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Abstract10

The solution to partial differential equations using deep learning approaches has shown11

promising results for several classes of initial and boundary-value problems. However, their12

ability to surpass, particularly in terms of accuracy, classical discretization methods such as the13

finite element methods, remains a significant challenge. Deep learning methods usually struggle14

to reliably decrease the error in their approximate solution. A new methodology to better control15

the error for deep learning methods is presented here. The main idea consists in computing an16

initial approximation to the problem using a simple neural network and in estimating, in an17

iterative manner, a correction by solving the problem for the residual error with a new network18

of increasing complexity. This sequential reduction of the residual of the partial differential19

equation allows one to decrease the solution error, which, in some cases, can be reduced to20

machine precision. The underlying explanation is that the method is able to capture at each21

level smaller scales of the solution using a new network. Numerical examples in 1D and 2D are22

presented to demonstrate the effectiveness of the proposed approach. This approach applies not23

only to physics informed neural networks but to other neural network solvers based on weak or24

strong formulations of the residual.25

Keywords: Neural networks, Partial differential equations, Physics-informed neural networks,26

Numerical error, Convergence, Frequency analysis27

1 Introduction28

In recent years, the solution of partial differential equations using deep learning [34, 6, 14] has29

gained popularity and is emerging as an alternative to classical discretization methods, such as the30

finite element or the finite volume methods. Deep learning techniques can be used to either solve31

a single initial boundary-value problem [31, 38, 40] or approximate the operator associated with a32

partial differential equation [22, 20, 3, 28]. The primary advantages of deep learning approaches lie33

in their ability to provide meshless methods, and hence address the curse of dimensionality, and in34
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the universality of their implementation for various initial and boundary-value problems. However,35

one of the main obstacles remains their inability to consistently reduce the relative error in the36

computed solution. Although the universal approximation theorem [7, 12] guarantees that a single37

hidden layer network with a sufficient width should be able to approximate smooth functions to a38

specified precision, one often observes in practice that the convergence with respect to the number of39

iterations reaches a plateau, even if the size of the network is increased. This is primarily due to the40

use of gradient-based optimization methods, e.g. Adam [17], for which the solution may get trapped41

in local minima. These optimization methods applied to classical neural network architectures, e.g.42

feedforward neural networks [19], do indeed experience difficulties in controlling the large range43

of scales inherent to a solution, even with some fine-tuning of the hyper-parameters, such as the44

learning rate or the size of the network. In contrast, this is one of the main advantages of classical45

methods over deep learning methods, in the sense that they feature well-defined techniques to46

consistently reduce the error, using for instance mesh refinement [4, 33] or multigrid structures [11].47

We introduce in this work a novel approach based on the notion of multi-level neural networks,48

which are designed to consistently reduce the residual associated with a partial differential equation,49

and hence, the errors in the numerical solution. The approach is versatile and can be applied50

to various neural network methods that have been developed for the solution of boundary-value51

problems [38, 40], but we have chosen, for the sake of simplicity, to describe the method on the52

particular case of physics-informed neural networks (PINNs) [31]. Once an approximate solution53

to a linear boundary-value problem has been computed with the classical PINNs, the method54

then consists in finding a correction, namely, estimating the solution error, by minimizing the55

residual using a new network of increasing complexity. The process can subsequently be repeated56

using additional networks to minimize the resulting residuals, hence allowing one to reduce the57

error to a desired precision. A similar idea has been proposed in [1] to control the error in the58

case of symmetric and positive-definite variational equations. Using Galerkin neural networks, the59

authors construct basis functions calculated from a sequence of neural networks to generate a finite-60

dimensional subspace, in which the solution to the variational problem is then approximated. Our61

approach is more general as the problems do not need to be symmetric.62

The development of the proposed method is based on two key observations. First, each level63

of the correction process introduces higher frequencies in the solution error, as already discussed64

in [1] and highlighted again in the numerical examples. This is the reason why the sequence of65

neural networks should be of increasing complexity. Moreover, a key ingredient will be to use66
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the Fourier feature mapping approach [36] to accurately approximate the functions featuring high67

frequencies. Second, the size of the error, equivalently of the residual, becomes at each level68

increasingly smaller. Unfortunately, feedforward neural networks employing standard parameter69

initialization, e.g. Xavier initialization [9] in our case, are tailored to approximate functions whose70

magnitudes are close to unity. We thus introduce a normalization of the solution error at each level71

based on the Extreme Learning Method [13], which also contributes to the success of the multi-level72

neural networks.73

After finalizing the writing of the manuscript, one has brought to our attention the recent74

preprint [37] on multi-stage neural networks. Although the conceptual approach presented in that75

preprint features many similarities with our method, namely the use of a sequence of networks for76

the reduction of the numerical errors, the methods developed in our independent work to address77

the two aforementioned issues are original and sensibly differ from those introduced in [37].78

The paper is organized as follows. We briefly describe in Section 2 neural networks and their79

application with PINNs, the deep learning approach that will be used to solve the boundary-value80

problems at each level of the training. We describe in Section 3 the two issues that may affect81

the accuracy of the solutions obtained by PINNs. We motivate in Section 3.1 the importance of82

normalization of the problem data and show that it can greatly improve the convergence of the83

solution. We continue in Section 3.2 with the choice of the network architecture and the importance84

of using the Fourier feature mapping algorithm to approximate high-frequency functions. We85

then present in Section 4 our approach, the multi-level neural network method, and demonstrate86

numerically with a simple 1D Poisson problem that the method greatly improves the accuracy of87

the solution, up to machine precision, with respect to the L2 and the H1 norms, as in classical88

discretization methods. We demonstrate further in Section 5 the efficiency of the proposed method89

on several numerical examples based on the Poisson equation, the convective-diffusion equation,90

and the Helmholtz equation, in one dimension or two dimensions. We were able to consistently91

reduce the solution error in these problems using the multi-level neural network method. Finally,92

we compile concluding remarks about the present work and put forward new directions for research93

in Section 6.94
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2 Preliminaries95

2.1 Neural networks96

Neural networks have been extensively studied in recent years for solving partial differential equa-97

tions [34, 31]. A neural network can be viewed as a mapping between an input and an output98

by means of a composition of linear and nonlinear functions with adjustable weights and biases.99

Training a neural network consists in optimizing the weights and biases by minimizing some mea-100

sure of the error between the output of the network and corresponding target values obtained from101

a given training dataset. As a predictive model, the trained network is then expected to provide102

accurate approximations of the output when considering a wider set of inputs. Several neural net-103

work architectures, e.g. convolutional neural networks (CNNs) [18] or feedforward neural networks104

(FNNs) [19], are adapted to specific classes of problems.105

We shall consider here FNNs featuring n hidden layers, each layer having a width Ni, i =106

1, . . . , n, an input layer of width N0, and an output layer of width Nn+1; see Figure 1. Denoting107

the activation function by σ, the neural network with input z0 ∈ RN0 and output zn+1 ∈ RNn+1 is108

defined as109

Input layer: z0,

Hidden layers: zi = σ(Wizi−1 + bi), i = 1, · · · , n,

Output layer: zn+1 = Wn+1zn + bn+1,

(1)

where Wi is the weights matrix of size Ni ×Ni−1 and bi is the biases vector of size Ni. To simplify110

the notation, we combine the weights and biases of the neural network into a single parameter111

denoted by θ. The neural network (1) generates a finite-dimensional space of dimension Nθ =112 ∑n+1
i=1 Ni(Ni−1 + 1). To keep things simple, throughout this work we shall use the tanh activation113

function and the associated Xavier initialization scheme [9] to initialize the weights and biases.114

2.2 Physics-informed neural networks115

We briefly review the PINNs approach to solving partial differential equations, as described in [31].116

Let Ω be an open bounded domain in Rd, d = 1, 2, or 3, with boundary ∂Ω. For two Banach spaces117

U and V of functions over Ω, we assume a linear differential operator A : U → V . Our goal is to118

find the solution u ∈ U that satisfies, for a given f ∈ V , the partial differential equation cast here119

in its residual form:120

R
(
x, u(x)

)
:= f(x)−Au(x) = 0, ∀x ∈ Ω, (2)
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Figure 1: Sketch of a feedforward neural network with d hidden layers of a width Ni, i = 1, . . . , n,
an input layer of size N0, and an output layer of size Nn+1.

and the following boundary conditions:121

B
(
x, u(x)

)
= 0, ∀x ∈ ∂Ω. (3)

For the sake of simplicity in the presentation, but without loss of generality, we consider here122

only the case of homogeneous Dirichlet boundary conditions, such that the residual B is given by123

B
(
x, u(x)

)
:= u(x), ∀x ∈ ∂Ω. (4)

The primary objective in PINNs is to use a neural network with parameters θ to find an approxi-124

mation ũθ(x) of the solution u(x) to problem (2)-(3). For the sake of simplicity in the notation, we125

shall omit in the rest of the paper the subscript θ when referring to the approximate solutions ũθ,126

and thus simply write ũ(x). The training, i.e. the identification of the parameters θ of the neural127

network, is performed by minimizing a loss function, defined here as a combination of the residual128

associated with the partial differential equation and that associated with the boundary condition129

in terms of the L2 norm:130

L(θ) := wr

∫
Ω
R
(
x, ũ(x)

)2
dx+ wbc

∫
∂Ω

B
(
x, ũ(x)

)2
dx, (5)

where wr and wbc are penalty parameters. In other words, by minimizing the loss function (5) one131

obtains a weak solution ũ that weakly satisfies the boundary condition.132
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Alternatively, the homogeneous Dirichlet boundary condition could be strongly imposed, as133

done in [24], by multiplying the output of the neural network by a function g(x) that vanishes on134

the boundary. For instance, if Ω = (0, ℓ) ∈ R, one could choose g(x) = x(ℓ−x). The trial functions135

ũ would then be constructed, using the feedforward neural network (1), as follows:136

Input layer: z0 = x,

Hidden layers: zi = σ(Wizi−1 + bi), i = 1, . . . , n,

Output layer: zn+1 = Wn+1zn + bn+1,

Trial function: ũ = g(x)zn+1.

(6)

where the input and output layers have a width N0 = d and Nn+1 = 1, respectively. The dimension137

of the finite-dimensional space of functions generated by the neural network (6) is now given by138

Nθ =
∑n+1

i=1 Ni(Ni−1 + 1) = N1(d+ 1) +
∑n

i=2Ni(Ni−1 + 1) + (Nn + 1).139

For the rest of this work, the boundary conditions will be strongly imposed, so that the loss140

function will henceforth be141

L(θ) =
∫
Ω
R
(
x, ũ(x)

)2
dx. (7)

The problem that one solves by PINNs can thus be formulated as:142

min
θ∈RNθ

L(θ) = min
θ∈RNθ

∫
Ω
R
(
x, ũ(x)

)2
dx. (8)

One advantage of PINNs is that they do not necessarily need the construction of a mesh, which143

is often a time-consuming process. Instead, the integral in the loss function can be approximated144

using Monte Carlo integration from randomly generated points in Ω. Another advantage is the ease145

of implementation of the boundary and initial conditions. On the other hand, one major issue that146

one faces when using PINNs is that it is very difficult, even impossible, to effectively reduce the147

L2 or H1 error in the solutions to machine precision. The main reason, from our own experience,148

is that the solution process may get trapped in some local minima, without being able to converge149

to the global minimum, when using non-convex optimization algorithms. We briefly review some150

commonly used optimizers and study their performance in the next section.151

2.3 Choice of the optimization algorithm152

The objective functions in PINNs are by nature non-convex, which makes the minimization prob-153

lems difficult to solve and their solutions highly dependent on the choice of the solver. For these154

reasons, it is common practice to employ gradient-based methods, such as the Adam optimizer [17]155
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or the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [8]. BFGS is a second-order opti-156

mizer, but if used alone, has the tendency to converge to a local minimum in the early stages of the157

training. A widely used strategy to overcome this deficiency is to begin the optimization process158

using the Adam optimizer and subsequently switch to the BFGS optimizer [23]. In this work, we159

will actually utilize the so-called L-BFGS optimizer, the limited-memory version of BFGS provided160

in PyTorch [27]. Although L-BFGS is a higher-order method than Adam, the computational cost161

for each iteration is also much higher than the cost for one iteration of Adam. We actually adopt162

here the following definition of what we mean by an iteration: in both algorithms, it actually163

corresponds to a single update of the neural network parameters.164

In the following example, we study the performance of the aforementioned strategy, when165

applied to a simple one-dimensional Poisson problem, and compare the resulting solution with that166

obtained when using the Adam optimizer only. This numerical example will also serve later as a167

model problem for further verifications of the underlying principles in our approach.168

Example 1. Given a function f(x), the problem consists in finding u = u(x), for all x ∈ [0, 1],169

that satisfies170

−∂xxu(x) = f(x), ∀x ∈ (0, 1),

u(0) = 0,

u(1) = 0.

(9)

For the purpose of the study, the source term f is chosen such that the exact solution to the problem171

is given as172

u(x) = esin(kπx) + x3 − x− 1, (10)

where k is a given integer. We take k = 2 in this example.173

We consider here a network made of only one hidden layer of a width of 20, i.e. n = 1 and174

N1 = 20. Moreover, N0 = N2 = 1. The learning rates for the Adam optimizer and L-BFGS are set175

to 10−2 and unity, respectively. In the first experiment, the network is trained for 10,000 iterations176

using Adam. In the second experiment, it is trained with Adam for 4,000 iterations followed by177

100 iterations of L-BFGS. Figure 2 compares the evolution of the loss function with respect to the178

number of iterations for these two scenarios. In the first case, we observe that the loss function179

laboriously reaches a value around 10−2 after 10,000 iterations. The loss function further decreases180

in the second case but still plateaus around 5×10−5 after about 30 iterations of L-BFGS. Note that181

the scale along the x-axis in the figure on the right has been adjusted in order to account for the182

large discrepancy in the number of iterations used with Adam and L-BFGS.183
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Figure 2: Results from Example 1 in Section 2.3. (Left) Exact solution with k = 2. (Middle)
Evolution of the loss function using the Adam optimizer only. (Right) Evolution of the loss function
using the Adam optimizer and L-BFGS.

3 Error analysis in PINNs184

In this section, we further study the numerical errors, and a fortiori, the sources of error, in185

the solutions obtained with PINNs. We have mentioned in the introduction that two issues may186

actually affect the quality of the solutions. Indeed, it is well known that the training of the neural187

networks may perform poorly if the data, in our case the source term in the differential equations,188

are not properly normalized [10]. Moreover, the accuracy may deteriorate when the solutions to189

the problem exhibit high frequencies. We briefly review here the state-of-the-art in dealing with190

those two issues as they will be of paramount importance in the development of the multi-level191

neural network approach. More specifically, we illustrate on simple numerical examples how these192

issues can be somewhat mitigated.193

3.1 Data normalization194

A major issue when solving a boundary-value problem such as (2)-(3) with PINNs is the amplitude195

of the problem data, in particular, the size of the source term f(x). In other words, a small196

source term naturally implies that the target solution will be also small, making it harder for the197

training to find an accurate approximation of the solution to the boundary-value problem. This198

issue will become very relevant and crucial when we design the multi-level neural network approach199

in Section 4. Our goal here is to illustrate through a numerical example that the accuracy of the200

solution clearly depends on the amplitude of the data, and hence of the solution itself, and that it201

may therefore be necessary to scale the solution before minimizing the cost functional. We hence202

revisit Example 1 of Section 2.3.203
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Figure 3: Results from Example 2 in Section 3.1: (Left) Exact solution with k = 2 and µ = 1.
(Middle) Evolution of the loss function for µ = 10−3, 1, and 103. (Right) Distribution of the
absolute value of the weights in the last layer before and after training.

Figure 4: Results from Example 2 in Section 3.1: Pointwise error e(x) = u(x)− ũ(x) for µ = 10−3,
1, and 103.

Example 2. We solve again the Poisson problem (9) in Ω = (0, 1) with k = 2. However, we204

deliberately divide the source term f(x) by a factor µ such that the exact solution is changed to205

u(x) =
1

µ

(
esin(kπx) + x3 − x− 1

)
.

A large value of µ implies a small f , and hence, a small u. We now compare the solutions of206

the problem for several values of µ with different orders of magnitude, namely µ = {10−3, 1, 103}.207

For the training, we consider the Adam optimizer followed by L-BFGS using the same network208

architecture and hyper-parameters as in Section 2.3.209

We show in Figure 3 (left) the solution for k = 2 and µ = 1. We want to draw attention to the210

fact that the maximal amplitude of this solution is roughly unity.211

The evolution of the loss function during training is shown in Figure 3 (middle) for the three212

values of µ. We actually plot each loss function as computed but divided by µ2 for a clearer213
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comparison. For µ = 1, we observe that the loss function converges much faster and achieves a214

much smaller residual at the end of the training, than for µ = 103 and µ = 10−3. We show in215

Figure 4 the errors in the three solutions obtained after training. The error in the solution computed216

with µ = 1 is indeed several orders of magnitude smaller than the error in the other two solutions.217

An important observation from these plots is that smaller errors induce higher frequencies. Hence,218

if one wants to reduce the error even further, it would become necessary to have an algorithm that219

allows one to capture those higher frequencies. This issue is addressed in the next section.220

We remark that the solution obtained with µ = 1 would actually provide a more accurate ap-221

proximation by simply multiplying it by µ = 103 (resp. µ = 10−3) to the problem with µ = 103 (resp.222

µ = 10−3). In other words, it illustrates the fact that, when using PINNs, the process of multiplying223

the source term by µ, solving, and then re-scaling the solution by µ−1 is simply not equivalent to224

the process of simply solving the problem.225

The distribution of the weights in the output layer |Wn+1| obtained after initialization and226

training is shown in Figure 3 (right) for each µ. First, we observe that the final weights for227

µ = 10−3 are very different from their initial values and sometimes exceed 103. Second, we would228

expect the trained parameters for µ = 103 to be three orders of magnitude smaller than those for229

µ = 1. However, it seems that the network has difficulty decreasing the values of these weights. As230

a consequence, the training fails to properly converge in the two cases µ = 103 and µ = 10−3. A231

reasonable explanation is that an accurate solution cannot be obtained if the optimal weights exist232

far from their initialized values, since in this case the training of the network is more demanding.233

This implies that, for a very small or very large value of µ, an efficient initialization will not suffice234

to improve the training. One could perhaps adjust the learning rate for the last layer, but finding the235

proper value of the learning rate is far from a straightforward task. Therefore, a simpler approach236

would be to normalize the solution being sought so that the output of the neural network is largely237

of the order of unity. We will propose such an approach in Section 4.238

3.2 Solutions with high frequencies239

A deep neural network usually adheres to the F-principle [30, 32, 39], which states that the neu-240

ral network tends to approximate the low-frequency components of a function before its high-241

frequency components. This property explains why networks approximate well functions featuring242

a low-frequency spectrum while avoiding aliasing, leading to reasonable generalized errors. The243

F-principle also serves as a filter for noisy data and provides an early stopping criterion to avoid244

overfitting. When it comes to handling higher frequencies, one is generally exposed to the risk of245
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overfitting and the lack of convexity of the loss function. Unfortunately, there exist few guidelines,246

to the best of our knowledge, to ensure that the training yields accurate solutions in those cases.247

As is often the case with PINNs, the quality of the obtained solutions depends on the experience248

of the user with the initialization of the hyper-parameters.249

Several studies, see e.g. [35, 21, 25], have put forward some techniques to improve neural net-250

works in approximating high-frequency functions. We start by providing a concise overview of the251

Fourier feature mapping presented in [25], which we shall use in this work, and proceed with an252

illustration of its performance on a simple one-dimensional example.253

In order to simultaneously approximate the low and high frequencies, the main idea behind254

the method is to explicitly introduce within the networks high-frequency modes using the so-called255

Fourier feature mapping. Let ωM denote the vector of M given wave numbers ωm, m = 1, . . . ,M ,256

that is ωM = [ω1, . . . , ωM ]. The mapping γ for each spatial component xj is provided by the row257

vector of size 2M defined as:258

γ(xj) = [cos(ωMxj), sin(ωMxj)], j = 1, . . . , d, (11)

where we have used the shorthand:259

cos(ωMxj) = [cos(ω1xj), cos(ω2xj), . . . , cos(ωMxj)],

sin(ωMxj) = [sin(ω1xj), sin(ω2xj), . . . , sin(ωMxj)].

As shown with the Neural Tangent Kernel theory in [36], the Fourier feature mapping helps the260

network learn the high and low frequencies simultaneously. The structure of the feedforward neural261

network (6) is now modified as follows. Considering a network with an input layer of width N0 =262

2M × d and an output layer of width Nn+1 = 1, the trial functions ũ are taken in the form:263

Input layer: z0 = [γ(x1), . . . , γ(xd)]
T ,

Hidden layers: zi = σ(Wizi−1 + bi), i = 1, . . . , n,

Output layer: zn+1 = Wn+1zn + bn+1,

Trial function: ũ = g(x)zn+1.

(12)

The dimension of the finite-dimensional space of trial functions is given in this case by Nθ =264

N1(2Md+ 1) +
∑n

i=2Ni(Ni−1 + 1) + (Nn + 1).265

In a similar manner, we will show on a numerical example that using a function g(x) whose266

spectrum contains both low and high frequencies also improves the convergence of the solutions.267

In the present work, we only consider one-dimensional problems or two-dimensional problems on268
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rectangular domains so that one can introduce a new mapping γg in terms of only the sine functions269

and thus strongly impose the boundary conditions by:270

γg(xj) = [sin(ωMxj)], j = 1, . . . , d. (13)

We note here that the wave number vector ωM is the same as in γ and should be chosen such271

that all sine functions vanish on the boundary ∂Ω. In that case, we consider a feedforward neural272

network with an input layer of width N0 = 2M × d and an output layer of width Nn+1 = M , so273

that the trial functions ũ are given by:274

Input layer: z0 = [γ(x1), . . . , γ(xd)]
T ,

Hidden layers: zi = σ(Wizi−1 + bi), i = 1, . . . , n,

Output layer: zn+1 = Wn+1zn + bn+1,

Trial function: ũ = M−1
(
Πd

j=1γg(xj)
)
· zn+1,

(14)

where the trial function is divided by M in order to normalize the output. The dimension of the275

finite-dimensional space of trial functions generated by the neural network (6) is now given by276

Nθ = N1(2Md + 1) +
∑n

i=2Ni(Ni−1 + 1) + M(Nn + 1). We reiterate here that the output zn+1277

needs to be multiplied by sine functions that vanish on the boundary in order to strongly impose278

the boundary condition. When Ω = (0, ℓ)d, an appropriate choice for the parameters ωm is given279

by the geometric series ωm = 2m−1π/ℓ, with m = 1, . . . ,M , as suggested in [25].280

We now compare the performance of the three approaches using Example 1, in order to show281

the importance of introducing high frequencies in the input layer and in the function used to enforce282

the boundary conditions. The three methods can be summarized as follows:283

• Method 1: Classical PINNs with input x and trial functions provided by the neural net-284

work (6) with g(x) = x(1− x).285

• Method 2: PINNs using the Fourier feature mapping for the input and trial functions provided286

by the neural network (12) with g(x) = x(1− x).287

• Method 3: PINNs using the Fourier feature mapping for the input and trial functions provided288

by the neural network (14).289

Example 3. We solve the Poisson problem (9) in Ω = (0, 1) with k = 10. The exact solution is290

given in (10) and shown in Figure 5 (left). The networks all have a single hidden layer of width291

N1 = 10. As before, the learning rates for Adam and L-BFGS are chosen as 10−2 and unity,292

respectively. The training is performed for 4,000 iterations with Adam and 100 iterations with L-293
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Figure 5: Results from Example 3 in Section 3.2: (Left) Exact solution with k = 10. (Middle)
Evolution of the loss function for the three methods. (Right) Distribution of the absolute value of
the initialized and trained parameters for the three methods.

BFGS. The vector ωM of wave numbers ωm, m = 1, . . . ,M , is constructed from a geometric series294

with M = 4, i.e. ωM = [π, 2π, 4π, 8π].295

We first observe in Figure 5 (middle) that Method 1 fails to converge. On the other hand,296

Method 2 allows one to decrease the loss function by six orders of magnitude and Method 3 reduces297

further the loss function by almost two orders of magnitude. This example indicates that it is best298

to use the architecture given in (14) when dealing with solutions with high frequencies.299

We show in Figure 5 (right) the absolute value of the initialized and trained parameters for300

each method. We notice that the trained parameters are very large in the case of the first method,301

with some of them reaching values as large as 104. In contrast, the values remain much smaller302

in the case of Methods 2 and 3, with the parameters of Method 3 staying closer to the initialized303

parameters when compared to those obtained by Method 2. For Method 1, the weights in the hidden304

layers need to be large so as to be able to capture the high frequencies, as seen in Figure 5 (right).305

If one uses Method 2 to obtain an approximation of the exact solution (10), the function computed306

by the output layer in (12) should converge to the function:307

u(x)

x(1− x)
=

esin(kπx) + x3 − x− 1

x(1− x)
.

However, this function takes on large values near the boundary. Indeed, when x tends to 0, the limit308

is equal to kπ− 1, which becomes large for large values of k. Hence, the parameters of the network309

after training will tend to take large values in order to approximate well the solution, as explained in310

Section 3.1. In order to avoid these issues, we have thus introduced the architecture (14), such that311

the functions used to enforce the boundary conditions contain a mix of low and high frequencies.312

Method 3 thus allows one to get a solution whose trained parameters remain of the same order as313
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Figure 6: Results from Example 3 in Section 3.2: Pointwise error e(x) = u(x)− ũ(x) for Methods
1, 2, and 3.

Figure 7: Results from Example 3 in Section 3.2: Residual R(x) associated with the partial differ-
ential equation at the end of the training using Methods 1, 2, and 3. Note that the scale along the
y-axis is different from one plot to the other.

the initial ones, as observed in Figure 5 (right).314

Finally, we show in Figure 6 the pointwise error e(x) = u(x)− ũ(x) obtained at the end of the315

training for Methods 1, 2, and 3. Note that the scale along the y-axis is different on the graphs.316

As expected, the pointwise error obtained by Method 1 is of the same order as the solution itself.317

Moreover, we observe that the maximum value of |e(x)| using Method 3 is smaller than that obtained318

with Method 2. Hence, the architecture presented in Method 3 yields a better solution when compared319

to the other two methods. We observed in Example 2 that smaller approximation errors contained320

higher frequencies. The picture is slightly different here. If we closely examine the pointwise error321

obtained by Methods 2 or 3, we observe that the error contains both a low-frequency component322

of large amplitude and a high-frequency component of small amplitude. In order to explain this323

phenomenon, we plot in Figure 7 the residual R(x) associated with the partial differential equation324
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for the three methods. For Method 1, we observe that the residual is still very large by the end325

of the training since the method did not converge. For Methods 2 and 3, the residual is a high-326

frequency function as the second-order derivatives of the solution tend to amplify its high-frequency327

components, as confirmed by the trivial calculation:328

d2

dx2
sin(ωx) = −ω2 sin(ωx).

It follows that the high-frequency components of the solution will be reduced first since the training329

is based on minimizing the residual of the partial differential equation. On the other hand, the330

error, see e.g. Figure 6 (middle) or (right), includes some low-frequency contributions, which are331

imperceptible in the plot of the residual. To further reduce the pointwise error, the objective should332

then be to reduce the low-frequency modes alone, without the need to reduce the high frequencies333

whose amplitudes are smaller.334

In summary, we have seen through numerical experiments that the accuracy of the solutions335

may be affected by the scale of the problem data and the range of frequencies inherent to the336

solutions. The methodology that we describe below allows one to address these issues, namely to337

control the error within machine precision in neural network solutions using the PINNs approach.338

4 Multi-level neural networks339

In this section, we describe the multi-level neural networks, whose main objective is to improve the340

accuracy of the solutions obtained by PINNs. Supposing that an approximation ũ of the solution u341

to Problem (2)-(3) has been computed, the error in ũ is defined as e(x) = u(x)− ũ(x) and satisfies:342

R(x, u(x)) = f(x)−Au(x) = f(x)−Aũ(x)−Ae(x) = R(x, ũ(x))−Ae(x) = 0, ∀x ∈ Ω,

B(x, u(x)) = B(x, ũ(x)) +B(x, e(x)) = B(x, e(x)) = 0, ∀x ∈ ∂Ω,

where we have used the fact that A and B are linear operators and ũ strongly verifies the boundary

condition. In other words, the error function e(x) satisfies the new problem in the residual form:

R̃(x, e(x)) = R(x, ũ(x))−Ae(x) = 0, ∀x ∈ Ω, (15)

B(x, e(x)) = 0, ∀x ∈ ∂Ω. (16)

We notice that the above problem for the error has exactly the same structure as the original

problem, with maybe two exceptions: 1) the source term R(x, ũ(x)) in the error equation may

be small, 2) the error e(x) may be prone to higher frequency components than in ũ. Our earlier
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observations suggest we find an approximation ẽ of the error using the PINNs approach after

normalizing the source term by a scaling parameter µ, in a way that scales the error to a unit

maximum amplitude. The new problem becomes:

R̃(x, e(x)) = µR(x, ũ(x))−Ae(x) = 0, ∀x ∈ Ω, (17)

B(x, e(x)) = 0, ∀x ∈ ∂Ω. (18)

The dimension of the new neural network to approximate e should be larger than that used to find343

ũ, due to the presence of higher frequency modes in e. In particular, the number of wave numbersM344

in the Fourier feature mapping should be increased. The idea is to some extent akin to a posteriori345

error estimation techniques developed for Finite Element methods, see e.g. [5, 29, 2, 26, 4]. Finally,346

one should expect that the optimization algorithm should once again reach a plateau after a certain347

number of iterations and that the process should be repeated to estimate a new correction to the348

error e.349

We thus propose an iterative procedure, referred here to as the “multi-level neural network

method”, in order to improve the accuracy of the solutions when using PINNs (or any other neural

network procedure based on residual reduction). We start by modifying the notation due to the

iterative nature of the process. As mentioned in the previous section, the source term f may need

to be normalized by a scaling parameter µ0, so that we reconsider the initial solution u0 satisfying

a problem in the form:

R0(x, u0(x)) = µ0f(x)−Au0(x) = 0, ∀x ∈ Ω, (19)

B(x, u0(x)) = 0, ∀x ∈ ∂Ω. (20)

The above problem can then be approximated using a neural network to obtain an approximation350

ũ0 of u0. Hence, the first approximation ũ to u reads after scaling ũ0 with µ0:351

ũ(x) =
1

µ0
ũ0(x). (21)

We would like now to estimate the error in ũ. However, we find it easier to work in terms of ũ0.

Therefore, we look for a new correction u1 that solves the problem:

R1(x, u1(x)) = µ1R0(x, ũ0(x))−Au1(x) = 0, ∀x ∈ Ω, (22)

B(x, u1(x)) = 0, ∀x ∈ ∂Ω. (23)

Once again, one can compute an approximation ũ1 of u1 using PINNs. Since ũ1 can be viewed as352

the normalized correction to the error in ũ0(x), the new approximation to u is now given by:353

ũ(x) =
1

µ0
ũ0(x) +

1

µ0µ1
ũ1(x). (24)
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The process can be repeated L times to find corrections ui at each level i = 1, . . . , L given the

prior approximations ũ0, ũ1, . . . , ũi−1. Each new correction ui then satisfies the boundary-value

problem:

Ri(x, ui(x)) = µiRi−1(x, ũi−1(x))−Aui(x) = 0, ∀x ∈ Ω, (25)

B(x, ui(x)) = 0, ∀x ∈ ∂Ω. (26)

After finding an approximation ũi to each of those problems up to level i, one can obtain a new354

approximation ũ of u such that:355

ũ(x) =
1

µ0
ũ0(x) +

1

µ0µ1
ũ1(x) + . . .+

1

µ0µ1 . . . µi
ũi(x). (27)

Once the approximations ũi have been found at all levels i = 0, . . . , L, the final approximation at356

the end of the process would then be given by:357

ũ(x) =

L∑
i=0

1

Π i
j=0µj

ũi(x). (28)

Using PINNs, the neural network approximation ũi (which implicitly depends on the network358

parameters θ) for each error correction will be obtained by solving the following minimization359

problem:360

min
θ∈RNθ,i

Li(θ) = min
θ∈RNθ,i

∫
Ω
Ri

(
x, ũi(x)

)2
dx, (29)

where Nθ,i denotes the dimension of the function space generated by the neural network used at361

level i. We recall that the boundary conditions are strongly imposed and, hence, do not appear362

in the loss functions Li(θ). Since each correction ũi is expected to have higher frequency contents,363

the size Nθ,i of the networks should be increased at each level. Moreover, the number of iterations364

used in the optimization algorithms Adam and L-BFGS will be increased as well, since more itera-365

tions are usually needed to approximate higher frequency functions. For illustration purposes, we366

consider a simple one-dimensional numerical example and use once again the setting of Example 1367

in Section 3.1.368

Example 4. We solve Problem (9) with k = 2 whose exact solution is given by (10). We consider369

three levels of the multi-level neural networks, i.e. L = 3, in addition to the initial solve, so that370

the approximation ũ will be obtained using four sequential neural networks. We choose networks371

with a single hidden layer of width N1 given by {10, 20, 40, 20}. The networks are first trained with372

4,000 iterations of Adam followed by {200, 400, 600, 0} iterations of L-BFGS. The mappings of the373

input and boundary conditions are chosen with M = {1, 3, 5, 1} wave numbers. In this example,374
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Figure 8: Results from Example 4 in Section 4: (Left) Evolution of the loss function. (Middle)
Evolution of the error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise
error after three error corrections. The regions shown by Li, i = 0, . . . , 3, in the first two graphs
indicate the region in which the neural network at level i is trained.

the scaling parameter µi, i = 0, . . . , 3, for ũ0 and the three corrections ũi, are chosen here as375

µi = {1, 103, 103, 102}. In the next section, we will present a simple approach to evaluate these376

normalization factors. We note that the last network has been designed to approximate functions377

with a low-frequency content. This choice will be motivated below.378

We present in Figure 8 the evolution of the loss function and of the errors in the L2 and H1
379

norms with respect to the number of optimization iterations, along with the pointwise error at the380

end of the training. We first observe that each error correction allows one to converge closer to the381

exact solution. More precisely, we gain almost seven orders of magnitude in the L2 error thanks to382

the introduced corrections. Indeed, after three corrections, the maximum pointwise error is around383

6× 10−12, which is much smaller than the error we obtained with ũ0 alone. To better explain our384

choice of the number M of wave numbers at each level, we show in Figure 9 the computed corrections385

ũi. We observe that each correction approximates higher frequency functions than the previous one,386

except ũ3. In fact, once we start approximating the high-frequency errors, it becomes harder to387

capture the low-frequencies with larger amplitudes. This phenomenon was actually observed and388

described in Example 3. Here, we see that the loss function eventually decreases during the training389

of ũ2, but that the L2 error has the tendency to oscillate while slightly decreasing. It turns out that390

this behavior can be attributed to the choice of the loss function L2, in which the higher frequencies391

are penalized more than the lower ones. In other words, we have specifically designed the last392

network to approximate only low-frequency functions and be trained using Adam only. Thanks to393

this architecture, the L2 error significantly decreases during the training of ũ3, without a noticeable394

decrease in the loss function. As a remark, longer training for ũ2 would correct the lower frequencies395
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Figure 9: Results from Example 4 in Section 4: Approximation ũ0(x) and corrections ũi(x), i =
1, 2, 3.

while correcting high frequencies with smaller amplitudes, but it is in our opinion more efficient, with396

respect to the number of iterations, to simply introduce a new network targeting the low frequencies.397

In the last example, we observe that the maximal values in the three corrections ũi, i = 1, 2, 3,398

range in absolute value from 0.002 to 0.015, see Figure 9, whereas their values should ideally be399

of order one if proper normalization were used. The reason is that we provided a priori values for400

the scaling parameters µi. It appears that those values were not optimal, i.e. too small, yielding401

solutions whose amplitudes were two to three orders of magnitude smaller than the ones we should402

expect. The multi-level neural network approach was still able to improve the accuracy of the403

solution despite sub-optimal values of the scaling parameters.404

Ideally, one would like to have a method to uncover appropriate values of the scaling parameters.405

Unfortunately, it is not a straightforward task, that of predicting the amplitude of the remaining406

error in order to correctly normalize the residual term in the partial differential equation. We407

propose here a simple approach based on the Extreme Learning Method [13]. The main idea of408
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Figure 10: Results from Example 5 in Section 4: (Left) Evolution of the loss function. (Middle)
Evolution of the error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise
error after three error corrections.

the Extreme Learning Method is to use a neural network with a single hidden layer, to fix the409

weight and bias parameters of the hidden layer, and to minimize the loss function with respect410

to the parameters of only the output layer by a least squares method. We propose here to utilize411

the Extreme Learning Method to obtain a coarse prediction for each correction ũi. The solution412

might not be very accurate, but it should provide a reasonable estimate of the amplitude of the413

correction function, which can be employed to adjust the normalization parameter µi. Moreover,414

the approach has the merit of being very fast and scale-independent. We assess its performance415

in the next numerical example and show that it allows one to further improve the accuracy of the416

multi-level neural network solution.417

Example 5. We use the exact same setting as described in Example 4 but we now employ the418

Extreme Learning Method to normalize the residual terms, as explained above. We observe in419

Figure 10 that the proposed normalization technique leads at the end of the training to errors420

e(x) = u(x) − ũ(x) within machine precision. We actually gain about two orders of magnitude in421

the error with respect to both norms over the results obtained in Example 4. Even more striking, the422

approximations of the corrections ũi all have amplitudes very close to unity, see Figure 11, which423

confirms the efficiency of the proposed approach.424

5 Numerical results425

In this section, we present a series of numerical examples to illustrate the whole potential of426

the multi-level neural networks to reduce errors in neural network approximations of boundary-427

value problems in one and two dimensions. The computational domain in each of the examples428
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Figure 11: Results from Example 5 in Section 4: Approximation ũ0(x) and corrections ũi(x),
i = 1, 2, 3.

is defined as Ω = [0, 1]d, with d = 1 or 2. The solutions to the problems will all be submitted429

to homogeneous Dirichlet boundary conditions, unless explicitly stated otherwise. The solutions430

and error corrections computed with the multi-level neural network approach shall be consistently431

approximated by the neural network architecture provided in (14), for which the vector of wave432

numbers ωM is constructed from a geometric series, as described in Section 3.2. The normalization433

of the source terms is implemented through the use of the Extreme Learning Method, as described434

in Section 4. We again emphasize that the scaling along the horizontal axis in the convergence435

plots is actually different for the Adam iterations and L-BFGS iterations. The reason is simply to436

provide a clearer visualization of the L-BFGS training phase, given the notable difference in the437

number of iterations used in the Adam and L-BFGS algorithms. Finally, for each example, the438

number of levels is set to L = 3 and the values of the hyper-parameters for each network (number of439

hidden layers n and widths Ni, number of Adam and L-BFGS iterations, number of wave numbers440

M) will be collected in a table.441
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Hyper-parameters ũ0 ũ1 ũ2 ũ3

# Hidden layers n 1 1 1 1

Width N1 10 20 40 40

# Adam iterations 4,000 4,000 4,000 10,000

# L-BFGS iterations 500 1,000 1,500 0

# wave numbers M 4 6 8 2

Table 1: Hyper-parameters used in the example of Section 5.1.

5.1 Poisson problem in 1D442

We revisit once again Problem (9) described in Example 1, this time with k = 10. Our objective443

here is to demonstrate the performance of the multi-level neural networks even in the case of444

solutions with high-frequency components. The solution is approximated using four sequential445

networks whose hyper-parameters are reported in Table 5.1. Similarly to the Example 4, the last446

network is chosen in such a way that only the low-frequency modes are approximated, using the447

Adam optimizer only.448

We plot in Figure 12 the evolution, during training, of the loss function (left) and the errors in449

the L2 and H1 norms (middle), along with the pointwise error at the end of the training (right). We450

observe that the loss function and the errors in both norms are reduced when using two corrections.451

During the second error correction, we notice that the reduction in the loss function did not yield452

a significant decrease in the L2 and H1 errors. As described in Example 4, this is a consequence of453

our choice of the loss function, where higher frequencies are penalized more than the lower ones,454

which yields large low-frequency errors. This issue is addressed in the third correction that helps455

decrease the L2 and the H1 errors without significantly decreasing the loss function, since the role456

of the last network is mainly to capture the low frequencies. As described in Example 4, this is a457

consequence of the specific choice of the hyper-parameters for the last network. In this example,458

we are able to attain a maximum pointwise error of around 10−11 with four successive networks.459

5.2 Boundary-layer problem460

In this section, we consider the convection-diffusion problem given by461

−ε∂xxu(x) + ∂xu(x) = 1, ∀x ∈ (0, 1),

u(0) = 0,

u(1) = 0,

(30)
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Figure 12: Example of Section 5.1: (Left) Evolution of the loss function. (Middle) Evolution of the
error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise error after three
error corrections.

Figure 13: Exact solutions when ε = 1 and ε = 0.01 to the boundary-layer problem of Section 5.2.

where ε denotes a viscosity coefficient. We show in Figure 13 the exact solutions to the problem462

when ε = 1 and ε = 0.01. As ε gets smaller, a sharp boundary layer is formed in the vicinity of463

x = 1, which makes the problem more challenging to approximate. Finite element approximations464

of the same problem without using any stabilization technique actually exhibit large oscillations465

whenever the mesh size is not fine enough to capture the boundary layer. We apply the multi-level466

neural network method to both cases using the hyper-parameters given in Table 2 for ε = 1 and467

Table 3 for ε = 0.01.468

We first plot in Figure 14 the convergence results and the pointwise error for ε = 1. We observe469

that in this case, we were able to gain at least eight orders of magnitude in the L2 and the H1
470

errors with three error corrections. At the end of the training, the pointwise error is of the order471

23



Hyper-parameters ũ0 ũ1 ũ2 ũ3

# Hidden layers n 1 1 1 1

Width N1 5 10 20 40

# Adam iterations 4,000 4,000 4,000 10,000

# L-BFGS iterations 200 500 800 0

# wave numbers M 1 3 5 2

Table 2: Hyper-parameters used in the example of Section 5.2 for ε = 1.

Figure 14: Example of Section 5.2 with ε = 1: (Left) Evolution of the loss function. (Middle)
Evolution of the error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise
error after three error corrections.

of the machine precision.472

In Figure 15, we show the convergence results and the pointwise error for ε = 0.01. As expected,473

the convergence with four networks is slower than in the case with ε = 1 and plateaus for larger474

values of the loss function and the errors. As a matter of fact, the loss function after the training475

of ũ0 stagnates around a value of 10−4. But using the multi-level neural network method, we are476

able to decrease the loss function down to 10−14, which is also accompanied by a reduction of the477

L2 and H1 errors.478

5.3 Helmholtz Equation479

We are now looking for the field u = u(x) governed by the one-dimensional Helmholtz equation:480

−∂xxu(x)− κ2u(x) = 0, ∀x ∈ (0, 1), (31)
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Hyper-parameters ũ0 ũ1 ũ2 ũ3

# Hidden layers n 1 1 1 1

Width N1 10 10 20 20

# Adam iterations 4,000 4,000 4,000 10,000

# L-BFGS iterations 500 1,000 2,000 0

# wave numbers M 3 5 7 3

Table 3: Hyper-parameters used in the example of Section 5.2 for ε = 0.01.

Figure 15: Example of Section 5.2 with ε = 0.01: (Left) Evolution of the loss function. (Middle)
Evolution of the error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise
error after three error corrections.

where the value of the wave number is chosen here equal to κ =
√
9200 ≈ 95.91, and subject to the481

Dirichlet boundary conditions:482

u(0) = 0,

u(1) = 1.
(32)

The Dirichlet boundary condition is non-homogeneous at x = 1. We thus introduce the lift function483

ū(x) = x to account for the boundary condition, so that we consider trial functions for the initial484

solution ũ0 in the form:485

ũ0(x) = x+

(
Πd

j=1γg(xj)
)
· zn+1

M

where γg is defined (13). Since ũ0 strongly verifies the two boundary conditions, the corrections ũi,486

for i ≥ 1, will therefore be subjected to homogeneous Dirichlet boundary conditions, i.e. ũi(0) =487

ũi(1) = 0. The main objective of this example is to show that the multi-level neural network488

method can actually recover a high-frequency solution resulting from the large value of the wave489

number κ. The hyper-parameters of the multi-level neural networks are provided in Table 4.490

As before, we plot in Figure 16 the convergence of the loss function and the errors along with491
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Hyper-parameters ũ0 ũ1 ũ2 ũ3

# Hidden layers n 1 1 1 1

Width N1 10 20 40 10

# Adam iterations 10,000 10,000 10,000 30,000

# L-BFGS iterations 400 800 1,600 0

# wave numbers M 5 7 9 5

Table 4: Hyper-parameters used in the example of Section 5.3.

Figure 16: Example of Section 5.3: (Left) Evolution of the loss function. (Middle) Evolution of the
error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise error after three
error corrections.

the pointwise error. We observe that the use of the multi-level neural networks leads to a significant492

reduction of the error as the absolute pointwise error in the final approximation ũ never exceeds493

3× 10−10.494

In this example, the last correction is constructed using the Fourier feature mapping withM = 4495

wave numbers. This is in contrast to the previous examples where we chose lower frequencies for496

the last correction. The reason is that, as observed in Figure 17, the dominant frequency in ũ1497

and ũ2 is comparable to that of the solution. Therefore, in order to reduce this frequency without498

reducing the larger frequencies whose amplitudes are smaller, we actually select an architecture for499

ũ3 similar to that of ũ0. Using this architecture, we see that the errors in the solution significantly500

decrease even if the loss function remains virtually unchanged. We show in Figure 18 the residual501

R1(x, ũ1(x)) associated with the approximation ũ1. We have already mentioned that the error502

corrections ũ1 and ũ2 have a dominant frequency similar to that of ũ0. However, we observe503

that the residual clearly features higher-frequency modes, whose amplitudes, although small in the504

approximation ũ1, are in fact amplified due to the second-order derivatives. For that reason, it is505
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Figure 17: Example of Section 5.3: Approximation ũ0(x) and corrections ũi(x), i = 1, 2.

Figure 18: Example of Section 5.3: Residual R1(x, ũ1(x)) associated with the Hemlholtz equation
obtained after the training of ũ1(x).

desirable to consider larger networks with a larger number of wave numbers in the Fourier feature506

mapping for the approximations ũ1 and ũ2. We have thus used in this experiment N1 = 20 and507

M = 7 for ũ1 and N1 = 40 and M = 9 for ũ2.508

5.4 Poisson problem in 2D509

In this final example, we consider the two-dimensional Poisson equation in Ω = (0, 1)2, with510

homogeneous Dirichlet boundary conditions prescribed on the boundary ∂Ω of the domain. The511

boundary-value problem consists then in solving for u = u(x, y) satisfying:512

−∇2u(x, y) = f(x, y), ∀x ∈ Ω,

u(x, y) = 0, ∀x ∈ ∂Ω,
(33)

where the source term f(x, y) is chosen such that the exact solution is given by:513

u(x, y) = sin(πx) sin(πy).
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Hyper-parameters ũ0 ũ1 ũ2 ũ3

# Hidden layers n 2 2 2 1

Widths N1 and N2 10 20 40 40

# Adam iterations 2,500 5,000 10,000 4,000

# L-BFGS iterations 200 400 600 0

# wave numbers M 1 3 5 1

Table 5: Hyper-parameters used in the example of Section 5.4.

The problem is solved using four networks whose hyper-parameters are given in Table 5. We514

note that, for this two-dimensional problem, we increase the depth of the networks at levels 0, 1,515

and 2, to two hidden layers, both having the same width N1 = N2 at each level.516

We show in Figure 19 the evolution of the loss function and of the errors with respect to the517

number of Adam and L-BFGS iterations. As in the one-dimensional examples, the multi-level518

neural network approach allows one to reduce the loss function and the errors in the L2 and519

H1 norms down to values around 10−15, 10−11, and 10−9, respectively. The results are in our520

opinion remarkable since we attain in this 2D example an accuracy comparable to that obtained521

with classical discretization methods. As indicated in Table 5, the hyper-parameters for the last522

correction are chosen so that they can capture the low-frequency functions. Figure 19 (right)523

actually shows that, by the end of the process, we are thereby able to decrease the maximum524

pointwise error to within 6× 10−10. Finally, we plot in Figure 20 the approximation ũ0 along with525

the three corrections ũ, i = 1, 2, 3, computed after each level of the multi-level neural networks.526

One easily observes that all solutions are properly normalized and that, as expected, each corrective527

function exhibits higher frequencies than in the previous one, except for the approximation ũ3 by528

the design of the last neural network.529

6 Conclusions530

We have presented in this paper a novel approach to control and reduce errors in deep learning531

approximations of solutions to linear boundary-value problems. The method has been referred to532

as the multi-level neural network method in the sense that, at each level of the process, one uses a533

new neural network, possibly of different sizes, to compute a correction corresponding to the error534

in the previous approximation. Each successive correction aims at reducing the global error in the535

resulting approximation of the solution. Although the conceptual idea seems straightforward, the536
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Figure 19: Example of Section 5.4: (Left) Evolution of the loss function. (Middle) Evolution of the
error e(x) = u(x) − ũ(x) measured in the L2 and H1 norms. (Right) Pointwise error after three
error corrections.

efficiency of the approach relies nonetheless on two key ingredients. Indeed, we have observed that537

the remaining error at each subsequent level, and equivalently, the resulting residual, have smaller538

amplitudes and contain higher frequency modes, two circumstances for which we have highlighted539

the fact that the training of the neural networks usually performs poorly. We have addressed540

the first issue by normalizing the residual before computing a new correction. To do so, we have541

developed a normalization approach based on the Extreme Learning Method that allows one to542

estimate appropriate scaling parameters. The second issue is taken care of by applying a Fourier543

feature mapping to the input data and the functions used to strongly impose the Dirichlet boundary544

conditions. We believe that the multi-level neural network method is a versatile approach and can be545

applied to many deep learning techniques designed to solve boundary-value problems. In this work,546

we have chosen to present the method in the special case of physics-informal neural networks, which547

have recently been used for the solution of several classes of initial and boundary-value problems.548

The efficiency of the multi-level neural network method was demonstrated here on several 1D or549

2D numerical examples based on the Poisson equation, the convective-diffusion equation, and the550

Helmholtz equation. More specifically, the numerical results successfully illustrate the fact that the551

method can provide highly accurate approximations to the solution of the problems and, in some552

cases, allows one to reduce the numerical errors in the L2 and H1 norms down to the machine553

precision.554

Even if the preliminary results are very encouraging, additional investigations should be con-555

sidered to further assess and improve the efficiency of the proposed multi-level neural network556

method. More specifically, one would like to apply the method to other deep learning approaches,557

such as the Deep Ritz method [38] or the weak adversarial networks method [40] to name a few, to558
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Figure 20: Example of Section 5.4: approximation ũ0(x) and corrections ũi(x), i = 1, 2, 3.

time-dependent problems, and to the learning of partial differential operators, e.g. DeepONets [22]559

or GreenONets [3], for reduced-order modeling. One could also imagine estimating the correction560

at each level of the algorithm to control the error in specific quantities of interest following ideas561

from [26, 16, 15]. In this work, we have chosen to strongly enforce boundary conditions in order562

to neglect errors arising from the introduction of penalty parameters in the loss function (5). One563

should thus assess the efficiency of the method when initial and boundary conditions are weakly564

enforced. Finally, the multi-level neural network method introduces a sequence of several neural565

networks whose hyper-parameters are chosen a priori and often need to be adjusted by trial and566

error. It would hence be very useful to devise a methodology that determines optimal values of the567

hyper-parameters independently of the user.568
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