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Abstract

In the paper ‘The non-Riemannian nature of perceptual color space’, the authors analyze
the data of visual experiments conduced using triad of CIE L∗ achromatic stimuli. The
statistical analysis of their results leads them to claim that the L∗ axis cannot be endowed
with a Riemannian metric coherent with observers’ responses. In this communication we
provide a mathematical analysis which, in our opinion, confutes the main claim of the quoted
paper. Furthermore, we raise questions on the soundness of using an achromatic perceptual
coordinate to describe non-chromatic perception. We inform about an alternative in which
achromaticity emerges from the very act of observing colors [2, 3].

Keywords: Geometry of perceptual color space; Riemannian metrics; Achromatic perception.

1 Introduction

In the paper [4], the authors use the psychological Thurstone protocol [15] applied to triads [13]
to study the perception of achromatic visual stimuli. The statistical analysis of the large quantity
of data that they have gathered reveals a diminishing return effect. From this, they infer that ‘the
perceptual color space’ cannot be Riemannian.

Our primary goal in this contribution is to show that this inference is not mathematically cor-
rect. Our counter-argument will be presented in section 3, after having translated in mathematical
terms Thurstone’s protocol applied to triads in section 2.

To give a concise description of our counter-argument, we recall here that reasoning followed
by the authors in [4] is the following:

1. hypothesis: the perceptual color space, let us denote it with C, is supposed to be Riemannian;

2. hypothesis: the triad stimuli are codified by L∗ values;

3. hypothesis: the set of L∗ values is a geodesic w.r.t. the Riemannian metric of C;

4. mathematical fact: the Riemannian distance induced on a geodesic is additive;

5. proposal by the authors: equip what they call the L∗ axis with a Riemannian distance based
on the Thurstone map;
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6. experimental procedure followed by the authors: observers are exposed to triads of L∗ stimuli
with fixed difference of differences, they have to indicate which one of the test stimuli ‘is
more different than the reference stimulus’;

7. experimental fact: the statistical analysis of the data gathered shows that the observers’
responses are not compatible with the additive property of the Riemannian distance proposed
in item 5.

8. inference: the L∗ axis cannot be endowed with a Riemannian distance compatible with
achromatic perception.

Our objection to this reasoning is the following: the experimental procedure followed in [4] involves
two different distances on the L∗ axis. The first is the one used to define differences of differences
in stimuli triads. The latter is the Thurstone Riemannian distance used to test statistical com-
patibility with observers’ responses to the question ‘which test stimulus is more different than the
reference one’.

As we will show in section 3, for the argument of [4] to be coherent, the distance used to define
differences of differences (i.e. the Riemannian one supposed to be defined on the L∗ axis) should
be the same as that used to test the responses of the observers, which is not the case.

Besides this critical mathematical issue, let us also remark that the authors consider only one
particular Riemannian distance on the L∗ axis, the one induced by the Thurstone map, whereas
many other Riemannian distances can be envisaged.

The second goal of our contribution, developed in section 4, is to further underline the caution
expressed by some experienced color scientists about the use of an achromatic coordinate, as L∗,
to perform psycho-physical tests.

2 A mathematical framework for the Thurstone protocol
applied to triads of L∗ values

The psycho-physical protocol chosen in [4] to gather and analyze the perceptual responses to triads
of achromatic stimuli is Thurstone’s one [15] applied to triads [13]. It is important to underline
that, in spite of its importance and wide use, Thurstone’s protocol is not the only one available
for the kind of experiments conducted in [4], moreover it is not clear if the hypothesis upon which
it relies are satisfied in the case of triads of L∗ values.

Nevertheless, since the claims of [4] are based on Thurstone’s protocol applied to triads of L∗

values, we need to build a mathematical formalization of this particular psycho-physical protocol
in order to precisely state our counter-argument.

For the sake of a more readable notation, we shall use the letter x to denote L∗ values and
reserve the letter L∗ to denote the set of all such values, called L∗ axis (or achromatic axis) in [4].
As a set, L∗ can be identified with [0, 100). More information on L∗, which is not relevant at this
stage for the mathematical analysis, is given in section 4.

A generic Riemannian metric on the L∗ axis can be expressed as follows:

ds = h(x)dx, (1)

where h : L∗ → (0, 100).
The Riemannian distance induced by this generic Riemannian metric ds is defined in this way:

dhL∗(xi, xj) =

∫ xj

xi

h(x)dx, (2)

for all couples of L∗ values xi and xj supposed to be arranged in such a way that xi < xj , so that
dhL∗ always takes non-negative values. Notice that the superscript underlines that the Riemannian
distance depends on the function h that appears in eq. (1).
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As mentioned before, the experimental protocole of [4] uses the method of triads [13]. In the
sequel,

t = (x1, xref, x2), (3)

with x1 < xref < x2, denotes a triad of L∗ values and T refers to the set of all triads.
T can be endowed with an equivalence relation Rh that depends on the function h and which

will be used later on: given two triads t = (x1, xref, x2) and t′ = (x′1, x
′
ref, x

′
2),

t ∼Rh
t′ ⇐⇒ dhL∗(x2, xref)− dhL∗(x1, xref) = dhL∗(x

′
2, x
′
ref)− dhL∗(x′1, x′ref), (4)

i.e., two triads are Rh−equivalent if the difference between the Riemannian distances dhL∗ of the
extreme values of the triads w.r.t. to the reference is the same for both triads, or equivalently if
the differences of differences in both triads are the same.

To have a concrete example at hand, the triads visualized in Fig. 4 of the paper [4], i.e.
t = (20, 50, 92.5) and t′ = (45, 50, 67.5) are equivalent w.r.t. the equivalence relation ∼R1 , where
1 : L∗ → {1}, x 7→ 1(x) = 1 for all x ∈ L∗.

We also denote Txref
the subset of T that contains all triads with a fixed reference stimulus

xref. Both triads in the previous example belong to T50.
The measurement task performed by the observers described in [4] can be modeled through

the following function
ϕxref

: Txref
−→ {0, 1, 2}

t = (x1, xref, x2) 7−→ ϕxref
(t),

where

ϕxref
(t) =

1 if the test stimulus x1 is more different from the reference stimulus than x2

2 if the test stimulus x2 is more different from the reference stimulus than x1

0 otherwise.

Here, it is important to notice that such a measurement task can be applied to arbitrary triads
without taking care of differences of differences and that it does not involve any metric judgment.
According to the authors of [4], the judgment “Which one is more different” is more reliable than
the judgment “How big is the difference”.

If there exists a Riemannian distance dhL∗ on the L∗ axis which is compatible with observers’
judgments, then we must have

ϕxref
(t) = 1 ⇐⇒ dhL∗(x1, xref) > dhL∗(x2, xref)

ϕxref
(t) = 2 ⇐⇒ dhL∗(x2, xref) > dhL∗(x1, xref)

ϕxref
(t) = 0 ⇐⇒ dhL∗(x2, xref) = dhL∗(x1, xref)

(5)

for all xref and all t in Txref
. Investigating this problem in its full generality is untractable. The

authors of [4] propose to restrict to five choices of xref (30, 40, 50, 60, and 70), and more crucially
to fix three possible values for the difference of differences ∆ in triads (2.5, 5, and 10). By making
the test stimuli x1 and x2 varying, with fixed ∆, they show that, statistically, observers’ judgments
are not compatible with the constraints (5) when dealing with the Riemannian metric induced on
the L∗ axis by the Thurstone map.

We refer the reader to [15] for a full description of what is now known as Thrustone’s protocol.
This protocol involves stimuli that are differentiated by psychological discriminal processes of
unkonwn nature that constitute the discriminal continuum. It is assumed that the correspondence
between a stimuli and the corresponding psychological process is subject to noticeable fluctuation,
i.e. to discriminal dispersion. This dispersion is modelized by a normal density whose mean is
the perceptual strength of the given stimuli. In the sequel we denote with g the Thurstone map
between the L∗ axis and the set P ∗ of Thurstone perceptual strengths:

g : L∗ −→ P ∗

x 7−→ g(x) = y.
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This map permits to equip the L∗ axis with a Riemannian metric that makes it isometric to the
space P ∗ endowed with the metric dy. More precisely, the metric on L∗ is given by

ds = g′(x)dx, (6)

which means that, with the notations introduced above, h(x) = g′(x). The fact that (L∗, ds =
g′(x)dx) is isometric to (P ∗, dy) follows from the equation:∫ x2

x1

g′(x)dx =

∫ y2

y1

dy. (7)

This is precisely the particular metric that the authors of [4] claim that it is not compatible with
the constraints (5).

3 The mathematical issue in paper [4]

As mentioned before, only stimuli triads with fixed differences of differences are considered for
the measurement tasks. Since the L∗ axis is equipped with the Riemannian metric ds = g′(x)dx
induced by the Thurstone’s map g, one should consider, for given xref and ∆, the set

T∆,h
xref

= {t ∈ Txref
: dhL∗(x2, xref)− dhL∗(x1, xref) = ∆}. (8)

with h = g′. According to the definition of the equivalence relation ∼Rh
given in eq. (4), any two

different triads t and t′ of T∆,h
xref

are equivalent modulo ∼Rh
.

There is a simple mathematical way to express the system of constraints (5) by means of the
equivalence relation: the map ϕxref

must ‘pass to the quotient’, which means that there must exist
a function ϕ̃xref

that closes the following commutative diagram1:

T∆,h
xref

{0, 1, 2}

T∆,h
xref

/
∼Rh

ϕxref

π ϕ̃xref

, (9)

where π is the canonical projection of T∆,h
xref

on the quotient set T∆,h
xref

/
∼Rh

that maps a triad of

Th,∆xref
into the only ∼Rh

-equivalence class of triads that contains it.
This diagram, which expresses the compatibility of a Riemannian metric on the L∗ axis, not

only for the one chosen by the authors of [4], with the observers’ judgments, clearly shows the
importance of defining the difference of differences in a coherent way. Moreover, it also clearly
shows that no metric judgment from the observers should be taken into account. This is coherent
with the fact that the observers do not provide such judgements as recalled before.

At the beginning of the section “Analysis” of [4], the authors explained that they consider
differences of differences in triads computed from di := |L∗ref − L∗ti |, that is that they consider the
factorizing problem for the following diagram:

T∆,1
xref

{0, 1, 2}

T∆,1
xref

/
∼R1

ϕxref

π ϕ̃xref

. (10)

1We recall that a diagram with sets and functions between them is called commutative if all directed paths with
the same start and endpoints lead to the same result. Hence, the diagram (9) is commutative if ϕ̃xref satisfies
ϕxref = ϕ̃xref ◦ π. If this relationship is not satisfied, then the diagram is not commutative. Such diagrams
are constantly used in fields such as Riemannian geometry to better visualize the spaces involved in the problem
analyzed and the maps between them. Riemannian geometry is precisely the mathematical domain in which the
assertions of the paper of Bujack et al. take place, this is why we consider the use of commutative diagram useful
and pertinent.
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The statistical analysis proposed in [4] shown that the commutative diagram (10) cannot be closed,
however this fact does not disprove that the commutative diagram (9), which would have been the
correct one to study, can be closed for a suitable function h, and in particular for the chosen
function h = g′.

In other words, the authors of [4] prove just that (L∗, ds = 1(x)dx = dx) is not a Riemannian
space coherent with the perceptual data that they gathered using the Thurstone protocol described
in the previous section. As we have just explained, this fact is very different than saying that the
L∗ axis cannot be endowed with a Riemannian metric coherent with achromatic perception.

In the next section we will discuss several motivations for which we deem that the choice of L∗

is not the correct one to study achromatic visual perception. However, even if the L∗ axis were the
appropriate choice, the results in [4] would not prove that it is impossible to find a suitable function
h such that the Riemannian space (L∗, ds = h(x)dx) is coherent with achromatic perception.

In conclusion, stating that the mathematical analysis of the perceptual data performed in [4]
implies that the perceptual color space C cannot have a Riemannian nature is questionable to say
the least.

4 Issues about the use of L∗ as a perceptual coordinate

We have shown up to now that the mathematical development proposed in [4] does not permit
to justify the main conclusion of this cited work. We discuss now the issue, suggested by the
very title of [4], of whether the L∗ coordinate is really appropriate to account for achromatic color
perception. First, we point out the role of surround in triads and how adaptation to xref should
lead to the necessity of incorporating Stevens’ effect into the Thurstone protocol. Then, we provide
some arguments of the existing literature, that, quite inexplicably, some colorimetrists claim to
be well-known and some other seem to ignore, which tend to confirm that the L∗ coordinate does
not enable to describe faithfully perceptual achromatic attributes. Finally, we draw attention to a
recent model of color perception based on color measurement expressed via quantum information
in which perceptual achromatic attributes, lightness and brightness, are inherently linked to the
measuring process.

In order to precisely state our concerns it is not superfluous to recall the birth of L∗, which
has been manufactured by the CIE in the attempt to provide a more perceptually uniform version
of the luminance L, relative to a reference white. In the CIEXYZ non-perceptual color space, L
coincides with the Y coordinate, see e.g. [17] for more details.

When building the CIELAB space, the CIE proposed an interpolated re-scaling of Y in order
to better approach human perception. From the experiments of Weber [16] and the eventual
mathematical formalization of Fechner [8], it was known that the perceptual response of humans
to intensity variations of achromatic light stimuli is a compressive one. Weber-Fechner’s law uses
a logarithmic function to approximate this compressive behavior. Stevens [14] famously proposed
in 1961 to replace the logarithm with a power law with, of course, an exponent between 0 and
1 to achieve compression. Actually, already in 1958, Glasser et al. proposed in [9] a cube-root
coordinate, obtained in very restrictive isolated conditions, which was eventually used by the CIE
to built the L∗ coordinate, along with some ad-hoc parameters to match as well as possible the
observational data. As mentioned to us by an anonymous reviewer, it is notable that the CIE
publication dealing with colorimetry [1] is silent on the subject of what to do when Y is greater
than 100, as it occurs in fluorescent reflectance specimens as well as with self-luminous objects.
Once fixed an achromatic illuminant used as reference for white with luminance indicated with
Yn, the relationship between the luminance Y of an achromatic stimulus and its L∗ coordinate
was established through the following empirical definition:

L∗ = 116 f

(
Y

Yn

)
− 16, (11)
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where, writing t = Y/Yn,

f(t) =

{
3
√
t if t > δ3

t
3δ2 + 4

29 otherwise
, (12)

where δ = 6/29.
Thus, what must be always kept in mind is that L∗ is nothing but a numerical interpolation

of how the CIE luminance Y is perceived to vary when its magnitude is modified over a uniform
background with no surround . . . and with several more experimental constraints that must be
satisfied for L∗ to make sense.

4.1 On the influence of Stevens’ effect

L∗ is the achromatic coordinate of the CIELAB space. Although widely used (and misused) in
color science and image processing, it is considered by some experienced researchers not a suitable
perceptual quantity because of its inability to cope with appearance effects both in isolation and
with a non-trivial surround, see e.g. [11, 7]. This is a crucial issue because, on one side, there exists
an appearance effect, Stevens’ one, that directly concerns achromatic stimuli and, on the other
side and as previously said, the protocol followed in [4] relies on the use of triads of achromatic
stimuli, which clearly constitute a non-trivial surround. This remark clearly raises more than a
question about the coherence between the use of L∗, which was manufactured in a surround-free
environment, and the study a visual configuration in which it is precisely the comparison with the
surrounding stimulus in a triad that matters.

Let us now come to Stevens’ effect, which is described in [7] as the empirically observed fact that
contrast increases with luminance, where here the word contrast indicates the perceived difference
between stimuli. It is clear that Stevens’ effect induces a perceptual bias in the observation of
inter-differences in triads, however no mention of this effect and how to balance it can be found
in [4].

Stevens’ effect could be incorporated in the mathematical framework described in the previous
sections by allowing the function g to vary with each triad t, becoming a parameterized function
gt, to take into account the contrast bias generated by the luminance of the stimuli appearing in
each triad. Notice that in [4] it is supposed that gt ≡ g for all triads t ∈ T .

Taking into account Stevens’ effect, it may happen that, for certain t,

gt(xref)− gt(xi) 6= g(xref)− g(xi), i = 1, 2, (13)

which would lead to the need of replacing the commutative diagram (9) with the following one:

T
∆,g′t
xref {0, 1, 2}

T
∆,g′t
xref

/
∼g′t

ϕxref

π ϕ̃xref

. (14)

We can also analyze this issue form the point of view of triads in the following way: let t ∈ T∆,h
xref

,
then we can consider the normalized triad defined as

t =

(
x1

xref
, 1,

x2

xref

)
, (15)

which belongs to the set T
∆/xref,h
1 = T

∆,h/xref

1 . This would mean that the Riemannian metric on
the L∗ axis to be searched is

ds =
h(x)

xref
dx. (16)
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4.2 Does an achromatic coordinate really exist?

From the official CIE website https://cie.co.at/e-ilv we can read these two definitions.

• Brightness: attribute of a visual sensation according to which an area appears to be more
or less intense or according to which the area in which the visual stimulus is present appears
to emit more or less light. Variations in brightness range from bright to dim.

• Lightness: attribute of a visual sensation according to which the area in which the visual
stimulus is presented appears to emit more or less light in proportion to that emitted by
a similarly illuminated area perceived as a white stimulus. In a sense, lightness may be
referred to as relative brightness. Variations in lightness range from light to dark.

The CIE self-defined L∗ to be the lightness and that became it. Nowadays only few ‘free thinkers’
allow themselves to disagree with this definition.

One of them is M. Fairchild, who, in section 10.4 of his book [7], entitled ‘Why not use just
CIELAB?’, pointed out that L∗ is completely incapable of predicting or explaining appearance
phenomena and it incorporates no background or surround dependency. Fairchild’s conclusion is
that L∗ ‘does not provide a correlate for the absolute appearance attributes of brightness’.

Fairchild’s objection about L∗ is far from having only a linguistic nature: color attributes are
intertwined and a true codification of them must take their interrelations into account to provide
reliable quantitative data during color perception experiments.

In a publication that dates back to 1953, A. Dresler already wrote [6]: ‘Recent papers [. . . ] in-
dicate that some of the authors are not wholly familiar with the practical difficulties that inevitably
occur when the brightnesses of two adjacent surfaces of different colour have to be matched by
eye, and the result then used to express certain luminous properties of the two surfaces (or of the
two light sources from which they receive their light) in terms of luminance or any other of the
photometric quantities’, and also ‘It should, however, be stressed that this definition of luminance
and the corresponding linear photometric system do not postulate that the human eye should under
all circumstances be capable of measuring luminances by assessing brightnesses. Just the reverse
is true, for it is expressly stated in the relevant CIE recommendation of 1939 that the results of
photometric measurements must always comply with the definition of luminance quoted above’.

The conclusion drawn by Dresler in his paper is the following: ‘We cannot expect a linear
system involving a single function to define accurately the relative luminous values of spectral and
non-spectral lights under the varying conditions of practical application. But I want to make clear
that I have approached the whole problem as a photometrist, a photometrist moreover who has been
slightly irritated by people who persist in the belief that the eye should behave in conformity with
the mystic “hypothesis of the CIE”, and who express surprise and even disbelief when they find
that it does not overlook the fact that our “linear” photometric system is a matter of expediency
and not a matter of visual judgment ’.

J. Koenderink describes luminance as ‘a purely formal entity ’ in [12], adding ‘it doesn’t have
any meaning in terms of the perceptual attributes’ and ‘it doesn’t belong to colorimetry proper ’.

D. Hubel, awarded with the Nobel prize for his studies on the visual system, when discussing
Hering’s theory in his book [10], underlines the intrinsic role played by chromatic opponency in
color perception against the indefiniteness of achromatic stimuli.

4.3 Perceptual achromatic attributes emerging from measurements

The belief of the renowned color scientists quoted above regarding the lack of intrinsic meaning
of an ‘achromatic coordinate’ is also part of a recent color perception model, see e.g. [3, 2] and
the references therein for more details. Here, we just want to underline that, in this model, color
perception is interpreted from the viewpoint of quantum information and observers are exposed to
visual scenes prepared in certain chromatic states and the achromatic information (brightness and
lightness) can be acquired by the observer only after a perceptual measurement, it does not exist as a
prior entity, or a coordinate in a space. Quite remarkably, this way of interpreting the acquisition
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of achromatic information permits to give a mathematical explanation to the phenomenon of
lightness constancy, see [2]. Giving a more precise description is out of the scope of this work
since it requires to introduce many notions and tools from quantum information, such as Lüders
operations, quantum relative entropy, generalized states, and so on, the interested reader can refer
to [2] for all the details.

5 Conclusion

In this communication we have provided a mathematical formalization of the Thurstone protocol
applied to triads used by the authors of the paper [4] and we have exploited this rigorous framework
to point out a mistake in the mathematical reasoning that leads the authors of [4] to the claim
that the space of perceptual colors is not Riemannian.

We have also underlines several reasons why we think that experiments based on the use of the
CIE achromatic coordinate L∗ to gather perceptual information may be flawed. Independently of
the agreement reached between the Bureau of Weights and Measures and the CIE, we consider
that the CIE theory must not be treated in a dogmatic way. As researchers, we have the right
and duty to question its validity, as we would do with any other theory, in spite of its pervasive
presence in all fields related to color.

We would like to end this conclusion with two sentences written by the astronomer and earth
scientist S. C. Chandler in his celebrated 1892 paper [5] in which he proved the existence of
a remarkable discrepancy in the polar motion, nowadays called Chandler wobble, from what
predicted by illustrious predecessors, among them Newton and Euler: ‘Naturally, then, I am not
much dismayed by the argument of conflict with dynamic laws; since all that such a phrase means
must refer merely to the existent state of the theory at any given time’ and ‘Are we so sure yet of
a complete knowledge of all the forces at work as to exclude the chance of a vera causa? ’.

The words of Chandler incarnate beautifully the awareness, largely diffused among scientists
and intellectuals of the final part of the nineteenth century and the beginning of the twentieth
century, that the validity of a sentence must always be referred to the current state of the art
of a theory and that, in order to find the vera causa underlying a phenomenon and widen the
scientific knowledge, sometimes a radical rethinking of the available theories is necessary. This
kind of questioning is exactly what drives the research that is being developed in the quantum
color perception model [3, 2]. This state of mind has pervaded theoretical physics and persists
nowadays, however it does not seem the case in color science, dominated as it is by the CIE
model. Unfortunately, this attitude may slow down or even prevent advancements in our current
understanding of the mechanisms underlying color perception.
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