Valéry Téguiak 
email: teguiakh@ensma.fr
  
Éric Sardet 
email: sardet@ensma.fr
  
  
  
  
  
Use of Persistent Meta-Modeling Systems to Handle Mappings for Ontology Design

Keywords: data integration, mapping, meta-modeling, model transformation, ontology engineering

To enable data intensive application including global information systems with heterogeneous models, the model mapping problem in which a source model is mapped to a target one should be addressed. Current work about mapping provides a finite set of mapping constructors available for writing mappings. In this case, adding a new concept in a meta-model describing mapped schemas could have the effect of building new types of mapping constructors. Thus, this paper attempts to provide a generic and systematic approach for modeling mapping constructors, so that new mapping constructors could be handled efficiently without requiring to rebuild completely the mapping repository system.

I. INTRODUCTION

The huge amount of data created by several application domains and development activities was at the origin of the emergence of several heterogeneous data models and modeling languages. The need of exploiting data and these models in an integrated manner led to several studies on data and model integration and heterogeneous modeling [START_REF] Michael Genesereth | Infomaster: an information integration system[END_REF], [START_REF] Visser | Resolving Ontological Heterogeneity in the KRAFT Project[END_REF]. Two particular and interesting studies are model mappings and mapping languages. Moreover, these approaches have also been developed in the context of the semantic web where model mappings were required for defining transformations, instance migration, etc.

In order to deal with various heterogeneous models used to represent the same real word domain, several mapping languages [START_REF] Melnik | Developing metadata-intensive applications with Rondo[END_REF], [START_REF] Horrocks | SWRL: a semantic web rule language combining OWL and RuleML[END_REF], [START_REF] Moha | Evaluation of Kermeta for solving graphbased problems[END_REF] have been proposed. Their central objective is to establish relationships between models. Most of these approaches run in central memory and do not address the scalability problem when dealing with huge amount of data, instances of those models.

However, many information systems rely on databases to ensure scalability. As a consequence, the need of managing mappings in a persistence context appeared. Therefore, the availability of a repository of mappings is required. Also, a way for exploiting mappings by interpreting, handling and manipulating such mapping operators is also required.

The work of Miller et al. [START_REF] Miller | Schema Mapping as Query Discovery[END_REF] and Ling et al. [START_REF] Ling | Datadriven understanding and refinement of schema mappings[END_REF] was precursor. It addressed the problem of mapping management in a database. The main assumption in this work consists in modeling mapping constructors as a finite set of operators.

This assumption is acceptable if models to be mapped are encoded in a meta-model that will not evolve dynamically due to the fixed set of mapping constructors.

Nevertheless, offering the capability to manipulate and/or to modify the meta-model could offer more flexibility and extensions capabilities dynamically. Indeed, offering the capability for the meta-model to evolve by supporting the creation of new concepts would also offer the capability to dynamically define on the fly new mapping constructors. As a consequence, the definition of mapping constructors in a generic way becomes possible.

Moreover, because the size of models and instances are growing drastically, the traditional approaches for mapping models need to scale up. Therefore, offering persistent settings for managing such mappings and instances becomes a necessity if one wants to address real sized problems.

This paper focuses on the definition of a generic infrastructure for managing mappings in a database context. It uses a specific database architecture that supports definition of meta-models and their instances. This database infrastructure consists of: (1) a space for representing mapping constructors, (2) a space for representing models and mappings between these models and finally (3) a space for representing data (instances of models).

This paper is organized as follows. Section II outlines related work on mappings. Then, our contribution using constructive data models to model mappings is presented in Section III. In Section IV, we discuss how to represent a graph of mappings in a persistent context. Once our persistent solution for handling mappings in a database structure, through model repositories, is presented in Section V, we briefly present, in Section VI, how this approach has been set up to encode the transformation process for building ontologies starting from texts. This work has been conducted in the context of the DaFOE4App (Differential and Formal Ontologies Editor for Application) project [START_REF]Projet DaFOE4App. État de l'art et étude des besoins pour une plate-forme de construction d'ontologies[END_REF]. We finally conclude and give some perspectives of this work.

II. RELATED WORK

Many proposals address model mapping and data translation problems. These proposals can be splitted into two categories: hard encoded and rule-based approaches.

A. Hard encoded approach

By the term hard encoded, we refer to approaches where both mappings and mapped models representations are hidden within a framework as a program. It means that these representations are not exposed as declarative and user-comprehensible rules. This leads to several difficulties. First, models and mappings can only be extended by the framework designers. Secondly, because of the programbased representation of models and mappings, any extension requires changes at the framework code level. As a consequence, correctness of these representations has to be accepted by users as a dogma. For example, the approach of Papotti and Torlone [START_REF] Papotti | Heterogeneous data translation through XML conversion[END_REF] can be said to be hard encoded. In that context, the expressed transformations are imperative programs, which have the weaknesses described above. The instance translation process is achieved by firstly converting the source data into XML, and then by performing an XML-to-XML translation expressed in XQuery to reshape instances in order to be compatible with the target schema, and finally, by converting the XML representation into the target model.

B. Rule-based approach

Weaknesses of the hard encoded approach can be solved using a rule-based approach. This approach attempts to provide a generic way to handle models, mappings and data translation without using a hard encoded program. For example, the approach proposed by Bernstein et al. [START_REF] Bernstein | Interactive schema translation with instance-level mappings[END_REF] is a rule-based one. In that approach, they focus on a flexible mapping based on inheritance hierarchies, and in the incremental regeneration of mappings each time the source schema is modified. Other rule-based approaches are driven by a dictionary of schemas, models and translation rules. Among them, we can quote the work of Bowers and Delcambre [START_REF] Bowers | The Uni-Level Description: A uniform framework for representing information in multiple data models[END_REF] that proposes Uni-Level Description (UDL). UDL is a meta-model in which models and translations can be described and managed in a uniform process environment for models, schemas and instances. UDL is used to express specific model-to-model translations of both schemas and instances. Like the approach of Atzeni et al. [START_REF] Atzeni | MIDST: model independent schema and data translation[END_REF], translations are expressed as Datalog rules and the source and target models are stored in a generic relational dictionary.

Our approach is also considered as a rule-based approach. But, compared to the previous quoted approaches, we provide a more abstract level where, in addition, the dictionary is explicitly represented and becomes manageable. Indeed, the dictionary representation according to a meta-meta-model allows the user for example, to modify mapping models without modifying the underlying program.

Furthermore, Kalfoglou and Schorlemmer [START_REF] Kalfoglou | IF-Map: an ontology mapping method based on information flow theory[END_REF] address the problem of mapping discovery which consists of an automatic synthesis of an alignment between models. In our proposal, we assume that the discovery process has already been achieved. Indeed, our work deals with mapping specification and instance mediation in database environment. More discussions on topics around mapping problems and provided solutions can be founded in [START_REF] Ling | Datadriven understanding and refinement of schema mappings[END_REF], [START_REF] Bernstein | Applying Model Management to Classical Meta Data Problems[END_REF], [START_REF] Choi Namyoun | A survey on ontology mapping[END_REF], [START_REF] Euzenat | Ontology matching[END_REF]. As illustrated in Figure 1, mappings can be composed transitively. This requirement has been formalized in [START_REF] Jayant | Composing mappings among data sources[END_REF], [START_REF] Nash | Composition of Mappings Given by Embedded Dependencies[END_REF], where an approach to use composition among models has been proposed. Because this paper focuses on a repository for storing mappings, we do not discuss handling composition between mappings (composition is handled by a query engine in our framework). Furthermore, [START_REF] Miller | Schema Mapping as Query Discovery[END_REF], [START_REF] Ling | Datadriven understanding and refinement of schema mappings[END_REF] introduce the notion of value correspondence as a proposal of representation for mapping operators.

III. OUR APPROACH

In our approach, modeling mapping consists in creating mapping constructors (Model level mapping, Entity level mapping, Attribute level mapping, etc.). In this section, we present a formal model for mapping constructors. Furthermore, before connecting domain models using mappings, these models should be represented in a way allowing them to be managed efficiently. The metamodeling-based approach is often used for this purpose. We use a meta-model called Entity-Attribute meta-model (E-A meta-model) to handle domain models. Using this E-A meta-model, a model m is formally defined by m = E, A, I, T, dom, range, its entity where: 

A. Model level mapping: mLink

Correspondences between models are represented by a directed acyclic graph whose nodes are models. Formally, if M represents a set of models, the graph G m of correspondences between models (Cf. Figure 1) is defined by G m = (N m , L m ) where:

• N m ⊆ M represents the set of nodes of the correspondence graph;

• L m = {(m s , m t , α m ) ∈ N m × N m × [0; 1]} repre-
sents a set of correspondences between a source model (m s ) and a target model (m t ). Here, α m is a confidence degree of this correspondence. Through this paper, we will use the term mLink, formally defined as element of L m , to refer to a correspondence or a mapping between models.

B. Entity level mapping: eLink

Correspondences between entities of the models are represented by a directed acyclic graph whose nodes are entities. Formally, if E represents a set of entities, the graph G e of correspondences between entities (Cf. Figure 2) is defined by G e = (N e , L e ) where:

• N e ⊆ E is the set of nodes of the correspondence graph;

• L e = {(e s , e t , α e , mL)

∈ N e × N e × [0; 1] × L m }
represents correspondences between a source entity (e s ) and a target entity (e t ) built in the context of the mLink mL with confidence degree α e . Through this paper, we will use the term eLink, formally defined as element of L e , to refer to a correspondence between entities.

C. Attribute level mapping: aLink

The arity of correspondences between attributes is n:0 reflecting the fact that one needs zero or more attributes of the source entity to compute an attribute of the target entity. Formally, if A represents the set of attributes, the graph G a of correspondences between attributes (Cf. Figure 3) is defined by G a = (N a , L a ) where:

• N a ⊆ A represents the set of nodes of the correspondence graph;

• L a = (A s , a t , α a , ϕ, eL) ∈ N k a × N a × [0; 1] × Φ × L e represents a set
of correspondences from a set of sources attributes A s = (a s1 , a s2 , ..., a sk ) to a target one (a t ∈ N a ) where:

-the eLink eL represents the context in which the correspondence has been created; -ϕ is an expression used to write a t in terms of a si (1 ≤ i ≤ k). -α a represents the confidence degree of the correspondence. Through this paper, we will use the term aLink, formally defined as element of L a , to refer to a correspondence between attributes.

Unlike other work performed on mappings [START_REF] Miller | Schema Mapping as Query Discovery[END_REF], [START_REF] Ling | Datadriven understanding and refinement of schema mappings[END_REF], [START_REF] Horrocks | SWRL: a semantic web rule language combining OWL and RuleML[END_REF], our approach does not presuppose the existence of a finite set of mapping constructors but it aims at providing a formal support to dynamically create new mapping constructors or evolving existing one. Indeed, all mapping constructors presented above use a numeric confidence degree α. This is the most used approach for handling fuzzy mappings. However, what will happen if a user (who is not the framework designer) want to create another fuzzy property for mapping by annotating each mapping with a quality value ("Weak", "Average", "Good", "Very", "Good", "Excellent", etc. for example)? Thus, our approach propose to model mapping constructors so that mapping constructors like mLink, eLink, aLink, etc., could be managed in a generic way and easily extended at runtime. As our work is conducted in a database context, we discuss in the following sections, modeling possibilities of a database repository to store such a graphbased representation of mapping.

IV. MODEL REPOSITORIES

In the recent years, several works [START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF], [START_REF] Hondjack Dehainsala | On-toDB: An ontology-based database for intensive applications[END_REF] investigated the problem of representing ontologies and their instances within a database. We reuse this approach for models in general and the resulting database (that we simply call Model Based-Database (MBDB)) can be represented according in three main approaches. In this section, we present a taxonomy of these approaches. Our goal here is to discuss how the graph of mappings presented in Section III can be stored in each of these database types.

A. MBDB of type 1

In MBDB of type 1, information is represented using a single schema composed of a single table of triples (subject, predicate, object). This table, referred as vertical table [START_REF] Rakesh Agrawal | Storage and Querying of E-Commerce Data[END_REF] is used both for model level data and instance level data. For model level data, the three columns of this table respectively represent the Identifier of an element of the model, a predicate and the value taken by the predicate (Cf. Figure 4). Furthermore, in order to implement our mapping representation proposal with MBDB of type 1, we apply the following rules:

• use RDF Schema as the meta-model for representing domain models. For instance, the triplet (e 1 , Type, Entity) means that the concept e 1 is an RDF Class (called Entity in the E-A meta-model);

• extend RDF Schema with new concepts representing mapping constructors (mLink, eLink, aLink); • extend RDF Schema with new properties representing parameters of L m , L e , L a . For instance, "rdf : m s " is used to represent the source model of a mLink while "rdf : eL" is used to identify a mLink representing the context in which a given eLink is created. Putting all these previous rules together results in a database as illustrated in Figure 4. Unfortunately, it clearly appears that, this approach is not enough scalable because of the number of auto-join operations required on the underlying vertical table. 

B. MBDB of type 2

MBDB of type 2 store separately model level data and the instance level data in two distinct schemes [START_REF] Broekstra | Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema[END_REF]. In classical databases, the system catalog part plays the role of the model level where models are stored as meta-data. The main problem with this representation comes from the fact that the meta-model provided by the DataBase Management System (DBMS) cannot be manipulated. Indeed, this meta-model is frozen and therefore, it cannot be evolved according to some particular requirements. For example, how do we represent mapping concepts like mLink, eLink, aLink, etc. (not available in this meta-model) using this type of database? However, as illustrated in Figure 5, one can use the semantic part of the database to represent mappings. Even if this approach provides a solution independent of a particular DBMS, the meta-model of the semantic part is also frozen and cannot be extended at runtime in order to provide new mapping constructors.

C. MBDB of type 3

MBDB of type 3 [START_REF] Hondjack Dehainsala | On-toDB: An ontology-based database for intensive applications[END_REF] propose to add another schema to MBDB of type 2. This schema stores the E-A meta-model in a reflexive meta-meta-model. Thus, for the meta-model, the meta-meta-model plays the same role as the one played by the system catalog. Compared to MBDB of type 2, adding a meta-meta-model in MBDB of type 3 provides possibility to extend the meta-model. So, thanks to that meta-meta-model, MBDB of type 3 could be reused to reach our goal related to the representation of mapping concepts in database. Figure 6 illustrates the OntoBD [START_REF] Hondjack Dehainsala | On-toDB: An ontology-based database for intensive applications[END_REF] architecture as an example of a MBDB of type 3. OntoDB is based on 4 main parts:

• the meta-base part: it corresponds to the catalog system of databases. It contains system tables used to manage all the data contained in the database; • the data part: it represents domain objects also called data;

• the semantic part: it contains models defining the semantics of data. More precisely, domain models of information system stored in the semantic part; • the meta-schema part: the meta-schema part records the E-A meta-model. The next Section presents how the approach led by MBDB of type 3 has been used to persist the graph of mappings.

V. HANDLING MAPPINGS IN A DATABASE

In this section, we give some details about the implementation of our proposal. Thanks to its extension facility, MBDB of type 3 are therefore better suited to implement the mapping approach presented in this paper. Indeed, a type 3 MBDB provides enough flexibility for the extension of both the E-A meta-model and the mapping model. It is therefore possible, for example, to create new mapping constructors. The resulting database repository is illustrated in Figure 7 where labels purposes (instead of object identifier) are used only for more readability. Compared to Figure 6, we have extended the semantic part with mapping constructors. All these mapping constructors are created as instances of the meta-schema. That provides for creating dynamically new mapping constructors. The resulting infrastructure is obtained in 3 steps. This infrastructure consists in building a repository for mapping constructors. After creating tables in the meta-schema part, we populate them. For example, the statements of 2) Model creation. The models creation task consists in populating the Entity, Attribute and Model tables of the E-A meta-model (Cf. Figure 7). For each entity of the E-A meta-model, the physical structure (e i tables) for storing data is created in the Data part. 3) Mapping creation. Creating a mapping consists in populating the mLink, eLink, aLink tables materializing mapping constructors (Cf. Figure 7). This explicit representation keeps traceability of mappings. However, it also keeps traceability between instances. Indeed, instance level mappings results from the instantiation of eLink. This instance mapping constructor is handled by creating, for each eLink a table (e 1 T Oe 2 for example) storing those instances of the source entity that have been used to build the instance of the target entity. An example of both of model and mapping creation tasks is given in Section VI, where the case study of modeling an ontology building process is detailed.

Notice that we have defined directed links from models and concepts to others. The reverse links can be easily built, if needed, using the same process. This capability will offer full traversals in the database from models to others. As a consequence, it is possible to trace the source concept used to produce target ones. The MQL language [START_REF] Téguiak | MQL: an extension of SQL for mappings manipulation[END_REF] offers high level operators for such traversals.

VI. APPLICATION

This section summarizes the use of the approach developed above in a particular context: building ontologies starting from text analysis.

A. Overview

The proposal of this paper has been applied in the DAFOE platform, a platform led by the ANR DaFOE4App project. This platform provides a stepwise methodology where the first step is dedicated to linguistic analysis (called Terminology Step) in which users manage linguistic information (terms and relations between terms) extracted with natural language processing tools (NLP). After the linguistic analysis, the step for structuring linguistic information (called TerminoOntology step), in order to avoid possible ambiguity of terms, is performed. Finally, a formalization step (called Ontology Step) allows users to create classes and properties of the ontologies and to populate created classes. Each of these autonomous steps has been modeled as illustrated in Figure 8, 9 and 10 respectively. Notice that the main goal of the DaFOE platform is not to populate classes but to build ontologies that are intended to be exported into other systems that provide instance management facilities. Thus, instance management is out of the scope of the application domain. 

B. Setting up our approach

Applying our approach leads to the persistent infrastructure represented in Figure 11. It consists in writing correspondences between elements of the model of each step using mapping constructors. The developed approach in the DaFOE4App project has identified two bridges for switching between steps: a first one for producing termino-ontology concepts from texts and a second one for producing ontology concepts from termino-ontology concepts. According to our approach, bridge means the creation of mLink, eLink and aLink respectively after setting the models to be mapped. These two bridges are detailed below. Considering both Terminology and TerminoOntology steps through their models (Cf. Figure 8 and 9 respectively), a simplified mapping between these steps consists in: mLink creation. VALUES("TerminoOntology2Ontology", "TerminoOntology", "Ontology", 0.9); ... 11. eLink creation. In the context of the previous created mLink, a eLink is created from the TerminoConcept entity to the Class entity to express that instances of the TerminoConcept entity will be transformed as instances of the Class entity. This eLink is created using statement S 4 represented Table III. A eLink from TerminoConceptRelation of the TerminoOntology model and the Property entity of the Ontology model is also available. As a result, row 801 is inserted in table eLink (Figure 11). aLink creation. The statement S 7 of Table IV shows a aLink expressing that an instance of the Class entity has the same label as its corresponding instance in TerminoConcept entity. As result, rows 202 is inserted in table aLink (Figure 11). Putting these mappings all together results in a stepwise design methodology for a database recording manipulated data and produced to build an ontology from texts according to the process defined in the DaFOE4App project.

VII. CONCLUSION

In this paper, we presented an approach for persisting mappings. Focusing on a specific type of databases i.e persistent meta-modeling systems, we proposed an extensible infrastructure for mapping management. Rather than freezing all the mapping constructors in a database, we have proposed to represent them as a model. This model is then used on the one hand to create new mapping constructors and on the other hand for the automatic generation of a persistent VALUES("TermLabel2TcLabel", ("term label"), "tc label", 0.8, "tc label= "tc " + term label", "Term2TerminoConcept"); Statement S6-INSERT INTO aLink (label, As, at, αa, ϕ, eL) VALUES("TermLabel2TcLabel", ("frequency"), "rate", 0.8, "rate= "frequency/100", "Term2TerminoConcept"); Statement S7-INSERT INTO aLink (label, As, at, αa, ϕ, eL) VALUES("TcLabel2ClassLabel", ("tc label"), "tc label", 0.8, "class label= tc label", "TerminConcept2Class"); ... repository for mappings to ensure their traceability. As an assessment, our approach has been deployed and then implemented for the modeling process of building ontologies from texts in the context of the DaFOE4App project.

Furthermore, once models and mappings are created and models are populated with data, it would be interesting for example, to exploit these mappings when querying data. Indeed, because our mapping modeling is applied to models that represent the same real world domain, the domain related retrieving process needs to interpret mappings between models. Unfortunately, the resulting mapping graph as presented in this paper may be complex to manage with the classical SQL queries. For instance, as mappings are transitive thanks to mapping composition, one would want to use this capability to retrieve data transitively. Writing such a query could become complex. Thus, in continuity to this work, we have defined a SQL-like management and query language, namely MQL [START_REF] Téguiak | MQL: an extension of SQL for mappings manipulation[END_REF], that provides high level operators that makes easier querying data using mappings between models. This language, that hides implementation details regarding the database structure will be benchmarked in the context of engineering data retrieving where response time may be critical because of the huge amount of the underlying data. In this particular case, we are planing to improve performance analysis of the MQL query language. 
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  E represents the set of entities of the model m; • A represents the set attributes used to describe entities of the model m; • I represents the set of entity instances of the model m; • T is a set of primitive types (Int, String, Boolean, etc.); • dom : A → E defines the domain of an attribute; • range : A → E ∪ T defines the range of an attribute; • its entity : I → E returns the entity associated to a given instance.
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 71 Figure 7. MBDB with mappings.

  (label) VALUES("mLink") INSERT INTO MetaEntity (label) VALUES("eLink") INSERT INTO MetaEntity (label) VALUES("aLink") INSERT INTO MetaEntity (label) VALUES("Model") ... INSERT INTO MetaAttribute (label, domain, type) VALUES("ms","mLink","Model") ... INSERT INTO MetaAttribute (label, domain, type) VALUES("mt","mLink","Model") ... INSERT INTO MetaAttribute (label, domain, type) VALUES("α","mLink",INT) ... in this paper use ''label" as foreign key instead of URI.
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 8 Figure 8. A simplified representation of the Terminology model.
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 9 Figure 9. A simplified representation of the TerminoOntology model.
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 10 Figure 10. A simplified representation of the Ontology model.
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 1 Bridge 1. Terminology to TerminoOntology step.
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 11 Figure 11. Mapping management in the DaFOEApp project.

Bridge 2. TerminoOntology to Ontology step.

  The statement S 1 of Table II creates a mLink from the Terminology model to the Termi-noOntology model. As a result, row 700 is inserted in table mLink (Figure11). eLink creation. The statement S 3 of TableIIIcreates a eLink from the Term entity to the TerminoConcept entity to express that instances of the Term entity will be transformed as instances of the TerminoConcept entity. As a result of this statement, row 800 is inserted in the table eLink as illustrated in Figure11. A eLink from the TermRelation entity of the Terminology model and the TerminoConceptRelation entity of the TerminoOntology model is also available. aLink creation. The statement S 5 of table IV shows a aLink expresing that an instance of the TerminoConcept entity has the same label as its corresponding instance in the Term entity prefixed by 'tc '. Another aLink expresses that the rate of an instance of TerminoConcept entity equals to the frequency of corresponding instances in Term entity divided by 100. As a result, rows 200 and 201 are inserted in table aLink (Figure11). 2)

For TerminoOntology and Ontology steps, a simplified mapping between their respective models consists in: mLink creation. The statement S 2 of Table II creates a mLink from the TerminoOntology model to the Ontology model. As a result, row 701 is inserted in

Table IV STATEMENTS

 IV FOR ALINKS CREATION Statement S5-INSERT INTO aLink (label, As, at, αa, ϕ, eL)
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