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Clinical highlights 22 

The use of mesenchymal stromal/stem cells (MSC) in clinical trials has provided inconsistent outcomes 23 

in patients with acute myocardial infarction (AMI), which contrasts with their promising results shown 24 

in preclinical studies. The challenge for achieving success in the clinical setting is to generate an 25 

optimized cell therapeutic product able to prevent cardiac injury because fully activated to release 26 

cardioprotective molecules in the infarcted myocardium. In this context, data from the literature 27 

highlighted the "matter of timing" as a critical parameter for the success of MSC therapy. Indeed, the 28 

notion of time is involved in different ways such as between MSC culture and administration to patients, 29 

the age of MSC donors and the age of AMI patients, and identified as a major parameter for the success 30 

of MSC-based therapy. Current efforts are focused on MSC optimization in particular to circumvent the 31 

effects related to an inappropriate timing.  32 

 33 

Abstract 34 

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most 35 

common cause of heart failure (HF). Re-opening of the occluded artery i.e., reperfusion, is the only way 36 

to save the myocardium. However, the expected benefits on infarct size are disappointing due to the 37 

reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (IR) lesions can 38 

account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart 39 

failure (morbidity). In this review, we first provide a detailed description of the cell death and 40 

inflammation mechanisms as features of IR injury, cardioprotective strategies such as ischemic 41 

postconditioning (PostC) as well as their underlying mechanisms. Due to their biological properties, the 42 

use of Mesenchymal Stromal/Stem Cells (MSC) has been considered as a potential therapeutic approach 43 

in AMI. Despite promising results and evidence of safety in preclinical studies using MSC, the effects 44 

reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed 45 

to many parameters such as donor age, in vitro culture and storage time as well as injection time window 46 

after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to 47 

generate MSC with enhanced properties in order to limit cell death in myocardial tissue, thereby reduce 48 

infarct size, and improve the healing phase to increase post-infarct myocardial performance.  49 

 50 

Running head: MSC to decrease cardiac injury 51 
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I- INTRODUCTION 142 

Acute myocardial infarction (AMI) ranks first in the leading cause of cardiovascular death and 143 

is a strong provider of heart failure. According to the World Health Organization, cardiovascular 144 

diseases are predicted to stay at the first rank until 2030 and this burden will be worsened due to an 145 

aging population, an exponential growing number of diabetic patients and the COVID-19 pandemic 146 

leading to cardiovascular complications. In 2023, prompt revascularization of the culprit artery to 147 

reperfuse the myocardium is the only treatment for the care of AMI patients recommended by the 148 

societies of cardiology in Europe and in USA. While timely reperfusion is crucial for AMI patients, still 149 

15 to 30% of patients are admitted too late at the hospital for reperfusion therapy to be effective. In 150 

addition, there is also a significant number of patients for whom reperfusion is not effective at all. 151 

Optimized techniques of angioplasty and care management of patients have allowed to decrease infarct 152 

size, a major determinant of mortality. However, for the patients surviving after AMI, morbidity rate for 153 

heart failure is still rising. There is an urgent need to develop cardioprotective strategies to reduce the 154 

high morbidity and mortality rates and the total burden in terms of public health and societal costs.  155 

This review gathers authors with complementary expertise with the goal of identifying in the large panel 156 

of studies in the field, the best conditions for providing a successful cell therapy tool able to prevent the 157 

complex myocardial injury following AMI and for which no effective treatment is available. Section II 158 

describes the main mechanisms involved in ischemia and reperfusion injury that are targeted by 159 

mesenchymal stem/stromal cell-based therapy. While the goal of reperfusion is to save the myocardium 160 

and decrease infarct size, it has deleterious effects, paradoxically exacerbating cardiac cell death at the 161 

time of patient care and leading to specific so-called ischemia-reperfusion (IR) injury. In this review, 162 

we describe the historical context of the discovery of both ischemic injury and reperfusion injury as well 163 

as the mechanisms of regulated cell death (RCD) and inflammation as features of myocardial infarction 164 

and reperfusion. We also describe the endogenous mechanisms of cardioprotection involved in ischemic 165 

conditioning, in particular ischemic postconditioning (PostC), which is clinically relevant and also 166 

represents a major concept attesting the existence of IR injury. Remote conditioning is also described 167 

since it allows a non-invasive care of the patient. However, it is striking that in over 30 years of research, 168 

all monotherapies tested in AMI patients have failed and that nowadays there is still no clinical treatment 169 

for reperfusion injury. This explains why multi-target therapies such as inhibition of both apoptosis and 170 

inflammation, identified as main contributors of PostC and mesenchymal stromal/stem cell (MSC) 171 

therapeutic effects, have been explored and have provided promising results. This section highlights the 172 

complexity of the mechanisms underlying the lesions and their unfolding in time highlighting the fact 173 

that the treatments, to be effective, must be applied in a compatible and optimal temporal window.  174 

Section III describes the various embryonic origins and the heterogeneity of MSC that exists at different 175 

levels. The properties of MSC, in particular their anti-apoptotic, immunoregulatory effects and anti-176 

inflammatory potential, are discussed by highlighting the underlying mechanisms, including their ability 177 
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to release bioactive molecules and transfer organelles such as mitochondria and extracellular vesicles 178 

(EV). The description of the phenotypic and functional heterogeneity of MSC is addressed in order to 179 

identify strategies to generate standardized and optimized cells to achieve their maximal therapeutic 180 

effect in AMI patients. Among these strategies, the enhancement of MSC survival rate and engraftment 181 

in the damaged tissue as well as their anti-apoptotic properties on cardiac cells appears as a promising 182 

approach.  183 

Section IV is focused on the results achieved with MSC during acute myocardial infarction. We report 184 

the promising issues obtained in preclinical studies by contrast to the clinical trials that reveal 185 

heterogeneous and inconsistent outcomes, although the safety and efficacy of MSC in phase I and II 186 

have been demonstrated. The second part of section IV analyzes the factors that could explain such an 187 

heterogeneity of results in patients compared to preclinical data i.e., the source of MSC and the in vitro 188 

amplification process of MSC obtained from patients. Finally, this section describes the methods used 189 

to optimize MSC therapeutic potential and bring them into the routine clinical practice. In addition, 190 

analysis and identification of the critical parameters including MSC doses, their routes and timing of 191 

administration, should allow to further enhance the success of MSC-based therapies.  192 

 193 

 194 

II- Myocardial injury and aspects of cardioprotection 195 

In this section will be described the elements helping to understand the mechanisms of action of the 196 

MSC involved in their cardioprotective effects. In particular, since MSC have been reported to protect 197 

the heart in the context of AMI through an inhibition of both regulated cell death cascades and 198 

inflammation. All the mechanisms underlying cardiac injury at the acute and subacute phases of 199 

myocardial infarction as well as those mediating cardioprotection will be described. 200 

 201 

A-  Mechanisms of cardiac injury 202 

1- Historical consideration and definitions 203 

Myocardial infarction (MI) originates with an ischemic injury (FIGURE 1A) induced by the complete 204 

occlusion or a severe reduction of the blood flow in a coronary artery. Ischemia, whose Greek etymology, 205 

, means “withholding blood”, generates alterations in the deprived cardiac region, which, 206 

depending on the severity of the reduction of the coronary blood flow, will lead to the death of cells and 207 

hence the heart muscle. The area perfused by the coronary artery downstream the site of occlusion 208 

corresponds to the area at risk of infarction. Within a given area at risk, both the severity and duration 209 

of the reduction in coronary blood flow will determine the amount of injury. 210 

 211 

Ischemic injury  (FIGURE 1A) In fact, infarct size depends on several parameters (1) including 212 

the site of occlusion (proximal versus distal), which will determine the extent of area at risk (2), the 213 
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density of the collateral capillary network involved in the coronary circulation (1, 3, 4), the ischemia 214 

duration (3, 5) as well as the haemodynamic parameters during ischemia such as heart rate (6, 7). 215 

As a result of the interruption or reduction of blood supply, the lack in oxygen in the ischemic tissue 216 

leads to the cessation of the respiratory chain in the mitochondria shifting their metabolism from aerobic 217 

to anaerobic (8) via mechanisms well detailed in a previous review published in Physiological Reviews 218 

in 2008 (9). The metabolic changes result in ATP deficiency leading to an increased production of 219 

reactive oxygen species (ROS), acidosis and to impaired ion homeostasis (10). In particular, increased 220 

cell resting membrane potential, reduced excitability associated to an increased potassium (K+) efflux, 221 

shorten action potential duration and decrease conduction velocity. These electrophysiological 222 

modifications generate a potential substrate for the generation of arrhythmias leading to ventricular 223 

fibrillation and sudden cardiac death (11, 12). Severe ischemic conditions during MI induce cardiac cell 224 

death mainly by necrosis leading to the disruption of the cell membrane and the passive release of 225 

DAMPS (Danger associated molecular patterns) (13).  226 

In fact, both reversible and irreversible injuries are induced during myocardial ischemia. R.B. Jennings 227 

was the first to clearly show that all myocytes of the sub-endocardium of the canine heart survived when 228 

occlusion of the circumflex artery was maintained less than 15 minutes, due to reversible injury (13). 229 

However, when the ischemic period was prolonged until 60 minutes, most of the subendocardial tissue 230 

was dead, resulting in an irreversible injury. In those experiments, dead cells were evidenced due to their 231 

degraded architecture with either membrane disruption, prominent “contraction bands”, or calcified 232 

mitochondria. This princeps study clearly evidenced two major results: first, the notion of irreversibility 233 

because some myocytes after reperfusion did not survive and second, restoration of arterial blood flow 234 

after revascularization allowing the salvage of ischemic myocytes still alive, constituting the basis of 235 

the actual reperfusion therapy (13, 14). K. Reimer and R. Jennings reported both the time line and the 236 

wavefront of cell death within the transmural myocardium, starting from the sub-endocardium and 237 

ending in the sub-epicardium (3). Following MI, around 1 billion cardiac cells die in response to 238 

ischemia (15). The resulting “infarct size”, corresponding to the dead tissue, is mainly correlated with 239 

the duration of the coronary occlusion (3, 5, 13, 16) and constitutes a major determinant of myocardial 240 

functional recovery and mortality after MI (17).  241 

Ischemic injury is also associated with functional changes in the infarcted tissue due to the lack of high-242 

energy phosphates. These metabolic changes take place following the switch from aerobic to anaerobic 243 

glycolysis providing new high energy phosphates from glucose issued from glycogen stores. As a result 244 

of lactate accumulation, the cytosol becomes acidic, the pH dumping from 6.6 after 10 minutes to 5.8 245 

after 50 minutes of ischemia (18). Disturbance in calcium homeostasis is also a main characteristic of 246 

ischemic injury due to the lack of ATP and the shutdown of ion pumps or channels leading to a defect 247 

in contractile performance of the myocardium (19). At the acute phase, necrotic cardiac cells release 248 

their cytosolic contents into the extracellular space, activating innate immune pathways, which have 249 

been previously described in details by Xu et al. in Physiological Review (20). This resulting transient 250 
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but intense inflammatory response (see section II-A-3 below: Contribution of inflammation) allows 251 

repair of injured tissue through wound resorption and scar formation, but was also reported to prevent 252 

cardiac regeneration in adult mammals (21-23).  253 

 254 

 255 

FIGURE 1: Mechanisms of ischemia and reperfusion injury. 256 
A: Ischemia results from coronary occlusion, leading to a shift from aerobic to anaerobic metabolism. 257 
The lack of ATP induces the shutdown of ion channels and pumps leading to calcium overload. Acidosis 258 
results from the accumulation of lactate in the cytosol. Necrotic cells release DAMPS, produce ROS, 259 
and activate the complement cascade, inducing a burst of sterile inflammation: neutrophils and 260 
leukocytes are recruited, the inflammasome activates in circulating cells leading to the release of IL-1β 261 
and IL-18. 262 
B: Upon reperfusion, aerobic metabolism is restored and mitochondria again produce ATP. 263 
Reperfusion injury is complex and multifactorial involving ROS, calcium (Ca2+) overload, mPTP 264 
opening, vascular complications and cardiac cell death mediated by apoptosis, necroptosis, autophagy 265 
and pyroptosis. The pro-inflammatory response is exacerbated and mediated by TLR (2, 4, and 9) and 266 
NLRP3 signaling cascades. Activation of the inflammasome in circulating cells leads to release of IL-267 
1β and IL-18 and to caspase-1 mediated pyroptosis in cardiomyocytes. Surviving cardiomyocyte in the 268 
border zone produce TNF- and IL-6 pro-inflammatory cytokines. 269 
 270 
 271 

Reperfusion injury (FIGURE 1B) J. Ross’ laboratory was the first in 1972 to describe in a 272 

preclinical dog model of AMI that reperfusion, after 180 min coronary occlusion, reduced infarct size 273 

and restored contractile function, a cardioprotective effect maintained during 1 week after reperfusion 274 

(24, 25). With the aim to limit infarct size and improve cardiac function in patients after AMI, 275 

reperfusion therapy was translated into the clinics in the early 80’s, first using intracoronary (IC) 276 

streptokinase infusion that allowed to restore coronary flow in 70 % to 90% of the cases and improved 277 
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left ventricular function compared to the non-reperfused myocardium groups (26-29). However, despite 278 

treatment with thrombolytics, the coronary stenoses that contributed to the infarction could only be 279 

treated surgically by coronary bypass. Hartzler et al. reported the first experience in AMI patients using 280 

percutaneous transluminal coronary angioplasty as an alternative to bypass surgery, alone or in addition 281 

to thrombolysis (30). Percutaneous coronary intervention (PCI) later provided benefits in terms of both 282 

myocardial salvage and clinical outcome, i.e. post-myocardial infarction (post-MI) recovery and patient 283 

survival (31). Reperfusion therapy, preferably by PCI but also by thrombolysis, stays nowadays the only 284 

treatment recommended for all types of MI (32-35).  285 

The first evidence of coronary no-reflow phenomenon as a vascular complication by R. Kloner 286 

highlighted the dark side of myocardial reperfusion (36, 37). In addition, the death of myocardial cells 287 

in this dog model was reported to occur before the onset of capillary damage due to the lower energy 288 

requirements of endothelial cells for their structural integrity conservation (36). In areas of no-reflow, 289 

oxygenated blood and pharmacological agents cannot enter the ischemic region, thus preventing any 290 

therapy to save the muscle in this area. A few years later, obvious signs of irreversible myocardial injury 291 

such as rupture of cell sarcolemma were described in the same dog model (3, 5).  292 

Despite clear evidence of direct cardiac cell injury upon restoration of the blood flow, the 293 

existence of reperfusion injury has been a matter of debate since more than 30 years until the proof-of-294 

concept of PostC was provided, a main issue, which will be described in section I-B (38, 39). Ischemia-295 

reperfusion (IR) injury (see FIGURE 1B) includes both reversible mechanisms, such as myocardial 296 

stunning, endothelial dysfunction and most of arrhythmias (with the exception of ventricular 297 

fibrillations), but also irreversible damage characterized by cardiac cell death occurring in contractile 298 

cardiomyocytes and vascular cells. 299 

Upon reperfusion, the abrupt return of oxygen allows mitochondria to provide ATP after switching from 300 

an anaerobic to an aerobic metabolism (FIGURE 1B). Due to the accumulation of the substrate 301 

succinate, an overproduction of ROS occurs, leading to oxidative stress (around 6-fold more than in 302 

ischemic conditions) (40, 41). As a result, IR injury includes metabolic alterations, ROS overproduction, 303 

autophagy deregulation, mitochondrial dysfunction, cytosolic and mitochondrial calcium overload, 304 

cardiomyocyte hyper contracture as well as apoptosis (FIGURE 2). At the tissue level, IR is associated 305 

with a dysfunction of the microcirculation, an influx of inflammatory cells and edema (42). We will 306 

focus our review on irreversible damage mediated by RCD mechanisms including necrosis, apoptosis, 307 

necroptosis and autophagy. 308 

 309 

2- Cell death mechanisms 310 

MI is defined as cardiac cell death caused by both ischemia and reperfusion resulting from 311 

necrosis, apoptosis, necroptosis, autophagy and pyroptosis cell death mechanisms as illustrated in 312 

FIGURE 2.  313 

 314 
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 315 
 316 
FIGURE 2: RCD mechanisms activated upon IR injury. 317 
Apoptotic or necrotic pathways activate during severe IR injury by contrast to autophagic cell death 318 
activating during moderate injury to ensure survival. Mitochondria are stimulated by various stresses 319 
including ischemia-reperfusion, oxidative/proteotoxic stress, DNA damage or increased cytosolic 320 
concentrations of Ca2+. The intrinsic pathway of apoptosis is characterized by MOMP under the control 321 
of proteins from the BCL-2 family. Oligomerization (hetero- or homo-) of BAX and BAK to form pores 322 
in the outer membrane is dependent on BH3-only protein regulators and leads to the release of Cyt C, 323 
that binds to APAF-1 with dATP to constitute the apoptosome, in which procaspase-9 is activated and 324 
SMAC binding XIAP or cIAP, preventing them to inhibit caspase-3 and -9. Caspase-9 subsequently 325 
activates downstream procaspase-3. Active Caspase-3 cleaves PARP in the nucleus leading to DNA 326 
fragmentation. EndoG, released by mitochondria, contributes also to DNA fragmentation. In parallel, 327 
mPTP opening is triggered at the onset of reperfusion by the burst of ROS, a further increase in 328 
mitochondrial Ca2+ and the restoration of a physiological pH. In these conditions, the H + gradient 329 
across the inner mitochondrial membrane is lost, leading to the depolarization of the mitochondrial 330 
membrane potential, . The permeabilization of the inner membrane leads to a swelling of the matrix 331 
due to osmotic pressure, inducing the rupture of the OMM and the release of pro-apoptotic Cyt C in the 332 
cytosol. BAX and BAK regulate or participate in the formation of the mPTP as proteins from the outer 333 
membrane.  334 
The extrinsic pathway is mediated by the FAS receptor (TNF family) activated by external stimuli 335 
(FASL). Homotrimers of FAS undergo a conformational change favoring homotypic interactions with 336 
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intracellular death domain-containing proteins such as FADD. This pathway recruits pro-Caspase-8 in 337 
the DISC protein complex formed by FAS, FADD and RIP1, leading to its auto-proteolytic cleavage. 338 
Activated caspase 8 will in turn active caspase 3 directly or indirectly via the cleavage of cytosolic BID. 339 
tBID translocates and inserts into the mitochondrial outer membrane where it contributes to the release 340 
of Cyt C through mechanisms either involving BAX or independently of BAX.  341 
The nuclear protein DAXX also plays a crucial role in the intracellular signaling cascade of the FAS 342 
membrane receptor. DAXX nucleocytoplasmic export is triggered by oxidative stress during reperfusion 343 
and mediated by the MAPK kinase kinase ASK1. DAXX possesses a critical role in FAS-mediated cell 344 
death to optimally form the DISC. The activation of ASK1 results in the phosphorylation and activation 345 
of JNK to induce cell apoptosis through the JNK-BAX-dependent mitochondrial pathway.  346 
Necroptosis is defined as a regulated death mechanism triggered by TNF, FasL and TRAIL ligands. 347 
Following activation of complex I (TNFR, RIP1, TRADD, cIAP1/2, LUBAC), complex II (TRADD, 348 
FADD, RIP1 and pro-caspase 8) activates and triggers initiation of apoptosis or necroptosis (no 349 
cleavage of RIP1 in case of caspase-8 inhibition). The association of RIP3/RIP1 with MLKL within the 350 
necrosome complex leads to MLKL phosphorylation and membrane permeabilization. CAM kinase is a 351 
substrate of RIP3 leading to activation of the mPTP-dependent mitochondrial pathway. 352 
Autophagy is activated in the heart during ischemia with ATP depletion and subsequent activation of 353 
AMPK to eliminate intracellular waste from proteins, lipids and organelles damaged during stress.  354 
Autophagy is inhibited by the survival proteins AKT or mTOR. Beclin-1 controls the initiation of 355 
autophagosomes, ATG their elongation and recruit the cytosolic protein LC3-I which, once transformed 356 
into LC3-II, will be integrated into the autophagosome membrane. Functional autophagy invariably 357 
culminates in lysosomal degradation. Beclin-1 is cleaved by caspases, showing the existence of a 358 
crosstalk between autophagy and apoptosis.  359 
 360 
 361 

During ischemic injury, passive mechanisms of cell death are triggered due to the lack of ATP. 362 

Necrosis is the first mechanism described initially to occur during this phase in cardiomyocytes. It is 363 

characterized by plasma membrane permeability and the release of DAMPS in the extracellular space 364 

(13). By contrast to RCD mechanisms, this form of apoptosis cannot be prevented.  365 

Lethal reperfusion injury is defined as the death of cardiac cells, viable at the end of the ischemic period, 366 

that occurs within the first minutes of reperfusion in cells (43, 44). This concept was supported by studies 367 

showing that the mitochondrial permeability transition pore (mPTP) opening, considered as the key 368 

event responsible for cardiomyocyte death, opens within the first 5 minutes of reperfusion (45). In fact, 369 

either apoptosis, necrosis, necroptosis or autophagy cell death mechanisms can all be activated upon IR 370 

injury, depending on the intensity of the stress (46): if the lesions are moderate, autophagy will be 371 

activated to ensure cell survival; if ischemia is more intense, cell death will be induced mainly by 372 

apoptotic or necrotic route, with a continuum between the two mechanisms. Intensive research in the 373 

last 30 years has been conducted to inhibit IR-induced cell death, however no treatment has been yet 374 

validated for its use in the clinical setting (47).  375 

The existence of apoptotic mechanisms in the IR myocardium, described first by Gottlieb et al. in an in 376 

vivo rabbit model, was evidenced in different animal models and human ischemic heart disease, and 377 

considered of potential interest for therapeutic intervention in cardioprotection (48-51). Moreover, 378 

numerous studies have shown the beneficial effect in vivo of specific anti-apoptotic interventions against 379 

myocardial IR injury (see below in section I-C-1) (52-59). By contrast, another study using in vivo 380 

models of cardiac-specific caspase-3 deficient/full, caspase-7-deficient mice (Casp3/7DKO) reported 381 
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that caspases-3 and -7, known as executioner caspases since they can cleave target proteins leading to 382 

characteristic apoptotic breakdown of a cell, do not significantly contribute to cardiomyocyte death 383 

induced by transient coronary occlusion (60). These discrepancies on caspase contribution were 384 

explained by a global reduction of the whole caspase-dependent pathway expression in terminally 385 

differentiated cardiac cells (61). However, an immunohistochemical study performed on post-mortem 386 

human hearts slices clearly showed that caspase 3-dependent apoptosis is an important mode of 387 

cardiomyocyte cell death in MI in the early period (less than 24h) in particular in infarcted heart tissues 388 

who received reperfusion therapy. When analysis was performed on samples taken later (more than 48h), 389 

caspase-3 activity was detected in neutrophil granulocytes and inflammatory cells (62).  390 

 391 

Apoptosis   is a highly regulated, energy-dependent form of RCD defined as “type I cell death 392 

or apoptosis, exhibiting cytoplasmic shrinkage, chromatin condensation (pyknosis), nuclear 393 

fragmentation (karyorrhexis), and plasma membrane blebbing, culminating with the formation of 394 

apparently intact small vesicles (commonly known as apoptotic bodies) that are efficiently taken up by 395 

neighboring cells with phagocytic activity and degraded within lysosomes” (46). The dependence on 396 

ATP production makes apoptosis incompatible with ischemic conditions and makes it specific to the 397 

reperfusion phase: apoptotic cascades pre-activate during ischemia and are fully executed during 398 

reperfusion, in the presence of ATP, leading to specific DNA fragmentation (63). Apoptosis retains the 399 

integrity of the plasma membrane and the metabolic activity until the final stage where the plasma 400 

membrane breaks down and the cells acquires a necrotic morphotype (secondary necrosis) (46). Two 401 

main apoptotic pathways, the intrinsic (or mitochondrial) and the extrinsic (depending on death 402 

receptors), are activated during IR injury.  403 

The intrinsic, or mitochondrial pathway has been described in detail in 2019 by Del Re et al. (64) in 404 

Physiological Reviews. It is defined as a type of RCD initiated by perturbations of both the extracellular 405 

or intracellular microenvironment. It is characterized by the permeabilization of the mitochondrial outer 406 

membrane (MOMP) and precipitated by executioner caspases, mainly Caspase-3 (FIGURE 2) (46, 65, 407 

66). MOMP is mediated by homo/hetero oligomers of BCL-2 associated to X apoptosis regulator (BAX), 408 

and/or BCL2 antagonist/killer 1 (BAK1 or BAK) transmembrane proteins with BH domains 409 

(Homologous to B-cell lymphoma 2, BCL-2) (67), that form pores across the outer mitochondrial 410 

membrane (OMM) and lead to a large increase in outer mitochondrial permeability (68, 69). 411 

Permeabilization results in the release into the cytoplasm of the pro-apoptotic factors: (i) SMAC (Second 412 

Mitochondrial Activator of Caspases)/DIABLO that binds and inhibits XIAP (X-linked Inhibitor of 413 

Apoptosis); (ii) endonuclease G that cleaves DNA (caspase-independent mechanism), and (iii) 414 

cytochrome c (Cyt C), the loss of which in the mitochondrial respiratory chain leads to the dissipation 415 

of the mitochondrial transmembrane potential (Δψm) and cessation of mitochondrial functions such as 416 

ATP synthesis (70). Cyt C binds to and stimulates the oligomerization of APAF-1 (Apoptotic peptidase 417 

activating factor 1) and the subsequent recruitment and activation of caspase-9. In turn, executioner 418 
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caspases 3/6/7 activate, leading to specific DNA fragmentation and cell apoptosis (71). The 419 

characteristic apoptotic morphology results from the caspase-mediated cleavage of key proteins such as 420 

poly (ADP-ribose) polymerase (PARP), actin, or lamins (72). 421 

An increase in inner mitochondrial membrane permeability occurs when the mega channel mPTP (73), 422 

maintained closed in acidic ischemic conditions, opens upon reperfusion. The molecular identity of the 423 

mPTP is still not fully unraveled despite significant progress in the recent years (74). The adenine 424 

nucleotide translocator (ANT) was proposed first as candidate for mPTP channel formation. Several 425 

proteins from the different compartments have been described also as contributors: VDAC (voltage-426 

dependent anion channel), BCL-2 family proteins, Translocator protein (TSPO) called benzodiazepine 427 

receptor from the OMM, and the IMM protein F1Fo ATPase as well as CyPD (cyclophylin D) from the 428 

matrix (for review (75)). mPTP opening is triggered by the cellular stress generated by the burst of ROS, 429 

an increase in mitochondrial Ca2+ and the restoration of a physiological pH (76-83). This 430 

permeabilization of the inner membrane leads to a swelling of the matrix due to osmotic pressure caused 431 

by the high concentration of proteins in the matrix relative to the outer component of mitochondria.  432 

It is important to note that the mPTP and BAX/BAK proteins together contribute to both the 433 

mitochondrial pathway and the mPTP-driven necrosis RCD mechanisms, suggesting a crosstalk 434 

between apoptosis and regulated necrosis (46, 64, 84). In fact, the time frame of mPTP opening 435 

determines the mechanism of RCD: short-term opening allowing restoration of ATP levels leads to 436 

apoptosis while long term opening induces irreversible damage leading to necrosis (85). The 437 

pathological role for PTP opening during IR injury was highlighted by pharmacological or genetic 438 

approaches inducing cardioprotection (45, 86-88). Many animal studies have shown that the 439 

administration of drugs interacting with cyclophilin D (CyPD), such as cyclosporin A (CsA), at the time 440 

of reperfusion to target PTP opening, reduces infarct size, although studies in pig AMI models have 441 

been puzzling (89). In summary, only the full elucidation of the mPTP structure would probably to solve 442 

the uncertainties on mPTP involvement in the pathophysiology of IR injury.  443 

The extrinsic pathway is activated by external stimuli (specific ligands) binding to death receptors 444 

belonging to the TNF receptor superfamily such as FAS (First Apoptosis Signal; TNFRSF6/CD95/APO-445 

1) (90). FAS receptors are pre-associated as homotrimers in the cell membrane and undergo, after 446 

stimulation by FAS ligand (FASL), a conformational change favoring homotypic interactions with 447 

intracellular death domain-containing proteins (91). Among them, two adaptor proteins FADD (FAS-448 

Associated protein with Death Domain or MORT 1) and DAXX (Death-domain associated protein-6) 449 

initiate the intracellular cascades of FAS that will converge to a common caspase cascade leading to 450 

specific DNA fragmentation and cell destruction (92-95). The extrinsic pathway has been less explored 451 

in the myocardium as compared to the intrinsic mitochondrial pathway. Indeed, previous experiments 452 

in various knockout mouse models with inactivated FAS receptor or non-functioning FASL, have shown 453 

inconsistent results on cardioprotection (96-99). In addition, FASL alone is not sufficient to induce 454 

apoptosis in vitro in cardiac cells unless a pre-exposition to oxidative stress, suggesting that hypoxia 455 
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sensitizes cardiac cells to the effects of FASL (100), probably through the recruitment of key 456 

contributors (such as DAXX) as additional locks for a maximal safety to trigger apoptotic cell death. 457 

Furthermore, the release of FASL in the plasma of patient during the early phases of AMI and in 458 

postischemic hearts ex vivo after the onset of reperfusion provides strong evidence for the contribution 459 

of the FAS-dependent pathway in IR injury (96, 101). 460 

Activation of the FAS receptor initiates the caspase cascade via the formation of the DISC (Death 461 

inducing signaling complex) proteinase complex formed by FAS, FADD, RIP1 (Receptor interacting 462 

protein kinase 1) and pro-caspase 8 (102). This FAS-FADD signaling cascade has been widely described 463 

by many authors and reviewed in detail by Del Re et al. 2019 (64). Efficient DISC assembly induces an 464 

auto-proteolytic cleavage of caspase-8, which in turns activates caspase 3 directly or indirectly via the 465 

cleavage of cytosolic BID (BH3 interacting-domain death agonist). Truncated BID (tBID, p15) 466 

translocates and inserts into the mitochondrial outer membrane where it contributes to the release of Cyt 467 

C through mechanisms either involving BAX or independently of BAX (103-107). As a result, FAS-468 

mediated apoptosis is amplified by the activation of the mitochondrial pathway via a subsequent release 469 

of Cyt C leading to the complete processing of caspases-3. The amount of caspase-8 recruited to the 470 

DISC allows to define cells as Type I cells when they execute FAS-induced apoptosis by a largely 471 

mitochondrial-independent pathway and type II cells when FAS-apoptosis is also dependent on the 472 

mitochondrial pathway. Importantly, cardiomyocyte restricted deletion of FADD significantly reduced 473 

the infarct size in vivo in a mouse model of IR injury (108).  474 

Independently of the cascade involving FADD, the nuclear protein DAXX also plays a crucial role in 475 

the intracellular signaling cascade of the FAS membrane receptor (92), allowing to optimally form the 476 

DISC even in myocardial tissue (59, 92). The dual role of DAXX as an antiapoptotic transcriptional 477 

repressor in the nucleus (109, 110) and as a pro-apoptotic signal mediator in the cytoplasm depends on 478 

the subcellular localization of the protein (92). DAXX nucleocytoplasmic export is triggered by 479 

oxidative stress or UV irradiation in cardiac cells (100, 111) or by glucose deprivation (112). The MAPK 480 

kinase kinase ASK1 (Apoptosis signal-regulating kinase 1) insures DAXX-shuttling into the cytoplasm 481 

during nucleo-cytoplasmic transport (112, 113). The activation of ASK1 results in the phosphorylation 482 

and activation of JNK to induce cell apoptosis through the JNK-BAX-dependent mitochondrial pathway 483 

(106, 114). Finally, JNK activates a variety of transcription factors, such as c-JUN and p53, and regulates 484 

mitochondrial proteins, such as BCL-2 and BCL-XL, through phosphorylation, resulting in DNA 485 

damage and apoptosis (see for review (115)). DAXX via its FAS-binding domain binds the death domain 486 

of FAS after oligomerization (92). Interestingly, our group has shown that blocking this specific 487 

interaction by either genetical and pharmacological approaches appears as a very promising 488 

cardioprotective strategy against IR injury because both extrinsic and intrinsic (mitochondrial) apoptotic 489 

cascades are inhibited (57, 59, 116). 490 

Importantly, both intrinsic and extrinsic apoptosis generate a lot of apoptotic debris, which has 491 

to be rapidly eliminated to avoid the release of cytotoxic particles after the loss of their membrane 492 
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integrity that are not always immunologically silent. This process serves as a waste disposal mechanism 493 

and promotes resolution of inflammation (117). In addition, apoptotic cells have to be cleared by 494 

phagocytes, predominantly macrophages that represent 7% of the noncardiomyocytes cells, a process 495 

known as programmed cell removal or “efferocytosis” (118-121).  496 

 497 

Necroptosis   is another form of RCD involved in IR injury triggered by oxidative stress or death 498 

receptor activation by TNF, FasL and TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) 499 

ligands (FIGURE 2) (122). Despite its similarity with necrosis, necroptosis depends on caspase 8 500 

activity, a feature found also in apoptosis. RIP1 and RIP3 protein kinases as well as death receptors play 501 

a crucial role at the crossroads of necroptosis and apoptosis. In fact, following activation of complex I 502 

including TNFR, RIP1, TRADD (TNFR-Associated Death Domain) and cIAP1/2 (cellular inhibitor of 503 

apoptosis proteins 1 and 2), complex II (TRADD, FADD, RIP1 and pro-caspase 8) activates and triggers 504 

initiation of apoptosis or necroptosis. The latter will only be triggered if caspase 8, responsible for the 505 

cleavage of RIP1, is inhibited. The association RIP3/RIP1 with MLKL (mixed lineage kinase domain 506 

like pseudokinase) within the necrosome complex leads to permeabilization and rupture of the plasma 507 

membrane under the action of MLKL.  508 

 509 

Autophagy and autophagic cell death  Autophagy is activated in the heart to eliminate 510 

intracellular waste from proteins, lipids and organelles damaged during stress (123). During ischemia, 511 

autophagy is a cardioprotective mechanism activated by ATP depletion and subsequent activation of 512 

AMPK (FIGURE 2). However, during reperfusion, autophagy and apoptosis can occur in the same cell 513 

and usually autophagy occurs before apoptosis because stress often stimulates an autophagic response, 514 

especially if the stimulus is not lethal (124). As a negative feedback loop, increased caspase activity in 515 

apoptosis can cleave Beclin-1 to inactivate Beclin1-mediated autophagy (125). Reduced activity is also 516 

controlled by BCL-2 or BCL-XL, by the survival proteins AKT (protein kinase B) (126, 127) or mTOR 517 

(mammalian Target Of Rapamycin) (128). Autophagic cell death in cardiac cells after reperfusion has 518 

been reported and can even spiral out of control in the final phase of reperfusion, leading to autosis (129, 519 

130). The BH3-only protein Beclin-1, a core component of the class III PI3K (phosphatidylinositol-3 520 

kinase) complex, controls autophagosome formation, which is the main step in autophagy. Beclin-1 is 521 

reported to be activated during reperfusion. However, conflicting results have been obtained concerning 522 

the role of Beclin-1 in cardiac cell death, since cardioprotection was observed both in Beclin-1+/- mutant 523 

mice or after administration of a Tat-Beclin1 peptide during myocardial IR injury (129, 131).  524 

 525 

Pyroptosis corresponds to a pro-inflammatory programmed cell death (Greek roots:  for 526 

fire and  meaning falling). Pyroptosis is characterized by the generation of pores in the plasma 527 

membrane by gasdermin D (GSDMD) activated through a cleavage by inflammatory caspases such as 528 

caspase-1 (FIGURE 3). To form pores, GSDMD-NT, the NH2-terminal cleavage product, oligomerizes 529 
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in the plasma membrane inner leaflet and causes the release of intracellular material inducing cell death 530 

(64).  531 

 532 

 533 

FIGURE 3: NLRP3 Inflammasome and pyroptosis. 534 
The first priming signal is triggered by DAMPS binding to TLR (Toll-like Receptors) and by cytokines 535 
activating their receptors. Subsequent activation of the NF-κB cascade leads to the transcription of 536 
target genes encoding for pro-IL-1, pro-IL-18 and NLRP3. Activation of NLRP3 is triggered by K+ 537 
efflux, DAMPS, lysosomal rupture and mitochondrial ROS, and subsequent release of oxidized 538 
mitochondrial DNA into the cytosol. Active NLRP3 oligomerizes into NLRP3-ASC-Caspase1 539 
inflammasome, forming a circular structure functioning as a platform for the polymerization of ASC 540 
into filaments, which in turn work as a central core from which caspase 1 filaments branch, forming a 541 
star-like structure. Active caspase 1 cleaves the inactive pro-IL-1β and pro-IL-18 into the active IL-1β 542 
and IL-18. GSDMD is an additional substrate of caspase 1 that oligomerizes upon cleavage and forms 543 
pores in the cell membrane with the N-terminal fragments, which allow the extracellular release of 544 
active IL-1β and IL-18. The mature NLRP3 inflammasome works as an activation platform for caspase-545 
1 that, in circulating cells, processes and releases IL-1β and IL-18 cytosolic inflammatory cytokines 546 
and, in cardiomyocytes, leads to caspase-1 mediated pyroptosis.  547 
 548 
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During IR injury, the expression of ASC (Apoptosis-associated speck-like protein containing a CARD) 549 

and NLRP3 (Nucleotide-binding oligomerization domain-Like Receptor family Pyrin domain 550 

containing 3) inflammasome components are upregulated as well as the activation of caspase-1 and the 551 

release of pro-inflammatory cytokines IL-1 and IL-18 mainly in fibroblasts and to a less extent in 552 

cardiomyocytes (132, 133). Activation of the inflammasome in circulating cells leads to IL-1β and IL-553 

18 release but its activation in cardiomyocytes leads to caspase-1 mediated pyroptosis (134). GSDMD-554 

mediated cardiomyocyte pyroptosis is a key event during IR injury (135) Recently, Zhang et al. 555 

demonstrated that GSDMD inhibition allows to reduce IR injury by blocking pyroptosis (136). However, 556 

cardiac function was worsened by activation of poly(ADP-ribosyl)ation through the interaction of 557 

GSDMD with PARP-1, leading to apoptosis of cardiomyocytes. This suggests a cross-talk between 558 

pyroptosis and apoptosis. 559 

 560 

 561 

Understanding cell death mechanisms underlying the acute phase of MI as well during 562 

reperfusion is crucial for the development of therapeutic strategies inhibiting specifically these cascades 563 

and save cardiomyocytes. It is worth noting that RCD mechanisms are interconnected as illustrated by 564 

FIGURE 2, thanks to regulator proteins playing key roles in the intricated complex interplay between 565 

apoptosis, necrosis, necroptosis, pyroptosis and autophagy. RCD mechanisms activate during 566 

reperfusion, which coincides with the therapeutic time window of MSC administration. At the onset of 567 

reperfusion, autophagy is triggered to save cellular components and steer the cell towards a survival fate. 568 

Then, apoptosis is triggered when the injury is more severe during reperfusion. In parallel, the 569 

inflammatory RCD mechanism pyroptosis activates. In this context of cardiac injury, targeting of 570 

multiple mechanisms should offer greater efficacy in improving the outcome of MI. MSC are relevant 571 

to provide a multiple target strategy because targeting either apoptosis, autophagy, necroptosis and 572 

pyroptosis (see below sections III and IV).  573 

 574 

3- Contribution of inflammation to cardiac injury 575 

During AMI, inflammation is necessary for myocardial healing and the formation of a scar thus 576 

preventing wall rupture. The inflammatory response includes both a local and a systemic component.  577 

 578 

Local inflammatory response  The burst of inflammation induced by necrotic cells through 579 

production of ROS, complement cascade activation and the release of DAMPS by necrotic cells, has 580 

been referred as sterile inflammation since it occurs in the absence of pathogenic infection (137). 581 

DAMPS (or alarmins; previously detailed in a review by Sarhan et al., (138))- such as HMGB1 (High 582 

Mobility Group Box 1), eATP (extracellular ATP), pro-IL1, heat-shock proteins, S100-proteins and 583 

histones- bind to PRRs (Pattern Recognition Receptors) in cardiomyocytes, fibroblasts, endothelial cells 584 

and leukocytes, to induce inflammatory pathways and stimulate cytokine secretion (FIGURE 3) (139, 585 
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140). In particular, among the PRRs, the TLRs (Toll Like Receptors) lead to the production of cytokines 586 

as well as the activation and recruitment of neutrophils to the site of injury (141, 142). In addition, the 587 

cytoplasmic PRR NLRP3 is activated during the first step of priming by endogenous or exogenous 588 

signals leading to the activation of NF-B and the transcription of inflammasome components in 589 

circulating inflammatory cells and in cardiomyocytes, fibroblasts, and endothelial cells (22, 143). 590 

Following the production of inflammasome components during the priming step, full activation of the 591 

NLRP3 is triggered by K+ efflux but also DAMPS, lysosomal rupture, mitochondrial ROS, and 592 

subsequent release of oxidized mitochondrial DNA into the cytosol. Thus, NLRP3 inflammasome 593 

assembles into the multimeric complex of inflammasome NLRP3-ASC-Caspase 1 (143-145). NLRP3, 594 

ASC, and procaspase 1 are associated to form a mature NLRP3 inflammasome functioning as an 595 

activation platform for caspase-1 that controls the processing and release of cytosolic inflammatory 596 

cytokines, including IL-1β (FIGURE 3). Furthermore, NLRP3 inflammasome activates also caspase-8 597 

in addition to caspase-1, leading to both apoptotic and pyroptotic cell death (146). Mast cells and soluble 598 

complement proteins are also important initiators of inflammation. The activation of the complement 599 

cascade and the release of cytokines and chemokines (TNF-alpha, IL-1, IL-18) induce the recruitment 600 

of neutrophils and then monocytes to the injured area (142). 601 

Upon reperfusion, the pro-inflammatory response is exacerbated and will contribute to cardiomyocyte 602 

death and IR injury within 6 and 24 h post-reperfusion. TLR2, TLR4, and TLR9 stimulated by HMGB1 603 

and NLRP3 in the NLRP3-ASC-caspase 1 inflammasome contribute to this strong inflammatory burst 604 

following reperfusion through mediators such as IL-1, IL-6 and active caspase-1 acting via the NF-B 605 

pathway (23).  606 

 607 

Systemic inflammation  In addition to a local inflammatory response, myocardial injury triggers 608 

also systemic inflammation, stimulating the release of bone marrow-derived leukocytes. The 609 

complement activates within 2 hours after AMI leading to the recruitment of neutrophils and monocytes 610 

at the site of the lesion in animal models and in patients (147). Neutrophils activated in the peripheral 611 

circulation infiltrate into the ischemic myocardium across the vessel wall within 6 to 8 hours after AMI, 612 

produce extensive ROS and pro-inflammatory factors to attract monocytes (148). In the injured 613 

myocardium, neutrophils will polarize upon activation of TLR4. Hours after AMI, the massive 614 

recruitment of neutrophils peaking at 1-3 days is followed by the infiltration of monocytes and 615 

macrophages with phagocytic and proteolytic functions promoting the digestion of the infarcted tissue 616 

and the removal of necrotic debris (149, 150). Monocyte recruitment to the infarcted myocardium is 617 

biphasic with classical proinflammatory monocytes being the predominant monocyte subset recruited 618 

within the first 48h (peaking at day 3 to 4) and the anti-inflammatory populations with Ly-6Clow and 619 

non-classical anti-inflammatory monocytes starting 4-7 days post-MI (peaking about day 7 post-MI). 620 

Within the infarcted tissue, inflammatory monocytes differentiate into inflammatory macrophages that 621 

will remove the cell debris after injury. They play a crucial role in the early inflammatory phase, 622 
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producing a variety of pro-inflammatory cytokines, chemokines, and matrix metalloproteinases. It has 623 

been shown that following AMI, B lymphocytes infiltrate the infarcted area (peaking at day 5 post-AMI), 624 

and augment the pro-inflammatory response by secreting the chemokine CCL7, which in turn induces 625 

mobilization from the bone marrow of pro-inflammatory Ly6Chi monocytes (151). In addition, the 626 

polarization of inflammatory towards anti-inflammatory macrophages is finely tuned by cytokines (152). 627 

Then, anti-inflammatory macrophages produce a variety of anti-inflammatory, pro-angiogenic, and pro-628 

repair factors contributing to the resolution of inflammation by also removing cell debris (152).  629 

Beside their role in immune response, macrophages participate in the crosstalk with other cells 630 

(including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-631 

MI processes within cardiac tissue. Activated monocytes and macrophages are the major source of 632 

cytokines but all nucleated cell types within the myocardium including endothelial cells, smooth muscle 633 

cells and cardiac myocytes also secrete themselves cytokines locally in the heart or systemically (153, 634 

154). Finally, a limited short-term up-regulation of stress-activated cytokines such as TNFα, IL-6 and 635 

IL-1β leads to an inflammatory process necessary for wound repair, scar formation and compensatory 636 

hypertrophy after MI. This inflammatory cytokine response mediates cardioprotection by activating the 637 

survivor activating factor enhancement (SAFE) pathway (155).  638 

However, an excessive, persistent and expanded pro-inflammatory response after AMI due to a 639 

delay in resolution of inflammation will contribute to expand the infarcted area (23). Prolonged 640 

expression of cytokines leads also to myocardial deleterious effects including myocyte hypertrophy, 641 

alterations in fetal gene expression, myocyte apoptosis and subsequent adverse LV remodeling leading 642 

to heart failure (154). Splenic B lymphocytes are reported to play a key role in cardiac remodeling after 643 

AMI and have been identified as putative cardiac therapeutic strategy (156). Vascular complication 644 

occurs during AMI when neutrophils exert detrimental effects on endothelial function and together with 645 

platelets cause plugging of the coronary microcirculation. Distal microthrombus embolization 646 

(microvascular obstruction) and microvascular damages during PCI lead to the no-reflow phenomenon 647 

in up to 40% of patients (157), which is associated with larger infarct size and worse outcomes including 648 

a higher incidence of death (158). Both no-reflow and hemorrhage carry an adverse prognosis for 649 

patients after reperfusion (159). 650 

In summary, a complex inflammatory response during AMI is organized by different 651 

contributors leading to both pro-inflammatory and anti-inflammatory reparative phases, allowing wound 652 

repair. A number of anti-inflammatory strategies have failed to reduce MI size in patients. Combining 653 

multiple targets approaches such as MSC-based therapy for this complex phenomenon and using an 654 

appropriate timing of administration should provide beneficial results. 655 

 656 

4- Temporal wave-front of cardiac injury  657 

Beside a spatial progression of cardiac injury, a dynamic wave-front of cell death occurs and 658 

develops over time after reperfusion (50, 160, 161). Our group described for the first time the 659 
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progression over time of apoptosis after the onset of reflow in the mouse heart. A slight delay (around 660 

10 minutes) was evidenced between infarct size and apoptosis kinetics (FIGURE 4). Such a delay 661 

suggests that a degree of necrosis takes place in the very first minutes of reperfusion before apoptosis 662 

as previously hypothesized by other groups (38, 50). In the mouse model, the apoptotic wave-front 663 

progresses during the first 60 minutes after the onset of reperfusion to reach a plateau phase 664 

corresponding to the final infarct size. Regarding necrosis, it is predominant during ischemia and at the 665 

onset of reperfusion (38, 50) but progresses also in human hearts after infarction more than expected 666 

regarding the guidelines for timely reperfusion. Indeed, a study by Greulich et al. revealed that in their 667 

cohort of ST segment-elevation MI patients, time to reperfusion to salvage myocardium was less than 668 

suggested by current guidelines since a symptom-to-balloon time of >121 minutes causes a high grade 669 

of transmural necrosis. This study strongly suggests that immediate reperfusion is vital (162).  670 

 Knowing the time window of reperfusion injury i.e., exploring the timing of activation of the 671 

potential targets of interest, is essential to develop an appropriate and efficient therapeutic strategy 672 

adapted to each specific phase. 673 

 674 

 675 

FIGURE 4: Temporal wavefront of IR injury. 676 
Simplified diagram of the development of injury in the myocardium as a function of time, after the 677 
coronary occlusion leading to ischemia. Necrosis develops first during ischemia. The wavefront of 678 
apoptosis is very rapid, triggered by the exacerbated production of ROS due to the abrupt return of 679 
oxygenated blood in the artery at the onset of reperfusion. After reperfusion, the pro-inflammatory 680 
response is exacerbated and will contribute to cardiomyocyte death (necrosis) and IR injury within 6 681 
and 24 h post-reperfusion.  682 
After the ischemic period (AMI), acute inflammation is triggered by DAMPS and is characterized by the 683 
massive recruitment of neutrophils peaking at 1-3 days and followed by the infiltration of monocytes 684 
and macrophages with phagocytic and proteolytic functions promoting the digestion of the infarcted 685 
tissue. The removal of necrotic debris is dominated by Ly-6Chigh monocytes activity, peaking day 3-4 686 
post-MI, and the anti-inflammatory phase with Ly-6Clow monocytes (peak at day 7, post-MI). The 687 
immune cells are eliminated in the injured tissue by apoptosis, thus contributing to the resolution of the 688 
inflammation. The temporal window of cardioprotection to prevent reperfusion injury is, for anti-689 
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apoptotic strategies, limited to the first 30 minutes of reperfusion. Regarding anti-inflammatory 690 
strategies, this window could be extended to the first days (< at 5 days) of the post-ischemic period to 691 
avoid any interference with the healing process. 692 
 693 

 694 

B- Endogenous mechanisms of cardioprotection 695 

 696 

1- Ischemic conditioning stimuli 697 

Making the myocardium briefly ischemic before a more severe ischemia increases the tolerance 698 

of the myocardium to ischemic injury by activating endogenous protective mechanisms (163). 699 

Myocardial ischemic conditioning is an intervention protecting the heart from damages caused by 700 

prolonged exposure to ischemic conditions (infarction). Conditioning protocols can be applied at 701 

different times: before, during and after the ischemic period. They act as triggers of endogenous 702 

mechanisms of cardioprotection. 703 

 704 

1.1. Preconditioning   705 

Murry et al. were the first to describe in a dog model that the application of repeated brief 706 

episodes of ischemia followed by reperfusion can protect myocardial tissue from the deleterious effects 707 

of a subsequent prolonged episode of ischemia by reducing the amount of necrosis (164). This 708 

phenomenon was called ischemic preconditioning (PreC) and its effectiveness has been demonstrated 709 

both in reducing infarct size and in limiting ventricular rhythm disorders in many animal models in vivo 710 

(165). Piot et al. provided evidence that ischemic PreC reduces ischemic injury and infarct size after 711 

prolonged ischemia and reperfusion in the rat heart in vivo (166). There is substantial evidence that this 712 

phenomenon also occurs in humans, including the observation that the AMI patients suffering from 713 

angina pectoris have decreased infarct size due to the repetitive episodes of short ischemia within one 714 

vascular bed during prodromal angina compared to those who do not have pre-infarction angina before 715 

the acute phase of MI (167, 168). Angina pectoris before infarction, comparable to PreC, was 716 

associated with a reduction in death, cardiogenic shock and heart failure (168). Unfortunately, 717 

outside of specific situations such as cardiac surgery, the application of ischemic PreC in the human 718 

clinic is not feasible because, by definition, the occurrence of a MI being unpredictable. 719 

 720 

1.2. Postconditioning   721 

While PreC suffered from its lack of clinical application, the description by Vinten-Johansen’s 722 

group of PostC revolutionized the world of cardioprotection by demonstrating that application of brief 723 

repeated episodes of ischemia-reperfusion immediately after coronary reopening, i.e., at the very 724 

beginning of reperfusion allowed to inhibit specifically IR injury (39). Zhao et al. reported a significant 725 

reduction in infarct size in the postconditioned group (3 periods of 30 seconds of ischemia and 30 726 
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seconds of reperfusion immediately after 60 minutes of sustained ischemia) compared with the 727 

unconditioned control group. The cardioprotection conferred by PostC was identical to that induced by 728 

PreC, corresponding to a reduction in infarct size (15% and 14% of the area at risk, respectively) 729 

compared with 25% for the control group. Furthermore, this decrease in infarct size was corroborated 730 

by a decrease in creatine kinase (CK) activity, and reduced tissue edema in the area at risk identical to 731 

that observed with PreC (39). A lower amount of malondialdehyde (MDA) level in the plasma was 732 

described for the PostC group compared to the control group indicating less lipid peroxidation (39). 733 

Thus, the work of Zhao et al. highlighted that modifying the hydrodynamic conditions during the early 734 

period of reperfusion provides powerful cardioprotection by reducing reperfusion injury, comparable to 735 

PreC. Since its original description, many experimental studies have been carried out, and benefits of 736 

PostC were then confirmed both in vitro and in vivo in rats, mice, and rabbits, and in vivo in pigs and 737 

dogs (165). PostC, by contrast to PreC, is clinically applicable in AMI patients. In a "proof-of-concept" 738 

clinical study in AMI patients, Staat et al. highlighted that PostC consisting in 4 episodes of 1-minute 739 

inflation/1-minute deflation of the angioplasty balloon performed just after a direct stenting of the 740 

occluded coronary artery lowers the release of CK, a classic marker of infarct size (169). Moreover, 741 

PostC applied during PCI leads to a persistent reduction in infarct size and to an improvement in long-742 

term functional recovery (170). 743 

The potent inhibition of myocardial injury by PostC suggests a clinically applicable strategy suitable 744 

with certain surgical revascularization procedures. PostC was then considered by scientists and 745 

physicians as an attractive approach to protect the myocardium against IR injury and was therefore the 746 

subject of many studies aimed at exploring its efficacy in different animal models and understanding its 747 

underlying mechanisms of action (for review (171-173)).  748 

 749 

1.3. Remote conditioning 750 

The major disadvantage of PostC treatments is the need to perform an invasive procedure 751 

directly into the heart (FIGURE 5). Przyklenk et al. demonstrated, in a canine model, that remote 752 

ischemic preconditioning (RIPC) in the circumflex artery bed, prior to a 60 min left anterior descending 753 

(LAD) occlusion protected the LAD vascular bed against severe ischemia, leading to a markedly smaller 754 

(38%-reduction) infarct size compared to control hearts (174). This work highlighted that ischemic 755 

conditioning also applied at a distance from the heart was able to provide cardioprotection (hence the 756 

term “remote” ischemic conditioning, RIC) through the production of diffusible protective factors 757 

released in the circulation reaching the myocardium (174). Gho et al. demonstrated that brief anterior 758 

mesenteric artery occlusion/reperfusion to induce a brief period of intestinal IR stimulus immediately 759 

reduces myocardial infarct size by 28% in a rat model (175). RIPC could be applied to a number of 760 

different tissues or organs far from the heart (i.e. skeletal muscle, kidney, liver and brain). It could 761 

protect any other organ or tissue against a prolonged lethal episode of acute IR injury and was termed 762 

inter-organ preconditioning (176). RIC has been demonstrated to be effective if applied before ischemia 763 
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(remote ischemic preconditioning) (175), during ischemia (remote ischemic perconditioning) (177) or 764 

as a PostC stimulus (178-184). A large number of experimental studies have established that brief 765 

ischemic events in a limb can protect the heart and reduce infarct size (see for review (185)). 766 

 767 

 768 

FIGURE 5: Illustrative scheme of cardioprotective strategies in acute myocardial infarction.  769 
Local preconditioning (PreC), postconditioning (PostC), delayed postconditioning (Delayed PostC), 770 
are applied at various time points through a coronary artery within the myocardium. PreC consists of 771 
applying occlusion-reperfusion cycles administered before the ischemic event. For PostC the stimulus 772 
is applied at the onset of reperfusion and can be achieved in animal models by reversible coronary 773 
artery ligation. PostC in patients with AMI can be applied by repeated balloon inflation during the 774 
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coronary angioplasty procedure. PostC induces cardioprotection even if delayed until 30 minutes after 775 
the onset of culprit coronary artery reperfusion (Delayed PostC).  776 
Remote conditionings (RIC) stimuli could be applied to a number of different tissues or organs remote 777 
from the heart (i.e., skeletal muscle, mesentery, kidney) to protect against a prolonged lethal episode of 778 
acute IR injury. In patient, RIC could be initiated by simply inflating and deflating a blood pressure cuff 779 
placed on the arm or leg for a few minutes then deflating the cuff and performing the procedure several 780 
more times to induce brief cycles of IR. Regarding the timing, protection with RIC can be accomplished 781 
when the stimulus is applied before sustained coronary occlusion (remote preconditioning), during the 782 
sustained ischemic insult (remote perconditioning), or at the time of reperfusion (remote 783 
postconditioning). The conditioning stimulus induces the release of both circulating factors and factors 784 
activating local sensory neurons leading to activation of the parasympathetic innervation. 785 
Pharmacological conditionings are induced by drugs administered intravenously or intracoronary just 786 
before or at early reperfusion. 787 
The black rectangle indicates severe ischemia and the three blue lines the conditioning stimulus. 788 

 789 

 790 

In the clinical setting, the fact that RIC can be applied by simply inflating and deflating a blood 791 

pressure cuff placed on the arm or leg of human patients makes it attractive to patients in the acute phase 792 

of their infarction, as part of perconditioning or postconditioning (186, 187). Various small clinical 793 

studies reported inconsistent data with limb RIC applied prior to, or after the PCI, showing improved 794 

myocardial recovery (188-191) and/or reduced infarct size (192-194) or no protection (190). Long-term 795 

clinical outcomes in patients with ST-elevation myocardial infarction were also improved including hard 796 

clinical endpoint of cardiac mortality and hospitalization for heart failure (195, 196). As shown by 797 

several recent meta-analyses, most of the clinical studies indicated a positive effect of RIC on decreasing 798 

IR injury in particular in patients treated by PCI (197, 198). Despite these promising studies, a recent 799 

international multicenter, single-blind, randomized controlled trial (CONDI-2/ERIC-PPCI) including 800 

5401 STEMI patients who underwent PCI indicated that RIC did not report improved clinical outcomes 801 

(cardiac death or hospitalization for heart failure) at one year in STEMI patients (199).  802 

 803 

2- Mechanisms underlying endogenous cardioprotection  804 

Reduction of infarct size compared with reperfusion alone is a common feature of the three 805 

types of ischemic conditioning (i.e., PreC, PostC and RIC), despite temporal and spatial differences (200, 806 

201). Experiments in animal models allowed to demonstrate that decreased infarct size was related to 807 

an inhibition of IR injury. Indeed, Piot et al. provided the first evidence that ischemic PreC decreases 808 

specific DNA fragmentation as an hallmark of apoptosis in the rat heart (166). PostC has also been 809 

shown to decrease apoptosis in vivo (202, 203) in addition to necrosis, both of them contributing 810 

ostensibly to overall infarct size (202, 203). Indeed, PostC diminishes known triggers of apoptosis such 811 

as oxidants (i.e. ROS, peroxynitrite), calcium overload (203, 204), and also inhibits pro-apoptotic 812 

pathways and regulatory factors in vivo (205). Our group evidenced that more than 80% of the cell 813 

death-related genes regulated by PreC or PostC are involved in apoptosis (206). An anti-inflammatory 814 
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effect is also described but the studies have been focused only on evaluation of TNFα production and 815 

neutrophil infiltration (202, 207, 208). 816 

Although PreC and PostC have been reported to protect the heart against cardiac injury after 817 

AMI, a greater cardioprotection was reported for PreC than for PostC in the rat heart in vivo with several 818 

differences been highlighted (209, 210). Combining PreC and PostC was reported to offer a greater 819 

cardioprotection in an in vivo rabbit model but this additivity was not retrieved in both ex vivo rat heart 820 

or in vivo canine models (211-213). The non-additive cardioprotection during combined application of 821 

PreC and PostC could indicate either that the effects of the “conditionings” are species dependent, or 822 

might be related to the number and duration of the sequences of the algorithms (often different between 823 

studies) or that these two stimuli could activate common pathways. In this context, a large-scale 824 

differential transcriptomic study comparing gene expression levels revealed that only 5 of the 16 463 825 

mouse genes explored were jointly regulated upon both PreC and PostC after 1 hour of reperfusion (206). 826 

 827 

The underlying mechanisms of protection by ischemic conditioning are multifactorial and include all 828 

mediators of cardioprotection, from the physical stimulus (conditioning maneuver) to the cascades 829 

blocking IR-induced damages (see FIGURE 6). 830 

 831 

 2.1. Molecular mediators    832 

In summary, the currently accepted paradigm suggests that, in response to the ischemic 833 

conditioning stimulus, cells release autacoid substances. Endogenously released chemical stimuli 834 

triggering cardioprotection include conventional ligands that, after binding to their respective receptor 835 

(G protein-coupled receptors, GPCR), will induce the activation of downstream pro-survival signaling 836 

pathways (214). Liu et al. demonstrated that 8-sulfophenyltheophylline (8-SPT), a nonspecific blocker 837 

of the adenosine receptor, blocks ischemic conditioning, and that IC administration of adenosine or an 838 

adenosine A1 receptor agonist can decrease myocardial infarct size (215). Subsequently, more GPCR 839 

ligands have been reported as triggering ischemic conditioning, such as acetylcholine (216), 840 

catecholamines (217), opioids (218), bradykinin (219), angiotensin II (220), endothelin-1 (221) and 841 

glutamate (222). Other inducers of ischemic conditioning include small molecules, as calcium ions, ROS, 842 

nitric oxide (NO), hydrogen sulfide and the mitochondrial KATP channel (see for review (173)).  843 

Ischemic conditioning cardioprotective effects are mediated by the activation of signaling cascades, in 844 

particular, RISK (reperfusion injury salvage kinase), SAFE (223) and cGMP/PKG (cyclic Guanosine 845 

Mono Phosphate /Proteine Kinase G) pathways (224). Finally, it is proposed that this set of receptor-846 

mediated signals converges on mitochondria (end effector) and confers myocardial protection by 847 

stabilizing mitochondrial membranes, inhibiting the opening the mPTP, and thereby attenuating 848 

mitochondrial swelling and rupture (9, 42, 200). 849 

RISK pathway   The RISK pathway designates a group of pro-survival protein kinases, conferring 850 

cardioprotection when they are specifically activated at the time of reperfusion (225, 226). The RISK 851 
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pathway is carried by the PI3K-AKT and p42/44 extracellular signal-regulated kinase (ERK1/2) 852 

cascades. The cardioprotective benefit of both PreC and PostC is fully reversed by inhibition of the 853 

RISK pathway suggesting that the RISK pathway commonly mediates ischemic PreC and PostC at the 854 

time of reperfusion (212, 223, 225).  855 

- The PI3K/AKT pathway is activated by G-coupled receptors reported to be involved in 856 

cardioprotection, such as adenosine, opioid and glutamate receptors (222, 227). The mechanism by 857 

which cell survival is mediated is essentially the inhibition of apoptosis after phosphorylation of BAD 858 

(BCL-2 associated agonist of cell death) by PI3K (228). At the cardiac level, its protective role against 859 

IR injury is mediated by the activation of the serine-threonine kinase AKT (or protein kinase B) (229, 860 

230). In fact, although AKT activation follows PI3K activation, both enzymes are capable independently 861 

to acutely inhibit apoptosis in cardiomyocytes (229). Furthermore, AKT, in addition to its anti-apoptotic 862 

effects, preserves cardiac function in vivo following an episode of ischemia and decreases infarct size in 863 

vivo (231). Another study showed that overexpression of AKT in vivo also improves calcium 864 

mobilization, in particular by increasing the expression and phosphorylation of SERCA2a 865 

(sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a), a mechanism that could explain the beneficial 866 

effects on cardiac function (232). While transient activation of PI3K-AKT is cardioprotective, chronic 867 

activation of AKT can be deleterious as described in human cardiac tissue samples at advanced stages 868 

of heart failure characterized by high levels of phosphorylated AKT. This suggests that either high levels 869 

of AKT are deleterious or that, despite significant activation of AKT, there was no beneficial effect 870 

against the consequences of myopathic deterioration (233). In mouse models of Akt overexpression 871 

specifically in the myocardium, concentric ventricular hypertrophy and, in the most severe cases, 872 

significant cardiac dilatation have been observed (234, 235). However, an interesting study revealed that 873 

the deleterious effects of chronic AKT activation can be antagonized via PI3K activation (236). Indeed, 874 

this study conducted on a transgenic mouse model of an activated form of AKT (Myr-Akt-Tg), reports 875 

that in this case, a negative feedback mechanism inhibits upstream PI3K activity. Restoration of PI3K 876 

function by gene transfer in these transgenic mouse hearts was reported to reduce the deleterious effects 877 

generated by a myocardial IR episode (236).  878 

PTEN Phosphatase and tensin homologue deleted chromosome 10) is a powerful negative regulator of 879 

PI3K activity in various cell types and plays an important role in myocardial IR injury, as well as in 880 

myocardial remodeling, hypertrophy, and fibrosis (237-240). PTEN inhibition is therefore an effective 881 

potential target for reducing infarct size and improving cardiac function in animal models (241). By 882 

dephosphorylating the product of PI3K i.e., PIP3, PTEN inhibits the activity of several downstream 883 

molecules in the signaling pathway, the most important of these molecules being AKT. PTEN activity 884 

is reduced upon PreC and restored as the protective effect of PreC is lost (242). PostC treatment 885 

decreases also PTEN level, activates PI3K/AKT prosurvival kinase pathway and decreases significantly 886 

myocardial apoptosis in an in vivo rat model (243).  887 
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The PI3K/AKT pro-survival kinase pathway has a crucial influence on the opening of mPTP by 888 

inhibiting its opening in the first minutes of reperfusion, thus preventing cell death by apoptosis or 889 

necrosis (244-246). Numerous studies have evidenced that mPTP opening is prevented at the onset of 890 

reperfusion in hearts subjected to PreC (86, 164, 247, 248) or PostC (39, 249) but not in the case of RIC 891 

(see for review (250, 251)). 892 

- ERK1/2 or p42/44, members of the MAP kinase (mitogen activated protein kinase) family, are serine-893 

threonine kinases involved in the regulation of cell proliferation, differentiation and survival. Among 894 

the five ERK isoforms identified, ERK1 and ERK2 are the most abundantly expressed forms in the heart. 895 

Numerous studies have shown that the MEK (MAPK-ERK kinase)-ERK pathway can have anti-896 

apoptotic effects following stimulation by IGF-1, cardiotrophin-1 or catecholamines (252-254). 897 

Activation of ERK1/2 plays a protective role against reperfusion injury in vitro and in vivo (255, 256). 898 

The work of Lips et al. in the erk2+/- and erk1-/- mouse models, suggests that ERK1 and ERK2 would 899 

have specific roles and that only the MEK1-ERK2 pathway would protect the myocardium from IR-900 

induced apoptosis. However, there are some differences reported between PreC and PostC, such as the 901 

fact that ERK1/2 is involved in PostC but not in PreC (257). 902 

 903 

 904 

 905 
FIGURE 6: Endogenous mechanisms of cardioprotection. 906 
Upon postconditioning stimulus autacoids (adenosine, bradykinin, endogenous opioids) are released 907 
and bind to their specific receptors belonging to the superfamily of GPCR. Other receptors are able to 908 
mediate the response to growth factors such as IGF-1 or cytokines (IL-6). RISK signaling pathways 909 
comprising survival kinases such as PI3K/AKT and ERK1/2 (p42/44) are downstream cascades 910 
activated upon PostC stimulus. PTEN is a powerful negative regulator of PI3K activity. The final 911 
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endpoint of this intracellular cascade is the inhibition of MPTP opening via inhibition of GSK3β, 912 
increased NO (via AKT) and PKG activity (via natriuretic peptides receptors) and reduced intracellular 913 
Ca2+ levels. The opening of mitochondrial KATP channels is part of the endopoints of the posconditioning 914 
mechanisms. 915 
The SAFE pathway mediated by JAK-STAT3 is also responsible for postconditioning induced-916 
cardioprotective effects. STAT3 relocates to the nucleus in order to control the transcription of 917 
cardioprotective genes such as Bcl-xl.  918 
The cardioprotective effects of PostC results also from the inhibition of apoptotic pathways (dotted 919 
lines) mediated by the extrinsic pathway involving death receptors such as FAS and TNF receptors. 920 
 921 

SAFE pathway.   The conditioning stimulus also activates the SAFE pathway involving the cytokine 922 

TNF- and STAT3 (Signal Transducer and Activator of Transcription-3) (258). Indeed, Lecour et al. 923 

demonstrated the cardioprotective effect of the administration of TNF-α before the ischemic insult 924 

without involvement of the RISK signaling cascade (258). Later, they showed that TNF-α administration 925 

during reperfusion activated an alternative pathway, termed the SAFE pathway (259-261), and they also 926 

established a link between preconditioning and the activation of this pathway (262). In humans, it seems 927 

that STAT5 (Signal Transducer and Activator of Transcription-5), instead of STAT3, may play a 928 

relevant role in cardioprotection (263). Activation of STAT3 has a role in the long-term transcriptional 929 

regulation of cardioprotective proteins (264), but also has acute effects by enhancing mitochondrial 930 

respiration (265) particularly during PostC (266) and by attenuating apoptosis. Indirect evidence proves 931 

the involvement of STAT3 in RIC. Indeed, Apolipoprotein A has been proposed as a humoral transfer 932 

signal RIPC (267), and the decrease in infarct size by RIPC and exogenous apolipoprotein A was 933 

mitigated by blocking PI3K, ERK, and STAT 3 (268). 934 

cGMP/PKG or PKG/NO pathway  This signaling cascade involving protein kinase G (PKG) and NO 935 

has also been identified as a contributor in cardioprotection (269, 270). NO produced downstream of 936 

PI3K/AKT emerges as a key signaling element in the reperfusion salvage pathway activated by many 937 

classes of agents capable of safeguarding the organism's integrity. Activation of soluble guanylyl cyclase 938 

(sGC) and PKG depends on activation of the PI3K/AKT pathway and appears as crucial for many 939 

different forms of cardioprotection (see for review (224)). Several studies indicate that this pathway is 940 

negatively impacted in cardiomyocytes by IR injury and its activation is essential for the 941 

cardioprotective effects of PostC (211, 271, 272). However, another study shows that blockade of NOS 942 

(Nitric oxide synthase), sGC, and PKG, but not PI3K, abolishes the cardioprotective effects of PostC, 943 

further suggesting that activation of the cGMP/PKG pathway is NOS-dependent but independent of 944 

PI3K/AKT signaling (273). 945 

In fact, PostC mitigates ROS generation at reperfusion probably by decreasing the delivery of oxygen 946 

during the controlled reperfusion (209, 213, 274) that limits tetrahydrobiopterin (BH4) oxidation and 947 

increases endothelial NOS (eNOS) activity. The subsequent activation of the cGMP/PKG pathway leads 948 

to PKG-dependent inhibition of Na+/H+ exchanger (NHE), slowing intracellular pH normalization 949 

during reperfusion. In addition, the cGMP/PKG has a direct effect on calcium oscillations and 950 

mitochondrial permeability transition (224).  951 
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Despite available evidence supporting that the cGMP/PKG pathway is involved in PostC protection, 952 

only a limited number of studies have identified PKG-phosphorylated target proteins that are implicated 953 

in the molecular mechanisms of cardioprotection. It has been proposed that PKG activation inhibits 954 

mPTP through GSK3β phosphorylation (275, 276). Nevertheless, double GSK-3/ knockin mice 955 

lacking GSK3 phosphorylation sites that lead to kinase inactivation could still be protected by both PreC 956 

and PostC (277), proving that GSK3β inhibition is unlikely to serve as a downstream mediator of the 957 

cardioprotection induced by cGMP/PKG activation. Results from an in situ pig model and in ex vivo rat 958 

hearts confirm that GSK3β phosphorylation does not play a causal role in PostC protection (273, 278). 959 

 960 

2.2. Remote mechanisms 961 

 The identified common mechanistic threads identified for PreC and PostC appear to extend to 962 

remote conditioning (176, 214, 279-281), with a significant contribution from PKC, the RISK pathway 963 

and mitochondrial function (173). 964 

Unlike PreC and PostC, RIC stimulus differs considerably in that protection begins in the remote organ 965 

or tissue and the cardioprotective signal must be transferred from the remote organ to the heart via 966 

different pathways. Several mechanisms have been proposed in many animal studies: communication 967 

via (i) circulating blood and humoral mediators (176, 282, 283), (ii) neuronal mechanisms (175, 284) 968 

and (iii) modification of circulating immune cells (279, 281, 285, 286).  969 

A humoral mechanism for RIC has been reported with the demonstration of perfusate transfer-970 

mediated cardioprotection between isolated perfused hearts (179, 282, 287-289). This cardioprotection 971 

can be transferred by perfusing plasma into an isolated heart from a different animal species suggesting 972 

cross-species protection (289, 290). In addition, it is mediated by RISK and SAFE pathways since for 973 

example, blocking these cascades abolished the protection provided after infusion of plasma from pigs 974 

that had been subjected to remote PostC in isolated rat hearts (290). The identification of humoral 975 

mediators has been the subject of numerous studies using proteomic approaches in both animals and 976 

humans, but also led to some contradictory results (267, 291, 292). Examples of proteins that may be 977 

involved include apolipoprotein A-I, kallistatin, and stromal-derived factor 1α (see for review (293)). 978 

The neural hypothesis of RIC postulates that IR cycles in remote tissues or organs can promote 979 

a neural reflex leading to myocardial protection against subsequent myocardial insult (294). Additional 980 

mechanisms have been suggested as contributing to the remote signal, such as activation of peripheral 981 

nociceptive fibers releasing unidentified molecules into the systemic circulation and/or through the 982 

spinal cord activating the autonomic nervous system to release cardioprotective factors (see for review 983 

(251)). Donato et al. pointed out that RIPC activates a neural afferent pathway involving the vagus nerve, 984 

which releases ACh and triggers downstream cascades via a muscarinic receptor (295), resulting in 985 

eNOS stimulation and elevated cGMP production (296). Humoral factors can stimulate also the 986 

cGMP/PKG pathway through activation of PI3K/AKT cascade (179, 297). Intact neural connection is 987 

thus necessary between the remote organ and the heart, as demonstrated in different animal models. In 988 
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rabbits, renal RIPC was associated with an increased sympathetic nerve activity and abrogated when the 989 

renal nerve was sectioned before IR in vivo (298, 299). Likewise, in a mouse model, combined resection 990 

of the femoral and sciatic nerves abolished the cardioprotective effect of RIPC (284). Cardioprotection 991 

was abolished also after pharmacological autonomic ganglia blockade in the case of RIPC through the 992 

mesenteric artery but not in the case of PreC (175). Mastitskaya et al. demonstrated that vagal pre-993 

ganglionic neurons residing in the dorsal motor nucleus of the vagus nerve (DMVN) have a crucial role 994 

in RIC-induced cardioprotection.(300). The involvement of sensory nerves in the propagation of 995 

protection also has been directly evidenced. Activation of sensitive fibers by nociceptive stimuli or 996 

topical capsaicin results in the release of cardioprotective substances into the bloodstream, mimicking 997 

the cardioprotection induced by RIPC in a rabbit model (301). Intramesenteric bradykinin, by 998 

stimulating local sensory nerves, leads to RIPC-like protection, which is abolished by hexamethonium 999 

in a rat model suggesting the involvement of the autonomic nervous system in addition to sensory nerves 1000 

(302). Communication between distant organs and the heart may be multifactorial, and the overlap 1001 

between neural pathways and humoral mediators has also been suggested in rodents (172, 284, 299). 1002 

In healthy humans, inhibition of RIPC by the autonomic ganglia blocker trimethaphan was reported but 1003 

not observed after IV administration of a bradykinin-2 receptor antagonist suggesting that the 1004 

mechanisms may be different in humans (303, 304). 1005 

. The systemic response theory is supported by the existence of several blood-derived factors (e.g., 1006 

cytokines, nitrites, autacoids,..) constituting the "remote signal" to be delivered to the heart via the 1007 

systemic circulation (see for review (181, 305)). Opioids are thought to be responsible for remote 1008 

myocardial salvage by modulating CCR1 (C-C chemokine receptor type 1)-triggered leukocyte 1009 

infiltration in the myocardium or by stimulating CCR5-mediated regulatory T cell (Treg) recruitment 1010 

(286). RIC through transient forearm ischemia may alter gene expression in circulating leukocytes and 1011 

suppresses their activation in human patients (306). 1012 

 1013 

3- Therapeutic time window of cardioprotection 1014 

 AMI is an absolute emergency and recommendations in clinical practice are to reperfuse the 1015 

myocardium as soon as possible in agreement with the concept  1016 

that “time is muscle” (6). Whereas a 2-hour delay was recommended to obtain a beneficial effect from 1017 

thrombolysis in early studies of coronary artery reopening, reperfusion therapy, mainly PCI, must now 1018 

be performed within 3 hours for maximum efficacy (32, 307). Early proof-of-concept studies established 1019 

the dogma that PostC, to be efficient, must be applied within the first minute after the onset of 1020 

reperfusion (39, 209, 211). Since then, most PostC maneuvers have been initiated within 1 minute of 1021 

the onset of reperfusion in the majority of studies, including clinical trials (169, 308, 309). A significant 1022 

decrease in infarct size was demonstrated when the PostC stimulus was applied immediately after the 1023 

onset of reperfusion following a prolonged ischemic insult in vivo in a dog (310) and rabbit models 1024 

(211). Meanwhile, another study in a rat model of myocardial IR reported that PostC was effective in 1025 
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reducing infarct size only if applied no later than 1 min after the onset of reperfusion (209). It was then 1026 

considered that PostC should be applied in the time immediately after the onset of reperfusion to be able 1027 

to decrease myocardial reperfusion injury.  1028 

However, several years later, our group provided evidence that PostC, delayed up to 30 minutes after 1029 

the onset of culprit coronary artery reperfusion in the mouse heart in vivo, was still able to reduce the 1030 

wave-front of reperfusion injury and prevent apoptotic cell death occurring during the first minutes of 1031 

reperfusion (50). In addition, delayed PostC also exhibits a time-dependent degree of protection (50). 1032 

The wave-front of apoptosis occurs as a “burst”, and prolonging the application time of anti-apoptotic 1033 

strategies from 1 to 6 days was reported to be deleterious, leading to cardiac rupture, since apoptosis 1034 

during the healing process is an absolute necessary mechanism (50, 311). When applied later, PostC is 1035 

not able to prevent necrotic processes that occur in the late stage of apoptosis (46, 50). A very narrow 1036 

therapeutic window is suggested for both preclinical and clinical studies. Many studies confirmed this 1037 

idea and reported also that delaying the time point of application of the conditioning stimulus or 1038 

pharmacological cardioprotective strategies is still able to preserve some cardioprotective effect (59, 1039 

160, 312, 313) even in the case of anti-inflammatory strategies (314, 315). Other studies describe that, 1040 

to be effective, pharmacological strategies must be applied before reperfusion, as reported for 1041 

cyclosporine A administration (316). 1042 

Altogether, these data clearly show that anti-apoptotic strategies need to be administered as soon as 1043 

possible at the onset of reperfusion or even prior to reperfusion reinforcing the concept that 1044 

cardioprotection is a matter of timing. Anti-inflammatory strategies must be administered at the same 1045 

time as the pro-inflammatory burst. Indeed, colchicine has been reported to reduce infarct size when 1046 

administered before ischemia (317) or 25 min. prior to reperfusion in a mouse model of AMI (318). 1047 

Administered during one week post-reperfusion in mice, colchicine prevented the increased expression 1048 

of inflammatory cytokines and NLRP3 activation and improved cardiac function, heart failure and 1049 

survival after MI (319). In patients, colchicine administered during PCI and the 5 following days was 1050 

associated either with a smaller infarct size (320) or an absence of cardioprotective effects (321). In fact, 1051 

the timing to treatment initiation influences the beneficial effect of colchicine. Results of the COLCOT 1052 

study have shown that early colchicine administration within 3 days after AMI allows reducing future 1053 

events including major adverse cardiovascular events, cerebrovascular accidents, and need for 1054 

revascularization compared to standard therapy alone (322). 1055 

The therapeutic time window for treating patients with AMI appears to be crucial for targeting specific 1056 

signals and should be tailored according to their targets. In conclusion, the therapeutic time window for 1057 

treating patients with AMI appears to be crucial and must be adapted to each target. 1058 

 1059 

 1060 

 1061 

 1062 
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III- Generalities on mesenchymal stem cells (MSC) 1063 

As described above, apoptotic mechanisms are of major importance in IR injury as evidenced 1064 

in various animal models and in human ischemic heart disease.  1065 

A major reason for the failure to translate cardioprotection in the clinical setting may have been the use 1066 

of a monotherapy approach focused on a single target involved either in IR injury or in an endogenous 1067 

cardioprotective pathway. Unfortunately, this strategy might be insufficient to address the multifaceted 1068 

components of myocardial reperfusion injury, comprising mitochondrial and endothelial dysfunction, 1069 

oxidative stress, calcium overload and inflammation as well as microvascular obstruction (323-325). 1070 

This awareness has paved the way for new multi-targeted therapies, including mesenchymal stromal cell 1071 

(MSC)-based therapy, which relies on the pleiotropic properties of MSC. In this chapter, we will 1072 

summarize the properties of MSC that are mainly relevant in the treatment of AMI. 1073 

 1074 

A- MSC definition 1075 

The acronym MSC has been used for multiple meanings that include, mesenchymal stem cell, 1076 

mesenchymal stromal cell, and multipotent stromal cell. MSC have been initially discovered by 1077 

Friedenstein et al. who identified in the bone marrow (BM) of mouse and guinea pig a fibroblastic cell 1078 

type that gives rise to clonal colonies and that generates bone and reticular tissue when transplanted 1079 

heterotopically (326, 327). BM-MSC represent 1/10 000 of the mononuclear cells in the BM and can be 1080 

easily isolated and expanded in vitro. Given that a stem cell is defined for its clonal self-renewal potential 1081 

and multilineage differentiation potential, the term “mesenchymal stem cells” has for a long time been 1082 

criticized (328) although their self-renewal capacities have been demonstrated (329). The international 1083 

society for cellular therapy (ISCT) recommends to distinguish between the self-renewing fraction within 1084 

the BM that exhibits a multipotent differentiation potential in vivo and mesenchymal stromal cells 1085 

identified in multiple tissue types and that exhibit multipotent differentiation potential in vitro (328). 1086 

Cells that display a multipotent potential in vitro have been identified in the adipose tissue (AT-MSC) 1087 

(330-332), dental pulp (333), cartilage (334), synovial membrane (335), tendon (336), heart (337) and 1088 

lungs (338) as well as in perinatal tissues including the placenta (339), umbilical cord blood (340), 1089 

umbilical cord (341) and fetal sources such as fetal tissue and amniotic fluid (342).  1090 

Regardless of the niche, these multipotent cells referred all to MSC as multipotent mesenchymal 1091 

stromal cells in accordance with 3 criteria established by the ISCT (343). First, MSC adhere to the plastic 1092 

when cultured in standard conditions. Second, MSC are positive for a panel of surface molecules, 1093 

individually not specific, that includes CD105, CD73 and CD90, and are negative for hematopoietic 1094 

lineage markers such as CD45, CD34, CD14 or CD11b, CD79 or CD19 and HLA-DR. Third, MSC 1095 

are multipotent cells that can differentiate in vitro into osteoblasts, adipocytes and chondroblasts. In 1096 

2019, the minimal criteria defined by the ISCT were updated to classify a cell as a MSC and to 1097 

rationalize the use of the MSC nomenclature in laboratories. On this occasion, the board re-emphasized 1098 
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the necessity of MSC nomenclature and the need for additional reportable criteria such as their tissue of 1099 

origin and functional assays performed to better qualify these cells (344). Similarly, Renesme et al. have 1100 

pointed to the need for increased efforts to ensure the agreement of a consensus definition of MSC and 1101 

reporting guidelines to improve the robustness, repeatability, and clarity of the MSC literature and, 1102 

eventually, the safe application of effective MSC-based therapies (345).  1103 

 1104 

 1105 

B- MSC developmental origins  1106 

The high number of MSC sources has highlighted the possibility that MSC might derive from 1107 

different embryonic origins. Indeed, although bone marrow and adipose tissue were thought, for a long 1108 

time, to host MSC originating from the mesoderm (346), elegant and convincing studies have evidenced 1109 

that these two tissues also host neural crest-derived MSC (FIGURE 7). The first study was carried out 1110 

in 2007 by Takashima and colleagues (347) by means of lineage tracing approaches. They show that the 1111 

trunk of E9.5 mouse embryos possesses cells positive for Sox1, a marker for neural stem cells, that gave 1112 

rise to MSC positives for PDGFRα (PDGF receptor alpha), a marker of paraxial mesoderm. They 1113 

evidenced also that in postnatal BM, neural crest-derived MSC are still present, even at a low extent, 1114 

suggesting that the first wave of MSC in the embryo derives from the neural crest and that following 1115 

birth, a second wave of MSC from another source takes place (347). The origin of adult MSC is still an 1116 

open question and the function of MSC from different developmental origins has been addressed more 1117 

recently. While neural crest-derived stem cells are quiescent in the BM where they exhibit a 1118 

hematopoietic stem cell niche function during the in-utero development and after birth, mesoderm-1119 

derived MSC participate in fetal skeletogenesis and lose their activity after birth (348). Similarly, the 1120 

subcutaneous fat of adult mice was shown to contain neural crest-derived MSC that are phenotypically 1121 

and functionally distinct from MSC derived from non-neural crest (349). 1122 

These studies that improve our knowledge on the developmental origin of MSC found in 1123 

different adult tissues are critical for the optimal use of MSC in clinic. Indeed, MSC from different tissue 1124 

sources, with no regard to their embryonic origin, have been or are currently used in 663 clinical trials 1125 

enrolling patients with heart disorders. However, the studies described above have brought to our 1126 

attention that depending on their embryonic origin, MSC might exhibit different functions once injected 1127 

in vivo. Of note, for clinical applications, neural crest-derived MSC may be of interest, given recent 1128 

studies demonstrating the contribution of the neural crest to several cardiovascular structures in 1129 

vertebrates, such as cardiomyocytes and to cardiac regeneration in adult zebrafish (350, 351). Moreover, 1130 

these studies raise the question about the intrinsic properties of MSC from a given embryonic origin and 1131 

the subsequent phenotypic and functional heterogeneity among MSC within a same tissue source that 1132 

are ontogenically distinct.  1133 

 1134 

 1135 
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 1146 
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 1157 

FIGURE 7: Embryonic origin, isolation, and differentiation potential of MSC derived from adipose 1158 
tissue (AT-MSC) and bone marrow (BM-MSC).  1159 
AT-MSC and BM-MSC originate from both neural crest cells and the lateral plate mesoderm. Both AT-1160 
MSC and BM-MSC display the capacity to adhere to the plastic, to form CFU-F (CFU-fibroblasts), and 1161 
to differentiate into osteoblasts, adipocytes, and chondrocytes. 1162 
 1163 

 1164 

C- MSC heterogeneity 1165 

MSC heterogeneity exists at different levels. First, MSC derived from different donors exhibit 1166 

phenotypic and functional differences that are well documented (352). Second, MSC derived from 1167 

different tissue sources display features that refer to their tissue of origin (353, 354). Finally, as discussed 1168 

above, MSC derived from the same tissue may show differences that can be explained by the fact that 1169 

MSC from the same source may have different embryonic origins (348, 349).  1170 

At the functional level, MSC from different tissue sources exhibit different properties. 1171 

Regarding MSC immunoregulatory properties, while BM and umbilical cord (UC) have similar 1172 

immunosuppressive capacities, placenta-derived MSC exhibit a lower capacity to inhibit CD4+ and 1173 
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CD8+ T cells (for review (355)). Compared to BM-MSC, AT-MSC display a stronger suppressive 1174 

potential on IFN-producing Th1 (T helper 1) cells (for review (355)). Similarly, superior suppressive 1175 

effects of AT-MSC were reported on macrophages compared to BM-MSC (356). With regard to MSC 1176 

differentiation potential, tissue-specific abilities have been reported. For example, in a comparative 1177 

study using donor-matched AT-MSC and BM-MSC, while AT-MSC showed significantly higher 1178 

proliferation rate and adipogenic potential, BM-MSC showed significantly higher osteogenic and 1179 

chondrogenic potential (352). Of note, a significant heterogeneity among the donors regarding the 1180 

proliferation and differentiation potential of the two MSC types was observed in this study. 1181 

Heterogeneity is also reported between MSC from a same tissue sample. Indeed, multiple 1182 

studies from the early 2000s report variations in phenotype, proliferation and differentiation properties 1183 

(330, 357-359). While 30% of BM-MSC clones display a tri-lineage differentiation potential, 70% 1184 

exhibit a bi-lineage or uni-lineage potential (359). For AT-MSCs, only 1.4% of the clonal 1185 

subpopulations were tripotent and the rest were either bipotent or unipotent (330).  1186 

MSC heterogeneity has direct consequences on MSC phenotype, functions and therapeutic 1187 

potential. MSC exert different functions including immunomodulation, anti-apoptotic, anti-fibrotic and 1188 

pro-angiogenic properties (360). Thus, one can speculate that either a single subpopulation of MSC 1189 

would exert these pleiotropic activities and thus effectively treat multifaceted IR lesions, or that each 1190 

subpopulation would exert a specific function explaining the pleiotropy of this heterogeneous cell panel. 1191 

This would explain that the use of MSC in clinical trials have led to various results going from moderate 1192 

to inconsistent benefits (361-363). The frequency of MSC derived from NC or mesoderm might vary 1193 

among the tissue sources, tissue donors and clonal subpopulations. Amplification protocols and culture 1194 

media used for MSC could also favor the enrichment of one subpopulation of MSC rather than another. 1195 

Thus, verification of the way that culture conditions can impact on the frequency and the functions of 1196 

MSC subpopulation is critical step of quality control. Altogether, the multiple sources of variations 1197 

would explain, in part, the phenotypic and functional heterogeneity found among MSC isolated from 1198 

different tissues, donors and different laboratories. Thus, to overcome the subsequent clinical 1199 

inconsistencies obtained with MSC and guarantee the therapeutic potential of these cells administrated 1200 

into the patient a current strategy consists in standardizing and even enhancing the MSC therapeutic 1201 

product.  1202 

The development of assays to evaluate MSC functions and predict their efficacy in vivo before 1203 

their administration in patients is essential to guarantee trustworthy and reproducible results. Thus, assay 1204 

development and standardization are ongoing to facilitate the choice between different sources and 1205 

improve safety and efficacy of MSC-based therapies. 1206 

 1207 

D- MSC homing/biodistribution in the heart 1208 

Since the first demonstrations of cardiac differentiation, data from in vivo studies based on cell 1209 

tracking techniques have clearly shown that only very few transplanted MSC differentiate into 1210 



MSC to decrease cardiac injury  

 36 

cardiomyocytes to directly repopulate cardiac tissue. A few data evidenced that transplanted MSC can 1211 

fuse with recipient cardiomyocytes (364, 365). Thus, recent investigations focus mainly on MSC 1212 

paracrine effects as the main underlying mechanisms mediating cardiac repair. In this context, 1213 

substantial efforts have been made to define the biodistribution and fate of MSC after their 1214 

administration. IV administration of stem cells to increase the pool of endogenous stem cells homing to 1215 

injured myocardium was first assessed by post-mortem histology. However, the dynamic redistribution 1216 

of peripherally infused stem cells as well as cell trafficking was investigated using the high sensitivity 1217 

of the combined single-photon emission computed tomography technology after IV injection of MSC 1218 

after AMI. Focal and diffuse recruitment of MSC in the infarcted myocardium was visible on images 1219 

within the first 24 hours and remained up to 7 days after but also in the lungs and non-target organs 1220 

including the kidney, spleen and liver within 24 to 48 hours after injection (366). By contrast, MRI was 1221 

unable to detect MSC after IV injection within the heart in part because of the lower sensitivity of the 1222 

technique (366). MSC engraftment into the heart was significantly increased with their local 1223 

administration (367, 368). Thus, currently, two main delivery strategies are used in cardiac MSC-based 1224 

therapies: IC and intramyocardial (IM) injection. Because IM cell injection is a more invasive approach, 1225 

IC infusion is more attractive for the clinic. However, relying on bioluminescent signals for live MSC 1226 

imaging, high focal intensity signal was reported after IM delivery, while obviously a weaker signal was 1227 

observed after IC delivery. These results suggest a poor retention of MSC after IC delivery compared to 1228 

IM delivery (369, 370). Whether the reduced number of “homing” MSC in the myocardium contributed 1229 

to higher rate of MSC biodistribution into remote organs (spleen, lung, liver...) remains to be 1230 

investigated. 1231 

 1232 

E- MSC properties 1233 

The cardioprotective effects of MSC, through direct or indirect mechanisms, are multifactorial 1234 

and lead to a decrease in both infarct size and post-infarction remodeling (FIGURE 8). However, it is 1235 

well-admitted that MSC interest resides less in their differentiation abilities into cardiomyocytes and 1236 

endothelial cells than in their aptitude to modulate their microenvironment by targeting injured cells 1237 

through the release of a plethora of mediators.  1238 

In vitro, MSC require induction with appropriate factors to differentiate into cells of the three 1239 

main components of the cardiovascular system including cardiomyocytes, endothelial cells and vascular 1240 

smooth muscle cells (371, 372). Over the last two decades, different strategies have been developed to 1241 

induce MSC differentiation into cardiomyocytes, including the use of growth factors (373), chemical 1242 

inducers (374), and coculture with primary cardiomyocytes (375). However, these reports also argue 1243 

against the use of certain chemical inducers, such as 5-azacytidine, and highlight the necessity to identify 1244 

alternative induction procedures. In this context, using sternal marrow-derived MSC, the 1245 

cardiomyogenic potential of bFGF (basic FGF) combined to hydrocortisone was compared with that of 1246 
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5-azacytidine, revealing that induction with bFGF and hydrocortisone results in the differentiation of 1247 

MSC into cardiomyocytes with a slightly higher efficiency (376).  1248 

 1249 

 1250 

 1251 

FIGURE 8: MSC-based therapy of AMI relies on the pleiotropic properties of the cells.  1252 
MSC cardioprotective effects can be mediated through direct effects relying on the capacity of MSC to 1253 
differentiate into cardiac cells or by indirect effects limiting the immune response and apoptosis while 1254 
increasing angiogenesis and cardiac cell proliferation. When in presence of specific differentiation 1255 
inducers, MSC differentiate both in vitro and in vivo in cardiomyocytes and endothelial cells which 1256 
contribute, at least in part, to their ability to repair injured myocardium. 1257 

 1258 

 1259 

In vivo, MSC engraftment and further differentiation into cardiomyocytes and endothelial cells 1260 

after MI have been demonstrated. The efficacy of AT-MSC and BM-MSC has been compared in a 1261 

porcine AMI model showing a similar beneficial effect of the two cell types on cardiac function and 1262 

angiogenesis but a better effect of AT-MSC on left ventricular (LV) remodeling. This therapeutic effect 1263 

was associated with the engraftment of the cells positive for CD31, a marker of endothelial cell, 4 weeks 1264 

after their transplantation (377). Also, the retrograde infusion of bFGF into the coronary vein increases 1265 

the graft uptake and differentiation potential of implanted MSC, thereby restoring cardiac function and 1266 

preventing unwanted remodeling (378).  1267 

However, although the differentiation of MSC into cardiomyocytes has been documented, it is 1268 

important to note that a substantial proportion of transplanted MSC is rapidly lost mainly through 1269 

apoptotic mechanisms and that a modest fraction of MSC engraftment happened without differentiation. 1270 

Therefore, paracrine effects have been proposed as the main effect of transplanted MSC for the treatment 1271 
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of cardiac tissues. The multiple trophic factors produced by MSC are able to repress cardiomyocyte 1272 

apoptosis, favor angiogenesis, induce the recruitment and proliferation of endogenous stem cells, 1273 

decrease inflammatory oxidative stress as well as fibrosis in the border zone of the scar (379). In 2009, 1274 

Shabbir et al. showed for the first time that non-invasive delivery of MSC or their trophic factors by IM 1275 

injection can be successful in rescuing the failing heart (380). This study, which reveals that the MSC-1276 

conditioned milieu is as effective as MSC per se in treating experimental heart failure, offered the 1277 

definitive proof of the major role of trophic factors in the field of MSC-based therapy for the 1278 

myocardium. The set of factors secreted by MSC, also referred to as the MSC secretome, acts on 1279 

neighboring cells through a paracrine phenomenon. MSC secretome is a complex product released in 1280 

vitro in the conditioned medium and in vivo in the extracellular medium, consisting mainly in soluble 1281 

factors and EV (extracellular vesicles). MSC EV and organelles can also be transferred from MSC to 1282 

another cell via tunneling nanotubes. 1283 

 1284 

1- Anti-apoptotic properties 1285 

We will discuss the paracrine effects of MSC, which appear to be the primary mechanism by 1286 

which they promote cardiomyocyte viability and protect them from apoptosis (FIGURE 9).  1287 

 1288 

1.1. Soluble factors 1289 

MSC release paracrine factors such as cytokines, chemokines and growth factors that can bind 1290 

to their specific receptors on cardiac injured cells and regulate processes such as stress-induced apoptotic 1291 

pathways to promote cell survival. Among the factors secreted by MSC, we will focus on the role of 1292 

VEGF, IGF-1 and HGF (Hepatocyte Growth Factor) that display anti-apoptotic properties.  1293 

VEGF, a vascular osmotic molecule, belongs to the family of the vascular endothelial growth 1294 

factor and exhibits various physiological functions including pro-angiogenic properties and the capacity 1295 

to enhance cell proliferation, differentiation, and viability. VEGF released by MSC (381) is significantly 1296 

upregulated in MSC treated with pro-inflammatory cytokines such as IFN-γ and IL-1β (382). VEGF 1297 

overexpression by MSC has been shown to activate stromal cell-derived factor-1α (SDF-1α)/CXCR4 1298 

axis and to induce cardiac stem cell mobilization and migration into infarcted areas (383) resulting in 1299 

an enhanced angiogenesis. The high level of VEGF released by MSC provides multiple beneficial 1300 

effects, ranging from their angiogenic effect and anti-hypertrophic properties to their anti-apoptotic 1301 

properties on injured cardiomyocytes (382). The paracrine factor of VEGF is mediated through the 1302 

downregulation of microRNA-23a (miRNA-23a) and miRNA-92a in injured cardiomyocytes (384).  1303 

IGF-1 displays an important role in cell growth and differentiation and was reported to prevent 1304 

apoptosis of myocardial cells, ventricular dilation and wall stress in infarcted hearts (385). IGF-1, 1305 

through the activation of IGF-1R, prevents oxidative stress and cardiac cell apoptosis by repressing 1306 

DNA fragmentation, decreasing BAX induction, and inhibiting caspase 3 activity (386). IGF-1 1307 

protective mechanisms also involve the preservation of the mitochondrial potential and the retention of 1308 



MSC to decrease cardiac injury  

 39 

Cyt C, preventing mitochondrial dysfunctions (387). IGF-1 is released by MSC and has been described 1309 

to be involved in their cytoprotective effects. In vitro, IGF-1 increases cardiomyocyte proliferation and 1310 

migration while inhibiting their apoptosis induced by hypoxia (388). In addition, IGF-1 ameliorates the 1311 

healing capacity of MSC by improving angiogenesis, decreasing scar formation and accelerating muscle 1312 

structure reconstitution (389). Furthermore, the exposition of MSC to a combination of IGF-1 and HGF 1313 

decreased their rate of apoptosis after transplantation and promoted their protective effects by 1314 

attenuating LV remodeling and improving cardiac function (390). In line with these studies, Wnt11 1315 

overexpression in MSC was shown to enhance their anti-apoptotic and anti-necrotic properties on 1316 

cardiomyocytes exposed to hypoxia. This increased effect of MSC was associated with the significantly 1317 

greater release of VEGF and IGF-1 by MSC overexpressing Wtn11 (391). The addition of anti-VEGF 1318 

and anti-IGF-1 antibodies in the co-cultures inhibited this protective effect.   1319 

Basic FGF (bFGF) is an important mitogen factor that protects cardiomyocytes from iNOS-1320 

mediated apoptosis through the MEK-1-ERK pathway (392). Although MSC are not important 1321 

producers of bFGF, they are regularly supplemented with bFGF to, in part, maintain their multipotent 1322 

differentiation ability, enhance their expansion and their secretory profile (393). Moreover, bFGF 1323 

represses apoptosis in human MSC and bFGF-transfected MSC (394, 395). In vivo, in a canine model 1324 

of coronary ligation, the combined therapy with bFGF and MSC promoted neovascularization and 1325 

reduced apoptosis in the infarct border zone. This was associated with an increased engraftment of 1326 

transplanted MSC resulting in decreased myocardial fibrosis, an improved recovery of cardiac function 1327 

and prevention of post-MI LV remodeling (378). Among the modifications of the secretory profile 1328 

induced by bFGF on MSC, HGF secretion ability was significantly increased (393). HGF, a pleiotropic 1329 

cytokine, is known to regulate several biological processes including angiogenesis, inflammation and 1330 

cell survival. HGF overexpression in MSC resulted in an optimization of MSC therapeutic effect in MI 1331 

(396). This enhanced therapeutic effect was due to the enhanced survival of MSC linked to HGF 1332 

overexpression under hypoxic conditions and mediated by the regulation of the AKT signaling pathway. 1333 

Moreover, the transplantation of MSC overexpressing HGF reduces cardiomyocyte apoptosis, increases 1334 

cardiomyocyte proliferation and enhances angiogenesis presumably by augmenting their paracrine 1335 

effects. Indeed, via the activation of the Akt pathway, HGF increases VEGF production as well as bFGF 1336 

and EGF.  1337 

 1338 

1.2. Extracellular vesicles 1339 

Extracellular vesicles (EV) represent important intercellular messengers involved in the transfer 1340 

to recipient cells of biological signals, especially proteins, lipids and RNA. EV derived from MSC 1341 

(MSC-EV) have shown promising protective properties on injured cardiac cells, in part, through the 1342 

transfer of mitochondria. The anti-apoptotic effect of EV derived from MSC was shown in coculture 1343 

experiments with induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to doxorubicin 1344 

(DOX) using a transwell system allowing to physically separate the two cell types (397). In these 1345 
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experiments, the authors showed that MSC protect stressed iCM from apoptosis and improved their 1346 

viability. This anti-apoptotic effect exerted by the secretome of MSC was mediated by their capacity to 1347 

release large EV (>200 nm) enriched in mitochondria and up-taked by iCM. Indeed, DOX-injured iCM 1348 

receiving mitochondria contained in MSC-EV exhibited improved both biogenesis and contractility as 1349 

well as increased ATP production and PGC-1 (Peroxisome proliferator-activated receptor gamma 1350 

coactivator 1-alpha) transcription. The inhibition of the mitochondrial functions in MSC-derived EV 1351 

using 1-methyl-4-phenylpyridinium (MPP+) decreased their beneficial effect on injured iCM (397). 1352 

The cardioprotective effects of EV are also mediated by transferring growth factors and various 1353 

micro-RNA (miR) to recipient cardiac cells. A large body of evidence suggests that miR contained in 1354 

MSC-derived EV could be a promising cardioprotective therapy. For instance, miR-144 contained in 1355 

MSC-derived EV decreases the expression of PTEN and increases levels of pAKT in cardiomyocytes 1356 

and thereby protects them against hypoxia-induced cell apoptosis (398). Of note, miR-144 was described 1357 

to promote mitochondrial biogenesis and reduce cardiomyocyte apoptosis through the activation of 1358 

AMPK phosphorylation and PGC-1α deacetylation by targeting RAC1 (RAC family small gtpase 1) 1359 

(399). In ischemic hearts, anti-apoptotic effect of MSC-EV was reported to be mediated by miR-19a, 1360 

which down-regulates PTEN activation, increases BCL-2 protein expression and enhances AKT 1361 

phosphorylation (400, 401). PTEN was also shown to be decreased in cardiomyocytes receiving miR-1362 

21a-5p contained in MSC-EV. Consistently, the delivery of miR-21a-5p in recipient cardiac cells targets 1363 

genes products involved in cell survival or apoptosis including PDCD4 (Programmed Cell Death 4), 1364 

PTEN, FASL and PELI1 (Pellino E3 Ubiquitin Protein Ligase 1) and decreased apoptosis (402). 1365 

Similarly, miR-22-enriched EV, secreted from MSC following a PreC stimulus, were shown to be up-1366 

taked by cardiomyocytes and to reduce apoptosis in neonate cardiomyocyte subjected to an ischemic 1367 

stress (403). miR-210 and miR-4732-3p were also shown to be enriched in MSC-EV and able to protect, 1368 

in a paracrine manner, hypoxic cardiomyocytes against apoptosis by decreasing the expression levels of 1369 

BAX, BAD, and cleaved caspase 3 and increasing BCL-2 expression (404, 405). Exosomal miR-25-3p, 1370 

is another example of miRNA from MSC that confers cardioprotective effects in MI by targeting pro-1371 

apoptotic proteins (406).  1372 

Altogether, these studies strongly suggests that EV derived from MSC could be a potent 1373 

therapeutic vehicle to protect injured cardiac cells from apoptosis in ischemic conditions through the 1374 

delivery of multiple anti-apoptotic miRNAs. 1375 

 1376 

1.3. Tunneling nanotubes and organelle exchange 1377 

Tunneling nanotubes (TNT) are the structures allowing the selective transfer of membrane 1378 

vesicles and organelles (407). These structures can be formed between MSC and many other cell types 1379 

including endothelial cells (408) and cardiomyocytes (409). TNT allow the transfer of organelles such 1380 

as mitochondria, lysosomes, microRNA and lipid droplets (FIGURE 9). The transfer of mitochondrial 1381 

DNA from stem cells to hypoxic endothelial cells leads to a restoration of their aerobic respiration and 1382 
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the prevention of apoptosis (410). In addition, mitochondria from BM-MSC provided anti-apoptotic and 1383 

anti-degenerative effects through the rescue of endogenous mitochondrial function restoring SOD2, 1384 

BCL-2, BAX and PGC-1 expression and inhibiting ROS production (411).  1385 

 1386 

FIGURE 9: Mechanisms involved in MSC anti-apoptotic effects of cardiomyocytes.  1387 
MSC promote cardiomyocyte viability and protect them from apoptosis through a variety of mechanisms 1388 
that include organelles (mitochondria, lipid droplets, lysosomes) transfer via the formation of TNT as 1389 
well as the secretion of various trophic factors or EV such as exosomes and microvesicles. Microvesicles 1390 
are generated by plasma membrane budding. The MSC extracellular constituents and surface proteins 1391 
form the early sorting endosome by endocytosis with internal budding of the plasma membrane. The 1392 
early sorting endosome gives rise to the late sorting endosome and multivesicular bodies (MVB). The 1393 
MVB release their vesicles into the extracellular zone in the form of exosomes. Exosomes can release 1394 
cargo to recipient cardiomyocytes by three modes: endocytosis, direct membrane fusion, and receptor-1395 
ligand binding. MSC microvesicles and exosomes can contain a number of different molecules as cargo 1396 
such as proteins, chemokines, growth factors (VEGF, IGF-1 and HGF), cytokines, DNA, mRNA, miR 1397 
(miR19a, miR21a-5p, miR144, miR199&-3p, miR210, miR424-5p, miR486-5p and miR4732-3p) and 1398 
other nucleic acids as well as organelles (mitochondria, lipid droplets, lysosomes) which will protect 1399 
the injured/stressed cardiomyocytes from apoptosis. These molecules and organelles will target genes 1400 
involved in cell survival or apoptosis, in part, through Akt activation. 1401 

 1402 

 1403 

In the injured tissue, suffering cells release DAMPS to promote the adaptative MSC reparative 1404 

response. Anti-apoptotic functions of MSC are also triggered, in part, via mitochondria transfer to 1405 

injured cardiomyocytes (412). As a response, MSC donate their healthy mitochondria to help injured 1406 

cells to overcome oxidative stress injury, in part, through the cytoprotective heme-oxygenase 1 (HO-1) 1407 

enzyme stimulating mitochondrial biogenesis (412). HO-1 is an inducible stress protein that protects 1408 

cells from oxidative stress, apoptosis, and inflammation. MSC pre-treatment with a potent inducer of 1409 

HO-1, haemin, was shown to inhibit mitochondrial fragmentation and apoptosis of MSC induced by 1410 
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serum deprivation and hypoxia. At 4-week after transplantation, compared with naïve MSC, haemin-1411 

treated MSC significantly enhanced cardiac function in mice subjected to MI. This therapeutic benefit 1412 

was associated with decreased apoptosis of cardiomyocytes, improved angiogenesis and higher cell 1413 

survival (413). Therefore, pharmacological pre-treatment might improve MSC survival rate under 1414 

ischemic conditions through the repression of mitochondrial fission and then improve MSC-based 1415 

therapy for MI treatment. 1416 

To conclude, MSC have strong anti-apoptotic effects mediated by different mechanisms. They 1417 

can increase pro-survival pathway by direct or indirect effects to limit oxidative stress and inflammation 1418 

and increase angiogenesis. However, the main benefits observed in MSC-based therapy including their 1419 

anti-apoptotic properties, are provided by their secretome.  1420 

 1421 

2- Anti-inflammatory/Immunoregulatory properties 1422 

MSC have also been of high interest for the treatment of cardiovascular diseases because of their 1423 

immunoregulatory and anti-inflammatory properties. Indeed, MSC not only exert immunoregulatory 1424 

properties through the innate and/or the adaptive immune system but also regulate the trafficking of 1425 

inflammatory immune cells. To exert such functions, MSC need to be “primed”/activated with pro-1426 

inflammatory molecules. Indeed, in response to their environmental stimuli, MSC can adopt different 1427 

phenotypes, morphologies, a migratory potential, anti-inflammatory and immunoregulatory functions.  1428 

 1429 

2.1. MSC priming/activation with inflammatory cytokines 1430 

Pro-inflammatory factors released in the local injured milieu, massively impact on MSC 1431 

properties and thus modulate the outcome of MSC-based therapies. MSC express several receptors 1432 

among which the inflammation sensing receptors and the toll-like receptors enabling them to sense and 1433 

respond to tissue damage (414). Thus, MSC stimulation with a specific ligand effectively prime MSC 1434 

to induce and/or modulate one or more of their functions and their therapeutic effects (415). 1435 

Several studies have shown the pivotal role of IFN-γ for MSC activation (416-418). Indeed, 1436 

IFN-γ, a proinflammatory cytokine produced by activated T cells, primes the immunomodulatory 1437 

property of MSC by upregulation of PD-L1 (Programed Death-Ligand 1), an inhibitory surface 1438 

molecule. Conversely, PD-L1 knockdown using siRNA abolished MSC immunosuppressive potential. 1439 

In line with these studies, it was shown that IFN-γ induces MSC immunosuppressive properties alone 1440 

or in combination with others pro-inflammatory cytokines including IL-1β, IL-1 and TNF- (416). 1441 

These pro-inflammatory cytokines induce, in part, the expression of VCAM-1 and ICAM-1 in MSC 1442 

(419). Thus, when MSC are cocultured with activated T cells producing high levels of pro-inflammatory 1443 

cytokines, they significantly increase the adhesion capacity of T cells to their surface via their increased 1444 

expression of VCAM-1 and ICAM-1. Consistently, MSC immunoregulatory properties were 1445 

significantly reduced in vitro and in vivo when VCAM-1 and ICAM-1 were functionally inactivated or 1446 

genetically silenced. TNF/TNFR1 axis also enhances the production of molecules referred as mediators 1447 
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of MSC immunosuppressive properties such as PGE2 by inducing the expression of COX2 1448 

(cyclooxygenase 2) in MSC. In turn, PGE2 released by primed MSC stimulates the production of IL-10 1449 

by macrophages through the prostaglandin EP2 and EP4 receptors (420). In addition, TNF- and 1450 

hypoxia priming of MSC enhances the production of paracrine factors including b-FGF, VEGF and 1451 

TGF- (Transforming Growth Factor-) that work in synergy to regulate the microenvironment and 1452 

reduce inflammation in MI (421).  1453 

More recently, our group and others showed that MSC activation with IFN-γ and TNFα induces 1454 

their metabolic switch towards glycolysis (422-424). Going further we demonstrated that this metabolic 1455 

reprogramming significantly enhanced MSC immunoregulatory properties in vitro and in vivo in an 1456 

AMPK- and HIF-1α (Hypoxia Inducible Factor-1 alpha)-dependent manner (422). Indeed, we showed 1457 

that the significant increased level of AMPK phosphorylation in MSC after TNFα and IFN-γ stimulation 1458 

induced their glycolytic switch. The inhibition of AMPK activity abolished the enhancement of 1459 

glycolytic MSC suppressive activity. TNF-α and IFN-γ stimulation of MSC also significantly increased 1460 

the expression and the nuclear translocation of HIF-1α (425). HIF-1α knockdown in MSC induced a 1461 

metabolic switch from glycolysis to OXPHOS, a decrease of the immunoregulatory potential and a 1462 

reduction of the expression or production of some MSC immunosuppressive mediators including ICAM, 1463 

IL-6, and NO respectively (425).  1464 

Among the master regulators of cell metabolism, mitochondria are key organelles that have been 1465 

shown to orchestrate MSC immunoregulatory potential. MSC have the unique ability to export their 1466 

own mitochondria to neighboring cells in response to inflammation. Indeed, the pro-inflammatory 1467 

environment induced by TNF promotes TNT formation and mitochondrial transfer between MSC and 1468 

cardiomyocytes to rescue cardiomyopathy (426). Moreover, mitochondrial transfer induced by pro-1469 

inflammatory stimuli between MSC and immune cells has been shown to regulate the immune response 1470 

(427, 428). Altogether these studies indicate that the inflammatory microenvironment may be a critical 1471 

factor to reprogram the metabolic status of MSC and enhance their paracrine effects and mitochondrial 1472 

transfer to modulate their anti-inflammatory and immunoregulatory properties.  1473 

 1474 

2.2. Anti-inflammatory properties 1475 

During MI, distant inflammatory cell-generating organs, including the spleen and bone marrow, 1476 

are stimulated, thereby maintaining a continuous supply of monocytes to the site of inflammation (429, 1477 

430). Thus, the systemic response can transfer the inflammation to organs that are not initially involved 1478 

(430). While systemic and local inflammatory responses after MI are well described, the mechanisms 1479 

of infarct zone containment have been addressed recently. The authors showed that serum of patients 1480 

with AMI exerts anti-inflammatory actions on healthy cardiomyocytes, thereby contributing to limit 1481 

infarct size and protecting healthy tissue. However, ventricular fibrillation, a complication of MI, 1482 

promotes the switch of healthy cardiomyocytes towards a proinflammatory phenotype (431). During MI, 1483 
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tissue injury-related signals including DAMPs released from dying or stressed cells are detected by MSC 1484 

leading to increased pro-repair abilities and anti-inflammatory outcomes (432).  1485 

 1486 

Effect of MSC on inflammation   Experiments on cultured naive human BM-MSC spheroids 1487 

exposed to TNFα, and cocultured with adult human cardiomyocytes, or with conditioned media pooled 1488 

from TNFα-stimulated adult cardiomyocytes, showed that TNFα-induced inflammation altered BM-1489 

MSC survival and differentiation into mature cardiomyocytes, while promoting matrix protein synthesis 1490 

and cytokine release conducive to the MI remodeling (433). While inflammation repressed naïve MSC 1491 

functions, different results were reported using primed MSC. Indeed, the increased expression of 1492 

inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in the ischemic heart was shown to be inhibited 1493 

upon the transplantation of IGF-1-primed MSC, which also reduced cardiac dysfunction, increased cell 1494 

engraftment and reduced apoptosis of myocardium cells (434). Similarly, MSC overexpressing HGF 1495 

down-regulate inflammatory cytokine secretion and up-regulate anti-inflammatory cytokine release, 1496 

suggesting that HGF is a critical contributor to the regulation of cytokine secretion by MSC (435).  1497 

 1498 

Effect of MSC administration on the monocyte response   Pro-inflammatory cytokines are 1499 

mainly derived from monocyte-derived macrophages, the most abundant immune cells in the heart after 1500 

MI and IR injury (436). After MI, monocytes migrate to the infarct area and differentiate into 1501 

macrophages that release chemokines, growth factors and cytokines, to clear injured and apoptotic 1502 

myocardial cells (FIGURE 10). Macrophages after MI are activated and polarized towards different 1503 

subsets with different immune functions, mainly into pro-inflammatory macrophages producing IFN-, 1504 

TNF- and IL-23 and promoting the destruction of the extracellular matrix (437). Therefore, the 1505 

regulation of monocyte trafficking and mobilization has emerged as an attractive therapeutic approach 1506 

for myocardial inflammation and fibrosis. In an experimental model of myocarditis, the capacity of MSC 1507 

to decrease the severity of the disease in mice was associated with a reduced percentage of pro-1508 

inflammatory Ly6Chigh and Ly6Cmiddle monocytes and an increased percentage of Ly6Clow monocytes in 1509 

the heart and the blood. This study demonstrates that MSC promote the resolution of cardiac 1510 

inflammation by repressing the cardiac infiltration of pro‐inflammatory monocytes while enhancing 1511 

cardiac influx of anti‐inflammatory monocytes (438). 1512 

More recently, the combined treatment with MSC and anti-CCR2 significantly reduced monocyte 1513 

accumulation at the site of infarction in AMI mice by comparison with injection of MSC or anti-CCR2 1514 

alone. In addition, the reduced monocyte infiltration was associated with a decreased secretion of pro-1515 

inflammatory cytokines at the injury sites, a better tissue regeneration and an enhanced improvement in 1516 

cardiac function (439).  1517 

 1518 

Effect of MSC-EV on inflammation   Similarly, to their parental cells, MSC-EV were shown 1519 

to regulate cardiac inflammation and ameliorate cardiac function in preclinical studies through the same 1520 
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pathway. Indeed, EV can inhibit the monocyte influx into the injured region via different mechanisms. 1521 

The first evidence of the anti-inflammatory effect of MSC-EV was provided by a study in a mouse 1522 

model of myocardial IR injury, where the EV were injected intravenously before reperfusion (440). 1523 

Similarly, MSC-EV administered in rat hearts after permanent ligation significantly reduced the 1524 

percentage of macrophages in the peri-infarct zone one week after MI (441). These anti-inflammatory 1525 

effects of EV might be mediated through the transfer of different molecules including miRNA and 1526 

therefore regulate leukocyte influx in the heart. For instance, miR-24 was shown to regulate vascular 1527 

inflammation by controlling macrophage behavior (442, 443). Moreover, miR-24-3p was suggested to 1528 

repress the recruitment of bone marrow-leukocytes by downregulating their CCR2 expression level 1529 

(444).  1530 

 1531 

 1532 

FIGURE 10: MSC anti-inflammatory and immunoregulatory effects in hearts after ischemic injury.  1533 
A. The death of cells induced by ischemic injury leads to the release of DAMPs and ROS, which induces 1534 
the inflammatory phase. Indeed, dying cardiomyocytes produce pro-inflammatory cytokines and 1535 
chemokines resulting to a substantial inflammatory monocytes influx into the cardiac ischemic area, 1536 
responsible for phagocytosis of the dying cells and the generation of an inflammatory environment 1537 
promoted by the presence of pro-inflammatory macrophages and Ly6ChighCCR2+ infiltrating monocytes 1538 
that adopt transcriptional active states and participate to adverse cardiac remodeling. B. MSC 1539 
administrated in the ischemic hearts will receive pro-inflammatory signals from injured cardiac cells 1540 
and the inflammatory monocytes/macrophages and an active secreting phenotype. The subsequent 1541 
primed secreting MSC will release soluble factors, microvesicles and exosomes that will mediate anti-1542 
inflammatory and immunoregulatory properties. First, primed MSC will regulate the influx of CCR2+ 1543 
infiltrating macrophages derived from circulating monocytes. Second, primed MSC will promote 1544 
resident or monocyte-derived macrophages polarization towards an anti-inflammatory phenotype.  1545 
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 1546 

2.3. MSC immunoregulatory properties  1547 

In addition to their capacity to control monocyte trafficking and mobilization, MSC can also 1548 

potently regulate the immune response. MSC immunoregulatory properties have been discovered in the 1549 

early 2000s. MSC have been initially described for their capacity to inhibit T cell proliferation and 1550 

functions both in vitro and in vivo (445). A few years after, the inhibitory potential of MSC on other 1551 

adaptative immune cells such as B cells (446) and innate immune cells, including dendritic cells (DCs) 1552 

(447), natural killer cells (NK cells) (448) and macrophages (449), was reported. 1553 

MSC and macrophage interactions increase the expression of CD206 and the production of IL-10 by 1554 

macrophages while reducing IL-12 and TNF-α. Thus, it was proposed that these MSC-trained 1555 

macrophages constitute a new type of alternatively activated macrophages that would play a potential 1556 

important role in tissue repair (450). 1557 

 1558 

Priming of MSC immunoregulatory properties   To exert such immunoregulatory properties 1559 

and switch the inflammatory immune response into a balanced immune response, MSC sense danger 1560 

signals via receptors including TLR and respond to excessive pro-inflammatory signals via TNF-α and 1561 

IFN-γ receptors. MSC immunoregulatory properties have been described by our group and others to be 1562 

mediated through both direct cell contacts and soluble factors. Thus, MSC need to be primed by 1563 

inflammatory conditions or also hypoxia to exert their immunoregulatory functions. For example, MSC 1564 

do not exhibit at steady state any indoleamine 2,3‐dioxygenase (IDO) activity, pivotal for their 1565 

immunosuppressive functions, while IFN-γ induces it. Similarly, the production of PGE2 by MSC (451), 1566 

a soluble mediator of MSC immunoregulatory properties, is stimulated by inflammatory cytokines such 1567 

as the combination of IFN-γ and TNF-α (452). IDO and PGE2 produced by MSC induce the switch 1568 

from pro-inflammatory to anti-inflammatory macrophages (453). However, PGE2 can modulate both 1569 

the innate and adaptive immunity, with either beneficial or adverse effects (454). Indeed, PGE2 produced 1570 

by MSC can, on one hand, promotes an inflammatory response by enhancing LPS (lipopolysaccharide)-1571 

induced IL-23 production by dendritic cells, which favors Th1 and Th17 cell differentiation (for review 1572 

see (455)). On the other hand, PGE2 produced by MSC can generate an anti-inflammatory response 1573 

through its binding to its receptors EP2 and EP4 on macrophages that enhances their polarization toward 1574 

anti-inflammatory macrophages (420).  1575 

 1576 

Factors involved in the immunoregulatory properties of MSC on monocytes/macrophages    In 1577 

a mouse model of AMI, the injection of MSC, 2 days after MI induction reduced the proportion of 1578 

macrophage/monocyte including pro-inflammatory macrophages, while increasing the percentage of 1579 

anti-inflammatory and reparative macrophages (F4/80+CD206+) both in the circulation and in infarcted 1580 

heart (456, 457). The increased immunoregulatory effect on macrophages observed in response to MSC 1581 

treatment in cardiomyopathies is lost when MSC are pretreated with a COX-2 inhibitor prior their 1582 
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injection (458). Anti-inflammatory macrophage polarization promoted by MSC via the COX-2-PGE2 1583 

pathway will increase the concentration levels of TGFβ, IL-10, HGF, PGE2 and IDO in the infarcted 1584 

myocardium and thus suppress the proinflammatory state of the tissue. This paradoxical effect exerted 1585 

by PGE2 depends on its concentration (for review see (455)). Other soluble factors produced by MSC 1586 

such as IL-1Ra (Interleukin-1 receptor antagonist), IL-6 and granulocyte macrophage-colony 1587 

stimulating factor (GM-CSF) mediate, in part, the shift of macrophages toward an anti-inflammatory 1588 

phenotype (420, 459, 460). Recently, it has been shown that the intracardiac injection of living or dead 1589 

stem cells similarly provides an accumulation of macrophage positives for CCR2 and CX3CR1 inducing 1590 

a functional repair process of the injured myocardium (461). This latter study suggests that stem-cell 1591 

based therapy in cardiac ischemic injury promotes wound healing response and restores the mechanical 1592 

properties of infarcted heart via, in part, an acute immune response. However, the recent findings 1593 

indicating a functional distinction between CCR2+ and CX3CR1+CCR2− macrophage subsets in cardiac 1594 

wound healing (462, 463) raise the question of the role of MSC-based therapy on these macrophage 1595 

subsets.  1596 

Modified MSC were shown to display enhanced immunoregulatory potential and subsequently 1597 

improved therapeutic properties for MI. Indeed, in an experimental model of MI, MSC overexpressing 1598 

IL-33 (MSC-IL-33) were shown to decrease inflammation in the hearts with MI, to increase the 1599 

expression of CD206 and reduce the expression of iNOS. Moreover, genes related to inflammation 1600 

including IL-6, TNF-α, and IL-1β were found to be reduced in the border zone of hearts treated with 1601 

MSC-IL-33 compared to the heart treated with control MSC (464).  1602 

More recently, the role of hypoxia on MSC immunoregulatory properties was investigated. First, 1603 

the authors showed that hypoxia increase the expression levels of HIF-1 and TGF-1 in MSC and that 1604 

the hypoxic conditioned media of MSC promotes macrophage polarization towards an anti-1605 

inflammatory-like phenotype through TGF-1/Smad3 signaling pathway. Finally, they report that these 1606 

macrophages attenuate cardiac fibrosis and apoptosis and increase the density of the microvessels 1607 

density after MI (465). 1608 

Therefore, MSC based-therapy of MI is, in part, mediated through the control of the monocyte 1609 

trafficking and mobilization and the regulation of macrophage polarization. 1610 

  1611 
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 1612 

IV- MSC for the treatment of IR injury  1613 

 1614 

A- Results obtained in preclinical studies and clinical trials  1615 

 1616 

 1617 

1- In preclinical models 1618 

Highly encouraging results were obtained from pioneering studies in preclinical models in the 1619 

early 2000s showing that MSC in the adult heart were able to replace damaged tissue after engraftment 1620 

although contested thereafter (466). Then, MSC-based cardiomyoplasty was investigated in different 1621 

animal models, showing the differentiation of MSC into cardiomyocytes, endothelial and smooth 1622 

vascular cells (467-469). Evidence of MSC differentiation into functional cardiomyocytes (CM-MSC) 1623 

was reported in vitro after treatment with various drugs such as 5-azacytidine (an hypomethylating agent) 1624 

and in vivo with improvement of contractile function (470, 471). However, due to safety concerns, this 1625 

differentiation protocol has been replaced by insulin, dexamethasone and ascorbic acid (472) or bone 1626 

morphogenetic protein-2 associated with FGF (473). In addition, the risk of immune response more 1627 

pronounced with differentiated MSC led researchers to use undifferentiated MSC instead for in vivo 1628 

studies (474, 475). The safety of undifferentiated MSC was subsequently demonstrated, with the 1629 

exception of one report of arrhythmias in a porcine model of AMI (476), as well as their efficacy on 1630 

infarct size and heart function.  1631 

 1632 

Effects of MSC administration on cardiac performance    Ejection fraction parameter (EF, %), 1633 

the simplest and most widely used parameter for the global assessment of myocardial function in patients 1634 

(477), was measured in animals either using echocardiography (in most cases), MRI or SPECT (Single 1635 

Photon Emission Computed Tomography). Kanelidis’ metanalysis reports a 12%-overall increase in EF 1636 

in rodents after MSC administration compared to the untreated group (478). Results in large species 1637 

such as pigs showed a 7%-improved EF obtained from only 7 out 16 studies revealing MSC positive 1638 

impact. Jansen Of Lorkeers’ analysis confirmed that MSC treatment was able to increase EF by an 1639 

average of 8.7% in 832 treated animals of large species including pigs, dogs, and sheep versus 583 1640 

control animals (479). Accordingly, a 8%-decrease in infarct size was evidenced in 50% of the 1641 

preclinical studies performed in rodents (mouse and rat) (478) and a 6.4%-reduction in pig hearts (mean 1642 

obtained from 7 positive versus 5 neutral studies) (478). Cardiac remodeling was also prevented by 1643 

MSC therapy as assessed by the decreased volume of the cardiac chamber (LVEDV, Left Ventricular 1644 

End-Diastolic Volume and LVESV, Left Ventricular End-Systolic Volume), the absence of hypertrophy 1645 

and also a less extent in cardiac fibrosis (479-483).  1646 

 1647 
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Immune response following MSC administration    For technical reasons, the most frequently 1648 

used MSC source are allogeneic in preclinical models but also autologous usually in large species (484), 1649 

or xenogeneic MSC (481, 485, 486) have been studied, showing similar efficacy (for review see (478, 1650 

479). Both autologous and allogeneic cell therapies have been reported to be safe in preclinical studies 1651 

on large animals (pig, sheep, dog) (479). The risk of immune rejection after transplantation has been 1652 

widely discussed since MSC exhibit an immune evasion phenotype marked by low MHC (Major 1653 

Histocompatibility Complex) class I levels and the absence of expression of MHC class II (474, 487). 1654 

MSC, due to their low immunogenicity, can survive for more than one month after transplantation in 1655 

allogeneic hearts by contrast to differentiated MSC that are not immune-privileged (474, 475). Their 1656 

short lifespan (<1month) after injection could be explained by immune rejection due to expression of 1657 

MHC class II in vivo (488). However, despite the existence of an immune response, an improvement in 1658 

the left ventricle EF was evidenced even with xenogeneic MSC (489).  1659 

 1660 

2- In AMI patients 1661 

Results obtained in clinical trials evaluating the benefits of MSC for cardiac repair in AMI 1662 

patients are variable and sometimes even contradictory (see Table). Safety was the first primary clinical 1663 

outcome evaluated in those studies, clearly showing the near absence of complications during either the 1664 

procedure (except for one case of periprocedural complication of coronary artery obstruction) or the 1665 

follow-up (490-492). Importantly, neither tumorigenicity nor ectopic tissue formation was reported 24 1666 

months after allogeneic MSC injection (493). 1667 

 1668 

Heterogenous protocols of MSC administration   EF (%) parameter was also measured to 1669 

evaluate cardiac function using echocardiography in most cases (490, 492-501), MRI (493, 494) or 1670 

SPECT (490, 492, 494-497, 499, 502). A highly significant 3.78%-increase in EF for the MSC group 1671 

versus control was evidenced by Attar’s metanalysis (13 clinical trials), confirming the results of a 1672 

previous metanalysis (3.22%-increase) (503, 504). Remarkably, a record 5%-increase in EF was 1673 

reported also with the combination of 6.106 MSC injected via the IC route, 1-week post-MI (<1 week 1674 

and <107) suggesting that the finely tuned combination of the right timing and the right dose injected is 1675 

determinant for the effectiveness of MSC therapy (495). However, considering the positive results 1676 

obtained with a treatment protocol of timing of injection <1-week combined to a dose of MSC <107 1677 

(495, 502) or the protocol with a timing <1-week and a dose >107) (493, 494) and the negative ones 1678 

obtained with a timing of injection >1-week and a dose of MSC>107) (490, 497, 500), the “timing of 1679 

injection” seems to be the crucial parameter for success. Importantly, cardiac function improvement was 1680 

stable for up to 24 months after MSC-based therapy (505). 1681 

 1682 

 1683 

 1684 
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Table: summary table of clinical trials conducted on AMI patients with MSC-based therapy  1685 

 1686 

Effects of MSC on patient prognosis    Outcomes on infarct size were assessed by cardiac 1687 

magnetic resonance (CMR) (502), MRI (494) or ventriculography (500). In most cases, a lack of effect 1688 

was reported using either allogenic (494) or autologous BM-MSC (500) except in one study showing a 1689 

decreased infarct size with an IC injection of freshly prepared autologous AT-MSC (502). Contrasting 1690 

results were reported also for myocardial viability after autologous BM-MSC administration showing 1691 

either improvements (506) or neutral effects (492, 501). Regarding myocardial perfusion, improvements 1692 

were observed after injection of autologous AT-MSC and BM-MSC (490, 502, 506) or Wharton’s jelly-1693 

derived MSC (495) but an absence of effects was also described despite quite similar protocols (492, 1694 

494, 501). By contrast to preclinical studies, long-term progression towards heart failure was quoted in 1695 

patients, showing a reduction LVEDV or LVESV measurements as indicators of LV remodeling (490, 1696 

493, 495) and in the number of rehospitalizations for heart failure (500). However, no change was 1697 

observed for the six-min walk test at 6-month post-MI (493) and also, more importantly, in the survival 1698 

rate (499, 500). 1699 

 1700 

Allogeneic versus autologous MSC   For a clinical application, bone marrow and adipose 1701 

human tissues are the two main sources of cells widely used to ensure large amounts of MSC (507) even 1702 
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though umbilical cord-derived stem cells have been shown recently to have a more positive effect on 1703 

EF (503). Both autologous (490, 492, 496, 497, 499-502, 508) and allogeneic (493-495, 509) MSC have 1704 

been tested in AMI patients. After a pioneering study showing safety and promising results using 1705 

autologous MSC (490), puzzling data have been reported in following studies with either positive results 1706 

(496, 497, 500, 502) or a lack of efficacy (492, 499, 501). Because autologous stem cells must be 1707 

amplified ex vivo for several weeks (1 to 4) to obtain a sufficient number for the treatment (496, 501), 1708 

they cannot be easily used in the acute phase of MI to treat reperfusion injury. Thus, the use of allogeneic 1709 

MSC appear more adapted and less expensive than autologous cells that require cell expansion, product 1710 

characterization and batch release testing for each patient. More importantly, allogeneic MSC in AMI 1711 

patients are safe and provide promising results (362, 493, 509) highlighting the difference in quality of 1712 

MSC from young and healthy donors compared to AMI patients. For these reasons, allogeneic MSC 1713 

therapy is preferred over autologous MSC therapy (510). They come from healthy donors by contrast to 1714 

autologous ones and, as “off-the-shelf” product, they are immediately available for urgent treatment. 1715 

 1716 

 1717 

B. Origin of the gap for the clinical translation 1718 

 1719 

While MSC is a promising cell therapy product, the heterogeneity of results raises the question 1720 

of how to use them optimally to guarantee positive results to the patients. To this end, it is necessary to 1721 

analyze the reasons underlying this heterogeneity.  1722 

 1723 

1- Influence of the cell therapy product and the recipient 1724 

The difference between the results obtained in the preclinical studies and those reported in the 1725 

large-scale clinical trials could be explained by several issues including the heterogeneity of cell 1726 

preparations, the injected doses and the therapeutic time window of administration. 1727 

 1728 

1.1 Regarding the cells 1729 

Age of cell donors The first investigations performed with patient-derived cells revealed a 1730 

decreased number of cells and an impaired functional activity as compared to healthy cells (511). In 1731 

AMI patients, disease and/or age reduce the impact of BM-MSC on their function (492) as compared 1732 

with other studies using allogenic MSC from young and healthy donors (493-495, 512). As a result, 1733 

most clinical trials used allogeneic MSC instead of autologous MSC coming from patients with age-1734 

related diseases that have decreased regenerative capacities (513, 514). In fact, compared with aged 1735 

donors, MSC derived from young donors have a higher proliferation rate, a slower progression toward 1736 

senescence during the in vitro expansion phase (515) and a lower rate of trophic factor secretion (for 1737 

review see (516)). For instance, decreased secretion of brain-derived neurotrophic factor (BDNF) and 1738 

PDGF in human MSC derived from aged donors was associated with less atrophy-preventing capacities, 1739 
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anti-inflammatory effects, vessel maturation and lower levels of MCP-1 in peri-infarct tissue compared 1740 

to MSC derived from young donors since PDGF is a potent inducer of MCP-1 and the PDGF family is 1741 

closely related to the VEGF family (516). The same negative correlation was reported for age and 1742 

immunoregulatory potential of BM- and AT-MSC (517). Old MSC display a reduced expression of TNF 1743 

receptor (TNFR), IFN-γ receptor (IFNGR), and CCR7, required for their activation by TNF-α and IFN-1744 

γ, which stimulate/prime their immunosuppressive properties (518).  1745 

Therefore, disadvantageous characteristics of MSC from aged donors could adversely affect the success 1746 

of cell therapy for MI and consequently allogenic source of MSC from young and healthy donors are 1747 

preferred in clinical trials. Further investigations are ongoing to elucidate the mechanisms associated to 1748 

MSC aging in order to find new directions for counteracting cell age loss. 1749 

Anatomical depots In mammals, white adipose tissue, involved in energy storage, is anatomically 1750 

classified into two major fat deposits, visceral adipose tissue (e.g., epididymal adipose tissue (EAT)) 1751 

and subcutaneous adipose tissue (e.g., inguinal adipose tissue (IAT)). The different characteristics of 1752 

EAT and IAT are mediated, in part, by the distinct properties of ASC. For instance, IAT-derived ASC 1753 

actively repress monocyte infiltration via secreted molecules, thereby inhibiting inflammatory responses 1754 

in IAT (519). Moreover, in a study comparing the biology of ASC from 5 different subcutaneous adipose 1755 

locations (superficial abdominal, deep abdominal, arm, thigh, and trochanteric), it was shown that the 1756 

susceptibility to apoptosis was lowest in the superficial abdominal depot and in the younger age groups 1757 

(520).This observation was in line with a study showing that the superficial abdominal depot was less 1758 

susceptible to apoptosis when compared with adipose stem cells from the omental depot (521). 1759 

In addition to differences in susceptibility to apoptosis, different functions have been associated to the 1760 

ASC subsets identified in response to obesogenic stimuli. Indeed, ASC positive for syndecan 1 (SDC1) 1761 

predominant in EAT promote fibrotic remodeling, while IAT-derived ASC positive for CXCL14 inhibit 1762 

macrophage infiltration (522). 1763 

The most commonly used source of adipose tissue for isolating ASCs is subcutaneous white adipose 1764 

tissue harvested from the abdomen, hips, thighs or buttocks, usually during plastic surgery procedures. 1765 

However, there are no preclinical studies comparing the therapeutic potential of these different types of 1766 

adipose tissue. 1767 

Conditions and time of cell amplification Preclinical murine models use adapted MSC in 1768 

culture, whereas clinical trials rely on MSC stored in different conditions (bio- or cryo-preserved) and 1769 

thawed just before administration without a culture period allowing recovery. Deleterious effects of 1770 

immediate thawing on MSC properties such as their immunomodulatory properties have been described 1771 

in vitro (523). In addition, certain functions of MSC such as their differentiation potential decline after 1772 

sustained passages due to the average decrease in CFU (Colony Forming Unit) and colony size observed 1773 

in vitro (524). After multiple serial passages in culture (30-40 population doublings), MSC cease to 1774 

divide and enter a state of in vitro aging, also known as replicative senescence or the Hayflick limit 1775 

(525). Moreover, MSC start to become hypertrophic (MSC size about 4-fold larger at passage 6 than at 1776 
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passage 1) and their stemness gene expression profile is altered (526, 527). Regarding the expression 1777 

profile of markers characteristics for MSC including CD73, CD90, CD105, and CD106, they were 1778 

shown to be down-regulated during culture expansion compared to MSC in the stromal fraction (527, 1779 

528). Thus, for the use of MSC in the clinic, the dilemma comes from the fact that the culture of MSC 1780 

for the clinical application must have few passages while it is necessary to amplify them in a sufficient 1781 

number (529). MSC amplification in a large scale will inevitably confront MSC with epigenetic, genetic, 1782 

phenotypic, metabolic, functional modifications and their senescence being associated to reduced 1783 

proliferative, regenerative capabilities and decreased life expectancy.  1784 

A standardized manufacturing process for successful clinical trials is required. Surface marker 1785 

profiling is one method to detect and isolate in vitro aging senescent cells. For instance, CD264, is a 1786 

surface marker of in vitro MSC aging that is not linked to donor age (530). Compared to MSC negative 1787 

for CD264, MSC expressing CD264 exhibit increased SA-β-gal (Senescence-Associated beta-1788 

galactosidase) activity as well as a reduced differentiation potential and colony-forming ability (531). 1789 

In contrast, CD146, downregulated in MSC derived from aged donors (versus young donors), is also 1790 

decreased in MSC after prolonged in vitro expansion (532). The decreased expression of CD146 in MSC 1791 

was suggested to be associated with their reduced migratory potential in degenerative tissues (533). 1792 

Although some molecules are expressed to different extents during aging and may be related with 1793 

functional changes, there is no current consensus that a molecule can serve as a gold standard for young 1794 

or aged MSC population selective purification. Senolysis, the process that consists in clearing senescent 1795 

cells from a proliferative cell niche using specific agents called senolytic drugs, is currently tested in 1796 

preclinical studies and the translation of this process to the clinical field is a promising topic to improve 1797 

MSC-based therapy in MI (534). 1798 

 1799 

Time of manufacturing process and storage   Following the European Union (EU) Regulation 1800 

1394/2007, MSC are an advanced therapy medicinal product that must be manufactured according to 1801 

the standards of good manufacturing practices (GMP). About 21 to 28 days of manufacturing process is 1802 

necessary from the BM collection to the obtention of P2-frozeen/thawed MSC that will be either 1803 

administrated to the patients or stored (535). Furthermore, this process must ensure an efficient long-1804 

term storage without altering MSC properties. Existing cryopreservation procedures consist in storing 1805 

MSC in cryopreservation solutions at temperatures below -135°C and include cooling and thawing steps, 1806 

avoiding rapid temperature changes that lead to stress and changes in material characteristics. Slow rate 1807 

freezing results in cell dehydration with related stress and osmotic imbalances leading to oxidative stress 1808 

and apoptotic cell death by contrast to fast MSC freezing that improves osmolality but increases the 1809 

intracellular ice content. In general, a uniform rate of cooling of -1.0°C per minute has been shown to 1810 

be effective for the majority of cells. The current standard practice for cell recovery in cryovials is to 1811 

promote rapid thawing using a 37°C water bath (536). Of note, the effect of an inappropriate baseline 1812 

cryopreservation process can be noticed within the first 36 hours after thawing (537).  1813 
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Several investigations have been carried out to validate cultures and study the short- and long-1814 

term stability of fresh or thawed products. In a recent study, Lechanteur et al. reported their efforts to 1815 

implement GMP standards in their manufacturing process of allogeneic MSC (529) allowing to obtain, 1816 

in an academic setting, a GMP license. To validate the steps of freezing and thawing steps, P2 (Passage 1817 

2)- frozen MSC were thawed and seeded for one week prior the predefined quality criteria (QC) analysis 1818 

including viability, sterility, mycoplasma, endotoxin, doubling time, population doubling time, 1819 

phenotypic identity (CD73, CD90 and CD105), karyotype, viability, potency and morphology (535). 1820 

MSC from three different donors were thawed and QC assessments were conducted at 0, 1, 2 and 4 1821 

hours. Results show that one hour was the maximum time from the end of the MSC thawing step to 1822 

administration to the patient (535). 1823 

 1824 

1.2. Regarding patients 1825 

Among the critical factors impacting the results of MSC-based therapy, one needs also to 1826 

consider the recipient of the cell transplantation. AMI patients, as generally elderly patients, are 1827 

frequently multi-morbid and are often treated with multiple therapies that can modify the intracellular 1828 

cascades of endogenous mechanisms of cardioprotection.  1829 

 1830 

Aging of recipients is an immutable cardiovascular risk factor that is attracting increasing 1831 

attention due to its rising prevalence (538). If many studies have highlighted aspects of MSC aging, only 1832 

a few studies have shown that aging significantly impedes the effectiveness of MSC migration and 1833 

transplantation in both preclinical and clinical studies in other applications (539, 540). Preclinical studies 1834 

described that aging impairs the angiogenic response of implanted cells after ischemic injury (541) while 1835 

by contrast, a clinical trial with a small cohort of 49 patients showed that the recipient’s age does not 1836 

influence MSC efficiency for the treatment of patients with ischemic cardiomyopathy (511). However, 1837 

it is critical to study the impact of aging since MI preferentially affects old patients, with an average age 1838 

of about 65 years in men and 72 in women, and that all the preclinical studies of both cardioprotection 1839 

and biotherapy are performed on young adult laboratory animals. For the treatment of AMI in old 1840 

patients, allogenic transplantation of stem cells derived from young donors should be considered to 1841 

potentially overcome aging-related limitations since autologous MSC will be less efficient (542). This 1842 

is particularly relevant in view of the increased susceptibility to IR injury reported in old animals in 1843 

preclinical studies as a result of the attenuation of the RISK/SAFE signaling cascades without any 1844 

changes reported for PKG or PKA pathways (543). Indeed, Akt, ERK1/2, PKC and STAT3 undergo 1845 

post-translational modifications and altered expression, leading to impaired endogenous mechanisms of 1846 

cardioprotection in the elderly (544, 545). In particular, impaired Akt activation is related to a higher 1847 

vulnerability to hypoxic injury and impaired paracrine efficiency of BM-MSC (546).  1848 

 1849 
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Diabetes Diabetic patients are at high risk of MI due to increased adverse cardiovascular events. 1850 

It is currently admitted that diabetic hearts are more sensitive to IR injury in human but contrasting 1851 

results have been obtained in preclinical models (for review see (547)). Hyperglycemia is an important 1852 

inducer of cardiac injury, and even in nondiabetic patients, hyperglycemia on hospital admission is 1853 

associated with increased infarct size and should be considered a prognostic marker in all patients with 1854 

AMI (548). Hyperglycemia and increased oxidative stress probably contribute to the impairment of 1855 

PTEN-Akt signaling in human cardiac tissues (549). As a result, a resistance of diabetic hearts to 1856 

cardioprotective strategies such as ischemic conditionings is observed both in preclinical models (for 1857 

review see (547)) and in patients (550). Similar loss of cardioprotection was obtained after 1858 

transplantation of human MSC in the infarcted border zone of a preclinical model of IR injury showing 1859 

that diabetes impacts negatively MSC-induced cardioprotection (551). 1860 

 1861 

Treatments   Pharmacological treatments should be considered since they can interfere with 1862 

MSC properties. Indeed, most of the patients at risk of AMI are usually treated for a coronary artery 1863 

disease. In the arsenal of drugs prescribed in this case, statins (3-hydroxy-3-methylglutaryl-CoA 1864 

reductase inhibitors) allowing to lower cholesterol amounts in the blood of patients, have shown 1865 

contrasting results in cardioprotection depending on their duration of administration. For instance, 1866 

chronic atorvastatin prevents the cardioprotective effect of PostC, while an acute treatment in 1867 

combination with PostC is cardioprotective (552). In addition, atorvastatin or rosuvastatin increase 1868 

proliferation rates of human MSC upon hypoxic conditions in vitro, and have a beneficial impact on 1869 

transplanted MSC activity in preclinical studies (553-556). The impact of chronic statin treatment in 1870 

AMI patients receiving MSC therapy is questioned because it has been reported that statins, evaluated 1871 

as a cardioprotective drug against IR injury, are not protective when chronically administered due to an 1872 

up-regulation of PTEN expression (557). Since cardioprotection by MSC therapy is mediated through 1873 

downregulation of PTEN expression (398, 400, 401), it is uncertain whether MSC treatment will be 1874 

strong enough to counteract the effect of statins on the PI3K pathway.  1875 

Another example of treatment given to patients at risk of infarction concerns antidiabetic drugs, 1876 

including metformin (biguanide) and gliflozins (sodium-glucose cotransporter 2, SGLT2 inhibitors) 1877 

described as reversing diabetes-induced alterations in the signaling pathways, leading per se to 1878 

cardioprotection (558-560). Indeed, metformin has been reported to induce apoptosis in MSC and 1879 

impede their therapeutic when co-administered in hearts during AMI (561).  1880 

All these treatments given to the population of AMI patients can compromise the therapeutic 1881 

effect of MSC in clinical trials, so they need to be considered.   1882 

 1883 

2- Various MSC doses  1884 

2.1 Preclinical studies 1885 
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Dose-response was obtained for the improvement of cardiac function with allogeneic MSC 1886 

tested at various doses 103, 104, 105 and 106 cells per kg body weight in the MI pig model. Only the 1887 

highest doses provided significant benefits for cardiac function but not for a decrease in infarct size, 1888 

where a U-curve was observed (562). An apparent dose-response was also observed for the values of 1889 

systolic function (assessed by pressure-volume analysis) in a pig model of IR injury after IV 1890 

administration of allogeneic MSC at 1, 3 and 10 millions of cells, the highest dose giving the best 1891 

benefits (563). However, in another study, the highest dose of MSC, 10 million/kg, was reported to 1892 

induce cardiopulmonary collapse and a subsequent loss in cardioprotection as evidenced by infarct size 1893 

measurement (563). Similarly, an absence of dose-response was reported for allogeneic BM-MSC after 1894 

transendocardial (TE) injection (20, 240 or 440 million) in pigs submitted to IR injury (564). These 1895 

studies raise controversies regarding the dose-dependence of the therapeutic potential of MSC and an 1896 

inverted U-shaped dose-response curve showing poorer results with both lower and higher doses has 1897 

been described. In agreement with this observation, we reported a U-shaped curve for infarct size 1898 

reduction induced by MSC treatment in a mouse model of IR injury treated with allogeneic MSC (565). 1899 

 1900 

2.2. Clinical trials 1901 

A recent metanalysis of clinical trials evaluating MSC therapy for AMI patients revealed that 1902 

the number of cells injected, mostly intracoronary in 10 of 13 studies, ranged from 2.3 to 85.106 cells 1903 

(503). This contrasts with the higher doses inducing cardioprotection in patients with ischemic 1904 

cardiomyopathy, ranging from 100 to 150.106 cells, and mostly injected intramyocardially (566). The 1905 

metanalysis also points out that the dose to be injected in patients with AMI should be less than 107 1906 

MSC, within 1 week of AMI (combination timing/dose), to improve EF (503) and that administration 1907 

of more than 10 million MSC has an opposite effect (504). A randomized clinical trial BOOSTER-1908 

TAHA7 is currently ongoing and recruiting patients with the aim to evaluate if increasing the frequency 1909 

of cell injections will induce greater beneficial effects. This study will evaluate the paracrine theory of 1910 

MSC: increasing the number of cells will increase the amount of paracrine stimuli in the recipient heart 1911 

(567). 1912 

 1913 

3- Various timings of administration  1914 

3.1. Preclinical studies  1915 

The time window to prevent IR injury after MI is very narrow and endogenous mechanisms or 1916 

strategies of cardioprotection must be activated before the full activation of cell death mechanisms, in 1917 

particular apoptosis (50, 568). The optimal timing for MSC injection to generate therapeutic benefit in 1918 

AMI is unknown. In preclinical models of MI, various timing for the administration of the same dose of 1919 

MSC have been tested leading to variable and contrasting results in large species. Three studies were 1920 

performed using an injection protocol of autologous BM-MSC (30 million) at 30 min after reperfusion. 1921 

The first one reports no beneficial effects on EF or reduction of infarct size and a poor survival rate of 1922 
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implanted cells in the post-infarct environment (554). The second describes only a decreased infarct size 1923 

and no changes in EF (555) and the last one reports an improvement of both EF and infarct size (480). 1924 

An earlier time point of injection, 15 min after the onset of reperfusion, underlined that early IV injection 1925 

of allogeneic BM-MSC is effective for the treatment of IR injury (563). Later administrations, 3 days 1926 

post-MI or 3 months after complete infarct healing, promoted significant reversed remodeling in pig 1927 

hearts (486, 569). However, in a more recent study in rats, a detrimental effect of the adverse ventricular 1928 

remodeling at 30-day post-MI on MSC survival and function was evidenced (570). 1929 

The environment of the injured tissue impacts MSC function after their injection, either by positively 1930 

priming them or by inducing apoptosis. We can therefore assume that, according to the timing of 1931 

injection, MSC might encounter either a favorable or a detrimental tissular environment that will 1932 

respectively either promote/prime their therapeutic properties or induce their apoptosis and clearance.  1933 

 1934 

3.2. Clinical studies  1935 

The “timing” parameter appears to be critical for the efficacy of stem cell therapy in AMI patients. 1936 

The metanalysis from Attar et al. comparing 13 clinical trials showed that MSC improve EF when 1937 

injected within 1 week after MI (503). Similar results were obtained using allogeneic Wharton’s jelly 1938 

derived-MSC evidencing positive results for EF, myocardial perfusion and viability parameters, when 1939 

cells were injected 5 to 7 days post-PCI (495). For early injections, within 24 hours after AMI, 1940 

contrasting results were obtained since Houtgraaf et al. by contrast with Zang et al evidenced reduced 1941 

infarct size using autologous freshly prepared adipose-derived regenerative cells comprising large 1942 

amounts of MSC without any vascular complications (502, 571). 1943 

In conclusion, most authors recommend that MSC should not be injected after one week to 1944 

achieve beneficial effects. Indeed, injecting MSC earlier, in the acute phase or up to 5 days after 1945 

infarction, will impair the survival and functions of transplanted cells due to the hostile environment of 1946 

the injured myocardial tissue. These results are based on naive MSC that have not been modified to 1947 

optimize their resistance to the hostile conditions of the immediate post-MI period. Section IV-C will 1948 

describe strategies to improve the therapeutic effects of MSC through the generation of an optimized 1949 

and standardized "MSC 2.0" therapeutic product guarantying a benefit whatever the conditions. 1950 

 1951 

4- Various routes of administration 1952 

4.1 Preclinical studies 1953 

A meta-analysis performed on 58 studies (n=1165 mice, rats and pigs) using MSC in AMI and 1954 

chronic ischemic cardiomyopathy reveals that the efficacy of MSC depends on the routes of injection 1955 

(IM, IV, TE and IC) although all of them provide EF improvement (478). After analysis, TE 1956 

administration appears to provide better results in terms of infarct size decrease and EF improvement, 1957 

probably due to specific myocardial beneficial effects in addition to MSC systemic immunomodulatory 1958 

functions (478). Moreover, TE injection was reported to be safe, well tolerated and associated with a 1959 
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decreased remote engraftment compared to IC and IV deliveries. TE injection resulted in a higher cell 1960 

retention in the canine heart (clusters of MSC in the core infarct) associated with a greater functional 1961 

improvement compared to the IC route (572). In addition, IC administration was associated with a higher 1962 

incidence of decreased coronary blood flow after injection, obviating the advantage of such a delivery 1963 

approach. Regarding IV injection of MSC, studies in the pig model of reperfused MI have described 1964 

beneficial effects (476, 563) despite a low engraftment rate within the infarcted area compared to other 1965 

routes (573). The decreased efficiency after systemic IV delivery of MSC results from their entrapment 1966 

in lungs as reported in rodent AMI model. Accordingly, a short half-life of about 24 hours was evidenced 1967 

for human MSC injected in mice (574, 575). The retention in the lungs is related to both, MSC adhesion 1968 

to the pulmonary vasculature endothelium through the expression of VCAM-1 (576) and a size issue 1969 

because the 20 μm diameter of cultured MSC is larger than the size of pulmonary microcapillaries (577). 1970 

Accordingly, in vivo experiments studying the distribution and homing of MSC after IV injection 1971 

showed that vasodilator sodium nitroprusside prior to MSC injection allowed MSC to clear the lungs 1972 

and reach the target organs in greater quantity (578). Surprisingly, instead of providing negative effects, 1973 

retention in the lung activates MSC, which in turn express TNF-α-induced protein 6 (TNAIP6 or TSG-1974 

6) that suppresses the excessive inflammatory response induced by MI, the subsequent fibrotic scarring 1975 

and impaired cardiac function (575).  1976 

More studies comparing the routes of MSC injection are required to validate these observations and 1977 

define the most effective route for the design of clinical trials.  1978 

 1979 

4.2 Clinical trials 1980 

Probably in relation with PCI procedures used for reperfusion therapy, most MSC were injected 1981 

using the IC route in AMI patients at the acute phase (STEMI patients) whatever their autologous or 1982 

allogeneic nature, using the culprit artery (490, 492, 495-497, 500, 502, 503, 509) or through a remote 1983 

coronary artery (506). In addition, IC infusion in the culprit artery is minimally invasive and allows to 1984 

concentrate the cell product at the site of the lesion, facilitating the homing of MSC. Furthermore, 1985 

inflation of the angioplasty balloon at a low pressure downstream the stent allows maximizing the 1986 

contact time of MSC with micro-circulation of the infarction territory, the only precaution being to 1987 

infuse the cells through various short periods to avoid periprocedural MI. Some limitations to this 1988 

procedure are reported, such as the rapid release of MSC into the systemic circulation and the issue of 1989 

applying a PostC stimulus with angioplasty balloon inflation-deflation sequences (579). 1990 

Local injection is also performed through IM administration using the NOGA system. This 1991 

sytem allows injecting cells directly into the infarct border zone (8–12 IM injections) as reported by one 1992 

study showing both feasibility and long-term (up to 5 years) safety (499).  1993 

However, for the clinic, a simple IV approach would be ideal, due to its easy access and the 1994 

absence of time constraints. Thus, IV administration of allogeneic MSC cells was tested in patients 1995 

showing EF improvement only in one study (493, 494).  1996 
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First, the heterogeneity of results obtained with MSC therapy might be related to the design of 1997 

both preclinical studies and to the protocols used in clinical trials. Second, in clinical trials, the 1998 

heterogeneity of the patients arises from other parameters such as the age of the patients, the severity of 1999 

their infarction, chronic treatments, comorbidities, etc… Finally, focusing on additive parameters 2000 

including the cell source, amplification protocols, storage and thawing conditions, it appears obvious 2001 

that the heterogeneity observed between studies occurs at multiple levels and that a standardization of 2002 

the protocols becomes mandatory. 2003 

 2004 

 2005 

C. Strategies to improve MSC-based cell therapy 2006 

 2007 

1- How to overcome the influence of time on MSC-based therapy? 2008 

Although the transfer of MSC from the laboratory to the bedside is theoretically feasible, many clinical 2009 

trials have failed at early and late stages due in part to time-related issues that need to be clarified and 2010 

resolved in the short term. These issues will be discussed in this section.  2011 

1.1. Which patients and protocol for the best benefits? 2012 

Several factors have been described as contributing to clinical trial failure in cardioprotection, 2013 

including those related to patients who are included in trials evaluating MSC therapeutic effects. Then, 2014 

to design future clinical trials capable of showing the therapeutic effects of MSCs, it is necessary to take 2015 

into account the factors that may compromise their cardioprotective role. 2016 

 2017 

Co-morbidities A careful selection of the patient population is needed to avoid inclusion of 2018 

patients with cofounding factors including age, diabetes, cardiovascular risk and medications that could 2019 

alter both MSC therapeutic properties and the response of the target tissue i.e., the myocardium to the 2020 

transplanted cells as already discussed above. 2021 

 2022 

Clinical protocol The protocol of MSC administration needs to be carefully designed and 2023 

standardized among centers for clinical trials to provide data that can be compared. For inclusion of 2024 

AMI patients likely to be good responders to MSC therapy, cardiac lesions must be compatible with 2025 

myocardial salvage by reperfusion and additional MSC-based therapy that would be applied to further 2026 

decrease the infarct size. However, ischemia duration must also not be too long for a possibility to rescue 2027 

the targeted tissue. An ideal window for revealing cardioprotective effects in human would be within a 2028 

range of 2 to 3 hours between the onset of symptoms and the application of the cardioprotective strategy, 2029 

as previously demonstrated for PostC (580-582).  2030 
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The optimal timing of MSC injection within the first week post-PCI seems to be optimal, in 2031 

particular within the 4- to 7-day time window. The route of administration could be preferentially IM or 2032 

IC, both methods have their advantages and disadvantages. An appropriate method for the evaluation of 2033 

the clinical outcomes should be also chosen, probably new 3-D echocardiography and strain evaluation, 2034 

methods that will compete with CMR, for limited access and cost at the moment. Finally, the important 2035 

point is that the method used must be always the same.  2036 

However, since it is rarely possible to select patients, MSC therapy must be open to as many 2037 

patients as possible and on the other side, researchers and clinicians are developing protocols to prime 2038 

MSC in order to provide a standardized cell product capable of delivering the highest benefit to any 2039 

patients. 2040 

 2041 

1.2 - Which protocol(s) to obtain MSC with optimal functions? 2042 

Strategies for overcoming MSC age-related issues   MSC used in the clinic are obtained from 2043 

donors of different ages and some studies have reported an effect of age on MSC functions. In this 2044 

context, efforts have to be made to elucidate the molecular mechanisms of MSC aging in order to 2045 

develop new methods to prevent this negative effect and rejuvenate aged altered MSC. Pharmacological 2046 

priming and genetic modifications have been investigated to increase the expression level of 2047 

genes/molecules decreased in aged MSC such as BDNF, PDGF-BB (PDGF with two B subunits) and 2048 

MCP-1 and that impact their therapeutic properties. The system for gene editing, CRISPR/Cas9, has 2049 

also been explored as a way to improve MSC potential in treating diseases such as MI (583). Targeted 2050 

pdgfra knock-in promoted MSC differentiation capacity and in turn, favored the functional insufficiency 2051 

of local cells (584). Although genetically modified MSC have been tested in clinical trials showing their 2052 

safety, further investigations are still required to produce unequivocal evidence of an enhanced 2053 

therapeutic effect of MSC.  2054 

Another way to overcome the age-related problems of MSC is to study other tissue sources. 2055 

Autologous BM- and AT-derived MSC are relatively easier to collect compared to UC-MSC. However, 2056 

it is also important to consider the patient age, gender and health status when using BM- and AT-derived 2057 

MSC. Moreover, compared to these latter cells, UC-MSC show higher lifespan, proliferation and 2058 

differentiation capacities as well as an enrichment in angiogenic factors (585-588). Moreover, given the 2059 

advantages of UC-MSC, the therapeutic properties of their vesicles and trophic factors are currently 2060 

subject to intense research.  2061 

As an alternative to aged tissue-derived MSC, the generation of functional MSC from induced 2062 

pluripotent stem (iPS) cells is presently a main issue (589-591). A great advantage of iPS-derived MSC 2063 

(iMSC) is that a high number of cells can be produced using in vitro culture based systems, an important 2064 

requirement for cell therapy. While iMSC are very similar to primary MSC isolated from diverse human 2065 

tissues in terms of morphology, phenotype, immunoregulatory and differentiation capacities, they 2066 

possess a greater regenerative potential as shown in animal disease models (For review see (592)). In 2067 
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addition, iPSC can be expanded almost indefinitely, so the source of iMSC can be unlimited and iMSC 2068 

generated from one iPSC cell or clone are more homogeneous in theory and their biological properties 2069 

are more predictable because their molecular signature is minimally different between batches. The final 2070 

iMSC product quality is stable, easily controlled, and can reach the highest therapeutic efficacy for 2071 

specific clinical applications and personalized patient treatment (For review see (592)). In this context, 2072 

Cynata Therapeutics received the approval in 2016 to initiate the first trial using allogeneic iPSC (CYP-2073 

001) for the treatment of steroid-resistant acute GVHD (Graft Versus Host Disease). Based on positive 2074 

safety and outcomes, iMSC are consider in Phase II trials for the treatment of critical limb ischemia and 2075 

in a Phase III trial with 440 osteoarthritic patients (593-595). Therefore, iMSC outstanding properties 2076 

enable their preferential commercial applications beyond other types of primary MSC isolated from 2077 

diverse human tissues with their guaranteed quality control. However, the functions of these cells have 2078 

to be further investigated in different preclinical models of MI in order to compare their therapeutic 2079 

capacity when administrated in different experimental protocols when several “time” parameters are 2080 

changed (including injection time, injection duration, etc.). iMSC offer the possibility to produce 2081 

millions of “off-the-shelf” copies under Good Manufacturing Practice (GMP) procedures for further 2082 

therapeutic applications to treat complex and multifactorial diseases. However, properties of iMSC need 2083 

to be further optimized to warrant their therapeutic efficacy to treat patients with MI whatever their age, 2084 

the timing of patient care and the timing of injection (after reperfusion). To that end, the production of 2085 

iMSC should be perhaps combined to the MSC preconditioning protocols as discussed below. 2086 

 2087 

Strategies for overcoming MSC storage-related issues  The availability of human MSC off-2088 

the-shelf to treat patients with cardiac IR injury requires the development of cryopreservation protocols 2089 

that are nontoxic, safe, and efficient to maintain MSC survival and functions. However, negative impacts 2090 

of MSC cryopreservation on their therapeutic efficacy have been reported (596).  2091 

To avoid physical damages of freezing and thawing, the most commonly followed steps include freezing 2092 

MSC at a slow cooling rate and thawing them at a high rate as well as cryoprotecting MSC. To do this, 2093 

trehalose (597), anti-freezing protein mimics (598, 599) and plant proteins (600) have been mixed with 2094 

low DMSO concentrations to improve the cryopreservation of MSC (601). MSC vitrification with a low 2095 

cryoprotectant concentration was accomplished via the introduction of microfluidic-based hydrogel 2096 

microencapsulation or droplet-based cell printing technology (602, 603). Although promising, these 2097 

MSC cryopreservation advances have not considered MSC properties and functions in vivo. More 2098 

recently, protocols for cryopreservation of MSC without DMSO have been developed such as using 2099 

zwitterionic compounds combined with electroporation able to retain normal in vitro proliferation and 2100 

differentiation functions, as well as in vivo distribution potential (604). MSC long-term low-temperature 2101 

storage has a significant impact on the recovery and function of MSC due to repeated exposure to room 2102 

temperature (605). In this context, the effect of minimizing ambient temperature fluctuations on stored 2103 
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cells by designing an automatic cryopreservation system that handles cells in controlled temperatures 2104 

was evaluated and identified as a priority to maintain MSC survival and functions (606). 2105 

Of note, the detrimental effects caused by cryopreservation and reported in clinical trials using 2106 

cryopreserved MSC thawed immediately prior to infusion (523, 607) were shown to be reversible. 2107 

Indeed, to counteract the adverse effects of cryopreservation, the successful phase 3 clinical trial of 2108 

Alofisel for perianal fistulas used “rescued” MSC in cell culture for a period of at least 24 hours after 2109 

thawing, to allow “recovery” of the freshly thawed MSC before administration to the patients (608). 2110 

 2111 

2- Which protocol(s) to enhance MSC functions 2112 

 2113 

 To guarantee a therapeutic effect of the MSC injected to the patients and to get over the 2114 

limitations discussed above, efforts are being made to (i) protect MSC during their administration to 2115 

patients in particular against apoptosis and, (ii) standardize and improve their therapeutic effects in order 2116 

to decrease the number of MSC needed to obtain an optimal beneficial effect for the patients. We will 2117 

then discuss below the strategies currently developed to address this clinical challenge. 2118 

 2119 

2.1. MSC preconditioning to improve their therapeutic potential 2120 

MSC display a poor survival and engraftment rate in vivo. Moreover, the results obtained in 2121 

clinical studies using MSC in various applications have often reported worse outcomes when MSC were 2122 

injected at the highest dose, resulting in an inverted U-shaped dose response curve (for review see (609)). 2123 

To overcome these limitations, extensive studies aimed at generating MSC with a better therapeutical 2124 

potential to reduce the dose of injected cells. The enhancement of cell survival and homing to improve 2125 

the paracrine activity of MSC has been also investigated as well as strategies to protect both MSC and 2126 

cardiomyocytes from apoptosis. Different preconditioning protocols applied to MSC (hypoxia, 2127 

pharmacological and chemical agents) and novel approaches (engineered MSC, MSC-derived EV and 2128 

MSC trapped on innovative biomaterial/patches) have been developed. Among these strategies, the “in 2129 

vitro” priming of MSC is a simple and attractive approach.  2130 

 2131 

Hypoxic preconditioning  MSC death and caspase-3 activation were significantly lower (40%-2132 

decrease) in an hypoxic situation when compared with MSC cultured under normoxic conditions both 2133 

in vitro and in vivo, leading to a better vascularization in the infarcted myocardium and better therapeutic 2134 

efficacy in rat hearts (610). This preconditioning increased pro-survival and pro-angiogenic factor 2135 

expression levels such as HIF-1, VEGF and its receptor, BCL-2, and BCL-xL. As a preconditioning 2136 

stimulus, moderate hypoxia induces MSC proliferation, while severe hypoxia promotes MSC glycolytic 2137 

metabolism and quiescence, and short exposures are better than longer (611, 612). Under hypoxia 2138 
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exposure, MSC exhibit an increased expression level of leptin, which is pivotal for enhancing survival, 2139 

chemotaxis, and therapeutic properties of MSC (613). 2140 

 2141 

Chemical and pharmacological preconditioning   Biological compounds and drugs, including 2142 

hormones, growth factors, pharmacological and chemical substances, have been employed as an 2143 

alternative to hypoxia-preconditioned MSC for the preconditioning of MSC to optimize their properties.  2144 

Hormones   The priming of MSC with adipokines has been shown to enhance their survival in an 2145 

ischemic microenvironment (614, 615). The role of adipokines on MSC survival was first discovered in 2146 

a study of hypoxia preconditioning of MSC, which evidenced their capacity to enhance their therapeutic 2147 

properties (615). Five years later, the protective role of resistin, another adipokine, on MSC was reported 2148 

(614). The injection of MSC pretreated with resistin in a murine model of IR injury significantly 2149 

increased angiogenesis and reduced myocardial apoptosis and fibrosis resulting in improved cardiac 2150 

performance, as compared to vehicle-treated MSC. Also, an enhanced homing of the cells into the 2151 

damaged heart in a ERK1/2-dependent manner was observed. In line with these studies, it was shown 2152 

that asprosin, a newly-discovered adipokine, also increases the survival of MSC in MI, improved their 2153 

homing and significantly improved EF (616). In vitro, the authors showed that asprosin-pretreatment of 2154 

MSC generates a protective effect on H2O2-induced damage and apoptosis of MSCs via the activation 2155 

of the ERK1/2-SOD2 pathway. Similarly, the priming of MSC with haemin, a potent HO-1 inducer, 2156 

before their transplantation into the peri-infarct region in MI mice, promotes the survival of MSC and 2157 

enhances their cardioprotective properties (413). 2158 

Growth factors  IGF-1 pretreatment of MSC had a positive effect on survival, adverse infarct outcomes 2159 

including infarct size and ventricular remodeling and the release of pro-inflammatory cytokines (373, 2160 

434). This current trend to augment MSC viability is mediated through various pathways including PI3K, 2161 

HIF-1, MAP Kinase and Hippo (617). More recently, it was described that SDF-1 MSC pretreatment 2162 

resulted in improved vasculogenesis and recovery of cardiac function in infarcted myocardium 6 weeks 2163 

after treatment (618). However, the priming effect is not retained during cryopreservation/thawing 2164 

because pro-survival factor expression levels are largely dependent on the environment. Of note the use 2165 

of a hypothermic preservation solution allowed to keep the benefit of preconditioning. 2166 

Pharmacological substances    Statin preconditioning were shown to improve the therapeutic effects of 2167 

MSC: atorvastatin was reported to enhance CXCR4 expression in MSCs and promote them homing 2168 

toward the injured myocardium, leading to an improved cardiac function in an AMI rat model (619).  2169 

Sevoflurane preconditioning decreases MSC apoptosis, the loss of mitochondrial membrane potential 2170 

and upregulates VEGF, HIF-1α, HIF-2α protein levels and pAKT/AKT ratio (620).  2171 

In line with this study, we have recently evidenced that optimization of the anti-apoptotic properties of 2172 

MSCs has a substantial impact on their therapeutic effects in myocardial IR injury. Indeed, by using a 2173 

PPARβ/δ (Peroxisome Proliferator-Activated Receptor β/δ) agonist to prime MSC, we found a 2174 

significant increase in the survival of MSCs when exposed to an IR-simulated stress as well as an 2175 
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enhancement of their anti-apoptotic properties on cardiomyocytes and endothelial cells exposed to 2176 

oxidative stress compared with naive MSC. In addition, we observed that priming MSC with the 2177 

PPARβ/δ agonist permitted us to halve the dose of cell injected into the heart since the cardioprotective 2178 

effect obtained ex vivo using PPARβ/δ-primed MSC injected at a dose of 3.75 .105 MSC was comparable 2179 

to that observed with untreated control MSC injected at the optimal dose of 7.5 .105 MSC (565). 2180 

Concerning the clinical translation, the C-CURE trial reported that MSC pretreated with a cardiogenic 2181 

cocktail-based priming medium showed improved ventricular function and physical performance and 2182 

quality of life (361). While the injection of MSC is well tolerated by patients with MI, their therapeutic 2183 

benefit still deserves to be improved. Such a possibility relies on a full understanding of the molecular 2184 

mechanisms underlying the cardioprotective effects of MSC. 2185 

 2186 

2.2. MSC genetic modifications  2187 

Genetic modifications consist in upregulating the expression of specific genes involved in the 2188 

therapeutic properties of MSCs in order to reduce premature senescence, increase their survival and then 2189 

their therapeutic effects in vivo. For example, the overexpression of EphB2 (ephrin receptor B2) 2190 

inhibited premature senescence by repressing mitochondrial ROS accumulation that triggers senescence 2191 

in MSC (621). A main target was also apoptosis and overexpression of Bcl-2 in MSCs injected after MI 2192 

significantly increases MSC survival for up to 6 weeks compared to control MSCs and potentiates their 2193 

efficacy on vascular density, cardiac function, infarct size and myocardial fibrosis (622). In vitro, Bcl-2 2194 

overexpression decreased the apoptosis of MSC by 32% and increased the secretion of VEGF by more 2195 

than 60% under hypoxic conditions (622). Moreover, Hgf overexpression in MSC was shown to increase 2196 

the expression of BCL-2 while reducing BAX and Caspase-3 levels in response to hypoxia in vitro. In 2197 

vivo, the engraftment and survival of MSC was enhanced when the cells were both overexpressing HGF 2198 

and encapsulated in a small molecular hydrogel (20).  2199 

MSC overexpressing CCR1, the receptor for CCL7 significantly upregulated in the heart post-MI, are 2200 

more protected from apoptosis and are more prone to accumulate in the infarcted myocardium as well 2201 

as to reduce the infarct size and cardiomyocytes apoptosis in injured myocardium as compared to their 2202 

control counterpart (475).  2203 

The overexpression of the macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, 2204 

in aged MSC rejuvenated them by activating autophagy and increased their therapeutic potential in MI 2205 

(616). In line with this study, EV from MSC overexpressing MIF significantly, were shown to increase 2206 

heart function and reduce heart remodeling, apoptosis and ROS production as compared to EV from 2207 

naïve MSC (623).  2208 

Altogether these studies reveal that MSC priming to protect them from apoptosis once administrated in 2209 

vivo not only prolongs their presence and survival in the injured heart but also increases their therapeutic 2210 

efficacy in MI. 2211 

 2212 
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2.3. Use of MSC-derived EV or microparticles 2213 

One of the particularities of MSC is their plasticity and versatility. Indeed, according the 2214 

inflammatory environment, MSC are going to adopt different phenotypes and functions. In vivo, MSC 2215 

versatility can represent an advantage since the cell can sense and adapt their properties to their 2216 

environment but in some cases this versatility/plasticity can lead to an unpredictable response. To 2217 

overcome this limitation, experimental animal models have addressed the therapeutic benefits of MSC-2218 

derived EV in the context of AMI.  2219 

EV enriched with miR-22 secreted by MSC exposed to PreC and applied to cardiomyocytes 2220 

were shown to inhibit their ischemia-induced apoptosis. EV derived from MSC exposed to PreC 2221 

significantly reduced infarct size and myocardial fibrosis in vivo by targeting Mecp2 via miR-22 (403). 2222 

Similarly, miR-221 overexpression in EV derived from MSC transduced with GATA-4 (MSC-GATA4) 2223 

displayed increased cardioprotective effects by reducing the expression of p53 upregulated modulator 2224 

of apoptosis (PUMA) in cardiomyocytes (624). In line with this study, EV-derived from MSC-GATA4 2225 

were shown to be a reservoir of anti-apoptotic miRNA responsible for activation of the cell survival 2226 

signaling pathway and thus cardioprotection (625). 2227 

Concerning the MSC-mediated promotion of angiogenesis and subsequent improvement of impaired 2228 

infarcted cardiac function, MSC-EV were found to mediate this property through a miR-210-Efna3-2229 

dependent mechanism (626). Overall, these studies suggest that MSC-EV may exert greater 2230 

cardioprotective effects (627) and a lower risk of tumorigenicity (628) compared with MSC-based 2231 

therapies. This therapeutic effect mediated by EV might be more dependent on the administration 2232 

window since MSC-EV will not be able to adapt to their pathological environment in contrast to their 2233 

parental cells and thus will have to possess the required properties per se to be therapeutically useful. 2234 

Indeed, one study showed that administering EV 30 min post-MI had no beneficial effect (629). Also, 2235 

EV have a short lifetime and restricted efficacy due to their poor persistence in the myocardium (630-2236 

632).   2237 

A new concept with synthetic MSC has been evaluated for the treatment of AMI in mice, showing 2238 

enhanced therapeutic effects compared to native MSC. These synthetic MSC were obtained by 2239 

packaging factors secreted by human BM-MSC into Poly (lactic-co-glycolic acid) PLGA microparticles 2240 

and coating them with MSC membranes. This novel particle exhibited similar surface antigen and 2241 

secretome profiles than MSC. When injected in mouse heart with MI, angiogenesis, improved cardiac 2242 

function and attenuated LV remodeling were observed. Furthermore, their high stability to both 2243 

cryopreservation and lyophilization and their immune privilege, makes this concept attractive for 2244 

various applications in different organs (633).  2245 

 2246 

2.4. Combined therapies 2247 

Combinatorial delivery of MSC with their derived EV was assessed in rat hearts. In particular, 2248 

the sequential administration of EV (30 min post-MI) and then MSC (3 days post-MI) effectively 2249 
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decreased scar size and restored cardiac function after AMI (634). The authors proposed that the 2250 

beneficial effect of the combinatorial treatment was due to an improved inflammatory microenvironment 2251 

induced by the EV administration resulting in a better recruitment and retention of MSC. Regarding 2252 

combination of cells with drugs, a new clinical trial evaluating the association of atorvastatin and 2253 

injected BM-MSC is ongoing. These patients undergoing PCI will receive autologous BM-MSC with 2254 

regular or high dose of Atorvastatin treatment to improve the survival of implanted cells (635).  2255 

 2256 

 2257 

V- CONCLUSION 2258 

 2259 

Acute myocardial infarction is a leading cause of cardiovascular disease in the world. With the 2260 

improvement of the revascularization techniques and patient care, the rates of the mortality have 2261 

decreased by contrast to the rising rates of morbidity leading to heart failure. The World Health 2262 

Organization predicts that this burden will be worsened since cardiovascular disease are expected to stay 2263 

at the first rank until 2030 because of the aging of the population and an exponential growing number 2264 

of diabetic patients. Therefore, the challenge is to discover new treatments with cardioprotective activity 2265 

in particular able to reduce IR injury to further decrease infarct size which is a major determinant for 2266 

the morbi-mortality rates. 2267 

In this context, MSC are appropriate for this challenge because their pleiotropic properties appear 2268 

relevant to overcome this multifaceted IR injury. The description of the kinetics of the events leading to 2269 

IR injury in regard to the underlying mechanisms of action of MSC should allow the design of the most 2270 

appropriate protocols to fully benefit from the pleiotropic properties of MSC of interest for AMI patients. 2271 

While the mechanisms underlying the therapeutic properties of MSCs are not exclusively limited to their 2272 

survival rate, it is necessary to identify the optimal timing conditions (duration of culture, age of MSC 2273 

donors, duration of cell storage, timing of thawing) to obtain the most effective MSC possible endowed 2274 

with optimal therapeutic properties. Moreover, these cells must be delivered at the right time to the 2275 

damaged heart tissue to enable them to reverse the pathways that trigger cell death. Finally, AMI patients 2276 

are expected be good responders to MSC, providing a status for MSC to deliver their therapeutic 2277 

properties. Analyzing the various critical points to be overcome and developing protocols to enhance 2278 

MSC therapeutic properties including their own survival in the cardiac tissue, will facilitate the success 2279 

of clinical translation. 2280 

Application of various strategies of conditioning appears as a way to provide a standardized cell product 2281 

capable of delivering the highest benefit to any patients, whatever their age, status and treatments.  2282 

In this context, our review suggests that cardioprotection is a matter of timing.  2283 
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