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Abstract—Sensor Networks (SN) could be defined as networks
of autonomous devices that can sense and/or act on physical or
environmental conditions cooperatively. In sensor networks, data
is typically sensed and sent to an aggregator that will process
it with local AI or send it to a cloud with larger AI. This
centralized architecture has drawbacks such as the aggregator
having to receive and process a potentially huge amount of data,
which results in power consumption that can be significant. In
addition, the transmission of all the sensor data results in extra
consumption of energy due to communication. To reduce the
impact of this last point, on-edge computing allows data to be pre-
processed at the sensor level. It is often used in the architecture
of distributed sensor networks in which each node receives data
from other nodes in the network and processes it with its local
data. In this work, a distributed sensor network model aims to
solve this problem while reducing the impact of data transmission
on energy consumption. The proposed model is able to reduce
the number of transmitted bits per node by 90% in a node-
to-node directed communication scenario. It is also capable of
working with different AI paradigms depending on the required
balance between energy consumption, application configurability,
and accuracy. Finally, this model is capable of converging even
in a network without complete interconnections between nodes.

Index Terms—Wireless Sensor Networks, Distributed Intelli-
gence, Smart Sensors, On-edge Computing

I. INTRODUCTION

Sensor Networks (SN) could be defined as networks of
autonomous devices that can sense and/or act on physical or
environmental conditions cooperatively [3]. In most SNs, data
measured by the sensor are sent to an aggregator that will pre-
process them and send them to the cloud (or the fog) to be
processed by a centralized AI. Posture recognition (PR) is an
interesting use case for SNs like wireless body area network
(WBAN) [2]. Posture is defined as the manner in which the
skeleton and muscles hold the body during different activities
[1]. Figure 1 shows different WBAN architectures and their
power consumption distribution. However, as shown in [4],
centralized structures, such as presented in a) in Figure 1,
have three main drawbacks:

1) The aggregator has to be able to process a potentially
enormous amount of data in real-time. This leads to
a trade-off between the energy consumption and the
computing capabilities of the system.
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Fig. 1: Centralized, distributed and belief-based (this work)
SN architectures and their power consumption breakdown per
sensor, inspired from [5]

2) Transmitting all the sensors’ data is another problem
that can hurt the battery lifetime of the sensor network
nodes. Indeed, the energy consumption overhead due to
communication is usually large when sending raw data
to the aggregator.

3) Finally, transmitting the sensed data does not guarantee
information privacy in case of interception by a mali-
cious individual.

To reduce the impact of the first two drawbacks, “on-edge”
computing allows pre-processing of the data at the sensor
level with AI and, therefore, reduces the amount of data to
broadcast to the aggregator. On-edge computing is often used
in distributed models of smart autonomous SNs where the
intelligence is split among the sensors of the networks and
where no aggregators act as a master device, as presented in
b) in Figure 1. However in [5], He et al. present a power
breakdown of a node and compare centralized and distributed
architectures. It shows that even if TX consumption is lower
than in the centralized model, the distributed model is not as
interesting as the centralized architecture in terms of power
consumption due to memory and computation parts.

In [4], Larras et al. present a distributed architecture of
a Clique-Based Neural Network (CBNN), in which only
the index of the activated neuron is transmitted among the
nodes. Therefore, the amount of transmitted data reduces to
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Fig. 2: Model of the node for the Distributed Sensor Network.

log(NCluster)+log(NNeurons), with NCluster and NNeurons,
the number of possible global states (clusters) and number of
local states (neurons), respectively. However, CBNNs rely on
a specific architecture because the cliques need to be a priori
defined.

In the case of an aggregator-less distributed SN architecture,
this paper proposes to investigate the impact of the reduction
of the volume of exchanged data to unique beliefs, which
are nodes’ local decisions/classifications of the global context.
This is illustrated in c) in Figure 1. Section II introduces
the proposed model by presenting the structure of a node
in the SN and the training and test setups in the context of
posture recognition. Then, the performance of this architecture
is detailed in Section III-A and compared with the distributed
approach in Section III-B. Section III-C shows the impact
of limited network connectivity on the performance. Finally,
this work is compared with other works in Section III-D and
concluded in Section IV.

II. PROPOSED MODEL

A. Nodes of the Network

As presented in Figure 2, each node is composed of a sensor
and/or an actuator, an AI processing block (classification tree,
neural network, ...), and a TX/RX interface used to communi-
cate with neighboring nodes within communication range. As
explained in Section I, the model aims at reducing energy con-
sumption at the node level. One of the leads to achieving this
would be to avoid transmitting raw data or pre-processed data.
The solution explored here is that each node only broadcasts
on, the local classification of the posture. This on is named
belief because, after one iteration of communication within a
graph, it can lack information and be wrong at first, but it will
get more and more precise as the nodes exchange their beliefs.
Another benefit of only transmitting on as a representation of
the global context is that it largely reduces the amount of data
to transmit compared with a system that exchanges raw or
pre-processed data. Indeed, with this model, k bits are used to
exchange 2k contexts. However, when exchanging only beliefs,
the global classification accuracy can be altered. This work
studies application scenarios and techniques to show that the
possible gain in energy is considerable with a minimal drop
in accuracy.

B. Test Setup

To analyze the model of smart sensors presented in Section
II-A, tests were performed using the PR dataset presented
in [6], and available in [7]. It is composed of data from
3 accelerometers and 3 gyroscopes placed by pairs on the

chest, the knee, and the back of 2 types of populations:
healthy and unhealthy subjects. Data is aggregated via Arduino
and processed using classification algorithms to determine the
posture: sitting, standing, or sleeping. This dataset, including
both types of population, is here referred to as the global
dataset. This global dataset is shuffled and separated into two
sub-datasets: the global training dataset and the testing dataset.
The training dataset is composed of 80% of the global one and
the testing one of the remaining 20%.

The network is represented as a directed graph in which
edges represent communication from one node to another. As
each node of the network embeds its own local AI, it should be
trained independently. Thus, local training datasets should be
extracted from the global training one. Local dataset extraction
is performed on Matlab®. The process is divided into 4 steps:

1) The possible local outputs for all combinations of the
local inputs are retrieved from the global dataset. At the
node level, the local inputs are sensed values, while the
local outputs are the node beliefs.

2) The neighbors’ label combinations associated with the
local outputs are identified. For each output found in step
1, the script finds in the global dataset the combination
of neighbors’ local values that lead to it. Then, it
determines the neighbors’ beliefs, creates entries for all
combinations of neighbors’ beliefs and local inputs, and
stores this in a cell array. Steps 1 and 2 are repeated for
each local input value of a node present in the global
dataset.

3) The local dataset is assembled by concatenating all cell
arrays of a specific node. Duplicate lines are identified
and removed. This is done by comparing the combina-
tions of local inputs and neighbors’ beliefs. Different
cases exist:

• If the local inputs are different, then each entry is
kept.

• If The local input are identical and their outputs are
identical, then one entry is kept and the other one
discarded.

• If the local inputs are identical and their outputs are
different, then the decision is more tricky. If one of
the possible outputs is present in the majority of the
neighbors’ beliefs, then the entry with this output
is kept while the others are discarded. Otherwise,
the entry to keep is randomly selected among the
possibilities.

4) The dataset is verified and cleaned. The script automati-
cally adds a reset signal in the local dataset. It is a binary
value associated with each local input, which indicates
if the node has sensed a new value. A 0 means that
the local input has not changed. If it is 1, the local
value has changed, and an entry is then added to the
dataset. In this new entry, the neighbors’ beliefs are set
to a reset state ”R” and the output is randomly chosen
among the possible label associated with the local input.
Random selection is done to avoid output imbalance in



the training dataset. The script also checks the balance
of each output and it duplicates lines if the balance is not
respected. Finally, it shuffles the local training dataset.

During inference, each node of the network reads the asso-
ciated quantized input value in the test dataset and performs
the inference to obtain on. Then, it broadcasts this output to
its neighbors and receives their beliefs. When the network has
converged to one of the possible contexts, the average accuracy
over all the nodes in the graph is computed. Then, each node
reads the next value in the test dataset, and so on.

III. RESULTS

A. Embedded AI Model

The complete system is modeled using Matlab®, according
to the test setup presented in Section II-B. The initial setup
is a full-connectivity SN with 6 nodes. Each node of the SN
represents one of the 3 accelerometers or 3 gyroscopes. Even
though they are placed by pairs (an accelerometer combined
with a gyroscope) in the experiment, the setup here considers
a single sensor per node to effectively demonstrate the appli-
cability of the proposed distributed model. Table I compares
three different AI paradigms that could be implemented as
local intelligence in a node. To determine which paradigm
is the more suitable for the proposed model, the considered
metrics are the test accuracy averaged over all nodes of
the SN, the number of bits transmitted per node when new
information is sensed (referred to as stimulus), the number
of MAC operations per node and per stimuli (to define the
required complexity of the local AI, and thus the associated
consumption), and the configurability to address different
applications, such as the number of layers, nodes, clusters,
etc. The number of bits transmitted per node and per stimulus
and the number of MAC operations per node and per stimulus
are defined as follows.

BTS = Son ∗ C (1)

Where BTS is the number of bits transmitted per stimulus,
Son is the size of on in bits, and C is the number of directed
communications, from a node to its neighbors, required to
converge. Comparisons will be done using directed node-to-
node communications.

MACsti = MACInf ∗ I (2)

Where MACsti is the number of MAC operations per node
and stimulus, MACInf is the number of MAC operations
per inference, and I is the number of inferences needed to
converge.

Each model has been designed to reach an accuracy higher
than 99.5%. Classification trees offer the best performance
regarding the metrics. However, a specific tree is required
per node and per localization, which largely impacts the
configurability for different scenarios. K-nearest neighbors
algorithms are more flexible than classification trees, but they
need 146× more MACsti. The neural network used in this
work is a feed-forward network composed of 3 fully-connected
layers of dimensions 9 (3 local inputs, 1 reset flag and 5

TABLE I: Comparison of AI models

AI
Paradigm

Classification
Tree

K Nearest
Neighbors

Neural
Network

Average test
accuracy 99.99% 99.79% 99.75%

BTS 60.07 60.53 73.36
MACsti 149.5 21876.8 396.8

Configurability
over

application
Low High High

Fig. 3: Comparison of performance between Distributed archi-
tecture and this work (Matlab).

neighbors’ beliefs), 10, and 3, respectively. While offering
excellent reconfigurability, it shows similar performance to
classification trees in terms of communication overhead. The
drawback is the higher complexity highlighted by the number
of MAC operations per stimulus. From this comparison, neural
networks seem to be the best compromise between perfor-
mance and flexibility, especially when a node is removed or
displaced. In this case, to adapt to the new situation, only the
local and neighbors’ neural networks need to be retrained and
not the complete system. This is particularly beneficial when
the number of nodes is extremely large.

B. Comparison with distributed architecture

Figure 3 compares this proposed belief-based distributed
architecture with a traditional distributed architecture, in the
case of a fully-connected graph. For each model, the data from
the sensors is identically normalized on [−1; 1] and quantized
into 5 bits. These values are the inputs of neural networks
as described in Section III-A. The metrics presented in (1)
and (2) are used to compare the performance between the two
architectures. Thanks to the fact that the nodes only exchange
beliefs, the local intelligence block obviously needs to process
a reduced amount of data, compared to a system that ex-
changes raw data. In the case of PR with the dataset presented
in [6], it leads to a reduction in the number of MACsti of
about 5%, while the amount of BTS drops by a factor of 10
(90%), in the case of a node-to-node communication scenario.
Hence, it is shown that if a small variation in accuracy is
tolerable, a belief-based distributed model helps to reduce both
the computations and communication needs of a single node. It
is an excellent lever to reduce the global energy consumption
of an autonomous decision-making node, in an aggregator-less
distributed SN architecture.



(a) Evolution of test accuracy versus connectivity

(b) Evolution of MACssti versus connectivity

(c) Evolution of BTS versus connectivity

Fig. 4: Evolution of test accuracy, average MACsSti and
BTS versus connectivity of the SN.
C. Impact of Connectivity

In this section, the robustness of the model is studied.
Starting from a fully-connected directed graph with n nodes, a
script randomly removes the edges one by one until it reaches a
certain percentage of connectivity C, which equals the number
of edges in the final graph divided by the number of edges
in the fully connected version. However, to consider the final
graph valid, a few rules should be respected:

1) The final graph must be unique. Since edges are ran-
domly removed, any final graph that is composed of
two distinct graphs should be discarded.

2) Each node should keep its self-connection to be able to
understand some recurrent relations if needed.

3) Each node should have at least 1 predecessor and 1 suc-
cessor (without counting its self-connection) to ensure
all information is transmitted.

The goal is to avoid working with too specific topologies of
networks and evaluate the robustness of the proposed model
in a general case.

The impact is evaluated using 4 sets of 6 randomly gener-
ated graphs per set. Each series has connectivity C of 40%,
50%, 65%, 75%, 80% and 100% (the reference, shown in
red in the figures). Figure 4 presents the evolution of the

TABLE II: Comparison with the state of the art

Reference
[Gupta,

GLOBECOM
21] [6]

[Larras,
JETCAS 20]

[4]
This Work

SN
Architecture Centralized Distributed Fully

Distributed

AI Model KNN CBNN

Fully-
Connected

Neural
Network

Test
Accuracy 100% 99.72% 99.75%

TX data
width at the
node level

48 bits 2 bits 2 bits

Number of
MACsti

over the 6
sensors

8100 Not Indicated 2380.68

On-chip im-
plementation No Yes Compatible

metrics presented in (1) and (2) with respect to the connectivity
value. As expected, Figure 4a shows that reducing the SN
connectivity degrades the test accuracy. A large reduction of
accuracy is observed for C lower than 65%. Figure 4b and 4c
show that as the connectivity decreases, MACsSti and that
the number of BTS decrease.

Hence, the proposed model is able to converge even when
all nodes are not connected to each other. However, there is
a trade-off between accuracy and power consumption. This
conclusion is only valid for a reduced number of nodes, such
as in this posture recognition scenario. This should be explored
further in scenarios with a greater number of nodes.

D. Comparison With the State of the Art

Table II compares this model in the case of C100% with
other state-of-the-art solutions1. The proposed distributed AI
model reduces the number of MAC operations per stimulus
by up to 70% compared to the centralized network. Thanks to
its distributed architecture, this model also has the advantage
of being implementable on-chip. It significantly reduces the
latency that exists in a centralized model that relies on an ag-
gregator. Finally, in the presented model, the SNs do not need
to be fully connected in order to converge to a classification
result, unlike the CBNN.

IV. CONCLUSION

In this work, a new distributed intelligence model that aims
to reduce the energy consumption of smart sensors in SNs
is developed. The belief-based model reduces the amount of
data to be transmitted per stimulus by 90% compared to the
common model of distributed SNs while providing decent
accuracies at the system level. Finally, it is also shown that
the proposed architecture is compatible with sensor networks
with reduced connectivity.

1for the works of Gupta et al and Larras et al, the results were extrapolated
as if they were used with the present dataset
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