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Abstract: This paper is about Cognitive Interoperability of Cyber-Physical Systems and Humans in an 

enterprise context where both are expected to have the capabilities to work collaboratively. We review the 

relevant state of the art, highlighting related concepts, propose a definition for Cognitive Interoperability 

in Cyber-Physical Enterprise context and list characteristics of Cognitive Systems, towards a Cognitive 

System-of-Systems. 
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1 INTRODUCTION 

In an enterprise, dynamics in business are increased by new 

technical possibilities stemming from, e.g., the IoT, CPS, 

Digital Twin, Sˆ3 Enterprise (Sensing, Smart, and Sustainable 

Enterprise). Much effort is currently put into technologies to 

sense the environment, digitalise observed systems and 

maintain a link between the physical and the digital/cyber 

components. The introduction of Cyber-Physical Systems 

(CPS), together with advances in Information and 

Communication Technologies (ICT), has been the major 

driving force for the 4th industrial revolution (Arnold et al., 

2016). The term CPS refers to a generation of systems with 

integrated computational and physical capabilities (Lezoche 

and Panetto, 2020) that possesses three basic capabilities 

(Cardin, 2019): Intelligence (computation), Connectedness 

(communication), and Responsiveness (control). Applying the 

CPS concept to the Enterprise domain, a Cyber-Physical 

Enterprise (CPE) (Panetto et al., 2019) consists of autonomous 

and cooperative technical elements, humans and sub-

organisations that are connected based on the context within 

and across all levels of the global organisation, from processes, 

through machines and up to enterprises and supply-chains 

networks. Operating a CPE increases the complexity that must 

be handled by organisations, and consequently of the 

interoperability between all its components. 

Interoperability is recognised as an essential requirement for 

Systems-of-Systems (Panetto et al, 2016) and CPE (Panetto et 

al, 2019) in particular. The understanding of information 

exchanged between two entities is the concern of conceptual, 

or semantic interoperability. Recognised as the most 

problematic among the seven types of interoperability issues 

faced by any collaboration (Panetto, 2007), semantic 

interoperability is about attaching meaning (semantics) to data, 

thus transforming it into knowledge that can be shared with a 

common understanding between entities or agents, be they 

technical (machines) or humans. 

This is however the theory. Semantic interoperability is 

usually implemented using ontologies, which provide a formal 

representation of knowledge that machines can process, 

theoretically, in the same way. Today ontology-based 

solutions ensure that technological components (CPS) of a 

CPE share a common vocabulary and can reason on exchanged 

knowledge. Machine-readable ontologies are however not 

readable the same way by humans, who may have 

interpretations that are different from machines, simply 

because they do not necessarily understand all the formalism 

and have specific ways to reason and interpret, that can 

moreover be different from an individual to another. 

Consequently, relying on ontologies is not always enough to 

ensure CPS and human agents understand each other enough 

to cooperate or collaborate efficiently in a CPE context. 

In 2018, the IoT European Research Cluster was highlighting 

that the next generation IoT should take a more human-centred 

perspective, where intelligent objects have social capabilities 

allowing seamless interaction between autonomous systems 

and humans (Vermesan et al., 2018). Similarly, on the Cyber-

Physical Systems side, it has been argued recently that a CPS 

misses a “Social” component to become a Cyber-Physical-

Social System (CPSS), able to collaborate with humans at the 

same level humans would do (Yilma et al., 2021) (Figure 1). 



 

 

 

     

Semantic interoperability creates a common vocabulary that 

components of a system exploit to understand each other, but 

when humans are part of the system, this is not enough. We 

argue here that going a step further is needed to ensure 

collaboration between entities (CPS and humans). This step is 

about associating semantics with the reasoning process and 

would result in what we call Cognitive Interoperability. When 

entities can reason on exchanged knowledge, they are involved 

in a cognitive process. Reaching a mutual understanding 

allowing collaboration implies not only interpreting the 

semantics (meaning) but understanding the way it is processed 

(reasoning) and leads to actions, thus sharing the cognitive 

process. The boundary between semantic and cognitive 

interoperability starts here, and CPS implementing it would 

become CPSS, thus allowing seamless Human-CPS 

interaction and collaboration. 

 

Figure 1: CPSS as a Cognitive SoS (Yilma et al., 2021) 

This paper introduces cognitive interoperability as a 

prerequisite for human-CPS collaboration, defining the 

concept from related state of the art. We first recall what 

cognition means. Then, we summarize existing references to 

cognitive interoperability in the literature and give a definition 

in the CPE context. In the following, we review the different 

forms that takes machine cognition in Industry 4.0/5.0 

systems, focusing especially on human-machine/AI 

collaboration and justifying the need for cognitive 

interoperability. 

2 ABOUT COGNITION 

Cognition is mainly about knowledge and understanding. 

Although it is a research subject by itself, we can refer to a well 

admitted definition used in human experimental psychology 

since years (Neisser, 1967): “Cognition is all the processes by 

which the sensory input is transformed, reduced, elaborated, 

 

1 https://www.verywellmind.com/ what-is-cognition-2794982 
2 Brian, O. Cognitive interoperability – creating a joint state of mind. 
Technical report. 

stored, recovered, and used”. Those processes include in 

particular: attention, language, learning, memory, perception 

and thought1. As essential aspects of cognition, memorisation 

and the capability of learning allow to manage knowledge, 

reason on it, and take decisions. 

Social cognition (Bradford et al., 2015), (Rusch et al., 2020) is 

required when entities want to interact together. Defined as an 

element of the Theory of Mind (Premack & Woodruff, 1978), 

it refers to the capabilities needed to interact with others. 

Social cognition involves complex brain processes, where an 

agent behaviour is driven by interactions with other agents. 

Understanding and recognizing others’ actions is a key 

mechanism of social cognition. It is supported by low-level 

brain processes linked to the observer’s own representation of 

the observed actions. This leads to the motor resonance 

mechanism in the observer’s brain, where an observed action 

either interfere with the execution of a different action or leads 

to execute the same action. This in turn leads to the perceptual 

resonance phenomenon, which is the effect of an action on the 

perception of others’ actions. These two mechanisms are key 

to reach attuned interactions, not only between humans, but 

also between humans and artificial agents as shown in 

(Wykowska et al., 2016). The high-level brain processes 

involved in social cognition are linked to perception: the 

perception of others’ intention, and joint attention. The first 

relates to predict and explain other’s behaviour, by inferring 

their mental states, e.g., beliefs, desires, and finally intentions. 

It is completed by recognizing patterns of action sequences, 

allowing to anticipate upcoming events or actions. Joint 

attention is “the triadic coordination between at least two 

individuals and their focus of attention, wherein the 

individuals attend to each other and also to the content of their 

attentional focus, thus sharing attention” (Wykowska et al., 

2016); it is seen as an essential component to establish a 

common social context. 

3 ABOUT COGNITIVE INTEROPERABILITY 

There is not a lot about Cognitive Interoperability in the 

literature, but it appears under different forms since 2003. The 

first reference is probably in the military domain, related to 

human collaboration only. Referring to the C4ISR model, 

cognitive interoperability concerns the minds of participants 

and the sensemaking process resulting in decision-making, 

which involves perception, awareness, understanding, beliefs 

and values (Blad and Potts, 2003). It refers to a unity of 

mindsets, confidence/trust and mutual understanding based on 

shared education and values. It is understood as a human 

function and “a state of mind that sets the foundation for 

cooperative and effective action.”2. In the nearby domain of 

crisis management, (Kwon et al., 2011) studies the socio-

cognitive aspects of interoperability to support communication 

and joint decision-making among multiple safety 

https://www.academia.edu/28803917/Cognitive_Interoperability_
creating_a_joint_state_of_mind 



 

 

 

     

organisations. Those aspects concern the impact of human 

factors on all interoperability dimensions with issues faced by 

humans in this particular context, which have to be taken into 

account to improve communication and decision-making. 

Referring to information systems technical interoperability in 

e-government, Cognitive Interoperability in (Goldkuhl, 2008) 

is a part of organisational interoperability related to the 

“congruence in thought and perceptions” or “the human 

actors’ way of thinking”. 

In Geographic Information Systems, (Raubal, 2005) 

introduces Cognitive Semantic interoperability, arguing that 

semantic interoperability should build on the theories of 

cognitive semantics and human spatial cognition. This 

highlights that when sharing knowledge, because the meaning 

of terms is in people’s heads, the mental models of both the 

sender and the receiver have to be mapped for a complete 

understanding. 

In the human-machine interaction research field, semiotico-

cognitive interoperability is presented in (Berthier, 2006) as 

the link AI seeks to establish between human and machine. 

Cognitive interoperability is limited here to virtual agent-to-

agent communication using standardised languages and 

normalised means to translate between different knowledge 

representations, including ontologies. The term semiotico-

cognitive interoperability is used especially for man-machine 

communication, where an artificial agent “appears to behave 

in the same way as a human agent would in the same situation 

and, in particular, that (to a predefined extent) some meanings 

seem to be shared between the user and the agent”. 

Globally, cognitive interoperability can be seen as a mean to 

align the minds of entities interacting together and a 

prerequisite for efficient cooperation. With this alignment 

comes a shared, mutual understanding and perception of 

situations, which is also a prerequisite for collaboration. In this 

sense, cognitive interoperability is implemented through social 

cognition (see previous section). When entities comprise 

artificial agents, this implies they have a human-like way of 

thinking and behaving, allowing them to act as pairs. In a CPE 

context, cognitive interoperability can be established when 

CPS entities are capable of social cognition, in a way that is as 

close as possible to the human way.  

4 COGNITIVE INTEROPERABILITY AND HUMAN-

ARTIFICIAL INTELLIGENCE 

To implement social cognition, a CPS should embed some 

artificial intelligence. Cognitive Interoperability between 

humans and CPSs is thus closely related to human-AI 

collaboration.  

In 2017, the concept of Cogniculture was introduced by IBM’s 

researchers (Pimplikar et al., 2017), referring to the study of a 

 

3 https://researcher.watson.ibm.com/researcher/ view 

group.php?id=7806 

system where humans and machines are considered as 

cognitive agents collaborating in symbiosis. Collaborative AI 

in this context considers the collaboration of such cognitive 

agents, including cooperation, competition, or coordination3. 

The resulting combination of human and artificial intelligence 

is referred as Hybrid Intelligence (HI) (Akata et al., 2020). 

This concept can be refined in Collaborative HI and Adaptive 

HI, referring respectively to the challenges of making AI 

systems capable of working in synergy with humans, and learn 

from and adapt to humans and their environment. HI thus 

shares research challenges with cognitive interoperability. 

With HI aiming at reciprocity between humans and computer 

agents, authors identify a set of key challenges for 

Collaborative HI: understanding of humans by the AI system, 

a theory of mind for H-AI groups, understanding of joint 

actions and the implementation of social norms (e.g. 

reciprocity) by both Humans and AI systems, but also the need 

for multimodal interaction means for AI systems and machine 

perception of social and affective human behaviour. Taking a 

different perspective, (Zheng et al., 2017) introduces Hybrid-

Augmented Intelligence (HAI), as the mixing of human 

cognitive capabilities with AI. Two approaches are 

distinguished to qualify existing works: human-AI 

collaboration (“Human-In-The-Loop hybrid-augmented 

intelligence”) and Cognitive Computing systems, where a 

cognitive model mimicking the functions of the human brain 

is embedded in the AI (Cognitive Computing -based HAI). 

Authors highlight the complementarity of human and artificial 

intelligence: normalisation, repeatability and logicality of AI 

needs the creativity, complexity and dynamism of human 

intelligence to deal with difficult problems. While with HAI, 

human-AI collaboration is about complementarity, HI goes a 

step further calling for reciprocity. The second category of 

HAI, i.e., cognitive computing -based, could be an enabler for 

this. 

5 COGNITIVE SYSTEMS, COMPUTING AND 

ARCHITECTURE 

Cognitive interoperability relates to cognitive systems 

interacting together. Humans can already be qualified as such, 

but machines or CPS not yet. Embedding specific functions 

related to cognition into a CPS is a way to make it a cognitive 

system. In the following we review the related concepts and 

theories and highlight the expected characteristics of such 

systems, which CPS should acquire to support cognitive 

interoperability in CPE. 

5.1 Cognitive Systems 

Cognitive systems in their truly, human-like version, 

implement the Man-Computer Symbiosis paradigm, where the 

machine is not working for or in replacement of the human 

being, but in a collaborative or symbiotic way (Vermesan et 



 

 

 

     

al., 2018)). Particularly, they would be “capable of human-like 

motivation, emotion, and personality, highly skilled and 

knowledgeable, and performing human-like reasoning and 

learning”. More generally, human-like characteristics in 

machines are expected to facilitate human-machine 

communication and mutual understanding, where humans can 

more easily interpret and predict machine behaviour. The 

similarities would allow humans and machines to socialize and 

establish a trust relation, thus allowing collaboration and 

partnership. Once again, this refers to social cognition, which 

we defined as an essential element of cognitive 

interoperability. 

Cognitive computing and Cognitive architectures are enabling 

technologies for building cognitive systems. The latter are 

detailed in section 5.3. Cognitive Computing was presented as 

the next generation AI by IBM, as “a computing paradigm 

where computing systems are no more deterministic, following 

their programming rules, but rather probabilistic, by learning, 

reasoning and adapting to a changing environment”. It 

materialises the concept of embodied cognition4, which refers 

to embedding cognition capabilities in some (physical or 

virtual) entity with which humans can interact naturally. The 

focus is given on the ability of agents to become cognitive 

systems, i.e., able to “observe, recognize and identify” and 

able to learn and improve themselves, to negotiate in their 

interactions, and even capable of empathy (Sathi, 2016). 

5.2 Cognitive Things 

The Cognitive thing concept originates from the Internet of 

Things (IoT) research domain. It is a cognitive system 

implementing the cognitive computing principle, which is 

designed to augment human intelligence: with cognition 

capabilities and with which humans can collaborate and 

interact naturally (derived from (Vermesan et al., 2018)). As 

cognitive systems, cognitive things are objects “empowered to 

learn, think, and understand physical and social worlds by 

themselves” (Wu et al., 2014), in collaboration with humans. 

They are autonomous agents gathering data from their 

environment, making sense out of it to take decisions or 

helping their users to take decisions. They can learn complex 

tasks, interact with humans via natural interfaces (Sathi, 2016). 

For Cognitive Things to sense, observe, analyse and take 

decisions, they need different capabilities like speech (voice), 

hearing and listening, vision (visual recognition), motion 

(response and detection), text analysis (structured or not), data 

sources crawling, situation detection and identity resolution, 

up to emotion recognition and empathy (Sathi, 2016). Those 

capabilities allow in particular the integration of immersive 

technologies like Virtual, Augmented or Mixed Reality (resp. 

VR, AR and MR) (Vermesan et al., 2018). 

Cognitive things are very similar to smart objects, which is a 

concept around for two decades originating from the 

 

4 Grady Booch, presentation given to IBM ’s Academy of 

Technology, March 23, 2016. 

ubiquitous computing domain (Kortuem et al., 2010). More 

recently, (Kaisler et al., 2018) define a smart object as an 

“object representation that is computationally aware – 

meaning self-defining and self-reflecting, and, possibly, self-

modifying/self-adapting”. A framework for designing smart 

physical objects is proposed in (Cena et al., 2017), and 

although it is defined for physical objects, it can be extended 

to virtual cognitive objects. Indeed, in human-object 

interaction especially, we can expect the same behaviour from 

virtual objects than from physical ones. Generally, cognitive 

things, as smart objects, would have the following properties. 

From intelligent agents, they inherit reactivity, proactivity, 

social ability and the ability to learn. Following ubiquitous 

computing, they are smart agents, able to perform intelligent 

task, because they “perceive the quality of being effective in a 

given situation”. They are autonomous physical/digital 

objects, having sensing, processing and networking 

capabilities, that can share information, collaborate and 

interact with their environment in a useful manner. According 

to the framework of (Cena et al., 2017), this can be 

summarized in five abilities attached to cognition or to 

interaction: 

• Cognitive abilities: knowledge management, reasoning, 

learning 

• Interaction abilities: thing-to-thing (object object) 

interaction, human-to-thing (human object) interaction 

The ability to learn is an essential feature of smartness, but the 

importance of the interaction abilities is also highlighted. 

Indeed, smart objects adapt their behaviour (interaction 

modalities) in human-object and object-object interaction, to 

the humans, the objects and the context. Moreover, they have 

a social consciousness, giving them the capability to interpret 

social relationships and act in a social community, generating 

new relationships (Cena et al., 2017). 

5.3 Cognitive Architectures 

Cognition refers also to cognitive models or cognitive 

architectures grounded in psychology, cognitive and 

neuroscience theories. Such approaches exist since some time 

now, like the SOAR architecture and some others reported in 

(Vernon et al., 2007), or the LIDA model (Franklin et al., 

2016). LIDA aims at providing a control structure for an 

autonomous agent, attempting to model minds and their 

cognitive processes: perception, attention, memory, emotion, 

decision making, action selection, etc. It conforms to different 

models of cognition, including embodied, situated and 

enactive cognition and builds on the action-perception cycle. 

LIDA-based agents implement the LIDA model, which 

defines different modules and processes, modelling a complete 

cognitive cycle, with: perception of sensory inputs, leading 

subsequently to attention, learning and action, generating an 

effect on the environment. In short, it relies on different kinds 



 

 

 

     

of memories, where knowledge extracted from observation of 

the internal and external environment can be stored, situational 

models that are built from those observations, learning 

mechanisms, and mechanisms for selecting actions and 

behaviours (see full description in (Franklin et al., 2016)). In 

addition to the development of software agents, the Java LIDA 

framework has also been successfully used for simulations in 

neuroscience studies. Today, cognitive architectures constitute 

a class of models that are probably the closest to human 

cognition. However, they are by themselves complex systems, 

like the phenomena they model, with related research still in 

progress after more than twenty-five years. But LIDA or others 

are certainly interesting candidates to give a “brain” to 

cognitive things, making a step towards cognitive 

interoperability. 

6 THE PLACE OF COGNITION IN INDUSTRY 5.0 

The 2020 report of the World Manufacturing Foundation on 

Manufacturing and AI (2020 World Manufacturing Report) 

highlights Collaborative Intelligence where humans and AIs 

collaborate. AI cognition is considered through six 

components: machine learning, knowledge representation and 

reasoning, automated planning, natural language processing, 

machine perception, and intelligent robots. From the human 

perspective, it is highlighted that AI can expand human 

cognition capabilities or taking it into account for tailored 

training and (re)skilling of workers. However, handling 

cognition from the generic perspective to enhance human-AI 

interactions is not done. Nevertheless, there are different 

approaches or technologies qualified with the “cognitive” 

adjective and that implement partially cognitive functions in 

industry 4/5.0 systems: Cognitive Automation, Cognitive CPS 

(CCPS) and Cognitive Digital Twin (CDT). 

6.1 Cognitive Automation 

The automation (by machines) of tasks related to information 

processing or cognitive activities like, e.g., situation 

evaluation or decision-making, is referred as Cognitive 

Automation in the Control community (Thurman et al., 1997). 

More largely, referring to the automation of business 

processes, (Engel et al., 2022) gives a definition grounded in 

AI: “Cognitive Automation refers to seizing ML for 

automating knowledge and service work to realize value 

offered by AI, which is based on implementing artificial 

cognition that mimics and approximates human cognition in 

machines.” In the same paper, authors refer to a definition of 

cognition related to the process of developing knowledge and 

understanding. 

6.2 Cognitive CPS 

The Cognitive CPS (CCPS) concept is relatively new. 

(Khargonekar, 2019) presents a vision for it, where it is 

defined as a CPS that has cognitive functions and capabilities. 

Those can be programmed by design or be learned from 

interactions with other CCPS and humans. It is also referred in 

(Rahman, 2019), where the focus is given on establishing 

mutual trust in human-robot collaboration. More recently, 

(Oliveira et al., 2021) presents it as an autonomous cooperative 

system of CPS with a cognitive architecture enabled by AI, 

which can interact deeply with a physical system. Cognition 

here is a tool to move from controlled to autonomous systems 

that do not necessitate human intervention. The authors refer 

to the coupling with Digital Twins, who can play an important 

role in CCPS, allowing emulation and simulation to explore 

new operating modes and planning, and to diagnose and 

predict, without the need for the real system. This leads us also 

to the concept of Cognitive Digital Twin, which is also a recent 

research trend. 

6.3 Cognitive Digital Twin 

A Digital Twin (DT) is a holistic digital and virtual 

engineering model of a product or more generally a system. 

Different tools and technologies are available for developing 

high-fidelity virtual models (Schleich et al. 2017). They use 

different techniques, such as simulation and emulation, 

including distinct functionalities (McGregor 2002). 

Simulation capability of a DT is provided by a design of its 

environment allowing to approximate off-line the behaviour of 

the real systems to represent how the system reacts (Law, 

Kelton, and Kelton 2000).  It can be thought as a “static 

feature” of the DT. On the other hand, the emulation refers to 

the capability of a DT to be synchronous with the real system, 

so as it behaves almost similarly to the actual behaviour of the 

physical system (Ayani, Ganebäck, and Ng 2018). 

Accordingly, this feature of DT can be thought as a “dynamic 

feature”. An emulation model operates in a hardware-in-the-

loop configuration to perform the same work of the physical 

system (Semeraro et al., 2021). It provides a closer replication 

with respect to the simulation model (Lee and Park 2014). The 

concept of Cognitive Digital Twin (CDT) was introduced to 

designate Digital Twins that are extended with AI processes 

and functions giving them reasoning, decision-making and 

autonomous acting capabilities. So far, in all works on CDT, 

these additional capabilities make CDT an autonomous 

intelligent agent as defined in AI (Russell and Norvig, 2010) 

(Maes, 1995) and Agent-Based Computing (ABC) (Luck et 

al., 2004) fields. 

(Kalaboukas et al., 2021) describes CDT as able to reason on 

information they exchange (data), understand it and perform 

actions accordingly, taking into account the physical twin state 

and behaviour (self-awareness). There, Cognition is 

understood as “the ability to understand context, reason on top 

of existing information, predict and optimize behaviour”, and 

the CDT model integrates services supporting each of these. 

CDT is presented as a necessary enabler for agile supply 

chains, fulfilling the need for synchronization, knowledge 

sharing, responsiveness, and optimization across the 

potentially complex network of actors. Thanks to its cognitive 

features, the CDT is expected to be able to detect different 

types of behaviours of the physical twin, for any combination 

of predictable and desired status, and predict impacts. The 



 

 

 

     

CDT model, or profile in (Kalaboukas et al., 2021), is 

implemented as an ontological knowledge graph associated to 

status, behaviour, specifications, processes the DT is part of as 

well as API and optimisation services supporting the cognition 

process. 

(Abburu et al., 2020b) considers three progressive levels of 

cognition augmentation for DT: Digital Twin, corresponding 

to the classical digital replica where isolated models of the 

physical twinned are created; Hybrid DT, where the models are 

interrelated allowing some prediction; and finally Cognitive 

DT, which has knowledge manipulation and problem-solving 

capabilities allowing to deal with unknown situations. The 

cognitive capabilities of the CDT include sensing, reasoning 

and self-learning, leading to continuous adaptation of structure 

and behaviour, and thus proactivity. In (Abburu et al., 2020a), 

the authors highlight that cognition functions enable 

understanding: they make sense out of data under 

uncertainties, generating knowledge that supports reliable 

decision-making or control. They formalise the cognition 

process as: inserting new knowledge, learning new models, 

better situational understanding, and action planning. This 

leads to challenges related to knowledge representation, 

acquisition and update, which are in fact classical ones in 

knowledge engineering. 

6.4 Human-CPS collaboration and the need for cognitive 

interoperability 

From section 4, we have seen that cognitive interoperability 

was tightly linked to human-AI collaboration. Specially in the 

industry 4.0 domain, the concept of Operator 4.0 (Fast-

Berglund et al., 2016) has appeared some years ago, defining 

categories of augmented workers, where humans are assisted 

by different so-called smart technologies to facilitate or 

improve their work: “Operator 4.0 refers to smart and skilled 

operators of the future, who will be assisted by automated 

systems providing a sustainable relief of physical and mental 

stress and allowing the operators to utilise and develop their 

creative, innovative and improvisational skills, without 

compromising production objectives” (Romero et al., 2016). 

Part of these categories refers to integration of technological 

tools with humans: the super-strength operator, e.g. using 

exoskeletons, the Augmented Operator using some AR/VR 

tools, the Healthy Operator augmented with wearable well-

being sensors and the Social Operator sharing knowledge 

through social networks. Here the technologies are simply 

used, and even when they have their own embedded 

intelligence and potentially cognition mechanisms, there is no 

dialog and no collaboration. The operator types concerned by 

collaboration and cognitive interoperability are the following: 

the Smarter and Analytical Operators, where AI assists in 

activity planning or data analytics; the Collaborative 

Operator, e.g. interacting with Cobots; and finally the special 

One-of-a-kind Operator, which refers to adaptation and 

personalisation capabilities needed to be added in technologies 

to be tailored for humans. 

We list here the most common kinds of human-CPS 

interactions where cooperative or collaborative work would 

require a high level of mutual understanding between the 

entities, justifying a need for cognitive interoperability. 

• Human-Robot: This refers to collaborative operators of 

Operator 4.0. Cobots, as robots made for collaboration 

with humans, should have a certain degree of autonomy 

and cognition capabilities. Although currently they have 

the autonomy but rarely the cognition, they should be able 

to adapt their behaviour to humans and communicate and 

act in a way humans can understand. This means 

capabilities of learning, reasoning, and autonomous 

acting, human-like or human-understandable interaction 

means (HMI), human-like actions (which humans can 

anticipate or understand), capability to explain behaviour, 

social capabilities…, i.e., enough capabilities for social 

cognition. Globally, the integration of cognitive abilities 

with perception and interaction abilities in robots remains 

a challenge for a meaningful human-robot collaboration 

(Castro et al., 2021). 

• Human-AI: This refers to smarter and analytical operators 

of Operator 4.0, when human and AI work together in 

cooperative / collaborative problem solving and decision-

making frameworks. For the AI, this implies having the 

following capabilities: reasoning, learning, autonomous 

decision-making, social capabilities (for teamwork), 

explainability of reasoning or decisions, i.e., enough 

capabilities for implementing Hybrid AI (see section 4). 

The functions of the one-of-a-kind operator of Operator 4.0 

should indeed be considered as inherent functions of the CPS 

entity as part of human-robot or human-AI collaboration. 

Finally, other kinds of human-CPS collaboration should end-

up in one of the two categories above. For example, human-

machine collaboration leads to transform a machine in a smart 

machine, embedding some AI, and depending on its functions, 

the requirements for efficient collaboration will be similar to 

those for human-AI or human-robot collaboration. 

7 A PATH TO COGNITIVE INTEROPERABILITY 

Implementing cognitive interoperability in a CPE is not trivial. 

The CCPS and CDT approaches (section 5) provide a basis, 

but which will need to be extended with concepts from 

cognitive systems (section 6). So far, implementations of CDT 

(Abburu et al., 2020b) focus on bringing capabilities for 

reasoning to twinned CPS, with enough self- and context-

awareness to allow some autonomy in actions and decision-

making. Current research coupling (C)CPS with (C)DT are 

still limited in that they focus on the twinned CPS only, 

without considering enough interactions with its environment. 

For Human-CPS collaboration, cognitive capabilities should 

include more as we have seen in the previous section. We can 

cite the following: (1) replicate human cognitive process, to 

facilitate understanding and anticipation by humans; (2) acting 

in a self-explainable way or provide explanations, to facilitate 

understanding; (3) using human-like interfaces to 

communicate (e.g. use talk, gestures, vision, touch...). Some 



 

 

 

     

works (Semeraro et al, 2021) make the hypothesis that a 

simulation environment that closely resembles the system and 

recreates its stochastic behaviour, is sufficient to generate the 

training data for an AI-based cognitive system. Such 

environment can be composed by a set of collaborative DTs 

representing the interoperating systems, where AI technology 

is used to enhance and train these CDs to correctly mimic the 

true physical realities as close as possible (including faults and 

rework situations). This approach can be extended to CDT if 

we assume the training set can also be representative of the 

cognitive functions. However, there will be a semantic gap 

(called reality gap) between the training dataset generated 

from the simulation/emulation of a CDT model and the actual 

knowledge that emerges from the different exchanged data in 

the real system. A possible solution to close this divergence of 

the simulation from the real behaviour of interoperable CPS 

could be to use adversarial deep learning methods, based on 

Generative Adversarial Networks (Goodfellow et al., 2014), 

able to generate new data from a given training set, with the 

same statistical characteristics. Such a trained CDT,  able to 

generate cognition-induced behaviours, should be able to 

compensate or integrate the semantic gap of the knowledge 

emerging from the interoperation between Cognitive CPS 

(CCPS). 

A Cyber-Physical Enterprise (CPE) may be considered as a 

System-of-Systems (SoS) (Weichhart, et al, 2020) including in 

particular CPSs, built on five basic capabilities (Boardman and 

Sauser, 2006): Autonomy, Belonging, Connectivity, Diversity 

and Emergence. Extending to a cognitive version, this would 

be a Cognitive SoS (CSoS), consisting of autonomous set of 

cognitive sub-systems. Sub-systems of a SoS may be 

considered as agents, capable of sensing their environment, 

plan actions and execute them in the environment. The 

environment typically reacts to these actions. Agents are 

independent and have their own goals they follow. Agents are 

evaluating their actions against these goals to see if a goal can 

still be reached. These agents might either be communicating 

directly to each other with messaging or might indirectly 

communicate with each other by placing signals in the 

environment. The loose coupling of agents in a CSoS should 

allow some unplanned cognitive behaviour to emerge, creating 

a collective intelligence. Might this be considered as a 

cognitive system-of-systems? This remains to be 

demonstrated. By establishing cognitive interoperability, the 

ultimate goal is the transition towards an overall cognitive 

system-of systems, optimized across all layers of a CPE. 

From a systems engineering perspective, the notion of SoS was 

best described as an emergent system from at least two loosely 

coupled systems that are collaborating (Morel et al, 2013) (see 

Figure 2). The SoS principle dictates that the relationship 

between component systems is recursive as any system is 

produced by another higher system, answering specific 

requirements. For a dedicated project, the target system is the 

final produced system in this recursive loop.  

Hence, (Yilma et al, 2021) postulate that a true CPSS should 

be the evolution of CPS devices as an independent system with 

the addition of a social component. As described in a part of 

the CPSS meta-model (Figure 2), this makes it possible for a 

new kind of CPSS to emerge as SoS from the interaction of 

these socially capable CPSS devices with humans as well as 

other non-human entities possessing a social component. By 

nature, the CPSS is indeed a CSoS, as the function of the social 

components is to implement cognitive functions allowing 

human-like behaviour of CPS. We thus propose the CPSS 

approach as a basis to establish cognitive interoperability in 

CPE.  

 

 

Figure 2: CPSS metamodel (Yilma et al., 2021) 

9 CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper we have introduced cognitive interoperability in 

cyber-physical enterprises, giving background on cognition 

and different kinds of cognitive systems, focusing on 

industry4/5.0 approaches. We have made the link with human-

cyber-physical systems collaboration and proposed a basis for 

the establishment of cognitive interoperability with cyber-

physical-social systems. 

Cognition and understanding are a first prerequisites allowing 

the machine to adapt its behaviour to the presence of humans 

(situation identification), and to individuals (personalisation). 

Then, having sentiments, compassion or empathy (i.e. 

emotional responses) leads to another level in the evolution of 

machines, which is related to anthropomorphism, a research 

topic in social robotics and Human Computer Interaction 

(HCI) (Duffy, 2003). Cognitive CPS and, by extension 

cognitive SoS (CSoS) are a big shift from CPS to CPSS as a 

mean to make interactions with CPS devices more 

anthropomorphic through the addition of cognitive functions 

(as social component of the CPSS). Hence, the "Social" part 

carries a broader meaning relating to complex emotional, 

cognitive and behavioural aspects. Although our focus is on 

https://www.zotero.org/google-docs/?WQliec
https://www.zotero.org/google-docs/?WQliec


 

 

 

     

human-CPS interoperability, it is worth noting that CPS 

interactions can also be with non-human entities. For instance 

CPS for animal care (Own, 2012), CPS for crop cultivation and 

gardening (Stepney et al., 2012), etc. Generally, capturing the 

full spectrum of the social cognition aspect in CPSS essentially 

means to amend the design of machines inspired by human-

like cognitive functions which allow CPSS to detect, reason 

and adapt to the various needs of the interacting entities, 

supported by a mutual understanding and shared mindset. 

In this era of digitisation, where virtual workplaces are 

becoming a common trend, the popular opinion, and fear is 

that machines will continue to take ever larger portions of 

human work activities eventually replacing us. Despite, the 

progressive changes especially in Industry 4.0 (and currently 

the so-called Industry 5.0), we are on track towards full 

automation, there are still a wide range of opportunities to 

reimagine digital workplaces in the context of human-machine 

collaboration. As opposed to a race against one another we can 

redesign these systems blending human-machine participation 

to perform far more efficiently than either could individually. 

The ultimate vision of the CPSS paradigm shares this notion 

of fostering a seamless human-machine collaboration by 

instrumenting the human and socialising the machine 

(Carrozza, 2019). Nowadays as more and more people are 

becoming users of wearables and sensory devices, the leap in 

the concept of "quantified self" opens opportunities to 

instrument humans by taking advantage of the humongous 

amount of collected data. 

Although humans are still being instrumented for various 

purposes in the realm of CPSS, extrapolating true socio-

cognitive dynamics for the socialisation of machines is yet to 

be explored. The future of CPSS will be the formalisation of 

its “social dimension” without necessarily trying to mimic the 

humans but conceptualising the relations that they can develop 

with a human in an interpretable and understandable way. At 

this point we can say that the lack of a common understanding 

and a comprehensive means of representing social aspects in 

CPSS are still issues.  

Thus, opening opportunities for multidisciplinary efforts to 

gradually introduce socio-cognitive aspects in CPSS research 

is strategic for a multidisciplinary approach in the quest 

towards a true cognitive interoperability between CPSS and 

thus in the related Cognitive Systems-of-Systems. 
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