Sadouanouan Malo
email: sadouanouan.malo@ensma.fr

Annie Choquet-Geniet

Moustapha Bikiengar

PFair scheduling of late released tasks with constrained deadlines

Keywords:

Pfair scheduling has usually been applied in the context of synchronous periodic task systems with implicit deadlines. This paper addresses the problem of scheduling asynchronous hard real-time tasks with constrained deadlines using a Pfair strategy on multiprocessor systems. First, we extend the notion of Pfairness to the context of asynchronous tasks with constrained deadline. Then we investigate feasibility conditions, we propose a rather efficient one and we illustrate the relevance of our criteria through some simulations.

RÉSUMÉ. Les ordonnancements P-équitables ont jusque là été étudiés pour des systèmes de tâches à départs simultanés et à échéances sur requêtes. Notre objectif dans ce papier est d'étendre la définition de la P-équité aux systèmes de tâches à départs différés et à échéances contraintes puis de dégager une condition suffisante d'ordonnançabilité. Enfin, des simulations que nous avons effectuées ont permis d'illustrer la pertinence de nos résultats et de mesurer l'impact de la variation des facteurs d'utilisation et de charge du système sur l'ordonnaçabilité du système.

Introduction

The temporal validation relies on the definition of a scheduling policy and on the proof that the temporal requirements are all met. This issue is rather well mastered for uniprocessor systems, but for more complex systems, many open problems still deserve to be investigated. We here consider multiprocessor platforms, composed of identical processors, and the global scheduling of hard real-time tasks. We assume that preemption and interprocessor migration are permitted and parallelism forbidden (at any time, a task can run on at most one processor). In this context, it has been shown that no online scheduling algorithm can be optimal [START_REF] Mok | Multi processor scheduling in a hard real-time environment[END_REF] [START_REF] Dertouzos | Multiprocessor scheduling in hard real-time environment[END_REF]. In their paper, [START_REF] Baruah | Fast scheduling of periodic tasks on multiple resources[END_REF] [START_REF] Baruah | Proportionate progress : a notion of fairness in resource allocation[END_REF] proved that the problem of optimally scheduling synchronous periodic tasks with implicit deadlines on identical multiprocessor platforms could be solved at run-time in polynomial time using Pfair scheduling algorithms. Pfair scheduling algorithms have been widely investigated last years [START_REF] Anderson | Pfair scheduling : Beyond periodic task sytems[END_REF][2] [START_REF] Srinivasan | Integrating aperiodic and recurrent tasks on fair-scheduled multiprocessors[END_REF]. In all these works, the notion of Pfairness is defined in the context of synchronous tasks with implicit deadlines. In [START_REF] Anderson | Fair scheduling of real time tasks on multiprocessors[END_REF], asynchronous systems are considered, where asynchronism means that some of the first task slots do not take place. But the first job of any task is still assumed to be released at time 0. In [START_REF] Anderson | Pfair scheduling : Beyond periodic task sytems[END_REF], sporadic tasks are considered: periods correspond only to the minimum elapsed time between two consecutive releases. We consider here a slightly different notion of asynchronism: the first release dates of the different tasks are no more assumed to be equal. But all the task slots are assumed to occur. The problem of scheduling tasks with arbitrary deadlines in a Pfair way on multiprocessors has been addressed in [START_REF] Ramamurthy | Scheduling periodic hard real-time tasks with arbitrary deadlines on multiprocessors[END_REF] and a static-priority scheme to schedule a set of such tasks has been presented. In this paper we investigate the extension of Pfairness in order to design Pfair scheduling schemes for asynchronous tasks with deadlines less than or equal to periods. We first extend and adapt Pfairness definition to this new context and then we propose a a sufficient but rather effective feasibility condition and then we present some simulation results.

The remainder of the paper is organized as follows. In section 2, we formally define the Pfair multiprocessor scheduling problem. In section 3, we prove that Pfair algorithm exists for any periodic task set and we give sufficient feasibility conditions. In section 4, we present the simulations results. Conclusions and perspectives are given in section 5.

Pfair scheduling

We adopt the following notations: for any real number x, x is the integer immediately below or equal to x and x is the integer immediately above or equal to x. A slot t denotes the time interval [t, t + 1). We assume that processors are allocated for integral number of slots, thus a task cannot be preempted within a slot. We consider a platform composed of m identical processors. We use the classical task model. Definition 1. A task τ i = r i , C i , D i , T i is characterized by four parameters: its first release time r i , its per period worst case execution time C i , its relative deadline D i and its period T i . The weight of task τ i is U i = Ci Ti and its density is

CH i = Ci Di .
We have r i ≥ 0 and we assume that C i , D i and T i are integral and verify C i ≤ Di ≤ T i . Thus we have 0 < U i ≤ 1. In this section we consider a set Γ of tasks such that r i = 0 (the tasks are said to be synchronous) and

D i = T i . Definition 2. A schedule for a task set Γ is a function S : Γ × N → {0, 1}, such that ∀t ∈ N : τi∈Γ S (τ i , t) ≤ m with S (τ i , t) = 1 if task τ i is scheduled in slot [t, t + 1)
and S (τ i , t) = 0 otherwise. A schedule is then valid iff

∀τ i ∈ τ, t=ri-1 t=0 S (τ i , t) = 0 and ∀k ∈ N * , t=ri+(k-1)Ti+Di-1 t=0 S (τ i , t) = t=ri+kTi-1 t=0 S (τ i , t) = kC i
A fair schedule is approximately an ideal fluid schedule such that, at any time t, each task has been processed for ω i (t) = U i × t processor time units. Now, since processor time is allocated in integral number of slots, the ideal behaviour is approximated by either the integer directly above or directly beyond. A schedule S is said to be Pfair iff ∀τ i , t :

τ i ∈ Γ, t ∈ N, -1 < ω i (t) - j=t-1 j=0 S (τ i , t) < 1.
Informally, the allocation error associated with each task must always be less than one slot. A Pfair algorithm has the following high-level structure: at each time t ≥ 0, a dynamic priority is assigned to each task and the m highest-priority tasks are scheduled in slot t. It can be summarized as follows [START_REF] Baruah | Proportionate progress : a notion of fairness in resource allocation[END_REF]:

1) All urgent tasks are scheduled, where a task is urgent at time t if it must be scheduled at time t either the fairness condition would be violated.

2) Contending tasks are sorted, where a task is contending if the fairness condition is violated neither if it is processed nor if it isn't.

3) The remaining processors are allocated to the highest-priority contending tasks. Three Pfair scheduling algorithms, P F , P D and P D 2 (4; 3; 1; 2), are known to be optimal on an arbitrary number of processors as stated in the theorem 1. Furthermore, there exists a sufficient and necessary feasibility feasibility condition in the context of synchronous independent tasks with implicit deadlines. The three algorithms differ in the choice of tie-breaking rules. In the remainder of the paper, we will consider the algorithm PF to illustrate our results.

Theorem 1. [4][2]

The algorithms P F , P D and P D 2 are optimal for sets of synchronous independent tasks with implicit deadlines. Moreover, such a task set Γ has a Pfair schedule on m processors if and only if

τi∈Γ C i T i ≤ m.

Extension of Pfairness

Our aim is now to prove that fairness can be extended to all independent periodic task sets. We thus consider a periodic task set Γ such that

∀τ i ∈ Γ, τ i = r i , C i , D i , T i with r i ≥ 0 and D i ≤ T i .
We first extend the notion of Pfairnes in the following way: in an ideal schedule of a periodic task set, each task τ i must have received at time t, ω i (t) processor time units. ω i (t) is such that:

ω i (t) =    t ∈ [0, r i) ⇒ ω i (t) = 0 t ∈ [kT i + r i , kT i + D i + r i) ⇒ ω i = kC i + Ci Di (t -kT i -r i) t ∈ [kT i + D i + r i , (k + 1) T i + r i) ⇒ ω i = (k + 1) C i
where k = t Ti represents the instance number of the pending instance of the task. We first have carried out some simulations using the algorithm P F . These simulations lead to two constatations: firstly, if deadlines are less than or equal to periods, if

i=n i=1 C i D i
≤ m, the task set is feasible on m processors and secondly if asynchronous tasks with implicit deadlines are considered, Baruah's condition still holds. This leads us to infer the following result: The proof of the theorem is an adaptation of the proof presented in [START_REF] Baruah | Proportionate progress : a notion of fairness in resource allocation[END_REF] to prove theorem 1 for P F . It is based on the graph theory. We prove that a Pfair schedule exists on any time interval [0, L). In the further, CT R τi (t) denotes the complete processor demand of all sub-tasks of task τ i whose feasibility intervals are included in [0, t]. Thus, CT R τi (t) is equal to j where j is such that

Theorem 2. Given a periodic task set Γ, if i=n i=1 C i D i ≤ m,
d j i ≤ t < d j+1 i
. We first define a weighted digraph G and prove that if G has an integral flow of size τi∈Γ CT R τi (L) then the task set Γ has a Pfair schedule.

Definition 3. The Pfair-graph is the weighted digraph G (L) is defined as G (L) = (V, E) with: V = V 0 ∪ V 1 1 ∪ V 2 ∪ V 3 ∪ V 4 ∪ V 5 and E = E 1 ∪ E 2 ∪ E 3 ∪ E 4 ; V 0 = {(Source }; V 1 = { 1, τ i , τ i ∈ Γ}; V 2 = { 2, τ i0 , 0 , τ i , i = 1 . . . n s.t. r i > 0} ∪ 2, τ i0 , j , (i, j) s.t. i = 1 . . . n, j ∈ 1, L-ri Ti ; V 3 = { 3, τ i0 , t , (i, t) s.t. i = 1 . . . n, t ∈ [0, r i)} ∪ { 3, τ i , t , (i, t) s.t. i = 1 . . . n, t ∈ [kT i + r i , tT i + r i + D i) , with1 ≤ k ≤ L-ri Ti ∪ 3, τ i0 , t , (i, t) s.t. i = 1 . . . n, t ∈ [kT i + D i , (k + 1) T i) , with1 ≤ k ≤ L-ri Ti ; V 4 = { 4, t , t ∈ [0, L)} and V 5 = { sink }.
Edges and capacities are defined by:

E 0 = {(source , 1, τ i , CT R τi (L)) , i = 1 . . . n}; E 1 = {(1, τ i , 2, τ i0 , 0) , i = 1 . . . n s.t. r i > 0}; E 2 = {(2, τ i0 , 0 , 3, τ i0 , t , 0) , (i, t) s.t. i = 1 . . . n, t ∈ [0, r i)} ∪ 2, τ j i , 3, τ i , t , 1 , (i, j, t) s.t. i = 1 . . . n, j ∈ [0, CT R τi (L)) , t ∈ r j i , d j i ∪ (2, τ i0 , j , 3, τ i , t , 0) , (i, j, t) s.t. i = 1 . . . n, j ∈ 1, L-ri Ti , t ∈ [kT i + r i + D i , (k + 1) T i + r i) with1 ≤ k ≤ L-ri Ti t ; E 3 = {(3, τ i0 , t , 4, t , 0) , t ∈ [0, r i)} ∪ (3, τ i , t , 4, t , 1) , t ∈ [kT i + r i , kT i + r i + D i) with1 ≤ k ≤ L-ri Ti ∪ {(3, τ i0 , t , 4, t , 0) , (i, t) s.t. i = 1 . . . n, t ∈ [kT i + r i + D i , (k + 1) T i) with1 ≤ k ≤ L-ri Ti ; E 4 = {(4, t , sink , m) , t ∈ [0, L)}.
In order to prove the theorem, we first establish the following lemma. Proof. Let us assume that such an integral flow exists. We first define a schedule S deduced from the Pfair -graph as: Definition 4. Let f be an integral flow of size τi∈Γ CT R τi (L) of G, we define SG as follows. For

τ i ∈ Γ, t ∈ N, SG(τ i , t) = 1 if t ∈ [0, L) ∧ ∃j ∈ [0, CT R τi (L)) s.t. f 2, τ j i , 3, τ i , t , 1 = 1 0 otherwise
We show that SG is Pfair over the time interval [0, L).

The size of the flow is

i=n i=1 CT R τi (L), thus each node of V 1 is filled to capacity, i.e.
the flow carried by each link from source to 1, τ i is equal to CT R τi (L). Each node in V 1 has exactly CT R τi (L) outgoing edges of capacity 1, the other outgoing edges have a null capacity thus they receive a flow equal to 0. Thus each node 2, τ j i of V 2 receives a flow equal to 1. Then, each node 2, τ j i has one single outgoing edge which carries a flow equal to 1, the other outgoing edges carry a flow equal to 0. Now, each node of V 3 has exactly one outgoing edge. This edge carries a flow equal to the flow carried by its incoming edge. In the same way, the nodes in V 4 have one single outgoing edge, which carries the cumulated flow carried by their incoming edges. Since the capacity of this outgoing edge is m, at most m incoming edges carry a flow equal to 1. Thus at most m sub-tasks are processed. Now, the potential exists for a task τ i to get scheduled twice at the same time (if r j i = d j-1 i -1). But since the edge from 3, τ i , t to 4, t has a capacity equal to 1, this situation is avoided: if this edge carries a flow equal to 1, only one incoming edge carries a non-null flow. Thus two different processed sub-tasks cannot belong to the same task. Thus at any time t in [0, L), there exists at most m tasks such that SG (τ i , t) = 1. Furthermore, f 2, τ j i , 3, τ i , t , 1 = 1 implies that r j i ≤ t < d j i thus, each processed sub-task is processed in its feasibility window. Finally, each sub-task is effectively processed. Indeed, there exists i=n i=1 CT R τi (L) sub-tasks in [0, L). Following the definition of SG, the number of processed sub-tasks is equal to the global incoming flow of vertices of V 3 . And the global input flow of V 3 is constant, equal to i=n i=1 CT R τi (L) by definition of the flow. Thus each sub-task is processed. The schedule SG is thus Pfair on [0, L).

We now prove the existence of an integer flow of size i=n i=1 CT R τi (L). We use the following flow assignments: Definition 5. Let f be the flow defined as:

f (source , 1, τ i , (L)) = CT R τi (L), f (1, τ i , 2, τ i0 , 0 , 0) = 0, f (1, τ i , 2, τ i , j , 1) = 1, f (1, τ i , 2, τ i0 , j , 0) = 0, f (2, τ i0 , 0 , 3, τ i0 , t , 0) = 0, f (2, τ i0 , j , 3, τ i0 , t , 0) = 0, f 2, τ j i , 3, τ i , r j i , 1 = CH i -j + r j i CH i d j i -1 = r j+1 i ⇒ f 2, τ j i , 3, τ i , d j i -1 , 1 = j + 1 -r j+1 i CH i otherwise ⇒ f 2, τ j i , 3, τ i , t , 1 = CH i f (3, τ i0 , t , 4, t , 0) = 0, f (3, τ i0 , t , 4, t , 1) = CH i , f (4, t , sink , m) = τi∈Γ ri+kTi≤t>ri+kTi+Di CH i Lemma 2. f is a flow of size τi∈Γ CT R τi (L) of G (L).
Proof. We first prove that the capacity constraints are met. Edges in E 0 , E 1 are filled to capacity, and edges in E 3 carry flows either equal to 0 or to the density CH i which is less than or equal to

CH i ≤ 1 if d j i -1 = r j+1 i .
We have

r j i = j CHi thus j CHi -1 < r j i ≤ j CHi thus CH i < r j i CH i -j ≤ 0 thus 0 < CH i -j -r j i CH i ≤ CH i ≤ 1.
We prove that (j + 1) -r j+1 i CH i ≤ 1 using similar arguments. Thus capacity constraints are all met. We must then show that the flow is preserved at every inner vertex. For null capacity nodes, the flow is clearly preserved. For any node 1, τ i of V 1 , the incoming flow is CT R τi (L), and the outgoing flow is equal to the number of sub-tasks since edges are filled to capacity, thus the outgoing flow is CT R τi (L) too. Each vertex 2, τ i , j has an incoming flow of 1. Each vertex 2, τ i , j has d j i -1 -r j i outgoing edges. Then the flow out of 2, τ i , j is, if

d j i -1 = r j+1 i , CH i -j -r j i CH i + CH i d j i -r j i -2 + (j + 1) -r j+1 i CH i which simplifies to 1.
Otherwise, we have

d j i -1 = r j+1 i thus j+1 CHi -1 = j+1 CHi which means that j+1 CHi is integral thus d j i = j+1
CHi . Now, the flow out is CH i -j -r j i CH i +CH i d j i -r j i -1 which then simplifies to 1. There is only one outgoing edge leaving any vertex 3, τ i , t of V 3 , which carries a flow equal to CH i . If

d j i -1 = r j+1 i
, then there are two incoming edges which carry a flow of size (j + 1) -

r j+1 i CH i + CH i -(j + 1) -r j+1 i CH i = CH i .
Otherwise there is only one incoming edge which carries a flow equal to CH i . We consider finally a vertex 4, t of V 4 . Its incoming edges with non zero capacity are edges (3, τ i , t , 4, t , 1) with r i + kT i ≤ t < ri i + kT i + D i . Thus the incoming flow is τi∈Γ ri+kTi≤t>ri+kTi+Di CH i , which is thus equal by definition to the flow of the unique outgoing edge. Thus, we proved that the flow is preserved at any inner node. Thus f is a flow of size τi∈Γ CT R τi (L). Now Lemma 2 implies the existence of a fractional flow of size τi∈Γ CT R τi (L) for the Pfair-graph G (L) = (V, E). Since capacities are integral, this implies the existence of an integral flow of size τi∈Γ CT R τi (L) in G (L) [START_REF] Ford | Flows in networks[END_REF]. Then Lemma 1 proves that a Pfair schedule can be constructed. This proves the theorem 2.

Then we extend the algorithm P F to periodic task sets (r i ≤ 0, D i ≤ T i). Here, a task can be Urgent, Tnegru or

Contending if t ∈ [kT i + r i , kT i + r i + D i) and is Idle if t < r i or t ∈ [kT i + r i + D i , (k + 1) T i i).
The extension is then straightforward: at each time t, Urgent tasks are scheduled, Contending tasks are sorted and the firsts of them are allocated to the remaining processors.

Simulation results

The next point of interest is to determine whether this condition is efficient. We thus investigate the soundness of our bound. For that purpose, we have carried out some simulations. We have first implemented a task set simulator and a scheduler based on our extension of P F . We have then generated a significant number of task sets with different

values of either U = i=n i=1 C i T i or CH = i=n i=1 C i D i
. In order to limit the scheduling step, we have generated periods according to Goossens methodology [START_REF] Macq | Limitation of the hyper-period in real-time periodic task set generation[END_REF], which permits to have a bound for the hyperperiod (the LCM of the task periods). For our simulations the upper bound of hyperperiods is set to 210. Offsets, constrained deadlines and WCET are chosen uniformly within respectively the intervals [0,

T i], [1, T i] and [1, D i -1].
Then we have scheduled them with our adapted P F policy, in order to estimate the ratio of feasible sets among them. All simulations have been carried out over a time interval included in 0, max i∈ [1,n] (r i) + 2T . Then we have considered several cases. Task sets can be synchronous or asynchronous, with implicit or constrained deadlines. They are characterized by either U ≤ m or CH ≤ m or CH > m. For each case, we have generated a sample of 5000 tasks sets for simulations. As expected, we find a Pfair feasibility rate of 100% for systems with implicit deadlines: for synchronous systems, it corresponds to Baruahs theorem (theorem 1), and for asynchronous systems, it comes from our result (theorem 2). For the other cases, we conclude that for constrained task sets, U ≤ m is no more a sufficient condition, since there exists Pfair unfeasible task sets with a utilization factor less than m and CH ≤ m is not a necessary condition since there exist Pfair feasible task sets with CH > m.

Then we refined our simulations in order to determine the incidence of U or CH on Pfair feasibility. We have considered systems m processors. For each case, we generate samples for different values of CH between m and m + 1, namely CH = m + k 10 (0 ≤ k ≤ 10). For each value of CH, we again determine the ratio of Pfair feasible task sets. We have seen that this rate decreases rather quickly when CH increases. If CH remains close to m, the rate of valid system remains high, but the slope of the curve is high and consequently the rate becomes very small if CH approaches m + 1. We can conclude from these results that our bound is rather good in the sense that only few systems rejected by our test are in fact Pfair feasible.

We also investigated the correlation between U and the Pfair feasibility. We consider systems with m processors, and synchronous task systems with constraint deadlines. We see that if U is close to m, then quite no systems are Pfair feasible. But if U is less than m 2 , we have 100% of Pfair feasible systems. Further investigations must be done here.

Conclusions

We have considered real-time applications running on a multiprocessor platform. For such systems, we have extended the notion of Pfairness to any set of periodic independent task set with implicit or constrained deadlines. We have considered as well late released tasks as constraint deadlines. We have proposed a sufficient condition and given an adapted version of P F . We proved the existence of a Pfair schedule if CH = i=n i=1

C i D i ≤ m.
Then we have presented simulation results, which illustrate the soundness of our sufficient conditions. These simulations have shown that if CH increases from m, the rate of Pfair feasible systems decreases quickly. We also present some results about the incidence of the utilisation factor U = i=n i=1 C i T i . We have speculated about the existence of a lower U , which can be used for any periodic task set with implicit or constrained deadlines.

 then Γ has a valid Pfair schedule on m processors over any time interval [0, t).

Lemma 1 .

 1 If the Pfair-graph G (L) has an integral flow of size τi∈Γ CT R τi (L), then Γ has a Pfair schedule on [0, L].

 1, thus capacity constraints are met. If an edge in E 4 is considered, it carries a flow ≤ m, so the capacity constraint is met. Finally, for edges in E 2 , we must prove that CH i -jr j i CH

	CH i ≤
	τi∈Γ
	ri+kTi≤t<ri+kTi+Di

τi∈Γ

CH i now by assumption we have τi∈Γ CH i i ≤ 1 and (j + 1) -r j+1 i