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Abstract

We study pure perfect Bayesian equilibria in sender-receiver games with finitely many

types for the sender. Such equilibria are characterized by incentive compatible (IC) par-

titions of the sender’s types. In the case of ordered types, real-valued decisions and well-

behaved utility functions (namely, strictly concave, single-peaked, single-crossing and with

an upward bias for the sender), we propose a family of iterative optimization processes

that all converge to a unique IC partition Π∗. We show that Π∗ is undefeated in the sense

of Mailath et al. (1993). Equivalently, Π∗ is forward-neologism-proof, a variant of Farrell’s

(1993) neologism-proof concept that we introduce. While the latter refinement (as many

other ones) starts from a putative equilibrium and identifies types that would deviate if

they were properly identified by the receiver, our iterative optimization processes take the

opposite direction. Starting typically from a completely revealing strategy of the sender,
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types are gradually pooled as long as some of them envy decisions associated with other

types. The process can be interpreted as a better response dynamics.

1 Introduction

We consider a simple model of cheap talk, in which an informed individual sends a costless

message to a decision-maker. We assume that the sender has finitely many types, which can

be ranked according to some order. This assumption makes sense in a number of practical

situations, for instance, when the types correspond to a qualitative assessment (e.g., “excellent,”

“good,” “fair,” etc.).

Except for this, we make the same assumptions as in Crawford and Sobel (1982), namely,

the receiver’s actions are real-valued and the utility functions are well-behaved (strictly concave,

single-peaked, single-crossing and with an upward bias for the sender). Frug (2016) considers

perfect Bayesian equilibria (PBE) in this framework but does not address the question of

selecting among them, which is central in the current paper.

There is typically a plethora of PBE in sender-receiver games. Many refinements of PBE,

like the intuitive criterion of Cho and Kreps (1987), are useful in signaling games but have

no selection power when signals have no cost. By contrast, Farrell’s (1993) neologism-proof

equilibrium is tailored to cheap talk games but is so demanding that it often does not exist.

We show that the sender-receiver games that we consider always have a forward-neologism-

proof PBE, a variant of neologism-proof PBE in which neologisms are required to be incentive

compatible.

We mostly consider PBE in pure strategies. These can be characterized as incentive com-

patible (IC) partitions of the sender’s types. More precisely, every cell of such a partition

corresponds to a subset of types, which all send the same message at equilibrium. Equilibria

thus induce a canonical language, in which message L means “my type is in L.” The receiver

reacts by choosing the unique decision that maximizes his updated expected utility, given that

the sender’s type lies in L. The no-deviation condition of the sender takes the form of an IC

condition.

A neologism (with respect to a given equilibrium) is a message, namely a subset of types

L, that is not sent at this equilibrium. All variants of neologism-proof equilibrium agree on

the fact that, to be credible, a neologism L must be such that all types in L benefit from the
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deviation if the receiver interprets it as sent by types in L (there are nevertheless different ways

to specify the receiver’s beliefs over L). Many versions of the solution concept assume that the

receiver sticks to the status quo when he does not receive message L. However, if the receiver

takes the neologism seriously, he should also revise his interpretation of the original equilibrium

messages, an inference that can be understood by the sender. This logic leads to neologisms

that are consistent with an equilibrium strategy of the sender, namely, that are cells of some

IC partition. With this restriction, the receiver’s beliefs over L are determined by Bayes rule.

An IC partition is forward-neologism-proof if there does exist any such consistent neologism.

In general, this notion is not weaker nor stronger than Farrell’s (1993) one.

The previous equilibrium refinement was actually proposed by Mailath et al. (1993) under

the name “undefeated equilibrium” without referring explicitly to neologisms.1 This solution

concept was defined for the class of signaling games. It takes a much simpler form in sender-

receiver games, by relying on the partition characterization described above: an IC partition is

defeated by another IC partition if there is a cell of the latter (interpreted as a neologism) that

is preferred to the former by all types in this cell.

Thanks to this characterization, undefeated IC partitions can in principle be identified by

checking, for every IC partition, whether it is defeated by any other. However this requires to

make the list of all IC partitions, which is far from being tractable. Furthermore, in absence

of suitable assumptions, the “defeat” relation over IC partitions can have cycles, so that there

may not be any undefeated IC partition.

These difficulties can be overcome in the sender-receiver games that we study. IC partitions

are then formed of “intervals,” namely, subsets of consecutive types. We propose a natural

iterative optimization process, which converges to an IC partition Π∗. This limit Π∗ turns out

to be undefeated. This not only guarantees the existence of an IC undefeated partition in our

model but also provides a way to find such a partition via a simple algorithm, without making

the list of all IC partitions.

The limit partition Π∗ has further remarkable properties. First, Π∗ “dominates” any other

IC partition, according to a binary relation over interval partitions, which, loosely speaking,

says that a partition dominates another if its cells are “more to the right.” In particular, a

1We realized the relationship between our approach and Mailath et al.’s (1993) paper – originally entitled

“Forward induction and equilibrium refinement ” – after having identified the notion of forward-neologism-proof

IC partition. Farrell’s (1993) footnote 13 also suggests a similar notion.
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partition that has more cells than Π∗ cannot be IC. Furthermore, Π∗ is the only IC partition

that can possibly be neologism-proof in our framework.2 Finally, Π∗ satisfies the “no incentive

to separate” (NITS) criterion of Chen et al. (2008).

We actually consider a family of iterative optimization processes, which typically start with

the finest partition, namely, a fully revealing strategy of the sender, and evolve by alternating

best replies of the receiver and better replies of the sender, in which a single type improves his

utility. This way of proceeding introduces some flexibility in choosing the sender’s type that

improves its utility. We show that, quite unexpectedly, all versions of the algorithm converge

to the same limit partition Π∗.
3

The paper is organized as follows: below we mention some related papers; Section 2 describes

the model, namely, the sender-receiver game, and the solution concepts. We first characterize

pure perfect Bayesian equilibria (PBE) as incentive compatible (IC) partitions of the set of

types. Then we define forward-neologism-proof (synonymously, undefeated) IC partitions and

recall Farrell’s (1993) notions of self-signaling set and neologism-proof equilibrium. We also

introduce a dominance relation over partitions. Section 3 states our main result (Theorem

1), namely, the existence of a unique IC partition Π∗ which dominates every IC partition

and is undefeated. This section also sketches a proof of Theorem 1, by describing a typical

better response dynamics converging to the unique partition Π∗ identified in the statement.

To this aim, we define the notions of envy and left-incentive compatibility. Section 4 goes on

with some basic examples. Section 5 establishes stronger results than those summarized in

Theorem 1 by describing a family of iterative optimization processes that all converge to the

partition Π∗. Proposition 1 describes in detail the properties of Π∗ as a dominating IC partition.

Corollary 3 makes precise the reason why Π∗ is undefeated: in every other IC partition Π,

the highest type of every cell would rather be in Π∗ than in Π. Section 6 explores further

properties of the partition Π∗. This section is divided into three subsections. First, Section

2As a consequence, every neologism-proof IC partition is undefeated, but the scope of this statement is

limited by the fact that more often than not, there is no neologism-proof IC partition at all.
3Sémirat and Forges (2022) make use of similar, but more intricate, algorithms starting at a fully revealing

strategy of the sender, to establish the existence of “equilibria without exit ” in sender-receiver games with

sender’s approval. In the latter framework, nonrevealing equilibria are not relevant, because they typically

involve exit. Sémirat and Forges (2022) show that the algorithms always converge but do not investigate the

possible uniqueness of the limit partition.
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6.1 establishes that Π∗ is neologism-proof (Farrell (1993)) and satisfies NITS (No incentive to

Separate, Chen et al. (2008)). The proof of the former result shows that Π∗ is actually the only

partition that can possibly satisfy a weaker property than neologism-proofness, which requires

to resist to particular neologisms only and could be denoted as NSSHT, to indicate that the

highest types of any cell could not self-signal themselves via a neologism. It turns out that,

in our framework, NSSHT implies NITS. The second subsection of Section 6 shows that, in

the uniform quadratic case, the partition Π∗ coincides with a specific partition constructed by

Frug (2016) to demonstrate that, in this particular case, the ex ante Pareto dominant PBE is

partitional. Hence, in the uniform quadratic case, the partition Π∗ corresponds to an ex ante

Pareto optimal PBE. However, a counter-example shows that this result does not survive for

more general priors. Finally, the third subsection of Section 6 deals with the extension of the

properties of Π∗ when mixed strategies are allowed. After having characterized mixed equilibria

as IC “pseudo-partitions” of the set of types and extended our basic notions to these, we show

that Π∗ remains dominant and undefeated within the set of all IC pseudo-partitions, namely,

when mixed strategies are allowed. A key lemma for the latter properties is that every IC

pseudo-partition is dominated by an associated IC partition, a result suggested in Frug (2016)

(see below).

Relationship with other papers

There is a large literature on equilibrium refinements in sender-receiver games. We will be

deliberately selective. As already mentioned, Farrell (1993) and Mailath et al. (1993) provide

motivations for (possibly forward-) neologism-proof equilibria; these papers contain relevant

early references. The latter one identifies a class of signaling games (containing Spence’s model

as a representative one) in which an undefeated equilibrium always exists; not surprisingly, our

model does not pertain to this class.

Three features of our approach should be kept in mind when trying to make a precise

comparison with other contributions. First of all, we focus on a specific model: the discrete

version of Crawford and Sobel (1982). Second, we perform our analysis in terms of equilibrium

outcomes, namely, IC partitions, restricting the language to messages of the form “my type

is in L.” Finally, to select an undefeated equilibrium, we compare equilibria with each other,

rather then testing the rationality of every equilibrium separately.

Frug (2016) proposes a first analysis of the discrete version of Crawford and Sobel (1982).
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He investigates to which extent one can restrict on pure equilibria in this model. He provides an

example in which a mixed equilibrium gives a higner payoff to the receiver than any partitional

equilibrium. He also shows that this phenomenon cannot arise when the sender is upward

biased, an assumption that is maintained throughout the current paper. More precisely, in

this case, Frug (2016) proves (as Proposition 1) that every non-partitional equilibrium can be

associated with a partitional one, in which the receiver uses the same number of actions and

obtains a higher ex ante expected payoff.4

The latter property holds in our framework but does not say anything on the robustness of

our own results when the sender is allowed to use a mixed strategy.5 In Section 6.3, we extend

the various tools used in this paper (starting with the equilibrium characterization) to account

for mixed equilibria; we show that, when such equilibria are allowed, the unique limit of our

algorithm(s) remains undefeated and still “dominates” every other equilibrium. As pointed out

above, a key lemma for this result can be found in the proof of Frug’s Proposition 1.

In the quadratic uniform case, Frug (2016) constructs an explicit partitional equilibrium

that ex ante Pareto dominates every other equilibrium. We show that, in this particular case,

the IC partition reached by our algorithm coincides with Frug’s (2016) partitional equilibrium.

While our analysis is entirely formulated in terms of a canonical language, many papers

refine cheap talk equilibria by relying on a “language with literal meanings.” As an early

example of such an approach, Matthews et al. (1991) develop various notions of “announcement-

proof (mixed) equilibrium” for sender-receiver games with finitely many types and actions

but arbitrary utility functions. Their “weak” notion is motivated by the same considerations

as undefeated equilibria (typically, consistency of off-path messages with sender’s equilibrium

strategies). Blume (2023) models the idea of a pre-existing language and analyzes its role in

equilibrium prediction (see also the references in this paper).6

Clark (2021) introduces the notion of “credible robust neologisms” for general signaling

games. Having extended Farrell’s (1993) definition to this class of games, he shows that

neologism-proof equilibria are always robust neologism-proof.7 Unlike the forward neologisms

4Some basic ideas behind our algorithms are already in the proof of this result, which uses an iterative

optimization process to transform any mixed equilibrium into a pure one. Frug (2016) mentions other related

procedures, e.g., Gordon (2011) and Chen and Gordon (2015).
5Given our assumptions, the receiver never uses a mixed strategy at equilibrium.
6See also Olszewski (2006), etc.
7As pointed out above, in general, there is no relationship between neologism-proof equilibria and undefeated
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behind undefeated equilibria, credible robust neologisms maintain the idea that the receiver

sticks to his equilibrium strategy when he does not receive the neologism. The main novelty

of Clark’s (2021) notion is that, when the receiver observes the neologism L, he can form any

belief over L. Hence a set of best responses of the receiver is associated with L, one for every

belief. The neologism L is robustly credible if all types in L benefit from sending it, what-

ever the receiver’s best response. By contrast, in a forward-neologism-proof equilibrium, the

receiver implicitly uses Bayes rule over credible neologisms, because these are sent at some

(other) equilibrium.8

Clark (2021) establishes existence of a robust neologism-proof equilibrium in two popular

classes of signaling games. However, in arbitrary sender-receiver games with finitely many

types and actions, there may not be any robust neologism-proof equilibrium, including when

there is a forward one. It may also happen that a robust neologism-proof equilibrium is not

forward-neologism-proof.

Building on Gordon (2011), Kartik and Sobel (2015) and Lo and Olszewski (2022), Gordon

et al. (2022) study equilibrium selection in Crawford and Sobel’s (1982) original model, in

which the sender’s type belongs to a real interval. This is the main difference between their

model and the current one. In particular, they assume, as we do, that the set of messages

is finite. This assumption has no impact on the set of PBE of their game but prevents the

sender from using a completely revealing strategy. Since this is the typical starting point of

our algorithms, our methodology does not literally apply to their model. However, our main

finding is qualitatively similar to one of their results, which identifies a “largest” equilibrium

and an adjustment process converging to this equilibrium.

More precisely, Gordon et al. (2022) make the further assumption that messages are ordered

and focus on monotonic strategies for both players. This allows for a tractable type-action

mapping representation, which remains closer to the original strategies than the partition rep-

resentation in our discrete case. Applying an interim best response dynamic, they identify

a “smallest” and a “largest” equilibrium, which correspond to the limit of a “lower” and an

“upper” sequence respectively. Under a suitable regularity condition introduced in Crawford

ones. However, in the class of sender-receiver games that we consider, there is a unique partition that can

possibly be neologism-proof, the limit partition Π∗, which is undefeated.
8Hillas (1994) already proposes to refine sequential equilibrium in general extensive form games by requiring

that off equilibrium path beliefs correspond to some equilibrium beliefs.
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and Sobel (1982), the two extreme equilibria coincide with the one that induces the larger num-

ber of actions in Crawford and Sobel (1982). As a corollary, if there is a unique equilibrium

type-action mapping satisfying the “no incentive to separate” (NITS) criterion of Chen et al.

(2008), a property that holds under the regularity condition mentioned above, every interim

best response sequence converges to an equilibrium with this type-action mapping.

In spite of the similarity between the previous result of Gordon et al. (2022) and ours,

there are a number of obvious differences. When the set of types is finite, there is no need

to restrict to monotonic strategies to characterize equilibria as IC partitions.9 Our dynamic

process typically starts from specific initial conditions, namely, the sender’s completely revealing

strategy. It converges to the “largest” IC partition, “largest” being understood with respect to

a simple binary relation over interval partitions, independently of any dynamic process.10

While our iterative optimization process rests on best responses of the receiver as Gordon

et al.’s (2022) one, we just consider particular better responses of the sender, in which a single

(appropriately chosen) type improves his utility. As we illustrate on Example 1 in Section 4,

proceeding in this way is helpful to preserve the receiver’s interpretation of messages as truthful

subset of types. Our dynamic process converges to the the “largest” IC partition (according to

an appropriate dominance relation), whatever the choice of the improving type at every step.

It does satisfy NITS, but in our framework, other IC partitions may satisfy this criterion as

well (see Section 6.1).

Gordon et al. (2022) also show that in their model, a procedure of iterated deletion of weakly

dominated strategies leads to the same equilibrium selection as their best response dynamics.

One might want to check whether a similar property holds in our framework. The difficulty

is that by reducing the analysis to (possibly IC) partitions, we implicitly focus on specific

strategies of the sender and corresponding best replies of the receiver. This restricted framework

is appropriate to compare equilibria with each other, which allows us to determine undefeated

equilibria. Identifying dominated strategies requires to keep track of at least a simplified version

of the strategic form game.11 While such an analysis could likely be performed, there is no

9IC partitions characterize pure equilibria but the properties of our limit equilibrium remain true within

mixed ones (see Section 6.3).
10According to this binary relation, the lowest partition is the nonrevealing one and is of course IC.
11Being based on a canonical representation, our methodology is akin to the one that was developed for

communication equilibria or more generally in mechanism design. Canonical mechanisms (with an implicit

restriction to truthful equilibria) are easily compared with each other. However restriction to such mechanisms
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apparent reason to expect that it would establish a link with the largest IC partition reached

by our algorithm(s).12

2 Model and solution concepts

2.1 Sender-Receiver game

We consider a sender-receiver game in which the sender’s set of types Θ is finite and ordered:

Θ = {θ1, . . . , θN}, with θ1 < . . . < θN , N ∈ N. The prior probability distribution over Θ,

p ∈ ∆(Θ), is such that p(θ) > 0 for every θ ∈ Θ. The sender’s set of messages M is finite and

such that |M | ≥ 2|Θ|. The receiver’s set of decisions is R. For every θ ∈ Θ, the sender’s utility

function is U θ : R → R and the receiver’s utility function is V θ : R → R.

The game unfolds as follows: a chance move selects a type θ in Θ according to p; the sender

is informed of θ and sends a message m ∈ M to the receiver, who then chooses a decision x ∈ R.

The players’ respective utilities are U θ(x), V θ(x), independently of the message m.

We assume that the utility functions (θ, x) 7→ U θ(x) and (θ, x) 7→ V θ(x) are well-behaved,

namely, satisfy the following standard properties:

� Strict concavity :

For every θ ∈ Θ, x 7→ U θ(x) and x 7→ V θ(x) are twice continuously differentiable

and for every x ∈ R, ∂2Uθ(x)
∂x2 < 0 and ∂2V θ(x)

∂x2 < 0.

(A0)

� Single-crossing :

For every (θ1, θ2, x1, x2) ∈ Θ2 × R2, with θ2 > θ1 and x2 > x1,

if U θ1(x2)− U θ1(x1) ≥ 0, then U θ2(x2)− U θ2(x1) > 0, and

if V θ1(x2)− V θ1(x1) ≥ 0, then V θ2(x2)− V θ2(x1) > 0.

(A1)

(and their associated equilibria) is questionable to address refinement issues (see, e.g., Gerardi and Myerson

(2007)).
12We found an example in which there are three IC partitions: the nonrevealing one, which is defeated, Π∗,

the limit of our iterative procedure, and another partition Π, which is also undefeated. Both Π∗ and Π∗ survive

to the elimination of dominated strategies (see Section 4).
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� Unique maximizing arguments :

For every θ ∈ Θ, there exist a unique x∗(θ) ∈ R and a unique y∗(θ) ∈ R

such that ∂Uθ(x)
∂x

∣∣∣
x=x∗(θ)

= 0 and ∂V θ(x)
∂x

∣∣∣
x=y∗(θ)

= 0.
(A2)

� Sender’s upward bias :

For every θ ∈ Θ, x∗(θ) > y∗(θ). (A3)

As an illustration, the previous assumptions are satisfied by quadratic utility functions of the

form

U θ(x) = −(θ + bθ − x)2, V θ(x) = −(θ − x)2,

with bθ > 0 and θ + bθ increasing with θ.

2.2 Perfect Bayesian equilibrium

We focus on pure equilibria.13 A pure strategy for the sender, namely, a mapping σ : Θ → M ,

induces a partition of Θ (with cells σ−1(m), m ∈ σ(Θ)). A pure strategy for the receiver is a

mapping τ : M → R.

Given the sender’s strategy σ and a signal m ∈ σ(Θ), the receiver forms the posterior belief

p(.|m) ∈ ∆(Θ) according to Bayes rule. Equivalently, for every cell π of the partition Π induced

by σ, he forms the posterior belief p(.|π), equal to p(θ)
p(π)

for θ ∈ π and 0 otherwise.

Let us define, for every L ⊆ Θ and every x ∈ R:

V L(x) =
∑
θ∈L

p(θ)

p(L)
V θ(x).

From assumptions (A0) and (A2), we can set

yL = argmax
x∈R

V L(x).

In particular, for every θ ∈ Θ, the receiver’s optimal action knowing θ is

yθ
def
= y{θ} = y∗(θ).

Using also (A1), the sequences (x∗(θi))i=1...N and (y∗(θi))i=1...N = (yθi)i=1...N are ordered with

respect to the original order on Θ.

13See Section 6.3 for comments on mixed equilibria.
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Given the partition Π induced by some strategy σ of the sender, the receiver has a unique,

pure best reply, which consists of choosing yπ on every cell π of Π. The partition describes a

Bayesian equilibrium if and only if :

For every π, π′ ∈ Π, for every θ ∈ π, U θ(yπ) ≥ U θ(yπ
′
). (IC)

Conversely, every IC partition Π induces an equilibrium and even a Perfect Bayesian Equi-

librium (PBE), by assuming that decision yπ
′
, for some cell π′ of Π, is made on any out of

equilibrium message (with the associated belief p(· | π′)).

Summing up, every PBE is equivalent to an IC partition of Θ. This characterization of

PBE goes along with identifying canonical messages as subsets L of Θ, with the meaning “my

type is in L.”

Furthermore, from assumptions (A0), (A1) and (A2), every IC partition consists of “inter-

vals” of consecutive types. To see this, let Π be an IC partition, let θ < θ′ < θ′′, assume that

θ and θ′′ are in the same cell of Π, in which decision y is made, while θ′ is in another cell, in

which a distinct decision y′ is made. By (A1) and (IC) for θ and θ′, we must have that y < y′.

But given (A1), this contradicts IC for θ′′.

2.3 Undefeated partition, forward-neologism-proof PBE

Let us adapt Mailath et al.’s (1993) notion of “undefeated” PBE to our partition characteriza-

tion. Given a partition Π of Θ, we denote as π(θ) the cell of Π that contains θ.

Definition 1. Let Π and Π′ be IC partitions of Θ.

� Π′ defeats Π if there is a cell π′ of Π′ such that

for every θ ∈ π′, U θ(yπ
′
) ≥ U θ(yπ(θ)) (with at least one >).

� Π is undefeated if it is not defeated by any other IC partition.

We show below that undefeated IC partitions can be interpreted as being neologism-proof

in a specific sense, which we call “forward-neologism-proof.”

As made clear in the previous section, every PBE defines a language, which consists of the

messages that are sent at equilibrium. In our setup, a PBE is described by an IC partition Π,

so that the equilibrium language is defined by the cells of Π. Every set of types L ⊆ Θ that is

not a cell of Π is a neologism.
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Let us recall the definition of Farrell (1993).14

Definition 2. Let Π be an IC partition of Θ and let L be a subset of Θ.

L is self-signaling for Π if

� for every θ ∈ L, U θ(yL) ≥ U θ(yπ(θ)) (with at least one >);

� for every θ /∈ L, U θ(yL) ≤ U θ(yπ(θ)).

Π is neologism-proof if there is no self-signaling set for Π.

To be self-signaling, the neologism L must first improve the utility of all types in L, if the

receiver reacts by making decision yL. The interpretation of the second requirement is that,

when a message different from L is sent, the receiver sticks to his original equilibrium strategy.

As Mailath et al. (1993), we consider a forward looking receiver, who performs a thought

experiment before the beginning of the game and understands that, if types in L send message

L, in the hope of inducing decision yL, then the original equilibrium messages must be sent by

types that are not in L. Hence, the logic leading the receiver to modify his strategy (to yL) on

L also leads him to adjust it outside of L. Anticipating this, the sender should react so as to

avoid conflict between his types, namely, in such a way that types in L do not want to imitate

those in Θ \ L and types in Θ \ L do not want to imitate those in L. In other words, to be

credible, the neologism L must be incentive compatible, given some receiver’s strategy choosing

yL on L or equivalently, L must be a cell of some IC partition. Summing up, we define an

IC partition Π as forward-neologism-proof if it is immune to incentive compatible neologisms.

Using this definition and recalling Definition 1, Π is forward-neologism-proof if and only if Π

is undefeated.15

2.4 Dominance relation over partitions

In this section, we introduce the last basic ingredient needed to state our result: a binary

relation over partitions. Let us denote as maxL (resp., minL) the highest (resp., lowest)

14Farrell (1993) does not explicitly settle the case of types that are indifferent between their original equilib-

rium message and the neologism. In Definition 2, these types may send either message.
15Mailath et al. (1993, p. 252) argue: “[...] starting from a given equilibrium, adjusting the beliefs at some

out-of-equilibrium information set cannot be done without simultaneously adjusting beliefs at other information

sets, including some information sets on the equilibrium path. [...] Once all the subsequent adjustment are

made, we must be at an equilibrium; if not some further adjustment should be contemplated.”
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element of a subset of types L. Recall that π(θ) denotes the cell of partition Π that contains θ.

Definition 3. Let Π and Π′ be partitions of Θ.

Π dominates Π′ (Π ≥ Π′) if for every cell π′ of Π′, min π(max(π′)) ≥ min(π′).

In other words, Π dominates Π′ if the cells of Π are “more to the right”, namely, if every

maximal element of a cell of Π′ is pooled with higher types in Π than Π′ (see Figure 1 below).

Π′ : . . .}, {min π′, . . . . . . . . . . . . . . . . . . , maxπ′ }, {. . .

Π : . . . . . .}, {minπ(maxπ′), . . . , maxπ′ , . . .}, {. . .

Figure 1: Π ≥ Π′.

The dominance relation is anti-symmetric, i.e., if Π ≥ Π′ and Π′ ≥ Π, then Π = Π′, but the

induced order is not complete.16 However, the completely revealing partition

CR = {{θ1}, . . . , {θN}}

dominates every other partition, while the nonrevealing partition

NR = {Θ}

is dominated by every other partition.

Obviously, if Π ≥ Π′, Π′ cannot have more cells than Π.

3 Statement of the main result

When assumptions (A0)-(A3) are not satisfied, existence of an undefeated partition is not

guaranteed (see, e.g., Matthews et al. (1991) or Olszewski (2006).17 By contrast, the next

result holds in our model:

Theorem 1. There exists a unique IC partition Π∗ such that for every IC partition Π, Π∗ ≥ Π.

This partition Π∗ is undefeated.

16Partitions Π and Π′ might be such that some maximal element of some cell of Π is pooled with higher types

in Π′ than in Π, and some maximal element of some cell in Π′ is pooled with higher types in Π than in Π′.
17In Example 6 of Matthews et al. (1991), there are two partially revealing IC partitions which defeat each

other; both of them defeat the nonrevaling partition. In Example 5 of Olszewski (2006), there are five IC

partitions; the completely revealing partition is defeated by the nonrevealing one, which in turn is defeated by

any of the partially revealing ones; these defeat each other as in a three-person majority game.
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Note that, by the antisymmetry of the dominance relation, an IC partition dominating any

other IC partition is necessarily unique. An immediate consequence of this statement is that a

partition that is finer than Π∗ cannot be IC.

As part of the proof of Theorem 1, we propose a family of natural iterative optimization pro-

cesses that all converge to a unique IC partition Π∗ satisfying the properties in the statement.

This is done formally in Section 5. The algorithms typically start with “initial trust”, namely,

with the partition Π0 = {{θ1} , {θ2} , · · · , {θN}} associated with the sender’s completely re-

vealing strategy and the receiver’s corresponding best response, namely, yθi if the sender’s type

is θi. If initial trust is not an equilibrium, the sender has a profitable deviation, i.e., a bet-

ter response. The algorithm goes on with improvement of some type of the sender given the

receiver’s strategy. Then, the receiver adjusts, with a best response to the new strategy of

the sender... and so on, alternating better responses of (some type of) the sender and best

responses of the receiver.

The previous description gives some flexibility in choosing the better response of the sender

and may thus be compatible with various sequences of partitions. However we prove that

all variants of the algorithm converge to the same partition Π∗. To give a little more precise

description of the iterative optimization processes, we need two additional definitions. We focus

on type-ordered interval partitions, in which the cells are ordered according to the order on Θ.

Definition 4. Let Π be a partition of Θ and let π and π′ be cells of Π.

Type θ ∈ π envies cell π′ if U θ(yπ
′
) > U θ(yπ).

We say that type θ envies type θ′ if θ envies the cell π(θ′) containing θ′. According to

Definition 4, partition Π is IC if and only if it has no envying type.

Definition 5. A partition is Left-Incentive Compatible (L-IC) if no type envies a cell on its

left.

We can now give a step by step description of the iterative optimization processes converging

to Π∗.

� Step 0: Start with the completely revealing partition Π0 = {{θ1} , {θ2} , · · · , {θN}}.

Π0 is L-IC.

� Step 1: if Π0 is not IC, consider a type θi that envies a type on its right; then θ̃ = θi

also envies θi+1; go on with {θi, θi+1} in Π1. Π1 is L-IC.

14



� · · ·

� At the end of Step r, Πr is left-IC.

� Step r+1: if Πr is not IC, there is some type, in some cell of Πr, θ ∈ πn
r , that envies

some cell on its right. Then the largest type in πn
r , θ̃ = maxπn

r , envies the next cell π
n+1
r ;

go on by merging
{
θ̃
}
with πn+1

r to form Πr+1.

� · · ·

� A unique IC partition Π∗ is reached, whatever the type θ̃ chosen at every step.

4 Basic examples

In all the examples below, the utility functions are quadratic, with a constant bias b for the

sender, i.e., U θ(x) = −(θ + b− x)2, V θ(x) = −(θ − x)2.

Example 1. Let Θ = {1, · · · , 11}, b = 2 and p be uniform, namely, p(θ) = 1
11

for every θ.18

The partition Π∗ identified in Theorem 1 is Π∗ = {{1, 2} {3, ..., 11}}. Here is a possible run of

the iterative optimization process converging to Π∗:

� {1} , {2} , · · · , {10} , {11}

� {1} , {2} , · · · , {10, 11}

� · · ·

� {1} , {2} , {3} , {4} , {5, · · · , 11}

� {1} , {2} , {3, 4} , {5, · · · , 11}

� {1} , {2} , {3} , {4, · · · , 11}

� {1} , {2, 3} , {4, · · · , 11}

� {1, 2, 3} , {4, · · · , 11}

� {1, 2} , {3, · · · , 11}
18The uniform quadratic case is treated in more detail in Section 6.2.
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In the CR partition, every type envies the next one. The sender has many possible better

responses; for instance, every type improves his utility by mimicking the next one. The variants

of the optimization process at the first step correspond to choosing a particular type (between

1 and 10) and moving it to the next cell. Such a modification of the partition preserves the

canonical interpretation of messages as being truthful. This need not be the case if a best

response of the sender is considered. Starting from the CR partition, every type i between 1

and 9 best responds by pretending to be type i + 2, while types 10 and 11 send message 11.

Some inference is needed to derive the partition of Θ induced by this strategy of the sender,

namely, {{1} , {2} , · · · , {8} , {9, 10, 11}}.

Using the characterization of Section 6.2, the other IC partitions are NR = {{1, · · · , 11}}

and Π = {{1} {2, · · · , 11}}. As expected, Π∗ dominates NR and Π. One can check that NR is

defeated by Π (since type 1 prefers Π to NR) but not by Π∗ (since type 2 and type 4 prefer NR

to Π∗). However, Π is defeated by Π∗ (since type 1 and type 2 prefer Π∗ to Π).19

In the next example, there are three IC partitions: NR, Π∗ and another partition Π, with

the same number of cells as Π∗. Both Π∗ and Π are undefeated. As expected Π∗ dominates

NR and Π.

Example 2. Let Θ = {1, 2, 3, 4}, b = 0.6 and

p(1) = 1
4
, p(2) = 1

4
, p(3) = 1

100
, p(4) = 49

100
.

The associated cell-contingent actions are:

y{1} = 1, y{1,2} = 1.5, y{1,2,3} = 1.53, y{2} = 2, y{2,3} = 2.04, y{1,2,3,4} = 2.74, y{3} = 3,

y{2,3,4} = 3.32, y{3,4} = 3.984, and y{4} = 4.

There are eight interval partitions of Θ. The partitions NR = {{1, 2, 3, 4}}, Π = {{1}, {2, 3, 4}}

and Π∗ = {{1, 2}, {3, 4}} are the only IC ones. As clear from the graph, in {{1}, {2}, {3}, {4}}

and {{1}, {2}, {3, 4}}, type 1 envies type 2. In {{1}, {2, 3}, {4}}, {{1, 2}, {3}, {4}} and {{1, 2, 3}, {4}},

type 3 envies type 4. The partition NR is defeated by Π∗, thanks to the neologism L = {3, 4}.

Concerning Π and Π∗, types 1 and 4 prefer partition Π∗, whereas types 2 and 3 prefer partition

Π. No type except 2 prefers NR to Π∗ or Π. Thus Π∗ and Π are both undefeated.20

19In this example, Π∗ turns out to be the only undefeated partition. However if, e.g., N = 8, the IC partitions

are NR and Π∗ = {{1} {2, ..., 8}}. One can check that both are undefeated.
20In this example, both Π∗ and Π survive a tedious elimination of interim weakly dominated strategies.

16



1 2 3 4

U1 U2 U3 U4

V 1 V 2 V 3 V 4

y{2}y{1,2,3} y{1,2,3,4} y{3,4}

y{1} y{1,2} y{2,3} y{3} y{2,3,4} y{4}

Figure 2: Utility functions and cell contingent actions in Example 2.

5 Better response dynamics (proof of the main result)

In this section, we establish Theorem 1. To do so, we propose iterative optimization processes

that are a bit more general than the ones sketched in Section 3. First of all, several lemmas below

only assume that the initial partition Π0 is L-IC. It appears that the crucial property of the

completely revealing partition is that it dominates every IC partition. Second, to emphasize

the flexibility of the processes, we introduce the “envy operator” Env(.) over the set of all

partitions of Θ. Given a set E of partitions, which typically can be achieved at some step r of

some version of the algorithm (as described in Section 3), Env(E) contains all partitions that

can be achieved at the next step.

5.1 Left-incentive compatibility along the algorithm

Let Π = {π1, . . . , πn}, n ≤ N , be an interval type-ordered partition, i.e., such that the types

in π1 are lower than the types in π2, and so on. Such a partition Π is not IC iff there is some

type in some cell πk who envies some cell πk′ , k′ ̸= k. From the single-crossing condition, this is

equivalent to: if k′ > k (resp., k′ < k) then type max πk envies πk+1 (resp., type minπk envies

πk−1). Thus, the partition is IC iff no type at an edge of a cell envies an adjacent cell.

Starting from an L-IC partition (see Definition 5), the following lemma allows us to recur-

sively eliminate envy of some types for cells on their right.
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Lemma 1. If Π = {π1, . . . , π|Π|} is L-IC, then every partition Π1, derived from Π by merging

some envying type maxπk, k ∈ {1, . . . , |Π| − 1}, with the cell πk+1 it envies on its right, is also

L-IC.

Proof. Let Π = {π1, . . . , π|Π|} be L-IC, and let Π1 ∈ Env(Π), with Π1 = {π1
1, . . . , π

|Π1|
1 }, in

which type θ̃ ∈ πk is pooled with its next succeeding cell. In particular, if πk \ {θ̃} ≠ ∅, then

π1
1 = π1, . . . , πk−1

1 = πk−1,

πk
1 = πk \ {θ̃},

πk+1
1 = πk+1 ∪ {θ̃},

πk+2
1 = πk+2, . . . , π

|Π|
1 = π|Π|,

and then |Π1| = |Π|; and, if πk \ {θ̃} = ∅, then
π1
1 = π1, . . . , πk−1

1 = πk−1,

πk
1 = πk+1 ∪ {θ̃},

πk+1
1 = πk+2, . . . , π

|Π|−1
1 = π|Π|,

and then |Π1| = |Π| − 1.

The lemma obtains since Π satisfies (L-IC), and yπ
k+1∪{θ̃} ≤ yπ

k+1
(because θ̃ = min(πk+1 ∪

{θ̃}) and yπ
k\{θ̃} ≤ yπ

k
(because θ̃ = max πk): for the minimal types of the cells of Π1, the

action moves never add envy of an immediately preceding cell.

Definition 6. Given a set of L-IC partitions E, Env(E) is the set of partitions derived from

partitions Π in E as follows: if Π is IC, then Π ∈ Env(E); if Π is L-IC (but not IC), then

merge one type maxπ, for some π ∈ Π, with the cell it envies on its right, and add the resulting

partition to Env(E). Do this for every type in Π which envies the cell on its right.

Using Lemma 1, we recursively define, from an L-IC partition Π, Env0(Π) = {Π}, and, for

every r ∈ R,

Envr+1(Π) = Env(Envr(Π)).

Since there are finitely many types, merging a type to the cell on its right cannot be done

indefinitely. Hence Lemma 1 also guarantees that every sequence (Envr(Π))r≥0 converges to a

set of IC partitions in a finite number of steps.

Corollary 1. For every L-IC partition Π, there exists r ∈ N such that every partition Πr ∈

Envr(Π) is IC.
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Furthermore, from the definition of Env(.), if E is a set of IC partitions, then Env(E) = E.

Hence we can define Env(Π) = Envr(Π) as the set of IC partitions derived from an L-IC

partition Π by envy.

In the next section, we identify a condition on partitions Π ensuring that Env(Π) contains

a unique partition.

5.2 Dominance along the algorithm

Recall the binary relation ≥ defined over partitions (see Definition 3). The following lemma

shows how dominance is preserved by the envy operator defined in Definition 6.

Lemma 2. For every L-IC partition Π0 and every Π1 ∈ Env(Π0), if Π0 ≥ Π for some IC

partition Π, then Π1 ≥ Π.

Proof. Let Π be an IC partition, let Π0 be an L-IC partition such that Π0 ≥ Π, and let

Π1 ∈ Env(Π0).

Write Π = {π1, . . . , πnΠ}, with nΠ = |Π|, and choose θk = maxπk for some k ∈ {1, . . . , nΠ}.

From Π0 ≥ Π, we have

min π0(θk) ≥ min πk, (1)

and we want to show

min π1(θk) ≥ min πk, (2)

where π0(θk) and π1(θk) respectively denotes the cell of Π0 and of Π1 that contains θk.

Let θ̃ denote the type that is pooled to its next succeeding cell from Π0 to Π1. Then we

have:

� either π1(θk) = π0(θk), in which case (2) derives from (1);

� or θk = θ̃, in which case θk is the lowest type of π1(θk), and then (2) results from

minπ1(θk) = θk = maxπk ≥ min πk;

� or π1(θk) = π0(θk) ∪ {θ̃}, where θ̃ is the highest element of the cell πL
0 (θk), immediately

on the left of π0(θk).

In the latter case, we have min π1(θk) = θ̃. Then (2) might be written

θ̃ ≥ min πk. (3)
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Inequality (3) trivially holds whenever minπ0(θk) > minπk. We show that this is always the

case, that is: if θ̃ ∈ πL
0 (θk) envies π0(θk), then minπ0(θk) > minπk.

We do this by contradiction. Suppose minπ0(θk) = minπk. Then θ̃, the maximal element

of πL
0 (θk), is also the maximal element of cell πk−1, i.e.,

θ̃ = θk−1.

Then, on the one hand, from Π0 ≥ Π1, we have

minπL
0 (θk) ≥ minπk−1,

and we obtain that πL
0 (θk) consists of the highest elements of πk−1. On the other hand, since

maxπk = θk ∈ π0(θk), we also have that πk consists of the lowest elements of π0(θk). This

situation, and the (IC) condition on Π, prevents θ̃ to strictly envy the action associated with

π0(θk) when considered in πL
0 (θk).

Formally, we respectively have

yπ
k−1 ≤ yπ

L
r (θk) ≤ yθ̃, (4)

where the second inequality results from the maximality of θ̃ in cell πL
r (θk), and

yπr(θk) ≥ yπ
k

. (5)

From (4), U θ̃ is increasing at yπ
k−1

and yπ
L
r (θk), so that

U θ̃(yπ
k−1

) ≤ U θ̃(yπ
L
r (θk)). (6)

Since Π is IC, U θ̃(yπ
k−1

) ≥ U θ̃(yπ
k
). Then from yπ

k−1
< yπ

k
, function U θ̃ is not increasing at

yπ
k
, and (5) gives

U θ̃(yπ
k−1

) ≥ U θ̃(yπr(θk)).

This combined with (6) gives

U θ̃(yπr(θk)) ≤ U θ̃(yπ
L
r (θk)),

and θ̃ ∈ πL
r (θk) does not strictly envy the action associated with πr(θk).

5.3 Convergence of the algorithm

By recursion, a direct consequence of Lemma 2 is that if Π0 ≥ Π, then every partition Πr ∈

Envr(Π), r ≥ 0, is such that Πr ≥ Π. In particular, every IC partition Πr ∈ Env(Π) is such

that Πr ≥ Π.
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Corollary 2. For every IC partition Π and every L-IC partition Π0 such that Π0 ≥ Π, every

IC partition Πr ∈ Env(Π0) is such that Πr ≥ Π.

Moreover, if a partition Π0, such as CR, satisfies Π0 ≥ Π for every IC partition Π, then every

IC partition Πr ∈ Env(Π0) is such that Πr ≥ Π for every IC partition Π. Hence there exists

at least one IC partition which dominates every other partition. But from the anti-symmetry

of the dominance relation, such a dominating partition is unique. We obtain the following

proposition – a detailed version of the first part of Theorem 1.

Proposition 1. There exists a unique IC partition Π∗ such that, for every IC partition Π,

Π∗ ≥ Π. The partition Π∗ is achieved as the unique element of Env(Π0), recursively derived by

envy from any L-IC partition Π0 such that for every IC partition, Π0 ≥ Π (e.g., Π0 = CR).

5.4 Undefeated partition

Let Π be an IC partition and Π0 be an L-IC partition such that Π0 ≥ Π. The next lemma

shows that the maximal element θ of every cell of Π weakly prefers the cell containing it in

any partition Πr ∈ Envr(Π0), provided that θ is also the maximal element of a cell of Π0

(a property that automatically holds for Π0 = CR). The result is straightforward if θ is the

maximal element of a cell of Πr, since in this case, Πr ≥ Π implies that θ is associated with

(weakly) lower types in Πr than in Π, resulting in a lower action in Π than in Πr, in a region (on

the left of x∗(θ)) where x 7→ U θ(x) increases. If instead θ < maxΠr, then the result requires

that θ = max π0, π0 ∈ Π0. This assumption implies that at some step r′ between 0 and r,

type θ is merged by envy to its next succeeding cell. Since at that step r′, type θ is also the

maximal element of a cell of Πr′ , which dominates Π, θ also prefers the action taken in its next

succeeding cell in Πr′ to the action taken on θ in Π. Then, from r′ + 1 on, θ keeps preferring

the cell containing it, up to partition Πr.

Lemma 3. Let Π be an IC partition, let π be a cell of Π, and let θ = maxπ. Let Π0 be an

L-IC partition such that Π0 ≥ Π and such that θ = maxπ0 for some cell π0 ∈ Π0. Let r ∈ N

and let Πr ∈ Envr(Π0). Then

U θ(yπr(θ)) ≥ U θ(yπ),

with equality only if πr(θ) = π.
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Proof. Let Π = {π1, . . . , π[Π|} be an IC partition, let k ∈ {1, . . . , |Π|}, and set θk = max πk.

Let Π0 be an L-IC partition such that Π0 ≥ Π and such that θk = maxπ0 for some cell π0 ∈ Π0.

Let r ∈ N and let Πr ∈ Envr(Π0).

From θk = maxπk, we have yπ
k ≤ yθk . In particular, U θk is increasing on

[
yπ

k
, yθk

]
. Then

if πr(θk) is a singleton, the lemma follows (with equality only if πk is a singleton too). Hence

we can suppose that πr(θk) is not a singleton for the remainder of the proof.

By Corollary 2, Πr ≥ Π. Hence the types of πr(θk) which are lower than or equal to θk are the

highest types of πk and the lowest types of πr(θk). More precisely, let L = {θ ∈ πr(θk) : θ ≤ θk}.

Equivalently, L = {θ : minπr(θk) ≤ θ ≤ θk}, so that yπr(θk) ≥ yL ≥ yπ
k
. In particular,

yπr(θk) ≥ yπ
k

. (7)

Moreover, if πr(θk) ̸= πk, the inequality is strict.

If θk = max πr(θk), then yπr(θk) ≤ yθk , so that U θk is increasing on
[
yπ

k
, yπr(θk)

]
, and the

lemma also follows.

Otherwise, since Π0 is such that θ = maxπ0, there exists 0 ≤ r′ < r and some cell πr′ ∈ Πr′ ,

Πr′ ∈ Envr
′
(Π0), whose maximal element is θk, and such that

U θk(yπr′ ) < U θk(yπ
+
r′ ), (8)

where π+
r′ ∈ Πr′ is the cell immediately on the right of πr′ , and such that from step r′ to r′ +1,

θk is moved from πr′ to π+
r′ , and then, from step r′ + 1 to r, cell π+

r′ is possibly filled with

lower types, and also possibly emptied from some of its highest types, up to achieve πr(θk) (see

Figure 3).
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Π0 : . . .}, {. . . , θk} , {. . . .
...

Πr′ : . . .}, {. . . . . . , θk} ,

π+
r′︷ ︸︸ ︷

{. . . . . . . . .}, {. . .

Πr′+1 : . . .}, {. . . . . .}, {θk , . . . . . . . . .}, {. . .
...

Πr′+k : . . . . . .},{. . . , θk , . . . . . .}, {. . .
...

Πr : . . .},{. . . . . . , θk , . . .}, {. . .

Π : . . .}, {. . . . . . . . . , θk} , {. . .

Figure 3: From π+
r′ to πr(θk) along an envy sequence initialized at Π0.

In particular, the sequence of actions that starts at step r′ with the action yπ
+
r′ that θk

prefers, and then, from step r′ to step r, that goes on with the action associated with θk, that

ends at yπr(θ), is a strictly decreasing sequence of actions. Therefore, we have:

yπr(θk) < yπ
+
r′ . (9)

Moreover, from Lemma 2, we have, by recursion (since Π0 ≥ Π),

Πr′ ≥ Π,

and then minπr′(θk) = min πr′ ≥ min πk. Since max πr′ = maxπk = θk, we obtain

yπ
k ≤ yπr′ ≤ yθk . (10)

From (7) and (9), we have yπr(θk) ∈
[
yπ

k
, yπ

+
r′

[
(with yπr(θk) > yπ

k
if πr(θk) ̸= πk). Since U θk is

single peaked, we obtain

U θk(yπr(θk)) ≥ min{U θk(yπ
k

), U θk(yπ
+
r′ )}, (11)

with a strict inequality if πr(θk) ̸= πk. From (10), U θk is increasing on
[
yπ

k
, yπr′

]
. Hence

U θk(yπr′ ) ≥ U θk(yπ
k

). (12)

Then from (8) and (12), we obtain

U θk(yπ
+
r′ ) ≥ U θk(yπ

k

).

In other words, min{U θk(yπ
k
), U θk(yπ

+
r′ )} = U θk(yπ

k
) and (11) gives the result.
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Let us take Π0 = CR (the completely revealing partition) in Lemma 3. The assumptions

involving Π0 are satisfied since every type is the maximal type of a cell of Π0. The conclusion

of the lemma thus applies to every IC partition Π and (by Corollary 1) to the limit partition

Π∗, i.e., every type that is maximal in some cell π of Π has higher utility in Π∗ than in Π. This

is the content of the next statement.

Corollary 3. Let Π be an IC partition, let π be a cell of Π, and let θ = maxπ. Then

U θ(yπ∗(θ)) ≥ U θ(yπ),

with equality only if π∗(θ) = π.

As an immediate consequence, no IC partition Π defeats Π∗, which establishes the second

part of Theorem 1.

The previous reasoning relies heavily on sequences (Πr)r≥0 that start at Π0 = CR and

converge to Π∗. The partition Π∗ is undefeated because the maximal type of every cell of every

IC partition is associated with higher types in Π∗. Indeed going from Π0 to Π∗, maximal types

are pooled with the next succeeding cell only if they prefer to be pooled. The feature runs

recursively along the full partitions. As a consequence, in Π∗, types are minimally pooled with

respect to their incentives in CR. To illustrate this point, the following example shows that

if condition θ = maxπ0 does not hold, i.e., if θ is already pooled with higher types in Π0,

then inequality U θ(yπ0) ≥ U θ(yπ) may not hold, even if Π0 is L-IC and Π0 ≥ Π′ for every IC

partition Π′.

Example 3. Consider Θ = {1, 3, 4, 9, 10}, with p(1) = p(3) = 0.2, p(4) = 0.3, p(9) = 0.29,

and p(10) = 0.01. Utility functions are V θ(x) = −(θ − x)2 and U θ(x) = −(θ + 0.6 − x)2.

Partition Π = {{1, 3}, {4, 9, 10}}, where y{1,3} = 2 and y{4,9,10} ≃ 6.5, is IC. The sequence

(Πr)r≥0 initialized at Π0 = CR converges to Π∗ = {{1}, {3, 4}, {9, 10}}. Now consider the

alternative partition Π′
0 = {{1}, {3, 4, 9}, {10}}, where y{1} = 1, y{3,4,9} ≃ 5.6, and y{10} = 10.

The partition Π′
0 is L-IC, and clearly Π′

0 ≥ Π. Let us show that it furthermore satisfies Π′
0 ≥ Π′

for every IC partition Π′. Suppose, by contradiction, that there exists a cell π′ of an IC partition

Π′ such that (max π′ = 9 and minπ′ > 3) or (max π′ = 4 and minπ′ > 3). In the former case,

in Π′ type 9 would envy {10} ∈ Π′. In the latter case, in Π′ type 3 would envy π′ = {4}. Hence

there is no such Π′. Thus Π′
0 is such that Π′

0 ≥ Π′ for every IC partition Π′. According to

Proposition 1, the sequence (Envr(Π′
0))r≥0 converges to Π∗. However, in Π type 3 = max π1

obtains y{1,3} = 2, and does not prefer cell π′
0(3) = {3, 4, 9} of Π′

0, associated with y{3,4,9} ≃ 5.6.
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6 Further properties

6.1 Relationship with other refinement criteria

In this section, we first show that the partition Π∗ identified in Theorem 1 is the only one that

can be neologism-proof (see Definition 2) in our model.

Proposition 2. Assume there exists a neologism-proof IC partition Π. Then Π = Π∗.

Proof. Suppose that Π = {π1, . . . , πnΠ}, nΠ ∈ {1, . . . , N}, is a neologism-proof IC partition.

We shall show that every cell of Π also is a cell of Π∗ by recursion, starting from the last cell

of Π. To that end, we shall consider a specific path of the envy driven algorithm initialized at

Π0 = CR, i.e., a sub-sequence (Πr[t])t∈N, t 7→ r[t] increasing, of a sequence of partitions (Πr)r∈N

such that Π0 = CR and for every r ≥ 0, Πr+1 ∈ Env(Πr), that achieves Π.

Formally, given (Πr)r∈N as defined above, we define a condition P (t), t ∈ {0, . . . , |Π|}, as

follows:

P(t) : There exists a rank r = r[t] ∈ N and a partition Πr ∈ Envr(CR) such that

Πr = {{θ1}, . . . , . . . , {θkr−1}︸ ︷︷ ︸
or = ∅ if t = |Π|

, πnr−t
r , . . . , πnr−1

r︸ ︷︷ ︸
or = ∅ if t = 0

}, (13)

where nr − 1 = |Πr|, kr = nr − t = |Πr|+ 1− t, and, if t ≥ 1:

(i) cells πnr−t
r ,. . . ,πnr−1

r are the last cells of Π, and

(ii) type θkr = minπnr−t
r does not prefer yθkr−1 to its Πr-associated action yπr(θkr ), i.e.:

U θkr (yθkr−1) ≤ U θkr (yπr(θkr )).

Note that if condition P (t) holds at t = |Π|, then, from (13) and (i), the partition achieved at

rank r[t] = r[|Π|] is Π, and therefore Π = Π∗.

We now show that condition P (t) holds for every t ∈ {0, . . . , |Π|} by recursion.

Initialization. Condition P (0) trivially holds, because (13) holds at Π0 = CR = {{θ1}, . . . , {θN}},

and properties (i) and (ii) are irrelevant when t = 0.

Heredity. Given 0 ≤ t < |Π| such that condition P (t) holds, with associated rank r = r[t]

and integers nr and kr, let us denote by

π = {θkr−ℓr , . . . , θkr−1}

the cell of Π containing θkr−1, with ℓr ≥ 1. Then heredity is obtained if we show:
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(i) there is a continuation path of the envy driven algorithm that starts from Πr and achieves

partition

Πr′ = {{θ1}, . . . , . . . , {θkr−ℓr−1}︸ ︷︷ ︸
or = ∅ if t = |Π| − 1

, π, πnr−t
r , . . . , πnr−1

r︸ ︷︷ ︸
or = ∅ if t = 0

} (14)

at some step r′ = r[t+ 1] ∈ N, r′ ≥ r, and

(ii) type θkr′ = θkr−ℓr = min π does not prefers yθkr−ℓr−1 = yθkr′−1 to yπ (note that t < |Π|

and thus kr − ℓr > 1).

If π is a singleton, both properties (i) and (ii) are obtained at r′ = r[t + 1] = r[t]. Indeed,

(i) partition Πr′ as defined in (14) is already achieved at r = r[t], and (ii) if kr − 1 > 1, type

θkr′ = θkr−1 = minπ does not prefer yθkr′−1 = yθkr−2 to yπ = yθkr′ , because U θkr′ is increasing

at yθkr′ and yθkr′−1 < yθkr′ . Hence we can assume that π is not a singleton for the remainder of

the proof.

In order to obtain (i) and (ii) as stated above when π is not a singleton, we will use the

assumption that Π is neologism-proof on particular subsets T of π. To that end, we define, for

ℓ, ℓ′ ∈ {1, . . . , ℓr}, ℓ ≤ ℓ′:

Tℓ,ℓ′ = {θkr−ℓ′ , . . . , θkr−ℓ}.

In particular, we have T1,ℓr = π, and for every ℓ ∈ {2, . . . , ℓr} ≠ ∅ (recall that π is not a

singleton): T1,ℓ−1 = {θkr−(ℓ−1), . . . , θkr−1} consists of the ℓ − 1 highest types of π, whereas

Tℓ,ℓr = {θkr−ℓr , . . . , θkr−ℓ} consists of the remaining lower types of π.

We claim that (i) and (ii) hold as long as the following property (P) holds.

(P): For every ℓ ∈ {1, . . . , ℓr}, if type θkr−ℓ is pooled with the lowest types of π, i.e. if it

is associated with yTℓ,ℓr , it envies any pooled next succeeding set of types, i.e., it envies

yTℓ′,ℓ−1 for every ℓ′ ∈ {1, . . . , ℓ− 1}.

We now prove the claim, and next, we prove that (P) holds.

Proof of the claim. Starting from the singletons {θkr−ℓr}, . . . ,{θkr−1} reached as cells of

Πr, property (P) guarantees that there is a continuation path of envy driven moves among

types θkr−ℓr , . . . , θkr−1 that achieves cell π. The corresponding envy driven continuation path

is defined as follows: at every step, the highest type of the lowest cell is moved to its next

succeeding cell (see Figure 4 for an illustration). This continuation path ends the proof of

the claim concerning (i). To get (ii), note that the last move of the continuation path is
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necessarily the one in which θkr−ℓr is associated with yθkr−ℓr and is moved by envy to cell

T1,ℓr−1 = {θkr−(ℓr−1), . . . , θkr−1}. In particular, U θkr−ℓr (yθkr−ℓr ) < U θkr−ℓr (yT1,ℓr−1). From that,

from yθkr−ℓr < yπ = yT1,ℓr < yT1,ℓr−1 and from U θkr−ℓr single-peaked at x∗(θkr−ℓr) ≥ yθkr−ℓr , we

can deduce that U θkr−ℓr (yπ) > U θkr−ℓr (yθkr−ℓr ). Since moreover, yθkr−(ℓr+1) < yθkr−ℓr and U θkr−ℓr

increasing on (−∞, yθkr−ℓr ], we also obtain U θkr−ℓr (yπ) > U θkr−ℓr (yθkr−(ℓr+1)). This achieves the

proof of the claim concerning (ii).

r = r[t],Πr : {. . .} {θkr−4}, {θkr−3}, {θkr−2}, {θkr−1} {. . .}

{. . .} {θkr−4, θkr−3}, {θkr−2}, {θkr−1} {. . .}

{. . .} {θkr−4}, {θkr−3, θkr−2}, {θkr−1} {. . .}

{. . .} {θkr−4, θkr−3, θkr−2}, {θkr−1} {. . .}

{. . .} {θkr−4, θkr−3}, {θkr−2, θkr−1} {. . .}

{. . .} {θkr−4}, {θkr−3, θkr−2, θkr−1} {. . .}

r′ = r[t+ 1],Πr′ : {. . .} {θkr−4, θkr−3, θkr−2, θkr−1}︸ ︷︷ ︸
=π

{. . .}

Figure 4: The continuation path achieving π, if |π| = 4, in which each moves results from

property (P).

Proof of (P). Formally, (P) might be written as:

(P) For every ℓ ∈ {1, . . . , ℓr}, for every ℓ′ ∈ {1, . . . , ℓ− 1},

U θkr−ℓ(yTℓ,ℓr ) < U θkr−ℓ(yTℓ′,ℓ−1). (15)

First, note that for every ℓ ∈ {2, . . . , ℓr},

yTℓ,ℓr < yπ < yT1,ℓ−1 , (16)

because, as noted above, Tℓ,ℓr consists of lower types of π, and T1,ℓ−1 consists of higher types

of π.

Since U θkr−1 is increasing at yθkr−1 = yT1,1 , inequality yπ < yT1,1 implies that type θkr−1

prefers yT1,1 to yπ. If θkr−2 did not prefer yT1,1 to yπ, then either when t = 0, or when t ≥ 1, the

set T1,1 would be self-signaling in Π. Indeed, in the latter case, by the recursion hypothesis (ii),

θkr does not prefer yθkr−1 to yπ(θkr ). Thus θkr−2 prefers yT1,1 to yπ, i.e., the following inequality
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holds at ℓ = 2:

U θkr−ℓ(yπ) < U θkr−ℓ(yT1,ℓ−1). (17)

Let us now show, by a similar argument, that (17) holds recursively along ℓ = 2, . . . , ℓ = ℓr − 1

with regard to the set T1,ℓ−1 and the type θkr−ℓ. More precisely, for every ℓ ∈ {2, . . . , ℓr}, type

θkr (if t ≥ 1) does not prefer yT1,ℓ−1 to yπ(θkr ) because U θkr is increasing on (−∞, yθkr ], and

yT1,ℓ−1 ≤ yθkr−1 < yθkr and, by the recursion hypothesis (ii), θkr does not prefer y
θkr−1 to yπ(θkr ).

Thus, if there is some ℓ ∈ {2, . . . , ℓr} such that (17) does not hold, then there is a greatest

ℓ ∈ {2, . . . , ℓr}, namely ℓ, such that (17) holds for every ℓ ∈ {2, . . . , ℓ} and T1,ℓ−1 would be

self-signaling. Since Π is neologism-proof, for every ℓ ∈ {2, . . . , ℓr}, T1,ℓ−1 is not self-signaling,

and thus (17) holds.

Now given ℓ ∈ {2, . . . , ℓr}, the second inequality in (16) and inequality (17) imply that

U θkr−ℓ is increasing at yπ. Then it is increasing on (−∞, yπ] and the first inequality in (16)

implies

U θkr−ℓ(yTℓ,ℓr ) < U θkr−ℓ(yπ). (18)

Together with (17), we obtain

U θkr−ℓ(yTℓ,ℓr ) < U θkr−ℓ(yT1,ℓ−1). (19)

Now for every ℓ′ ∈ {1, . . . , ℓ − 1}, Tℓ′,ℓ−1 consists of lower types of T1,ℓ−1, and every type in

Tℓ′,ℓ−1 is higher than every type in Tℓ,ℓr , and therefore

yTℓ,ℓr < yTℓ′,ℓ−1 ≤ yT1,ℓ−1 .

Since moreover, θkr−ℓ is the greatest type of Tℓ,ℓr and is below every type in Tℓ′,ℓ−1, we have

yTℓ,ℓr ≤ yθkr−ℓ < yTℓ′,ℓ−1 . Therefore

yTℓ,ℓr ≤ yθkr−ℓ < yTℓ′,ℓ−1 ≤ yT1,ℓ−1 .

Then inequality (15) follows: if yTℓ′,ℓ−1 ≤ x∗(θkr−ℓ), then U θkr−ℓ is increasing on [yTℓ,ℓr , yTℓ′,ℓ−1 ],

which gives (15), and otherwise U θkr−ℓ is decreasing on [yTℓ′,ℓ−1 , yT1,ℓ−1 ], and thus

U θkr−ℓ(yTℓ′,ℓ−1) ≥ U θkr−ℓ(yT1,ℓ−1),

and (19) gives the result.
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Remark 1. As a consequence of Theorem 1 and Proposition 2, in our model, an IC partition

that is neologism-proof is undefeated, a property that does not hold in general.21

The result established above is actually stronger than Proposition 2. Indeed, the fact that

Π is neologism-proof is only used to establish inequality (17), i.e.,

U θk−ℓ(yπ) < U θk−ℓ(y{θk−(ℓ−1),...,θk−1}) (*)

for every cell π = {θk−|π|, . . . , θk−1} ∈ Π such that |π| ≥ 2 and for every ℓ ∈ {2, . . . , |π|}. In

particular, condition (*) already implies that Π = Π∗.

Let us rewrite condition (*) for an arbitrary IC partition Π, by relabelling types with respect

to the original order over Θ :

For every cell π = {θk+1, . . . , θk+|π|} of Π, k ∈ {0, . . . , N − 2}, such that |π| ≥ 2, for every

ℓ ∈ {1, . . . , |π| − 1},

U θk+ℓ(yπ) < U θk+ℓ(y{θk+ℓ+1,...,θk+|π|}). (**)

Thinking of Π as to a putative equilibrium to be tested and recalling Definition 2, condition

(**) says that, in every cell π of Π containing at least two types, no neologism consisting of the

highest types of π, namely, of the form {θk+ℓ+1, . . . , θk+|π|}, can be self-signaling, because the

preceding type, namely, θk+ℓ, would benefit from the neologism as well.22

Summing up, condition (**) could be referred to as “No Self-Signaling of the Highest

Types”(NSSHT). The proof of Proposition 2 shows that every neologism-proof IC partition

satisfies NSSHT and that the partition Π∗ is the only one that can possibly satisfy NSSHT.

Let us turn to the “No Incentive to Separate”(NITS) criterion of Chen et al. (2008), which

was developed for sender-receiver games with a continuum of types and requires that the lowest

type has no incentives to signal itself (if somehow he could). Applying the criterion readily to

our setting, an IC partition Π = {π1, . . . , π|Π|} (in which |π1| ≥ 2) satisfies NITS if

U θ1(yπ
1

) > U θ1(yθ1).

21Consider a sender-receiver game with two types (θ1 and θ2) and three actions for the receiver in which both

NR and CR are IC, both types prefer CR to NR but the neologism {θi} (i = 1, 2) is not self-signaling according

to Definition 2, because type θj , j ̸= i, would benefit from it.
22According to condition (**), the neologism {θk+ℓ+1, . . . , θk+|π|} is not self-signaling because it does not

satisfy the second requirement in Definition 2, which, as argued before, relies on the receiver’s inertia. Note

that, under our assumptions, condition (**) implies that the neologism satisfies the first requirement to be

self-signaling, namely, all types in {θk+ℓ+1, . . . , θk+|π|} prefer y{θk+ℓ+1,...,θk+|π|} to yπ.

29



We establish below that the partition Π∗ satisfies the latter property.

Proposition 3. The partition Π∗ satisfies NITS.

Proof. Let us consider a sequence (Πr)r≥0 that starts at Π0 = CR, satisfies Πr+1 ∈ Env(Πr),

and thus converges to Π∗. Let π
1
∗ be the cell containing θ1 = minΘ. We must show that

U θ1(yθ1) ≤ U θ1(yπ
1
∗). (20)

If π1
∗ = {θ1}, (20) holds. Otherwise, there is some step r such that π1

r = {θ1} and type θ1

prefers action yπ
2
r to yπ

1
r = yθ1 , i.e.,

U θ1(yθ1) < U θ1(yπ
2
r ). (21)

Then π1
r+1 = π1

r ∪ {θ1} and yπ
1
r+1 lies in the interval (yθ1 , yπ

2
r ). Let us show that

U θ1(yθ1) < U θ1(yπ
1
r+1). (22)

If yπ
1
r+1 ≤ x∗(θ1), (22) follows from the fact that U θ1 increasing on [yθ1 , yπ

1
r+1 ]. If yπ

1
r+1 > x∗(θ1),

U θ1 is decreasing on [yπ
1
r+1 , yπ

2
r ], so that U θ1(yπ

2
r ) < U θ1(yπ

1
r+1), which also implies (22) from

(21). This ends the proof of (22). Now, from π1
r+1 to π1

∗, only the highest type of the first cell

of every reached partition is possibly moved to its next succeeding cell. Accordingly,

yθ1 < yπ
1
∗ ≤ yπ

1
r+1 .

Let us show (20). If yπ
1
∗ ≤ y∗(θ1), (20) follows from the fact that U θ1 is increasing on [yθ1 , yπ

1
∗ ].

If yπ
1
∗ > y∗(θ1), U

θ1 is decreasing on [yπ
1
∗ , yπ

1
r+1 ], so that U θ1(yπ

1
∗) ≥ U θ1(yπ

1
r+1), which also

implies (20) from (22).

Remark 2. NSSHT implies NITS. Indeed, if the lowest cell π = {θ1, . . . , θ|π|}, with |π| ≥ 2,

of an IC partition Π is such that the lowest type θ1 satisfies inequality (**), i.e., U θ1(yπ) <

U θ1(yπ\{θ1}), then, because yπ < yπ\{θ1}, it must be that U θ1 is increasing at yπ, and therefore

U θ1(yθ1) < U θ1(yπ), i.e., the partition Π satisfies NITS.

However, compared with NITS, NSSHT (viewed as a refinement criterion) looks too strong,

since it may remove every equilibrium. As the following example illustrates (see also Example

2 in Section 4), the partition Π∗, which is the only candidate to NSSHT, may not satisfy this

condition.
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Example 4. Let us consider the uniform quadratic case (as in Section 4) with two types,

i.e., Θ = {1, 2}. The receiver’s optimal actions are y1 = 1, y{1,2} = 1.5 and y2 = 2. If

0 < b ≤ 0.5, Π∗ = CR = {{1}, {2}} is neologism-proof and thus satisfies NSSHT. If b > 0.5,

Π∗ = NR = {{1, 2}} is the only IC partition. If 0.5 < b ≤ 0.75, the neologism {2} is self-

signaling, because type 1 weakly prefers y{1,2} to y2. In this case, no IC partition satisfies

NSSHT. However, if b > 0.75, type 1 strictly prefers y2 to y{1,2}, so that the neologism {2} is

not self-signaling anymore: the partition Π∗ is neologism-proof and satisfies NSSHT.

By contrast with NITS, which focuses on the lowest cell of a partition, NSSHT prevents

the “incentives to separate” of every lower set of types of every cell of the underlying partition

Π. This feature looks more relevant in a discrete type setting, because the border effects that

necessarily occur between cells in the continuous case may have no counterpart in the discrete

one.23 However, as highlighted by the previous example, condition (**), may remove every

partition, even if it just applied to the first cell. Hence, one would like to identify a criterion

stronger than NITS but weaker than NSSHT, which, as the iterative optimization processes

considered above, would only select the partition Π∗. Such a project is beyond the scope of the

present paper, and we leave it for future research.

6.2 Ex ante optimal PBE

In the uniform quadratic case, namely, if Θ = {1, 2, ..., N}, p(θ) = 1
N

for every θ and

U θ(x) = −(θ + b− x)2 and V θ(x) = −(θ − x)2,

Frug (2016) proposes a specific procedure to construct an equilibrium partition and then estab-

lishes that this partition corresponds to an ex ante Pareto optimal equilibrium. We establish

below that Frug’s procedure leads to the partition Π∗ identified in Theorem 1, so that:

Proposition 4. In the uniform quadratic case, partition Π∗ corresponds to an ex ante Pareto-

optimal PBE.

For simplicity, we focus on the case where 4b is an integer and set k0 = 4b − 2. Let

Π = {π1, . . . , π|Π|} be an interval partition. Recalling that IC holds as soon as no type at an

23For instance, with a finite set of types, in case of a small bias of the sender (relative to the distance between

the types), several IC partitions may have the same first cell, irrespective of the way types are pooled afterwards.

This cannot happen in the continuous case.
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edge of a cell envies an adjacent cell, Π is IC if and only if the highest type in πj does not envy

πj+1 and the lowest type in πj+1 does not envy πj, namely, if and only, for every j,

| πj | +k0 ≤| πj+1 |≤| πj | +k0 + 4. (23)

6.2.1 Frug’s (2016) procedure

If k0 ≤ 0, i.e., if b ≤ 1
2
, Frug’s (2016) procedure leads to the fully revealing partition, i.e.,

{{1} , ..., {N}}. This is the starting partition in a possible version of our algorithm. If b ≤ 1
2
,

no type θ envies type θ + 1 (since θ + 1 ≥ θ + 2b) and the algorithm stops at step 1.

Henceforth, we thus assume k0 ≥ 1. To describe Frug’s (2016) procedure, let us set

x1 = 1

x2 = 1 + k0

· · ·

xj+1 = xj + k0 = 1 + jk0.

Let k ≡ k(N) be such that
k∑

j=1

xj ≤ N <
k+1∑
j=1

xj.

Then, let q ∈ {0, · · · , k0} and r ∈ {0, · · · , k − 1} be such that

N −
k∑

j=1

xj = qk + r. (24)

Frug’s (2016) equilibrium partition Π ≡ Π(N) is an interval partition of k cells πj, j =

1, . . . , k, containing | πj | types:

| πj |= xj + q j = 1, . . . , k − r

xj + q + 1 j = k − r + 1, . . . , k.

Condition (23) clearly holds.

6.2.2 Proof of Proposition 4

In this section, we show that a fully specified version of the algorithm described in Section

3 converges to Frug’s (2016) partition. This version (illustrated on Example 1) consists of

choosing, at every step, the envying type θ̃ in the cell that is “most on the right”.24

24Then, as the algorithm always prescribes, θ̃ is chosen as the highest type in the cell and is moved to the

next cell. There is flexibility only in the choice of the cell containing an envying type.
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We proceed by induction on N. Let the set of types be {1, 2, ..., N + 1} and let Π(N + 1)

be Frug’s associated partition. By the induction assumption, our algorithm reaches Frug’s

partition when the set of types is {2, ..., N + 1}. Let us call this partition Π(N), with a little

abuse of notation. Let us perform the algorithm over {1, ..., N + 1}; after a few steps, one

reaches the partition {{1} ,Π(N)} (again with a little abuse of notation).

Case 1: The number of cells of Π(N) is k and the number of cells of Π(N + 1) is k + 1,

namely,
k∑

j=1

xj ≤ N < N + 1 =
k+1∑
j=1

xj.

This implies

N −
k∑

j=1

xj = k0k.

Hence,

| πj(N) |= xj + k0 = 1 + jk0 j = 1, . . . , k

| πj(N + 1) |= xj = 1 + (j − 1)k0 j = 1, . . . , k + 1.

In other words, Frug’s partitions satisfy Π(N +1) = {{1} ,Π(N)}. But the same happens with

our algorithm, since type 1 does not envy the first cell of Π(N), which contains 1 + k0 types

(see (23)).

Case 2: Π(N) and Π(N + 1) have the same number of cells k, namely,

k∑
j=1

xj ≤ N < N + 1 <
k+1∑
j=1

xj.

Then, in (24), q ∈ {0, · · · , k0 − 1}. The (k − r)th cell of Π(N) contains xk−r + q types, while

the (k − r)th cell of Π(N + 1) contains xk−r + q + 1 types. All the other cells of Π(N) contain

the same number of types as the corresponding cell in Π(N + 1).

Let us run the algorithm from {{1} ,Π(N)}. At the first step, type 1 envies the first cell of

Π(N), which contains x1 + q < 1 + k0 types (see (23)) and thus joins it. At the second step,

there are k cells, the first one contains x1 + q + 1 types. The last type in this cell envies the

next cell, which contains x2+ q < x1+ q+1+k0 types (see again (23)) and thus joins it. There

is no envy in the first cell, but the last type of the second cell envies the next one. We can go

on moving the last type of a cell to the next one until this last type reaches the (k− r)th cell of

Π(N) and joins it. Then there is no envy anymore, and the final partition is exactly Π(N +1).
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Example 5. To illustrate the proof above, let us take b = 2 as in Example 1 (equivalently,

k0 = 6). If N ≤ 7, then Π(N) contains a single cell (nonrevealing equilibrium). If N = 8, then

Π(8) = {{1} {2, ..., 8}}. This illustrates case 1 above. For N = 11 and N = 12, Π(N) contains

two cells: Π(11) = {{1, 2} {3, ..., 11}}. To go from N = 11 to N = 12, by induction, one starts

with {{1} {2, 3} {4, ..., 12}}; type 1 envies {2, 3}; after one step, the algorithm converges to

{{1, 2, 3} {4, ..., 12}} = Π(12). This illustrates case 2.

The next example illustrates that Proposition 4 no longer holds if types are not uniformly

distributed. In this case, the partition Π∗ identified in Theorem 1 may not be the receiver’s ex

ante preferred one.

Example 6. Assume Θ = {θ1, θ2, θ3} and

� θ1 envies {θ2} but not {θ2, θ3};

� θ2 does not envy {θ3}, even when it is associated with θ1, and does not envy θ1 when

associated with θ3.

Then Π∗ = {{θ1, θ2}, {θ3}} and Π = {{θ1}, {θ2, θ3}} are IC partitions.25 The receiver’s loss∑
i∈{1,2,3}

pi(y
Π(θi) − θi)

2 is greater at Π∗ than at Π if, e.g., b = 1 and

� θ1 = 1, θ2 = 2.5, θ3 = 6.5,

� p(θ1) = 0.9, p(θ2) = 0.0873, p(θ3) = 0.0127.

6.3 Mixed strategies

In this section, we sketch how our analysis can be extended to mixed strategies. First, mixed

PBE can be characterized as IC “pseudo-partitions.”Then Definitions 1 and 3 can be extended

to show that the partition Π∗ identified in Theorem 1 dominates every IC pseudo-partition and

cannot be defeated by any IC pseudo-partition.

A mixed strategy for the sender is a mapping σ : Θ → ∆(M), where ∆(M) denotes the set

of probability distributions over M . At an equilibrium, given σ and a message m that is sent

with positive probability by at least one type, the receiver updates his belief over Θ and chooses

his best action, which according to assumptions (A0) and (A2), is uniquely defined (and can be

computed in the same way as yL above). In other words, the receiver’s best response is pure.

25Partition Π is defeated by Π∗ since {θ3} is an IC neologism.
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By contrast, the sender may randomize in a best response, provided he is indifferent between

the various messages he sends. Of course, he cannot benefit from sending a message of zero

probability. Using assumptions (A0) and (A2) again, the sender can only randomize between

two different messages.26

From (A1), mixed equilibria (including the pure ones studied along the previous sections)

can be represented by IC “pseudo - (interval) partitions”, with “pseudo - cells”

σ−1(m) = {θ ∈ Θ : σ(θ)(m) > 0},

such that, for m ̸= m′, σ−1(m) ∩ σ−1(m′) is not necessarily empty but contains at most one

type. IC pseudo-partitions thus take the form

Π = {{θ1, . . . , θi1}, {θ′i1 , . . . , θi2}, . . . , {θ
′
ik
, . . . , θN}},

with maximal element of the jth cell (θij) equal the minimal element of the next one (θ′ij)

when type θij = θ′ij mixes between the messages sent respectively by the previous types and

the next ones.27 Note that an IC pseudo-partition can contain singletons. By assumption (A3),

a singleton can mix with the next pseudo-cell but not with the previous one. Hence an IC

pseudo-partition contains at most N pseudo-cells.

Let Π be a partition and Π′ an IC pseudo-partition. Definition 3 readily applies to Π and Π′,

namely, Π dominates Π′ (Π ≥ Π′) if for every pseudo-cell π′ of Π′, minπ(max(π′)) ≥ min(π′).

Indeed, in the previous expression, the largest element of π′, namely, max(π′), is well-defined

and belongs to a single cell of Π, namely, π(max(π′)).

The next result is established in Frug (2016) (in the proof of Proposition 1).

Lemma 4. Let Π be an IC pseudo-partition. There exists an IC partition P (Π), with the same

number of cells as Π, such that P (Π) ≥ Π.

Since Π∗ dominates every IC partition, we get the following property, which extends the

first part of Theorem 1.

Corollary 4. For every IC pseudo-partition Π, Π∗ ≥ Π.

26See Frug (2016) for a more detailed analysis of mixed equilibria.
27The complete description includes, for every mixing type θij = θ′ij , the probability distribution over the

two corresponding cells.
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We go on by showing that the second part of Theorem 1 extends as well, i.e., Π∗ is not

defeated by any IC pseudo-partition. Proceeding as above for Definition 3, Definition 1 is a

way to describe when an IC pseudo-partition Π′ defeats an IC partition Π. Indeed, every type’s

utility is well-defined in an IC pseudo-partition (a type belonging to two different pseudo-cells

gets the same utility in both of them). Adopting this definition, we establish below that Lemmas

2 and 3 go through. A prerequisite follows from Lemma 4: the completely revealing partition,

CR, dominates every IC pseudo-partitions, in the same way as it dominates every partition.

Lemma 5 (Lemma 2 extended to pseudo partitions). For every L-IC partition Π0 and every

Π1 ∈ Env(Π0), if Π0 ≥ Π for some IC pseudo partition Π, then Π1 ≥ Π.

Proof. Let Π be a pseudo IC partition, let Π0 be an L-IC partition such that Π0 ≥ Π, and let

Π1 ∈ Env(Π0).

Write Π = {π1, . . . , πnΠ}, with nΠ = |Π|, and choose type θk = max πk for some k ∈

{1, . . . , nΠ − 1}, that possibly randomizes between πk and πk+1. From Π0 ≥ Π, we have

minπ0(θk) ≥ min πk

and we have to show

min π1(θk) ≥ min πk.

The proof proceeds exactly in the same way as for Lemma 2.

Lemma 6 (Lemma 3 extended to pseudo partitions). Let Π be an IC pseudo partition, let π

be a pseudo cell of Π and let θ = max π. Let Π0 be an L-IC partition such that Π0 ≥ Π and

such that θ = maxπ0 for some cell π0 ∈ Π0. Let r ∈ N and let Πr ∈ Envr(Π0). Then

U θ(yπr(θ)) ≥ U θ(yπ),

with equality only if πr(θ) = π and θ does not randomize, or if πr(θ) = π = {θ}.

Proof. Let Π = {π1, . . . , π[Π|} be an IC pseudo partition, let k ∈ {1, . . . , |Π| − 1} and let

θk = maxπk that possibly randomizes between cell πk and πk+1. Let Π0 be an L-IC partition,

e.g. Π0 = CR, such that Π0 ≥ Π and such that θk = maxπ0 for some cell π0 ∈ Π0. Let r ∈ N

and let Πr ∈ Envr(Π0).

We have yπ
k ≤ yθk since every type in πk is (weakly) lower than θk. In particular, U θk is

increasing on
[
yπ

k
, yθk

]
. Then, if πr(θk) is a singleton, the lemma follows (with equality only if
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πk is a singleton too). Hence we can suppose that πr(θk) is not a singleton for the remainder

of the proof.

From Lemma 5, we have, by recursion, Πr ≥ Π. From Πr ≥ Π, the types of πr(θk) which

are lower than or equal to θk are the highest types of πk and the lowest types of πr(θk). Hence

the action associated with these types is greater than yπ
k
, and lower than yπr(θk). In particular,

yπr(θk) ≥ yπ
k

. (25)

Moreover, if πr(θk) ̸= πk, or if πr(θk) = πk and θk randomizes, the inequality is strict. From

now, the proof proceeds exactly in the same way than the proof of Lemma 3.

Proceeding as in Section 2.3, we obtain that

Corollary 5. The partition Π∗ is not defeated by any IC pseudo-partition.

We conclude with some general remarks about the previous extensions.

Remark 3. The extension of Definition 3 used above is appropriate to define when a partition

dominates a pseudo-partition. More generally, the dominance relation can be defined between

pseudo-partitions. A way to do it is to rank the cells of any pseudo-partition from the end, by

giving rank N to the last one, N−1 to the next to last one, and so on. Given a pseudo-partition

Π, let R(π,Π) denote the rank of the pseudo-cell π in Π. We now define the rank r(θ,Π) of type

θ in pseudo-partition Π as the expected rank of the pseudo-cells containing θ. More precisely,

if type θ belongs to a single pseudo-cell, namely, if type θ uses a pure strategy, r(θ,Π) =

R(π(θ),Π); if type θ belongs to two adjacent pseudo-cells πj and πj+1 and sends the associated

messages with probability ρ and 1−ρ respectively, then r(θ,Π) = ρR(πj,Π)+(1−ρ)R(πj+1,Π).

For every pseudo-partition Π, the mapping r(·,Π) : Θ → R takes values between 1 and N and

is increasing. One can then define the dominance relation between IC pseudo-partitions Π′ and

Π as follows: Π ≥ Π′ if for every θ, r(θ,Π) ≤ r(θ,Π′).

Remark 4. While the literal extension of Definition 1 provides a way to check whether a pure

equilibrium can be defeated by a mixed one in our model, the interpretation of such a literal

extension in terms of neologisms looks problematic, because neologisms consist of messages

rather than strategies. The formulation of an appropriate notion of forward-neologism-proofness

for mixed equilibria is beyond the scope of the current paper, which focuses on a specific class

of cheap talk games.
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