two-level admission
control problem by considering both the slice and end-users
to satisfy the end-users QoS requirements while ensuring the
isolation among slices. In this regard, they utilize a heuristic-
based Jacobian (J matrix) to monitor the violations of prede-
fined KPIs and resolve them by adjusting the corresponding
control parameters (i.e. weight of the slice, capacity limit of
the slice) iteratively. Consequently, DQN is deployed to find
the near-optimal value from the scratch based on the control
parameters and KPIs status of each service. On top of that,
they establish the hybrid of J matrix and DQN where the J
matrix changes the control parameter based on the decisions
made by the DQN agent. According to their assessment,
the hybrid model provides the nearest optimal value (approx
0.1% gap with optimal value) over other baseline methods.

The same problem is tackled in [123], with another ap-
proach. The authors consider a three-layer ANN to estimate
the J matrix, based on the control parameters and network
conditions. The results show that the results of the J matrix
and ANN are comparable.

4) Lessons Learned
Indeed, admission control is one of the main building blocks
of network slicing. Incorporating ML techniques to this end
further helps operators maximize their revenues, while ensur-
ing SLAs. In fact, admitting a maximum of users/slices can
help maximize the long-term operator revenue [124]. Nev-
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ertheless, by admitting more users/slices, Key Performance
Indicators (KPIs) may degrade, leading to SLA violations
and potential penalty fees [81]. Thus, it is essential to main-
tain the balance between resource utilization and KPIs values
[27]. It is worthwhile to stress that these aspects could be
covered by a proper reward function design in an MDP/MAB
model.

Furthermore, it is worth noting that supervised learning
was commonly used for end-user admission control, while
model-free RL methods are commonly applied for slice
admission control and two-level admission control. Overall,
MDP formulation was mostly used throughout these works.
More specifically, states usually represent the number of
accepted slices/users, actions represent the acceptance or
rejection of slices/users’, and rewards are mostly evaluated
as the overall profits of operators. Finally, as of our knowl-
edge, ML-based techniques used so far for slice admission
control problems are still in their infancy and need further
explorations and verification. For ease of reference, all the
existing works related to ML-driven admission control in
network slicing are summarized in Table 4.

C. SLICE RESOURCE ALLOCATION
In recent years, a large number of studies have applied ML
techniques to solve complex resource allocation problems in
network slicing. These problems target the different network
domains, where different types of resources are implied. For
instance, spectrum (a.k.a resource blocks (RBs), frequency-
time blocks) and transmit power are the main resources in
the RAN domain. Wavelength and bandwidth are the main
resources in TN. Finally, VNFs, CPUs, and memory are the
major one in CN domain.

In this section, we review contributions on network slicing
resource allocation with ML techniques, while considering
the following categories: (i) resource allocation in RAN, (ii)
resource allocation in CN, (iii) resource allocation in TN,
(iv) resource allocation in RAN and CN and (v) end-to-end
resource allocation.

1) Resource Allocation in RAN
A considerable amount of works on network slicing targets
resource allocation in RAN, by exploring various ML-based
techniques. RAN domain slicing implies RAN resources (i.e.
spectrum, transmit powers, etc.) sharing and allocation [125].

The resource allocation scheme can be coarse-grained
or fine-grained. In a coarse-grained resource allocation ap-
proach, resources are provisioned to slices by considering
merely average slice-level QoS requirements (i.e. average
slice throughput, average slice latency, etc.) and without tak-
ing into account any end-user level requirements. Instead, a
fine-grained resource allocation approach allocates resources
(i.e., Resource Blocks (RBs), CPU and transmit power, etc.)
to the UEs of each slice by taking into account the end-
user QoS satisfaction level. Technically, the LTE subframe
is considered for RBs allocation [126]. It includes 12 consec-
utive sub-carriers (i.e. 180kHz) per RB in 1-ms Transmission

Time Interval (TTI). It is commonly assumed in papers that
RBs are shared through the Orthogonal Frequency-Division
Multiple-Access (OFDMA) method for downlink (DL) trans-
mission to address the interference issues among UEs [127].

Notably, traffic variations at slice-level can be observed
over time intervals in the order of hours/days. Instead, users
traffic variations can be observed over time intervals in the or-
der of minutes/seconds [128]. Accordingly, large timescale is
generally considered for coarse-grained slice-level resource
allocation and small timescale is considered for fine-grained
user-level resource allocation.

While most of the RAN resource allocation contributions
introduce a coarse-grained or a fine-grained approach, a few
introduce two-level resource allocation schemes with both
coarse-grained and fine-grained approaches. Thus, we group
contributions under the following categories: (i) Coarse-
grained Resource Allocation (ii) Fine-grained Resource Al-
location, and (iii) Two-level resource allocation.

Coarse-grained Resource Allocation: Both RL and super-
vised/unsupervised methods are employed for coarse-grained
resource allocation. As mentioned earlier, coarse-grained
resource allocation targets average slice-level requirements.
In this regard, the work in [129] relies on the DQN-based
algorithm to tackle the inter-slices bandwidth allocation
problem, while considering high traffic variations among
slices. A discrete normalized advantage function (DNAF) is
integrated into DQN to leverage faster convergence to cope
with a larger action space. The numerical results show the
superior performance of DNAF-based DQN over classical
DQN. However, the proposed DNAF-based approach could
not balance between QoS and spectrum efficiency (SE) and
that calls for further investigations. Attempting to investigate
the trade-off between QoS and SE, the authors of [130]
deploy DQN to allocate bandwidth resources to slices, while
considering 25 use cases of NGMN [6]. Interestingly, the user
satisfaction score is above 80% for all the use cases with
minimum bandwidth allocation. However, no comparisons
are done with existing counterparts.

The authors in [131] study the same problem as in [129].
They employ a Generative Adversarial Network (GAN)-
based DDQN approach [132] to have a better estimation
of expectation of state-action values (i.e. Q-value). By that,
they aim to overcome potential oscillations in the Q-value
estimation [133], that exist with classical RL techniques.
Besides, for more stability in the training process, they then
utilize the reward clipping mechanism (a.k.a reward reshap-
ing), attributing a value to the reward in [−1, 0, 1], according
to specific constraints. Through numerical results, it can be
seen that the proposed framework provides better results in
terms of system utilization, with respect to classical DQN.
Moreover, with reward clipping, their system is shown to
converge with a higher system utilization.

Exploiting the benefits of dual connectivity (DC)3, the

3Dual connectivity allows UE to access the resources from different
eNodeBs simultaneously
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TABLE 5: Summary table of ML-based Resource Allocation in Network Slicing. Column Titles: "Input", "Decision" and "Objective" are relevant only for the papers
which use a combination of DL and heuristics. NA" means the required information is "Not Applicable".

Scope Ref Focus ML Technique Model State/Input Action/Decision Reward/Objective

[129]
Maximize the long-term spectrum
efficiency and QoE

DNAF-based DQN MDP Traffic variation per slice Bandwidth allocation to slice Combination of spectrum efficiency and QoE

[130]
Maximize resource utilization
and QoS

DQN MDP
SINR, latency, arrival rate, error rates
and packet size

Bandwidth allocation to slice User satisfaction ratio

[131]
Maximize the long-term spectrum
efficiency and QoE

GAN based DDQN MDP Traffic variation per slice Amount of bandwidth allocated per slice Combination of spectrum efficiency and QoE

[134]
Maximize the long-term utility
and QoE

LSTM-D3QN MDP Number of successful transmitted packet Amount of bandwidth allocated per slice User satisfaction for throughput and QoE

[135]
Maximize the long-term utility
of bandwidth resources

DQN MDP Traffic Volume per slice Amount of bandwidth allocated per slice
Combination of spectrum efficiency and
utility models of applications

[136]
Maximize the resource utilization
efficiency

Q-Learning MDP Number of slices requests Resource allocation to slice Overall utility of slices

[137]
Maximize the grade of service (GoS)
and utilization

DQN MDP
Slice status, available resources of fog node
and current load of fog node

Decision of whether Fog node or cloud
serves the slice

Reward for accepting or rejecting of
high-utility and low-utility slice

[94] Minimize system delay ConvoLSTM-heuristic NA Historical service Data Resource distribution of each slice System delay

[138]
Minimize the long-term
network operation revenue

DQN-CNN-LSTM MDP
Slice resource status, QoS level and
vehicular traffic density and number
of VUEs per slice

Adjustment of network slicing configuration
scheme

Combination of latency, reliability requirements
and cost function of network resources
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[139]Maximize system throughput Supervised MLs NA Slices’ traffic profile and slice blueprints Slices’ requirements classification To enhance system throughput
[140]Minimize the latency Enhanced MAB algorithmMDP/MABSlicing PRB resource configuration for different slicesSlices resource allocation ratio Latency status of each slice
[141]Maximize the network utility Q-Learning MDP Resource availability and slice request Resource allocation to slice User resource requirement satisfaction

[142]
Maximize the long-term
RBs utilization

Offline Q-Learning MDP Slice status and number of UEs in the network Slice resource allocation ratio Normalized resource utilization

[143]
Minimize the violations of
URLLC constraints and rate violations
threshold of eMBB users

Four-layered DNN NA Reported CSI Beamforming weights
To improve delay and rate violation threshold
of URLLC and eMBB users

[144]
Minimize the overall energy cost
of system

DNN NA Wireless channel gains, tasks’ deadline Set of selection slice To improve the overall energy cost of system

[145]Minimize inter-numerology interference DQN MDP
Sub channel gain of each user
and INI power status on each sub channel

Feasible subchannel allocation to slice Overall throughput of users associated to slice

[146]Maximize the slice utility DQN and A2C MDP
Graph Attention Network (GAT):
Spatial and temporal correlation and variations
of base stations

Bandwidth allocation to slice
Combination of QoS satisfaction
and resource efficiency

[147]
Maximize the slice satisfaction
and minimize RB allocation

DQN based Ape-X MDP
Network slice satisfaction ration,
RB utilization ration and slice status

Increase or decrease or no change of number
of RBs allocated to slice

Combination of network slice satisfaction
and resource block utilization

[148]
Minimize operational cost and
maximize QoS

SAE, AC and DNN CB Traffic arrivals, Mean and variance of SNR RBs, MCS and CPU scheduling policies
Combination of performance, decoding
error probability and resource usage

[149]Minimize OPEX of InP DNN NA
Services Traffic, CQI, MIMO full-rank,
PRB, CPU consumption, RRC connected users

Number of DL PRBs allocated to slices OPEX of InP

[127]Maximize the end-users throughput B&C and LSTM NA
RAN conditions, Fronthaul
and computing capacity

Optimal RAN resource allocation at user level End-users throughput

[150]Maximize the QoS: energy and queue delaySAC cMDP Channel, battery and queue length status Channel selection and energy harvesting time
Total throughput of users for all the
slices in the system

[151]Maximize slice throughput
Adaptive Interior-point
Policy Optimization (IPO)

cMDP Number of users in each slice Bandwidth assignment for each type of users Total throughput of all slices

[152]
Maximize the profit of service
provider

DQN MDP
Location of user, task arrival of user and queue
size of user

Decision of computing offloading and
packet scheduling

Combination of utility of users per
slice and slice payment
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[153]Maximize the overall utility of slice DQN MDP
Number of slices requests and
energy efficiency of slices

A set of feasible action (i.e. Transmission Power
and Spreading Factor selection for slice)

Throughput and delay of devices
associated to slice
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work in [134] formulates the multi-slice resource allocation
problem in RAN, which is composed of macro and small
cells. To this end, they introduce the dueling double deep
Q-network with LSTM (LSTM-D3QN), in which network
state is inferred and yet leverage efficient mapping from state
to action. Their numerical results show that their solution is
superior to its counterparts (i.e. LSTM-A2C and DQN) in
terms of resource utilization and QoE. Besides, DC-based
network slicing shows better resource efficiency and QoE
than the one without DC.

Coarse-grained resource allocation has also been investi-
gated for network slicing in the RAN domain, for specific
use cases (i.e. smart grid and V2X use cases).

The work in [135] focuses on the bandwidth allocation
to RAN slices to serve various types of smart grid traffic,
with the objective of maximizing the utility of bandwidth re-
sources. They assume slices serve two types of applications:
elastic applications (not sensitive to bandwidth requirements)
and real-time applications (with a minimum requirement on
QoS to satisfy). Then, they rely on a DQN approach to
allocate bandwidth to slices, while maximizing a reward
function, combining spectrum efficiency and the utility of
slices. Moreover, they consider a double DQN approach and
compare the convergence rate of both approaches in terms of
reward value. Both DQN and double DQN show comparable
results.

Similarly, the authors in [136] study coarse-grained slices
resource allocation for V2X services. They use simple Q-
Learning to maximize the resource utilization of multiple
slices in the network. Their Q-Learning approach is shown
to be superior to a fair and a greedy resource allocation
approaches, in terms of utility score. Likewise, the work in
[137] targets resource allocation for multiple slices, offer-
ing services to vehicular and smart cities’ users. DQN is
used to derive decisions, on whether request tasks will be
served with edge or core resources. The numerical results
show that, with respect to benchmark solutions, the proposed
approach presents the highest performance in terms of reward
(i.e. encompassing utility, grade-of-service (GoS) and cloud
avoidance4).

As V2X services are characterized by a high mobility and
spatiotemporal correlations [154], the authors in [94] rely
on the integration of ConvoLSTM with primal-dual interior-
point method to forecast the complex slice traffic and allocate
resources to slices accordingly. The proposed framework is
shown to offer better resource utilization with respect to a
resource allocation framework that does not include fore-
casting. In addition, they show that the proposed framework
can better meet overall system delay requirements, since
resources can be allocated in advance. Similarly, the study in
[138] also focuses on V2X traffic and considers correlations
over space and time for allocating resources. More precisely,
the authors combine DQN and CNN to capture spatial de-

4Cloud avoidance values represent the level of edge nodes contribution,
i.e. a higher cloud avoidance ratio, reflects a better efficiency of edge nodes

pendencies and LSTM to extract temporal dependencies, to
enable an efficient resource allocation. Their results show
that their network slicing framework provides lower blocking
error rate (BLER) and latency than the baseline approach.

While previously discussed works on coarse-grained slices
resource allocation employ RL to this purpose, the authors in
[139] rely also on supervised learning approaches to derive
decisions. In particular, they introduce a network slice re-
source management orchestrator, encompassing a ML-based
classifier, a ML-based predictor, an admission control func-
tion, a slice scheduler, and a resources manager. Firstly, they
employ various ML-based Classifiers (i.e. KNN and SVM)
to classify network demands (including SLA) requested by
a service provider. Then, a Regression Tree (RT) method
is used to forecast each slice resources ratio, serving as
input to the admission control module. From then on, they
rely on heuristic approaches for both admission control and
slice scheduler. Based on the evaluations, RT (i.e. complex,
medium, and simple) is shown to provide a better MSE
compared to its counterparts, in some cases even six times
lower. Besides, their framework leads to a very small gap
(approximately 5%) to optimal values, in terms of slice ratios,
while static and random approaches imply gaps of 25% and
35%.

Fine-grained Resource Allocation: Similarly to coarse-
grained resource allocation, RL, supervised and unsuper-
vised methods have been applied for fine-grained resource
allocation. As mentioned earlier, the fine-grained resource
allocation approach considers the end-user QoS satisfaction
level. The majority of works consider the RBs allocation
to end-users, while some attempt to allocate other types of
resources (i.e. CPU and energy/transmit power).

The authors of [140] allocate RBs to end-users in
eMBB/URLLC slices to meet stringent latency requirements.
Towards this end, their problem is first characterized as MDP
and then transformed into a model-aware MAB problem.
They defined the bandit’s reward function based on the
current system configuration, channel quality, and slice traffic
demand. Moreover, they opt for an enhanced MAB algorithm
that exploits the advantages of both UCB and TS. Their
simulations illustrate the superiority of their proposed algo-
rithm over UCB and TS in terms of latency, buffer size and
SNR. Likewise, the work in [141] employs the Q-Learning
method in the dynamic RB allocation to users associated with
eMBB, URLLC, and mMTC slices. Their results conclude
that approximately 35.6% better resource utilization can be
obtained, compared to a random scheme.

Equivalently, the authors in [142] attempt to investigate
dynamic RB allocation to different types of slices (i.e. eMBB
and Vehicle to Vehicle (V2V)) in NG-RAN. Resource al-
location for eMBB is considered for both uplink (UL) and
downlink (DL) directions. However, V2X communication
can be done through either base station (using UL/DL) or
via nearby vehicles ( using SideLink (SL)), as introduced
in 3GPP release 14 [155]. While considering these aspects
in the system model, the authors aim to maximize the RBs
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utilization, by using a Q-Learning agent. Their results show
that their proposed approach outperforms the fixed resource
slicing scheme in terms of RB utilization, latency, data rate,
and service outage. Moreover, paying particular attention to
the vehicular user equipment (VUE), the works in [143] and
[144] study RB allocation with respect to multiple slices,
by accounting for the channel gain of the vehicular network
environment. In this regard, they utilize DNNs to extract
features from non-linear relationships among VUEs, thereby
finding the optimal resource assignment policies. It is learned
from their numerical results that having a good knowledge of
channel gain can reduce the radio resources overhead cost to
50% [143] and yet energy efficiency is approximately 26%
better than baselines in a certain scenario [144].

Notably, only a few studies shed light on interference
when studying coarse-grained RB allocation. The authors
of [145] study the RB allocation to end-users in individual
slices, with the objective of minimizing the inter-numerology
interference (INI)5 among slices. To solve the problem, the
authors rely on a DQN agent, trained offline, and later
invoked online to allocate RBs, while considering dynamic
users requirements. Their evaluations show that their DQN-
driven framework allows to minimize INI, with results close
to the optimal solution.

As cooperation among base stations can help mitigate
interference [157], the authors in [146] develop an online
resource management framework that relies on DQN and
A2C agents. In their framework, the authors utilize GAT to
extract the spatiotemporal correlation among base stations.
This correlation is further used as a representation of network
states, and fed to the DQN and A2C agents, to find the
optimal spectrum bandwidth allocation policies. Through
their simulations, it is clearly seen that GAT-driven DQN and
A2C can improve the spectrum efficiency, while reducing the
interference among base stations.

While majority of papers (see for instance [140] [142]
[141] [145] [146] just to name a few) investigate dynamic
RB allocation with a fixed number of slices, the authors in
[147] study RB allocation to UEs, under a varying number
of slices. Their adaptive algorithm is inspired by the dis-
tributed learning Ape-X RL technique [158] where multiple
actors are used for multiple instances of the environment.
Basically, Ape-X is a modified DQN method, with multiple
actors enabling parallel resource allocation to multiple slices
simultaneously. Overall, each agent focuses on the efficient
RBs allocation to satisfy each UE requirement of the slice.
Their results prove that their proposed scheme can allocate
the RBs steadily, even if the number of slices varies.

As previously mentioned, some papers focus on other
types of resources (i.e. CPU and energy/transmit power),
in a fine-grained manner, along with RBs in their RAN
slicing problem. Speaking of other resources in RAN, CPU
allocation is critical in virtualized RAN environments (i.e. C-

5Numerology of spectrum channels in 5G is important to enable flexibility
in offering diverse services, yet in turn it introduces a new type of interfer-
ence (named INI) among slices [156]

RAN or vRAN) [159] where BBUs are replaced by software
functions running on CPUs on vRAN [160]. Sensibly, the
study in [148] analyzes the relationships among CPU and
vRAN resources6 and their influence on QoS, in the context
of network slicing. The authors then formulate the CPU and
RB allocation problem as a contextual-bandit problem7 to en-
able customized decision making, for varied network states,
at each time slot. They employ SAE to transform higher
dimensional state8 and action space into lower-dimensional
one. Thereafter, AC is used for the CPU controller and DNN
is used for the radio scheduler. It is noted from their exper-
imental results on a real-world network that their scheme
enables much butter throughput and network buffer state,
with the same CPU resource consumption as legacy meth-
ods, while reducing the decoding error rate. On the other
hand, 30% of CPU saving is achieved with their proposed
framework to offer the same level of QoS that legacy methods
deliver.

Furthermore, the authors in [149] exploit a DNN technique
for the dynamic RB and CPU allocation of slices, while
meeting the operating expenses (OPEX) cost constraints of
InP. More specifically, they set lower and upper bounds on
OPEX cost for specific resources (i.e. RB and CPU), while
respecting SLAs between InP and slice tenants, in the DNN
training processes. For the training process, per slice traffic
and KPIs data is collected at cell-level from a commercial
network. Based on the numerical results, the DNN technique
is shown to derive solutions close to optimality, in terms
of RB utilization, CPU utilization and back-haul capacity
utilization.

Similarly, the authors of [127] study the RB allocation
and RAN functional split to slices, while considering users’
throughput, latency, and CQI. They formalize the problem as
ILP and solve it using the Branch and Cut (B&C) algorithm
as well as an LSTM-based approach. As their numerical
results show, the LSTM-based approach is able to find near-
optimal results as B&C, in terms of resource utility, through-
put, latency satisfaction and RAN split deployment cost. In
addition, the LSTM-based approach is observed to take 1-
2ms while B&C takes 3600-3604ms.

In [150], the authors study the RB and energy allocation
problems, while considering the overall system resources
limitations (i.e., spectrum bandwidth, energy, queue length,
etc.). Accordingly, the authors rely on a cMDP, where they
integrate pre-defined constraints on these resources. To de-
rive decisions, the SAC methods are used with on-off offline
training of a SAC agent to leverage the online decision-
making process. The results show that the proposed solution
outperforms benchmark solutions, that do not take into ac-
count system resources constraints in the MDP formulations,

6vRAN resources includes RBs, modulation and coding scheme (MCS)
and transmit power

7Contextual-bandit is an extension of multi-armed bandit and yet suitable
for online decision problem

8Higher dimensional state includes bits pending to be transmitted, mean
SNR and variance SNR of each BS
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TABLE 6: Summary table of ML-based Resource Allocation in Network Slicing. Column Titles: "Input", "Decision" and "Objective" are relevant only for the papers
which use combination of DL and heuristics. NA" means the required information is "Not Applicable".

Scope Ref Focus ML Technique Model State/Input Action/Decision Reward/Objective

[161]
Maximize QoS satisfaction and
resource utilization

DDQN MDP
Resource utilization of slice,
resource satisfaction and
resource allocated to slice

Increase or decrease or no change of resources
in percentage

Combination of QoS satisfaction
and resource utilization

[162] Maximize the overall slice utility DDPG MDP
Cell utility, resource allocated to cell,
QoS

Slicing ratio for uplink and downlink
Utility of slice and
QoS

[163] Maximize the utility of slice ADMM- DDPG MDP
Utility function of users per slice and auxiliary/dual
variables of slice

Slice resource allocation to users Utility of slice

[164] Maximize the total utility of slices DQN- ADMM MDP
QoS satisfaction of slice, resource utilization
of slice , RBs occupied by slice

Resource allocation for slice and D2D service QoS satisfaction and resource utilization

[89]
Minimize the long-term slices
resource consumption

LSTM-A3C MDP
Set of users per slice, resource allocated to slice
and threshold of resource requirement

Slice resource allocation ratio
Combination of resource satisfaction
and bonus values from reconfiguration

[165] Maximize QoS and resource utilization LSTM-DDPG MDP
Set of vehicular devices associate to slice,
predicted resource demand of vehicular devices
and resource reservation for vehicular devices

Scheduling action of resources for each slice
QoS satisfaction and
and resource efficiency

[125]
Maximize the long term spectrum
efficiency and QoS

Large-time scale: DQN
Small-time scale: DDPG

MDP
Large-timescale: average user packet arrival, average
delay of active users and average PDR of active users
Small-time scale: user queue length, channel gain of user

Large-time scale: slice configuration,
Small-time scale: PRB and power allocation
to user

spectrum efficiency and QoSR
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[166] Maximize QoS of slices ANN-TL NA
Spatial distribution of services
and users across network, services traffic,
users’ service request

Strategy for RAN slicing QoS of slices

[167] Maximize the total profits of InP Branching Dueling DQN MDP
Demand flows of network slice, the capacity of the
substrate network paths and reconfiguration cost of
previous time slot

Selection of path onto which flow of
network slice is mapped

Total cost of resource consumption
and constraints violation

C
N

[97]
Minimize blocking and
reconfiguration penalties and
average power consumption

GRU-heuristic NA Services data traffic trend Resource allocation of slices
Blocking and reconfiguration penalties
and average power consumption

[168]
Maximize social welfare of
both InP and service providers

DDPG MDP Resource utilization of substrate network
Increase or decrease or no change of resources
unit price for each substrate nodes and links

Acceptance ratio of slice request

[169] Maximize the total profits of InP DQN MDP Substrate network status
Turn off one network element on substrate
network

Total profit of InP after turning off
one network element

T
N

[91] Minimize average network delay LSTM-heuristic NA Previous traffic matrix and link delay, demand flow Link utilization Average network delay

[170]
Maximize the total number of
access users

DQN MDP
Probability of user access to access site and ratio of
users achieve E2E access to the users successfully
access of the access site

Increase or decrease or no change of resources
for slices

Overall access rate of the system

[171]
Maximize resource utilization and
QoE

DQN MDP Resource utilization and QoE satisfaction
Grouping of access units for specific slice
service types

Performance of the overall system

[36]
Maximize the total profits of
slice tenants and QoS

Q-Learning MDP
Traffic flow ratio of slice, resource demand,
market price ratio and current time slot

Increase or decrease or no change of resources
trading

Total profits of the tenant

[172]
Maximize resource utility and
minimum hand-off cost and outage penalty

DQN MDP
Pair of base station and network slicing
selected by users, number of users in the
decision queue, serving time for users

Selection of base station and network slice pair
Cost of user being served,
user hand-off cost or outage penalty cost

[59],
[163]

Maximize network throughput
and minimizing hand-off cost

DQN integrated
hybrid federated learning

MDP
Selected slice / base station, the available
bandwidth resources of slice

Bandwidth allocation to end-user
device of specific slice from specific base station

Communication efficiency and
the communication cost of end-user device

Jo
in

tR
A

N
-C

N

[173]
Minimize handover number, handover cost
and blocking probability

Distributed Q-Learning MDP Bandwidth of slices Pair of target BS/NS and handover type Handover cost based on handover type
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in terms of QoS.
Apart from RBs, the allocation of other resources (i.e.

CPU and transmit power) also has a critical impact on the
end-users QoS. Accordingly, the study in [152] investigates
the problem of CPU and transmit power allocation to users
of multiple Service Providers (SPs), while respecting the
privacy of individual SPs. In particular, the authors assume
multiple SPs are competitive to each other and intend to
maximize their long term payoffs. To this respect, they design
the problem as an abstract stochastic game9. We note that in
the abstract stochastic game approach, each SP evaluates the
bidding values by using their local available associated users
information (i.e., tasks arrival of users, queue state of users,
and location of users) and abstract information of other SPs.
The numerical results reveal that the DQN agent of an SP
can keep the balance between CPU/transmit energy, average
queue length and average resource utilization, compared
to the baseline algorithms. Aside from slice-level privacy,
the work in [153] takes into account device-level privacy,
when deriving decisions on Transmission Power (TP) and
Spreading Factor (SF)10 in Industrial IoT (IIoT). To solve
the problem, the authors consider an FL approach, where
DQN agents are deployed as local agents.The FL framework
is shown to be superior to centralized learning in terms of
overall QoS satisfaction and energy utilization.

Mixed coarse-grained and fine-grained resource alloca-
tion: As part of RAN slicing, some papers target both coarse-
grained and fine-grained. To do so, they either combine RL
and heuristic approaches (see for instance [161] [162] [163]
[164] [125] [166]) or combine RL and DL approaches (see
for instance [89] [165]).

Specifically, the work in [161] considers both coarse-
grained and fine-grained RAN resource slicing approaches.
The authors introduce a framework with three main steps.
Firstly, they target slicing at the coarse-grained level, where
resources are partitioned over slices, based on the weight
of each slice. The surplus resources are reserved to serve
increases in the numbers of users later on, so as to guarantee
performance isolation at all time. Accordingly, in this phase,
a DDQN agent is used, allowing for dynamic adjustment of
slice resources over different periods. Secondly, the authors
update the BS-level resources to reflect the adjusted slice-
level resources. Finally, the authors target fine-grained re-
source allocation. They solve the problem using a heuristic,
that allows a BS to perform the RBs allocation to each UE,
while ensuring QoS satisfaction and efficient resource utiliza-
tion. Their simulation results show that the presented solution
outperforms other baseline approaches (i.e. Q-Learning and
DQN) in terms of system convergence rate and achievable

9In a stochastic game approach, to achieve the NE, every SP associated
with an MVNO needs to have a global view of network dynamics, which is
impractical when SPs are non-cooperative. Henceforth, they transform the
stochastic game into an abstract stochastic game by only allowing to expose
abstract information among SPs.

10Spreading Factor (SF) controls the data transmission rate of IoT devices
and lower SFs mean higher data transmission rate and lower coverage

reward. Similarly, in [162], the author utilizes DDPG for two-
level RAN resource allocation. First, coarse-grained resource
allocation to V2I and V2V slices is investigated. After that,
fine-grained RBs allocation to users is done. The authors
show that their DDPG outperforms DDQN, PG and AC
algorithms, in terms of slice utility.

Furthermore, the authors in [163] decompose the RAN
resource allocation problem into a master problem, where
slice-level resource allocations are performed, and multiple
slave problems, where slices resources are allocated to end
users. To this end, the authors rely on the alternating direc-
tion method of multipliers (ADMM) to iteratively solve the
master problem and DDPG to solve slave problems, with
the objective of maximizing the utility of slices collectively.
Without loss of generality, one may see the master problem as
the coarse-grained resource allocation problem and the slave
problem as the fine-grained resource allocation problem.
The results reveal that the proposed approach can generate
near-optimal solutions as pure ADMM and can achieve ap-
proximately 1.5 times better resource utility than the static
approach.

Using the contrary approach to [163], the work in [164]
first applies a DQN agent for inter-slice resource allocation
(i.e. between cellular slices and D2D slices) and then ADMM
for intra-D2D slice resource allocation. Again, without loss
of generality, one may see inter-slice resource allocation as
coarse-grained resource allocation and intra-slice resource
allocation as fine-grained resource allocation. The numerical
results reveal that the presented scheme can maintain the
balance between QoS and resource utilization efficiency,
while ensuring performance isolation.

Notably, some contributions consider resource allocation
over multiple timescales (i.e, large timescale and small
timescale). As mentioned earlier, large-timescale resource
allocation is referred to as coarse-grained resource allocation,
and small-timescale resource allocation is referred to as
fine-grained resource allocation. In this respect, the authors
of [89] and [165] utilize multi-timescale in their proposed
DL and RL collaborative model. They apply a DL method
for large-timescale resource allocation and a RL method to
perform the real-time RBs allocation to users in each slice. In
both contributions, the authors design LSTM-based schemes
for the large-timescale traffic forecasting and resource alloca-
tion of slices. For small-timescale resource allocation, A3C is
used in [89] and DDPG is used in [165]. The experimental
results suggest that the proposed collaborative model can
ensure isolation among slices and is superior to other baseline
RL methods (where no forecasting is considered) in terms of
cumulative reward, reflecting the RB utilization.

Following the same multi-timescale idea as in [89] and
[165], the work in [125] combines a conventional optimiza-
tion technique and DDPG for the small-timescale RB allo-
cation. On the other hand, DQN is used for large-timescale
resource control at the base station level. To guarantee QoS
and performance isolation, Guaranteed Bit Rate (GBR) and
Maximum Bit Rate (MBR) constraints are integrated in their
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lower-level control problem. Their simulation results show
that their framework outperforms the work in [89] in terms
of average utility, average packet delay, and average packet
drop rate. The same authors introduce TL in [166] to solve
online the multi-cell RAN resource allocation problem, for
vehicular networks. With TL, retraining the algorithm from
scratch is not necessary, if there is a change in network
states. Accordingly, the authors introduce the ideas of self-
optimizing RAN slicing framework. System validation was
left as future work.

2) Resource Allocation in CN
Existing works on resource allocation for slices in CN are
mapped to the VNF placement problem on an underlying
substrate network [174].

To achieve a good level of resource efficiency, a slice might
need to be reconfigured at certain intervals [175]. In general,
the slice reconfiguration process includes traffic flow re-
routing and VNF instances scaling on the substrate network
[176]. Correspondingly, the authors of [167] investigate the
intra-slice reconfiguration problems in the CN. They design
a DDQN-driven framework to enhance long-term resource
consumption, by encouraging the appropriate reconfigura-
tion of slices. Their action is a set of paths onto which
demand flows of the slice are mapped. Thus, their action
space grows exponentially as the traffic demand increases.
To deal with this, they use the action space compression
method [177]. Their numerical results suggest that having
an adaptive resource reconfiguration mechanism can achieve
better resource efficiency, in the long run.

Similarly to [167], the authors of [97] investigate the CN
slice SFC placement and routing problem as a multi-layer
slice allocation problem. To this end, they consider traffic
forecasting operations as well as slices reconfiguration de-
cisions. Their main objective is to minimize reconfiguration
and blocking penalties. They assume that the higher the pri-
orities of slices are11, the higher the reconfiguration penalties
are. GRU is used to predict the slice traffic variations for the
next hour and to proactively allocate resources. Besides, their
multi-layer slice allocation framework encompasses three
steps: RL-based resource adjustment if predicted traffic is
less than actual traffic utilization, optimal SFC placement,
and routing and wavelength assignment (RWA) for nodes
onto which VNFs of SFC are allocated. The algorithm val-
idation step is left as future work.

3) Resource Allocation in TN
To the best of our knowledge, none of the papers considers
resource allocation in TN only. Instead, some works consider
TN slicing as a subset of CN slicing or RAN slicing, to
fulfill services requirements [46]. Simply speaking, TN slices
act as a connectivity layer between CN domains, between
RAN domains and between CN and RAN domains. In this

11For example, mobile tenants have lower penalties than enterprise tenants
who usually purchase more resources)

respect, the work in [168] explores the optical data center
interconnections (O-DCIs) network infrastructure to satisfy
the heterogeneous slice requests from various tenants. The
basic idea of O-DCIs is optical TN links are used to intercon-
nect CN data centers to leverage cloud computing and handle
the tremendous increase of data traffic in data centers [178].
In fact, network slicing in O-DCIs can ensure dynamic QoS
requirements and can improve resource utilization of the CN
datacenter network. However, multiple network slices allo-
cation to O-DCIs still needs further investigation to provide
cost-efficient solution for both InPs and tenants [179].

Correspondingly, the authors of [168] design the multiple
slice provisioning problem as a VNE problem in the O-DCIs
environment. In their work, the InP allows to tenants to solve
the VNE, based on their specific slice requirements, with
the objective of maximizing both the social welfare of both
InP and tenants. Initially, the InP broadcasts to all tenants
resource availabilities and their associated pricing framework
(generated by using DDGP algorithm). The tenants then
derive the optimal VNE schemes (using an ILP approach)
in a distributed manner. Their pricing framework encourages
the tenants not to order more resources than they need and
ensures the load-balancing among tenants. In fact, ensur-
ing the load-balancing in the network helps to reduce the
blocking probability of slice requests [180]. Finally, based
on VNE solutions from tenants, the InP selects the most
profitable ones to allocate the corresponding resources. The
evaluation results show that the proposed framework has a six
time lower blocking probability than a benchmark solution,
where no load-balancing is considered. DDGP is also shown
to intelligently adjust the resource pricing scheme, based on
the current situation of the network, to maximize both the InP
and tenants’ profits.

Similarly, the authors of [169] establish their research
work based on the same O-DCIs reference architecture as
[168] to maximize the InP’s overall profits. However, in this
case, the InP only relies on the DQN agent to generate the
resource pricing/advertising and map the VNE requirements
from MVNOs. It is observed from their results that their
DQN-based framework leads to higher profit to InP in com-
parison to the benchmark algorithm where the InP doesn’t
take into account the tenants’ inputs in their evaluation of
resource pricing.

4) Joint RAN and CN Resource Allocation
Notably,some papers focus on joint resource allocation in
RAN and CN in their network slicing framework. Accord-
ingly, the work in [170] conducts the dynamic RBs allocation
to slices in the RAN and SFC slices mapping to substrate
network in the CN. Specifically, RBs are allocated in the
RAN, based on the delay and rate requirements of each
user. VNFs mapping to VMs then takes place in the CN.
To do so, the authors rely on a DQN agent to learn the
network state (covering the probability of the user being
successfully attached to RAN slices and the corresponding
user access rate to CN slices) and to find the optimal resource
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allocation policies. The simulations confirm the effective-
ness of the conceptualized scheme in both static (including
only stationary users) and dynamic (including mobile users)
environments. Users acceptance rates of more than 98%
and 97% are achieved with the proposed approach, while
the baseline algorithms can achieve values of at most 94%,
in the same system setting. Similarly, the work in [171]
also uses a DQN agent, to find the optimal policy for the
CN’s computing resources allocation to slices, and a legacy
optimization technique for radio resource allocation to each
user in the RAN. It is clear from their results that the
DQN driven framework outperforms a dynamic and a fixed
resource allocation scheme, in terms of QoE and resource
utilization.

Equivalently, focusing on the resources of RAN and CN,
the work in [36] seeks to maximize the long-term profits of
Slice Tenants (STs) by making the best use of the assigned
resources, while satisfying the QoS requirements of end-
users. Having continuous user demand fluctuations, static
allocation of slice resources might lead to high costs for STs.
Sensibly, the proposed framework enables STs to negotiate
the prices of resources with Slice Provider (SIP) and yet
allows them to re-sell their surplus resources, dynamically
over time. To do so, their dynamic resource trading system
is designed as MDP and solved with a classical Q-Learning
algorithm to achieve the long-term profits of STs. Their anal-
ysis stresses the need to have appropriate trading intervals,
as short intervals may lead to high computational costs. In
addition, their results show that their framework can lead to
optimal QoS levels. Speaking of which, other factors affect
the overall profit (i.e. handoff cost 12 and outage penalty cost
13). Motivated by this fact, the work in [172] introduces a
DQN-driven framework, reducing the unnecessary handoff
cost associated with the RAN and CN resources. Their results
show that their mechanism can generate better overall profits,
by adjusting solutions dynamically.

All the above works are not concerned with the privacy of
user data. In [59] and [181], the authors study the problem
of user device association to network slices, spanning over
the RAN and CN. To solve the problem, they rely on a
DQN integrated Hybrid Federated Learning (FL), that ex-
ploits the benefits of both horizontal FL14 and vertical FL15

mechanisms. Their FL-driven framework trains the local ML
model according to the local device’s data and shares only the
extracted features to the central model (a.k.a global model,
located in the base station) to decide on the optimal selection
of network slice and base station for each device. Through
their simulation, their mechanism is shown to achieve better
handoff cost, average network throughput, and computation

12Handoff cost is the cost associated to managing the mobility of users
from one location to another

13Outage penalty cost is the cost to pay if a user isn’t served due to
insufficient resources

14Horizontal FL is used to aggregate the samples of end-users belongs to
the same type of slice service on base stations

15Vertical FL is used to aggregate the features of base stations associated
with different slice services on third encrypted party side

efficiency, when compared to baseline approaches. Similarly,
the authors in [173] attempt to solve the same handover
problem, based on the distributed Q-Learning approach.
However, privacy is not part of their concerns. Their scheme
is shown to reduce handover frequency, cost of handover, and
blocking probability to approximately 50%, as compared to
conventional approaches.

5) End-to-end Network Slicing Resource Allocation
End-to-end (E2E) network slicing resource allocation prob-
lems are commonly seen as Virtual Network Embedding
(VNE) [182] or SFC placement [183] problems, with VNFs
associated to RAN, CN, and TN domains. Nevertheless, E2E
resource allocation for network slicing differs from legacy
VNE and SFC placement problems as it involves dealing
with inter-dependent VNFs and requires as well performance
isolation among slices, with distinct SLAs [184]. Addition-
ally, E2E network slicing implies different types of resources
across the RAN, CN and TN domains, making it similar to
multi-resource allocation problems [185]. Besides, speaking
of E2E network domains, one may note that SLA satisfaction
is to be enabled across RAN, CN, and TN as well [186].

By mapping the E2E network slicing resource allocation
problem to the VNE problem, in [187], the authors allocate
resources to a slice over different InPs, while considering
their availability in terms of link bandwidth, delay and loca-
tion. Initially, they find the candidate InPs to allocate VNFs,
by using a simple heuristic. Then each virtual node is associ-
ated with a set of candidate InPs. After that, the obtained set
of InPs and their comprehensive features (i.e. average link
bandwidth between InPs, average number of hops between
InPs, average link delay, and number of VNFs associations
per InP), are integrated in a CNN-based approach, to find the
suitable InPs onto which VNFs are installed. As expected,
the ML-based approach outperforms traditional benchmark
approaches in terms of long-term revenue and computation
time. Equivalently, the study in [188] designs the on-demand
E2E VNEP as sMPD and solves it with DDQN, achieving a
higher average revenue to the InP in the long run than DQN
and greedy algorithms.

Likewise, the study in [189] and [190] rely on heuristic-
driven DRL techniques (i.e PG and A3C) . Specifically,
the work in [189] uses a PG agent to sequentially enhance
the sub-optimal solutions given by heuristic in their virtual
network request (VNR) mapping (a.k.a VNE) problem, in
the context of network slicing. Specifically, the outputs of
the heuristic are characterized as heteograph16 and fed to
the PG, where the learning agent is designed as GCN. Their
framework achieves 13-16 % improvement than baseline
approaches for large-scale networks of [12,14] nodes. On
the other hand, in [190], the authors use a combined A3C
and GCN approach, by which GCN extracts features from
underlying networks and A3C finds the optimal policy. The
actor-network of A3C is incorporated with a heuristic to

16A Heteograph is composed of a substrate graph and a VNR
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maintain stability during policy training. The proposed ap-
proach outperforms the DRL-only approach, under drastic
network load conditions.

In [191], the authors map the E2E slicing problem to the
SFC placement problem and design an ML-based resource
allocation approach that also enables SFC migration, based
on end-users’ mobility pattern. The proposed resource man-
agement framework is in line with ETSI-NFV standards. It
encompasses an orchestration layer, a MEC/access layer and
an end-users layer. The ML-based resource allocation ap-
proach is integrated into the orchestration layer. Considering
both discrete and continuous action spaces, they rely on two
different DRL techniques; DQN and DDPG. The authors
evaluate their framework on testbed networks. It is notable
from their preliminary results that DDPG outperforms DQN
in terms of stability, QoE and slice instances’ downtime.

Furthermore, considering IoT use cases, the works in [192]
and [193] design an ML-based adaptive resource manage-
ment framework to satisfy the diverse SLAs of IoT services.
Precisely, the former one proposes a network slicing automa-
tion framework that relies on LSTM to reserve resources
in advance and a DQN agent to enable adaptive resource
allocation, for the diverse services of IoT slices. On the
other hand, the latter one introduces an ML-based multi-
objective evolutionary algorithm (MOEA) to slice the IIoT
network efficiently, while dealing with conflicting multiple
objectives (i.e. maximizing the data throughput and minimiz-
ing the delay). It is observed from the simulation results that
the solutions provide superior system performance against
baseline models. Similarly, in [194], the authors formulate
the online network slicing optimization problem and adopt
a PPO approach to balance between SLA violations and
operational costs. To say the least, their proposed solution
outperforms Greedy and ILP solutions.

As mentioned earlier, E2E network slicing encompasses
different types of resources, associated with different do-
mains. Henceforth, it is crucial to have a comprehensive
view of E2E network domains and corresponding resources
to achieve appropriate resource allocation and enhance E2E
performance. With this respect, the authors of [184] establish
the 4-dimensional (4D) tensor to represent the holistic E2E
network slicing model. Specifically, the 4D tensor encom-
passes the resource requirements of VNFs, a set of VNFs’
chains, KPIs status of slicing resource management, and a
concatenation of all the slices state vectors. The authors
rely on DRL to solve the problem. Yet, unlike other DRL
approaches previously discussed in this survey, their policy
network is built using CNN to find the optimal resource
adjustment policy among slices, by extracting the features of
slices and their corresponding resource requirements. Their
mechanism shows relatively better results over other baseline
methods, in terms of SLA violation under varying network
loads (120% to 200%).

Likewise, considering different types of resources across
domains, the works in [195], [196] and [197] attempt to find
the optimal policy for the E2E resource allocation problem

for different types of slices. To represent the stochastic slice
arrivals, the authors in [195] model their problem as sMDP
and solve it with deep dueling Q network, while the authors
in [196] and [197] model the problem as MDP and apply
SPG and A2C algorithms respectively to solve the problem.
All of the proposed mechanisms outperform the considered
baselines, in terms of resource utilization.

While the above attempts toward E2E resource alloca-
tion consider multiple types of resources across different
domains, the authors of [198] focus on E2E resource orches-
tration across different domains (i.e. RAN, TN, and edge).
They propose a framework that encompasses decentralized
resource orchestrators associated each to a domain and a
central controller coordinating the network performance sta-
tus. Accordingly, the authors model the resource allocation
problem across the different domains as a constraint-aware
MDP (a.k.a cMDP) and use a DDPG agent to solve it.
According to their prototype-based evaluations17, their model
is able to adapt to the network loads of each slice and
respect the resource utilization of different domains, with a
good convergence time. Besides, in comparison to baseline
approaches, their framework is shown to be scalable, with
approximately 3 times better system performance.

Works discussed so far on E2E resource allocation across
RAN, CN and TN, do not focus on SLAs satisfaction, de-
spite its importance. The work in [186] covers this, with
the authors introducing an efficient E2E SLA decomposition
framework, using ML techniques. Specifically, the authors
consider three ML-based regression techniques (i.e. RF, Gra-
dient Boosting, and Neural Network) to decompose the E2E
SLAs into associated domain SLAs to create slices and assign
them the required resources. Firstly, their framework checks
the network capacity to accommodate the requested E2E
SLA, and then it forwards the information to the classifi-
cation layer to derive decisions. Besides, their framework
monitors and collects the historical data of SLAs from the
corresponding domains and this data is used to train the ML-
based algorithms. The ultimate goal of the framework is to
accurately decompose the service SLA requests into domain-
level SLAs of the infrastructure layer. It is learned from their
experimental results that the neural network shows higher
accuracy than RF and Gradient Boosting, at the cost of lower
sample efficiency.

6) Lessons Learned
Unlike admission control, most of the resource allocation
problems under the realm of ML in network slicing are
designed as multi-objective problems. More specifically, the
majority of contributions focus on the trade-off between
QoS and resource efficiency by using the weighting factors
approach, setting a greater factor to the more important ob-
jective. Moreover, most of the resource allocation problems
in network slicing can be envisioned as sequential decision

17The prototype consists of a Radio manager, a Transport manager and a
Computing manager, configured using OpenAirInterface (OAI), OpenDay-
Light SDN switch and CUDA GPU platform
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TABLE 7: Summary table of ML-based Resource Allocation in Network Slicing. Column Titles: "Input", "Decision" and "Objective" are relevant only for the papers
which use combination of DL and heuristics. NA" means the required information is "Not Applicable".

Scope Ref Focus ML Technique Model State/Input Action/Decision Reward/Objective
[187]Maximize the total profits of InP Heuristic-CNN NA Number of InP and features of InP Optimal selection of InPs Total profit of InPs

[188]
Maximize slice tenants revenue and
minimize reconfiguration cost

DDQN sMDP
Slice resource status, available resoruces of DC,
changes of resource demand and
additional resource requirements of slice

Reconfiguration is permitted or not Rewarded if reconfiguration is permitted

[189]Maximize the revenue of InP Relations GCN- PG MDP
Substrate network graph and
virtual network request graph

Modify the virtual nodes and
link placement on substrate network graph

Revenue to cost ration of accepting
virtual network requests

[190]
Maximize slice acceptance and
load balancing and
minimise the overall resource consumption

A3C-heuristic MDP
Available server resources,
resource requirement of slice instance and
total number of VNFs required

Placing VNFs on nodes
Positive rewards for succeed of VNFs
placement, resource consumption and load
balancing

[192]
Maximize resource efficiency
and robustness

LSTM- DQN MDP
RAN, Cloud Data center and TN networks
status

Generation of new slice and coordination
of resources

Resource efficiency,
QoS and ratio of slice failure

[193]
Maximize data throughput and
minimize the delay

ML-based MOEA NA Recorded services features Map traffic to slices Throughput and delay

[194]
Maximize slice instance deployment and
minimize deployment cost

PPO MDP Slice deployment demands Slice request accepted or rejected Positive reward if slice is accepted

[184]
Maximize resource utilization
and QoS

policy-based RL MDP
Number of slices , different types of resources
and the number of VNF nodes per slice

Increase or decrease of any VNF of each slice
Combination of SLA violation, resource
wasted penalty cost and resource utilization

[195]Maximize profit of network provider DDQN sMDP Number of slices for a given type of service Resource allocation decision to new slice requestPurchase value of Slice Tenants

[196]
Minimize the cost of resources
and maximize the QoS

SPG MDP Slice resource request arrivals, buffer status Resource allocation to slice Resource used cost and process delay

[197]Maximize the overall slice utility A2C MDP Slice resource request arrivals, buffer status Resource allocation to slice Resource used cost and process delay

[198]
Maximize the overall system
performance

DDPG cMDP
Allocated and demanded resources for node
and links of slice

Resource allocation to slice Performance of the traffic flows

E
2E

[186]Minimize E2E delay
Random Forest,
Gradient Boosting
and Neural Network

NA E2E slice creation request Decomposition of network domain SLAs E2E delay
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problems, naturally modeled as MDP. In particular, network
slicing problems, with heterogeneous resource requirements,
usually do not include the prior knowledge of transition
and reward models. Thus, model-free RL frameworks are
commonly used to solve them, by training an agent that
derives decisions under the uncertain slice arrivals and traffic
patterns, without making any assumption of the underlying
network model.

Speaking of MDP formulations in resource allocation
problem, in general, states are designed based on the slice
status (i.e. resource utilization, QoS satisfaction, the number
of users/slice, the demand traffic flows, and so forth), ac-
tions are mainly denoted as the resource allocation actions
(i.e. increasing/decreasing resources or keeping the same
resources) and rewards are typically formulated to meet
the main objectives of the problem. For instance, if the
objective of a problem is the maximization of the long-term
spectrum efficiency and QoE, the reward can be a weighted
combination of spectrum efficiency and QoE. As one may
notice, the number of users, slices, or demand of traffic flows
have been increasing rapidly day over day. Accordingly, the
curse of dimensionality issue of state-action pair arises in
the context of resource allocation. To overcome this, some
papers adopt certain methods (i.e. reward clipping, SAE)
in their RL framework to improve sample efficiency and
filter out unnecessary state-action pairs. Regardless of being
well-known techniques, ML-based algorithms in network
slicing resource allocation have certain pitfalls in terms of
sample efficiency, training time, and algorithm complexity,
henceforth calling for further investigations. All the above
contributions are summarized in Table 5, Table 6 and Table
7.

V. OPEN RESEARCH CHALLENGES AND
OPPORTUNITIES
While this survey underlines the recent achievements of sev-
eral ML-based methods in network slicing problems, there
are still some open challenges in incorporating ML theory
and algorithms for practical network slicing deployment. In
this section, we identify the open challenges of integrating
ML solutions in network slicing. From this perspective,
admission control and resource allocation generally fall into
one category, since the same ML techniques can be applied
for both. To this end, we discuss and underline some of the
critical open challenges and research gaps, mainly twofold:
(i) open challenges particularly related to deep learning in
traffic forecasting, and (ii) open challenges particularly fo-
cused on reinforcement learning in network slicing admis-
sion control and resource allocation. While identifying these
open challenges, we also discuss potential solutions for these
problems.

A. ML IN TRAFFIC FORECASTING FOR NETWORK
SLICING
After extensively studying the related articles on forecasting
in network slicing, we are able to distinguish some specific

challenges, such as forecasting slice-level traffic while ac-
counting for the privacy of MVNOs, end-user level traffic
forecasting, 1 ms forecasting granularity, and the trade-off
between computing complexity and accuracy.

In most of the existing state-of-the-art works, the forecast-
ing function resides in the central controller of the network
and is managed by the InP. However, sometimes, due to
privacy concerns, MVNOs cannot share their slice traffic
information, which is entirely related to the behavior of
their users, with the InP. Consequently, this calls for an
entirely new forecasting framework, which allows MVNOs
to train their algorithms locally and only share non-sensitive
information with the central controller (managed by InP),
to be used for resource reservation during the next time
interval (or time window). It is worth stressing that privacy-
preserving network slice traffic forecasting still has room to
be improved. In this regard, one potential solution would be
exploring the concept of federated learning (a.k.a decentral-
ized learning) [199]. Technically, FL allows multiple actors
to train and control their models locally, without exchanging
any critical data with the central controller. That being said,
FL-driven solutions shall be further investigated to deal with
multi-stakeholders network slicing environments which ex-
hibit diverse security requirements.

It is also important to point out that forecasting is done
only for the aggregated slice-level or RAN-level traffic in
the existing state-of-the-art. Hence, forecasting of end-user
traffic is still a missing piece of the network slicing prob-
lem. Knowing the behavior of individual users in advance
is certainly beneficial to fulfill the individual user QoS re-
quirements. In this respect, giving authority to the MVNOs
to forecast the traffic closer to the user, chances are they
have better proficiency for end-user level traffic forecasting.
If reasonable accuracy is obtained, one might want to feed
this kind of end-user level forecast data into end-user admis-
sion control solutions or in fine-grained resource allocation
systems where end-user level QoS satisfaction is explicitly
considered.

In our literature study, we encountered some achievements
of incorporating forecasting into the resource allocation func-
tion. However, one should be aware of the high dynamicity of
traffic requirements in mobile network environments, where
traffic demand often varies in the order of milliseconds, a
trend which is likely to increase in the future. Henceforth,
dynamic resource allocation granularity in the RAN is con-
ducted at the level of RB, with TTI of 1 ms [44], shown
to achieve better resource efficiency than static RB alloca-
tion [125]. Correspondingly, an anticipatory resource alloca-
tion approach requires to have forecast data at a millisecond
time interval granularity. It is notable that all the traffic
forecasting solutions in existing network slicing problems
rely on a time interval of seconds or minutes, which does
not seem adapted to these problems. This calls for further
investigation with millisecond-level time intervals. In such
cases, there are obvious challenges in obtaining datasets with
such level of granularity. If one has system capabilities that
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can capture the desired level of granularity, the forecasting
function then needs to be trained using a good amount of
such data to get to acceptable accuracy values. Besides, it
is worth exploiting current ML solutions, tested with data
at a minute or hour granularity, which is prone to obtain
reasonable results at the millisecond level.

Another open topic corresponds to the trade-off between
computing complexity and accuracy in the training of DL
algorithms used for network slicing. It is important to ex-
plicitly investigate the algorithm complexity and determine
the level of computing complexity required to attain the
desired level of accuracy in the slice traffic forecasting. In
this case, one should have a vivid understanding of the
requirements and objectives of the users and system, to be
able to choose the right forecasting technique corresponding
to specific requirements. From our knowledge, none of the
existing papers explicitly justify their choice for one specific
forecasting technique over other by considering both accu-
racy and complexity perspectives. It is clear that forecasting
techniques shall be selected based on a compromise between
complexity and accuracy. Specifically, if a system has no
limit to computing power, one may want to deploy a Trans-
former Model [200] to get better accuracy than LSTM [201].
On the other hand, GRU will be selected against LSTM in a
system with limited computation time [95].

B. ML IN ADMISSION CONTROL AND RESOURCE
ALLOCATION
In our literature review, we identified some unique challenges
in the context of admission control and resource allocation
problems for network slicing, such as satisfying different
slice requirements in one iteration, accomplishing more than
one objective simultaneously, handling high computing com-
plexity due to an exponential number of state-action pairs and
energy overheads incurred due to massive communication
of collaborative decentralized ML models in 6G network
slicing.

Indeed, different network slice types (i.e., eMBB, URLLC
and mMTC) have remarkably diverse requirements. Never-
theless, the majority of state-of-the-art RL solutions in net-
work slicing admission control and resource allocation rely
on a single agent to deal with the heterogeneous slice require-
ments and apply that same single agent with the same reward
function to all the slices consecutively. From our review, only
two papers ( [89] and [147]) use multiple agents. However,
since the nature of slices is heterogeneous, it is impractical
to use one single agent, trained only for one specific purpose,
in the real-world diversified slice deployments. Here, poten-
tial solutions are to explore the concept of multi-agent RL
(MARL) [202]. In essence, MARL is where multiple agents
are interacting with the common network environment to find
the optimal policy based on their associated reward functions.
Based on the design of the reward scheme, one may have a
system where multiple agents are working cooperatively or
competitively, or even a mixed cooperative and competitive
mode.

In general, there are inherent trade-offs between multiple
objectives in the admission control and resource allocation
problems. For example, there is a trade-off between user
admission probability and QoS satisfaction, a trade-off be-
tween network reliability and resource efficiency, and so
forth. In all of the existing RL solutions, those trade-offs are
handled in the reward function, by defining a weighting factor
between two objectives. Nonetheless, to do so, the weighting
factor must be predefined, and it is hard to assure that the
applied weighting factor is an optimal one for the given
scenario. In this respect, methods such as multi-objective RL
(MORL) [203], known to solve problems with conflicting
objectives, might come in handy. In MORL, the reward
function is designed as a vector instead of a scalar value.
MORL returns a reward vector for the respective individual
objectives, rather than returning a scalar reward value.

The curse of dimensionality is an inherent and ongoing
issue of RL in network slicing admission control and resource
allocation problems, due to an enormous number of state-
action pairs. Notably, the number of base stations, slices, and
end-user devices is growing continuously. We came across
very few attempts to address this problem in the existing
literature, the main example being the application of sparse
autoencoders [148] to reduce the number of dimension in
the state-action space. More efforts are needed to further in-
vestigate such state-action reduction tools, for example deep
autoencoders [204], latent variable models [205], etc. Also,
the learning agent utilizes the random policy in the initial
steps of all the existing RL solutions applied to network
slicing problems, thereby leading to longer convergence time.
On this matter, one possibility is exploiting the idea of imita-
tion learning [206] to enable the learning agent to start with
a relatively adapted policy, which reduces the convergence
time, instead of initializing it with a risky random policy.

Indeed, sample efficiency is also one of the key ongo-
ing challenges to enhance the RL agent training process in
network slicing problems. In a real-world network slicing
environment, we rarely get the desired level of data to train an
agent, which requires to carefully design frameworks which
can be trained efficiently with the available data. Notice-
ably, the number of studies focused on sample efficiency is
considerably low in our review, and this is an area where
additional efforts are expected. To this end, reward shaping
and TL are the most common approaches in the literature to
improve sample efficiency and leverage the learning process
of RL agents. Moreover, propitious solutions in this sense
are based on meta-learning [207] and hierarchical DNN
(HiDeNN) [208] frameworks. Note that HiDeNN can be
built with any type of neural network (i.e., DNN, RNN, or
CNN) [209]. Technically, meta-learning enables the agent to
improve its learning process with a minimalist amount of
samples by initializing the training with optimized hyper-
parameters from prior knowledge. On the other hand, recent
frameworks such as HiDeNN can also enhance the learning
efficiency with less amount of data, with the help of TL [208].
An interesting property is that agents in HiDeNN can learn
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from incremental changes in data applied to a previously
trained model [210]. For instance, in the case of network
slicing, this can represent new user/slice requests, which
arrive incrementally over time.

Last but not least, energy efficiency is one of the key
performance indicators for the sustainability of multilayer
network slicing. Regardless of its benefits, a centralized ML
model exacerbates the energy consumption of the overall
network. Compared to the energy required for local computa-
tions, the energy required for raw data transmission is much
higher [211]. Hence, it is logical to put forward advanced
decentralized architectures, such as MARL and federated
DRL to avoid unnecessary raw data transmission to the cen-
tral nodes and exploit the local computing power. Since 6G
network is envisioned as a multilayer heterogeneous network
[212], thousands of ML agents might be involved in the
collaborative decentralized ML scheme. This would lead to
higher energy consumption due to a large number of com-
munication (i.e. sharing model updates) between ML agents
in the regime of collaborative learning. To diminish energy
overheads, one might want to develop a federate framework
that selects the optimal number of participants in a more
intelligent manner in the collaborative training process while
achieving the desired accuracy. That said, one promising
solution is the MAB-based FL approach [213], in which the
MAB agent selects the most auspicious participants which
can better leverage the performance of the overall model.

VI. CONCLUSION
In this survey, we focus on the applications of ML techniques
in network slicing. First, we present background information
on network slicing. We then provide an overview of some
common ML techniques, used in network slicing. After
that, we review the literature on the topic. In particular, we
group contributions into three categories: traffic forecasting,
admission control and resource allocation. For each category,
we highlight lessons learned. Finally, we discuss some open
challenges and hint to potential solutions that can be consid-
ered.
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