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Abstract. Machine Learning is now commonly used to model complex
phenomena, providing robust predictions and data exploration analysis.
However, the lack of explanations for predictions leads to a black box ef-
fect which the domain called Explainability (XAI) attempts to overcome.
In particular, XAI local attribution methods quantify the contribution of
each attribute on each instance prediction, named influences. This type
of explanation is the most precise as it focuses on each instance of the
dataset and allows the detection of individual differences. Moreover, all
local explanations can be aggregated to get further analysis of the under-
lying data. In this context, influences can be seen as new data space to
understand and reveal complex data patterns. We then hypothesise that
influences obtained through ML modelling are more informative than
the original raw data, particularly in identifying homogeneous groups.
The most efficient way to identify such groups is to consider a clustering
approach. We thus compare clusters based on raw data against those
based on influences (computed through several XAI local attribution
methods). Our results indicate that clusters based on influences perform
better than those based on raw data, even with low-accuracy models.

Keywords: Explainable Artificial Intelligence (XAI) · Instance cluster-
ing · Prediction explanation · Machine learning explanation.

1 Introduction

Analytic and predictive tools are now commonly based on Machine Learning
(ML) methods and used in sensitive domains such as healthcare, finance, in-
surance, banking and chemistry. These methods give a prediction for a single
instance based on its data, which often creates a black-box effect as methods
do not inherently explain their decision process [11]. Explanation methods have
therefore been perfected, providing global insights about the model’s general
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behaviour or a local one about a single situation [9] (XAI for eXplainable Arti-
ficial Intelligence). Local explanations are increasingly used in AI-assisted tools
to offer more information than a single prediction [1]. Among the most popular
methods are XAI local attribution methods that produce influences, especially
LIME [13] and approximation of Shapley Value such as SHAP [12], the K-depth
[7] and Coalitional approaches [8]. Their popularity is due to the instance-level
accuracy of these explanations, which links the impact of each attribute to the
prediction made for each instance and allows finer differences to be detected be-
tween all instances. Yet, providing only local influences seems insufficient to im-
prove decision-making efficiency. Indeed [16,17] show that displaying influences
along with an individual prediction did not significantly enhance the utility and
understanding for the user as opposed to prediction alone. Moreover, knowing
all the local explanations of a dataset does not guarantee a complete data under-
standing since there are as many explanations as instances in the original raw
dataset, with the difficulty of finding explainability patterns in this new dataset.

In this context, we hypothesise that influences can be seen as a new data
space that can be explored and used as a basis for further analysis. Indeed,
influences provide new information thanks to ML modelling, which considers
complex phenomena and interactions. Influence analysis can thus help identify
the main trends of explanations, i.e. the characteristic relationships between the
attributes. Also, it can be interesting to provide a global view of the explanations
to determine whether instances are typical or atypical cases of the data. In this
direction, an influence-based clustering approach is a good candidate since it can
be the most straightforward approach to detect more homogeneous subgroups
of influences and understand the behaviour of the modelling and the underly-
ing dataset. Thus, in this paper, we want to propose a framework for analysing
influences through a clustering approach. To the best of our knowledge, this is
the first work that studies in a general framework the benefits of using local
influences as a new input for clustering to identify more informative and homo-
geneous groups. We also explored the robustness of this framework regarding
low-accuracy models or misclassified instances.

The paper is organised as follows. Section 2 gives an overview of the current
local explanation methods used in experiments and how explanations are used to
detect subgroups of instances. Then, section 3 details our clustering framework
for detecting subgroups based on local influences. Section 4 describes the exper-
iments performed on 104 datasets to compare the use of raw data and influences
from multiple local XAI methods. We study the K-medoid clusters quality to
show the efficiency of using influences. We detail the metrics used to evaluate
the clusters and the different approaches based on the model prediction. Glob-
ally, our results demonstrate that local influences produce better-quality clusters
than raw data, even with low-accuracy models. Separating instances well classi-
fied and misclassified by the model also allows a more precise clustering. Section
5 discusses the advantages of our approach in a broader context, linking results
from clustering with knowledge from modelling and explanation methods. Sec-
tion 6 concludes this paper and gives short and long-term perspectives of works.
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2 Related works

In the field of local explanations, one of the first methods was based on the
Shapley values, a local attribution XAI method [18], to explain machine learning
predictions. With these methods, the influence of each attribute over a predic-
tion is computed as the difference in prediction from the model with and without
the attribute. Influences then represent the impact of each attribute over a pre-
diction for each instance of the dataset. Local influences facilitate the prediction
understanding without expert data science knowledge as they are easy to in-
terpret and represent graphically. Other methods have emerged with LIME [13]
that uses linear surrogate models trained with sampled data to approximate the
black box model locally. The Coalitional approaches [8] approximate the Shap-
ley value by precomputing relevant groups of instances and reducing complexity.
Finally, SHAP [12] mixes Shapley values with LIME and other methods to simu-
late the absence of attributes by sampling, find a linear model that explains the
black-box model locally and approximate the Shapley values. Nowadays, SHAP
is one of the most well-known methods in the literature, easy to use and provides
both agnostic and specific methods with KernelSHAP or TreeSHAP.

With the rise of explainability, ML research looks beyond simply explain-
ing the machine learning model. Several papers in the last year have covered
use cases combining machine learning explainability and clustering to find re-
lationships between instances [3,10]. Based on a COVID-19 dataset, [3] tries to
identify better clusters based on KernelSHAP values. Rather than clustering the
original dataset, called raw data, they trained a classification model, computed
the KernelSHAP values for each instance and performed DB-SCAN clustering
on these influences. They show better identification of clusters with influences
than raw data and graphically display the cluster differences using UMAP, a
well-known reduction dimension technique. Other papers also used clustering to
determine groups and to recommend instances based on the influences on a sin-
gle dataset [5,6]. [5] was a use case on a urinary disease that explores healthcare
risk stratification based on influences from TreeSHAP. Clustering patients by
SHAP values allows the selection of representative patients and investigation of
the risk factors for each cluster, where only raw data are insufficient to perform
the same analysis. The same kind of analysis was performed on a COVID-19
dataset concerning the identification of subgroups of patients during the first
lockdown in France [6]. These four papers explored the idea of using influences
and clustering to find more knowledge about the data on specific medical ex-
amples. However, no paper formally evaluates the contribution of explanation
clustering in general. Although their positive conclusions, these papers only use
one single dataset with one XAI method, without generalizing the approach or
comparing findings with other XAI local attribution methods, in opposition to
what we propose in this paper. Finally, none uses prediction to differentiate
subgroups of data for clustering.
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3 Influence-based clustering framework

In this section, we detail our influence-based clustering framework. Figure 1
shows the step-by-step process to cluster instances based on their influences:

1. A machine learning model is trained with raw data and predicts classes of
all the instances from the raw dataset.

2. A local attribution XAI method explains the trained model. Users can choose
the data used as input for the method. Influences are computed to explain
why the ML model made such predictions.

3. A clustering algorithm is used on influences to create homogeneous groups of
instances to detect their important attributes based on the modelling. Users
can define the number of clusters they want to compute.

Fig. 1: Our proposal Framework.

In this framework, various elements can be modified according to user pref-
erences. Any classification model can be used in Step 1, as they are all designed
to compute predictions, and Step 3 allows any clustering method.

In step 2, the framework is designed to accept XAI local attribution meth-
ods. These influences are represented as tabular data, where each instance has
a value associated with each attribute. We directly use these influences data as
input for the clustering step. Influences are valuable because they provide addi-
tional information that the raw data does not: the link between the modelling
predictions and the dataset attributes. Compared to raw data, explanations pro-
duced by XAI local attribution methods have the same unit across all attributes,
thus avoiding any problem of value ranges. Another advantage is that influence
values are less noisy since the ML model mainly focuses on attributes relevant
to the underlying predictive task and excludes information not explained by the
complex attributes interaction, hence the relevance of carrying out clustering.
For supervised tasks, XAI local attribution methods usually generate a dataset
for each class with identical dimensions as the raw data. For example, if the
raw data consists of n instances and m features and the supervised task is a
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multi-class problem with c classes, the generated dataset (also called the influ-
ence dataset) has a n×m× c dimension. To have an influence dataset with the
same dimension as raw data (n × m) one can only select a single class and its
associated influences. For example, regarding binary classification, the positive
class is often chosen as the class of interest for influences. Finally, XAI local
attribution methods allow the selection of different data as input than the ones
used for training the machine learning model. These inputs are used by XAI
methods to explain the model, by creating perturbations in SHAP or LIME, for
example.

An additional and optional step is to select a particular subset of the data for
clustering. Indeed, it is possible to study the instances correctly and incorrectly
classified by the model separately via instance clustering. Considering the model
predictions against the data labels, the influences are separated into two distinct
groups before being clustered. Two different sets of clusters are then proposed to
the users. This step can have several advantages. Since the influences represent
the model decisions, separating the instances can provide new knowledge. Study-
ing the well-classified instances can help to identify their characteristic patterns
by removing noise and outliers from the misclassified instances. This can give
a more accurate idea of general patterns, for example, to check that there is
no bias in the dataset. Regarding misclassified instances, they may have several
representations. They can be outliers in the data and not correspond to the gen-
eral behaviours without bias or error. However, misclassified instances can also
be a particular subgroup of the data relevant to study. For example, this would
be the case of children with cancers usually associated with older people. Due to
age, the model may misunderstand this subgroup, as there are few children with
non-pediatric cancers, or the input variables may be insufficient to identify this
subgroup. However, it is necessary to study this subgroup to understand whether
there is any specific behaviour in this subgroup and ultimately understand the
overall dataset. Separating the instances can therefore allow the exploration of
new patterns that can be invisible if all the data were kept. This may be even
more important for influences because of their direct link to the model. Indeed,
when the model prediction is incorrect, the influences reflect this error and are
directly impacted by the wrong prediction of the model.

The full implementation of our proposal is available here: https://github.com
/kaduceo/XAI-based-instance-selection. The source code will evolve with future
works. Additional materials are also available.

4 Experiments

4.1 Experimental protocol

For our evaluations, we use 104 datasets from an Open ML collection6 [14] that
meet the following criteria: binary classification, more than 100 instances, more
than four attributes and at most nine attributes due to the computational cost
of producing influences. Table 1 details statistics about the datasets used.

6 Available in https://www.openml.org/s/107/tasks

https://github.com/kaduceo/XAI-based-instance-selection
https://github.com/kaduceo/XAI-based-instance-selection
https://www.openml.org/s/107/tasks
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Table 1: Statistics of the experimental datasets based on the number of at-
tributes.

# of attributes 4 5 6 7 8 9

# of datasets 14 25 17 16 15 17
Mean # of insts 465 1197 654 554 650 503
Min-Max # of insts 125-1372 100-7129 100-3107 108-4052 130-4177 100-1473

Binary classification is chosen to facilitate the interpretation of influences. We
consider that all influences are based on class 1. In this case, influences represent
the impact of each attribute on the probability of the instance being in class 1.
We train a Random Forest model (RF) with a Grid Search Cross-Validation
to optimise hyperparameters. This model was chosen to test tree-specific expla-
nation methods while keeping a limited number of hyperparameters to avoid
overfitting (compared to boosted trees). Only to evaluate the performances of
the modelling, each dataset is divided into train and test sets according to the
75%/25% ratio. Table 2 shows the performances of all the models trained in our
experiments. Models are trained adequately to capture most information of the
dataset. The mean and median balanced accuracy are respectively 0.79 and 0.85,
meaning most models can accurately classify test instances. Some models also
have very low accuracy, the minimum being 0.42. We choose to separate models
based on a threshold set to 0.8 to evaluate the behaviour of our framework on
models with high and low accuracy. Thus, high-accuracy models have a median
balanced accuracy of 0.92, whereas low-accuracy models have a median of 0.6.

We also study the number of instances well classified and misclassified by the
ML modelling in Table 2. In all experiments, we call true instances well-classified
instances, referring to True positive and True negative terms. False instances
is then related to False positive and False negatives instances, so misclassified
instances. We use three different separations of data: all instances together, only
true instances and only false instances. As we separate true and false instances,
we choose not to evaluate high-accuracy models on false instances as there are
not enough instances in most datasets to create clusters and properly evaluate
them and compare the results. Then, when studying false instances, we only work
with models with low accuracy as the number of false instances is higher and
sufficient. Also, the number of true instances is adequate to perform clustering
for all models.

For exhaustive purposes, we choose three different XAI local attribution
methods to compute influences: KernelSHAP, TreeSHAP, LIME and Spearman
coalitional. As explained in [4], each XAI method provides influences with differ-
ent strengths and disadvantages. Thus, we want to study the relevance of using
local influence clustering compared to raw clustering in a global way.

Once influences are computed, instances are clustered by the influence-based
approach with K-medoids as the clustering method. This method has the ad-
vantage of always selecting actual instances as centroid from the dataset, unlike
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Table 2: Statistics of models trained. Balanced accuracy and percentages of
true and false instances are presented for the 104 datasets, and separataly based
on the 0.8 accuracy treshold. For true and falses instances, the median number
of instances is presented along the percentage.

Balanced Accuracy % of True instances % of False instances
Models (#) Median Min Max Median Min Max Median Min Max

All (104) 0.85 0.42 1.0 94% (307) 61% 100% 6% (21) 0% 39%
Acc >0.8 (60) 0.92 0.81 1.0 97% (404) 85% 100% 3% (11) 0% 15%
Acc <0.8 (44) 0.60 0.42 0.79 82% (252) 61% 98% 18% (62) 2% 39%

other clustering methods like k-means where centres are not necessarily existing
instances. Metrics to compute distances, so clusters, can be selected arbitrarily,
with the Euclidean distance being the usually chosen distance. As both raw data
and influences data are tabular data of the same dimensions, the distance metrics
can be easily applied to both datasets to compute clusters without adapting the
clustering method to a specific input. We use ten different percentages to choose
the number of clusters: 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40% and 50%. We
define the number of clusters based on the percentage as ncluster = p∗ninstances

with p the selection percentage between 0 and 1. We set a minimum number
of two to avoid too few clusters. As the size of the datasets varies greatly as
shown in Table 1, we prefer to select a percentage rather than fixed numbers
of instances to take into account the diversity of the datasets. As we aim to
show how clustering on influences exhaustively performs against the raw data,
multiple percentages per dataset can show how cluster quality evolves without
looking for the optimal number of clusters (which may also be different for each
method).

Finally, we evaluate if clusters are well defined and manage to group similar
instances and separate dissimilar instances based on their a-priori labels. We
select two external clustering metrics, Entropy and Purity. With external met-
rics, class labels are needed as metrics assess the distribution of labels within
clusters to evaluate how clusters and labels are related and how clusters man-
age to group similar instances. Entropy measures the distribution of labels in
a cluster, i.e. the ability of the algorithm to differentiate between data that do
not have the same ”real” class. A perfect entropy means all instances from the
same class are in the same clusters. In addition, Purity measures the relative size
of the majority class in a cluster to evaluate its dominance over other classes.
Perfect purity describes that each cluster has only one class. These two metrics
give values between 0 and 1. A perfect clustering will usually have an entropy
equal to 0 and a purity equal to 1. These metrics are defined as follows [2]:

Entropy =

K∑
k=1

nk

n

(
− 1

log q

q∑
i=1

ni
k

nk
log

ni
k

nk

)
Purity =

K∑
k=1

1

n
max

i
(ni

k)



8 E. Escriva et al.

where Ck is a particular cluster of size nk, q is the number of class in the
dataset, K the number of clusters and ni

k is the number of instances of the ith
class assigned to the kth cluster.

4.2 Results

In this section, we describe the results of the experiments by first comparing
the clusters based on the influences from XAI methods with the ones made with
raw instances. We then study the impact of each data subgroup on the cluster
quality for KernelSHAP and Spearman coalitional. For all experiments, results
are presented separately based on the machine learning model’s accuracy to dif-
ferentiate the impact of the model performance on the influences and clustering.

Comparing Raw data and XAI influences clustering When comparing
raw data clusters to the influence ones, for all instances, Figure 2 shows raw data
clusters have lower purity and greater entropy than other clusters, regardless of
the percentages, the XAI methods or the model performance. Differences in
entropy between clusters from raw data and influences are even greater when
the model has an accuracy greater than 80%. Clusters from raw data have poorer
quality than clusters from influences, indicating that clustering instances based
on their influences from XAI methods gives better results than clustering the
raw data. Also, as expected, when models have a lower accuracy, clusters have
a lower purity and entropy, whatever the data or cluster percentages. Indeed,
when the model’s performance is poor while the model is adequately trained,
this may indicate that the data is less generalisable or of lower quality. This
hypothesis seems to be reflected in the quality of the clusters created.

When taking into account only the true instances (the instances well pre-
dicted by the model), Figure 3a shows similar results as Figure 2: clusters
based on influences have better quality than the ones based on raw data (for
all XAI methods, percentages of selection and model accuracy). The purity and
entropy are almost perfect, even with low selection percentages. Clusters have
also better quality with only the true instances than with all the instances of
the dataset. Figure 3b only considers the false instances (instances misclassified
by the model). Globally, the cluster quality is degraded, especially the purity.
Since purity checks the proportion of the majority class in each cluster, grouping
instances misclassified by the model logically lower the cluster purity. No XAI
method seems to have a good result on small percentages, even if they all have
better results than raw clustering. With false instances, we analyse cases where
the model fails to generalise or describe the data correctly. As influences rep-
resent the model decision, influences of misclassified instances may have lower
quality than true instances. They may, however, be representative of why the
model does not generalise and understand these data. Thus, these clusters can
indicate where the problems lie in the data or the model.

Moreover, even if this is not the aim of this paper, we can briefly compare
XAI methods between them based on cluster quality. Although all are attribution
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Fig. 2: Comparison of clustering for XAI methods trained on all instances.

methods with similar global behaviour, the calculated influences appear to be
sufficiently different to produce dissimilar cluster results, especially in entropy.
Spearman coalitional seems slightly better at clustering false instances on mod-
els with low accuracy. Clusters based on LIME have purity and entropy close to
the clusters based on raw data, making this XAI method the one with the worst
results. Based on the subgroup of data studied, one method may be preferable
to another depending on the context. This seems consistent with the findings
of [4], where depending on the dataset, the interdependence of attributes, the
dimensionality or the model, one XAI method can be more efficient than oth-
ers. The same reasoning seems to apply here, where according to the subgroup
studied, one XAI method can be better than the others.

In the next sub-section, we select only KernelSHAP and Spearman coalitional
to study the impact of using only specific subgroups of data, as TreeSHAP is
almost identical as KernelSHAP and LIME have the worst results.

Comparing the impact of using different data subgroups In this sub-
section, we aim to show in which circumstances well classified or misclassified
instances can be used to produce clusters of good quality (or not), notably in
the worst case (degraded accuracy on a set of misclassified instances). Figure
4 and 5 show the cluster quality for the three data modalities, with influences
respectively from KernelSHAP and Spearman coalitional.

Figure 4 shows little difference in cluster quality between all instances and
true instances subgroups for models with high accuracy. Purity metric is high and
almost equal for both modalities, and the all instances subgroups have slightly
higher entropy. Influences from true instances produce almost perfect clusters
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(a) ”True” instances.

(b) ”False” instances.

Fig. 3: Comparison of clustering for XAI methods trained on (a) only ”true”
instances and (b) only ”false” instances for models with an accuracy below 0.8.

even with low cluster percentages and are little affected by the model accuracy.
As models with high accuracy have fewer false instances, their influences may
only produce noises for the clustering. Removing them give slightly better global
results, as clusters have better entropy. For models with low accuracy, there are
more differences between the subgroups, presumably because the proportion of
false instances is greater. The all instances and true instances subgroups have a
0.4 difference in entropy and a 0.1 difference in purity for almost all percentages.
The false instances subgroups also have similar purity and better entropy as
the all instances subgroups. Separating true and false instances to study them
separately produces more homogeneous and coherent clusters than keeping all
instances together, especially on low-accuracy models. With these models, the
number of false instances is higher, and they often represent behaviours not
caught by the model.
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Fig. 4: Comparison of clustering of KernelSHAP influences.

For Spearman coalitional method, Figure 5 reveals a similar overall behaviour
to KernelSHAP regarding the cluster quality depending on the subgroups, espe-
cially on high-accuracy models and on the true instances subgroups. However,
for low accuracy models and unlike KernelSHAP, there are some differences
when using only false instances. The false instances subgroups have slightly
higher purity and lower entropy, especially on low percentages. The different
use of input data by both methods can explain this behaviour. KernelSHAP
use the input to produce perturbations for the model, creating new instances
and studying a larger area of the data space than just the input data (here, the
false instances). In contrast, Spearman coalitional does not produce any pertur-
bations and uses the input data as is to explain the model. The data space is
then smaller, therefore, less exhaustive. Using only false instances may lead to
influences more precise for this subgroup, compared to using all instances or in-
stances with perturbations, hence the difference between the two subgroups for
Spearman coalitional and the difference with KernelSHAP. Moreover, for low-
accuracy models, clusters from true instances and false instances subgroups are
better than the clusters from all instances.

These two figures show that different XAI methods can lead to clusters with
distinct qualities or behaviour based on the data subgroups selected. These meth-
ods can produce diverse and meaningful clusters to understand the modelling
and dataset.
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Fig. 5: Comparison of clustering of Spearman coalitional influences.

5 Discussion

Clustering on XAI influences showed better results than clustering on raw data,
regardless of the percentage of clusters, the XAI method or the performance of
the modelling. The influences seem to contain information allowing a better clus-
tering, probably by highlighting the most significant attributes for each instance
or removing noises from raw data. This finding seems consistent with the results
of [3] while showing a more global approach, working with other XAI methods
than KernelSHAP and a hundred of datasets.

Separating the instances correctly and incorrectly classified by the model also
seems to give better results than keeping all the instances together. Since the
information in the two subgroups is different, they each seem to create noise in
the information of the other subgroup. Indeed, the misclassified instances are of-
ten outliers or critical instances in the dataset. Their behaviour is different from
the general behaviour of the data, whereas correctly classified instances follow
the behaviour that the model detects. However, as some misclassification may
result from bias in a subgroup of the data or from the atypical behaviour of that
subgroup compared to the whole dataset, it is of great interest to study them
as a priority. When separating correctly and incorrectly classified instances, the
differences in cluster quality seem to be more pronounced with the Spearman
coalitional method than with KernelSHAP. The contribution seems to depend
on the XAI method used, probably depending on the XAI method for influences
since KernelSHAP creates perturbations on the instances and Spearman coali-
tional keeps the input data as it is. A limit to these subgroups’ separation is
also the decrease of its relevance when the accuracy of the model increases. In-
deed, the number of false instances logically decreases with increasing accuracy.
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Creating an XAI model and clusters with a low instance count does not make
sense and can only lead to data misunderstanding. However, as the accuracy
increases, the false instances become mostly outliers of the dataset or biased
instances rather than subgroups with their behaviours to analyse. Their small
number can be analysed manually without any particular clustering method.

Finally, the proposed approach also adds another use of influences. Clusters
based on influences can be used to focus on sub-groups of data to be studied.
Clustering can be combined with other approaches to understand the clusters
created, like rule-based algorithms or instance selection. It reinforces the idea
that influences can be considered as new inputs for finer analysis, either directly
in the ML pipeline (feature selection [15]) or, afterwards, to gain a more in-depth
and concise understanding of the ML model and the underlying data. Examples
of how explanation clusters can be used are available on the GitHub mentioned
above.

6 Conclusion and perspectives

We propose in this paper a general framework for clustering instances based
on influences and predictions. We combine XAI local attribution methods with
clustering to explore the space of influence data. We provide clusters of simi-
lar instances to assist in analysing modelling and dataset. Experiences validate
the valuable contribution of influence-based clustering. The clusters from the
influence-based framework are more homogeneous and of better quality, provid-
ing insight into the modelling. We also prove that the clusters formed are of
good quality and pertinent, even for low-performance models. We also show the
advantages of splitting the well- and misclassified instances by the model when
studying a dataset as a whole, as it highlights the most important subgroups of
data and the behaviour of outliers simultaneously.

Perspectives will first be focused on extending our approach for other su-
pervised tasks. Clusters can also help select informative instances and provide
a small number of instances to users. These instances can help to understand
datasets and modelling using examples rather than statistical information. With
users in the loop, the framework with instance selection added could be tested
against example-based XAI methods. New information on the dataset and its
subgroups may also provide feedback on the quality of the training data or the
trained model to improve it. This idea of possible user feedback may be one way
to improve data quality and modelling. Clustering based on influences may help
to understand why the model is wrong and not just where the model is wrong,
and allow for detecting bias in the data. Perspectives will then be focused on
evaluating this feedback and how it can be implemented in the framework. A
long-term perspective is to use the framework in a complete system where users
can interact with the modelling and define typical instances to profile new data
patterns for user testing.

https://github.com/kaduceo/XAI-based-instance-selection
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