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1 Introduction

Heckman (1976, 1979) selection model and its endogenous regime switching extension as proposed by Lee

(1978) are widely used in econometrics. First used to investigate wages and labor supply functions (e.g.,

Heckman, 1978; Lee, 1978), the approach was then introduced to social sciences Berk (1983) and to the

agricultural production literature Pitt (1983). The original framework benefited from several extensions:

allowing for heteroskedasticity (e.g., Donald, 1995; Shively, 1998), considering panel data (Kyriazidou,

1997), considering a multinomial – instead of binary – selection variable (Di Falco and Veronesi, 2013; Wu

and Babcock, 1998), introducing a double selectivity model with sequential adoption (Khanna, 2001), etc.

More recently, extensions of the endogenous regime switching model to the case of endogenous covariates

were suggested (e.g., Murtazashvili and Wooldridge, 2016; Schwiebert, 2015; Takeshima and Winter-

Nelson, 2012). While allowing for the endogenous covariates to be correlated with the selection model,

these extensions do not consider the case where the selection model affects both the response variable

and the endogenous covariates. However, one could argue that the selection process might not only affect

the interest variable but also the endogenous covariate. For instance, in agricultural economics, potential

yield is often consider as being part of a technology adoption decision (e.g., Kumbhakar et al., 2009).

When considering a primal production function, not only input use levels are endogenous covariates in

the production function but the level of potential input savings, because it affects the economic return of

the technology, can also be consider as being part of a technology adoption decision. Hence, technology

selection bias affects both the production function and the input demand equations.

We aim at contributing to the literature by allowing the selection process to affect both the response

variable and its endogenous covariates. Additionally, we consider an ERS framework with a non-linear

response function making both the simultaneous estimation “full information” and the instrumental

variable “limited information” approaches hardly tractable. We use a control function approach (see

Wooldridge, 2015) relying on two sets of control functions. The first one controls for the endogenous

sample selection issues implied by ERS models whereas the second one controls for input use endogeneity.

Our estimation approach can be considered as an extension of the widely used two-step approach that was

initially proposed by Heckman (1976, 1979) to account for endogenous sample selection and later adapted

by Lee (1978) to the case of Gaussian ERS models. In particular, we show that the expression of the

so-called inverse Mills ratio used in Heckman’s two step approach for estimating regression models under
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endogenous sample selection needs to be adapted accordingly. The remainder of the article is structured

as follows. First, we present the endogenous regime switching framework in the case of endogenous

covariates. Second, we present our multistep estimation approach.

2 An endogenous regime switching framework with endogenous co-

variates

The standard endogenous regime switching (ERS) model can be defined with the following equations:

yr = sr(x;βr) + vr

y = ry1 + (1− r)y0

r = 1{m(z;γ) + e ≥ 0}

, (1)

where r ∈ {0, 1} represents the regimen variable, y is the latent interest variable and (y0, y1) its observed

counterpart. sr(·) and m(·) denote functions that are known to the analyst. Standard assumption for

error term e is that it has zero means and follows either a logistic or a normal distribution (see, e.g.,

Greene, 2020). In the standard ERS framework, x and z are assumed to be exogenous while vr and e

are correlated. In particular, from e and vr correlation derives the fact that E[vr|x, z, r] ̸= 0, even if

exogeneity condition E[vr|x] = 0 holds. We can write the conditional expectation of y on x and r as:

E[yr|x, z, r = r] = sr(x;βr) + E[vr|z, r], (2)

where E[vr|z, r] is a non-trivial function of z that generates an estimation bias when it is ignored.

Schwiebert (2015) and Murtazashvili and Wooldridge (2016) relax the exogeneity condition E[vr|x] = 0

and assume that among x are endogenous covariates correlated with the selection variable r. Let denote

x = (x1,x2) the vector of covariates where x1 and x2 represent respectively the exogenous and endogenous

covariates. Assuming the following model for x2:

x2,k = d(w;αk) + uk,

where x2 = (x2,k : k ∈ K), we have E[uk|r] ̸= 0. Instead of considering that x2 and r are ”simply”
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correlated, we assume here that the endogenous selection process not only affects y but also x2. Thus,

in addition to the ERS model defined in Equation (1), we have:

xr2,k = dr(w;αr
k) + urk

x2,k = rx12,k + (1− r)x02,k

. (3)

While x2 endogeneity invalidates the conditional expectation of y on (x, r), we can rewrite Equation (2)

for x2:

E[xr2,k|w, r = r] = dr(w;αr
k) + E[urk|r], (4)

where E[urk|r] is a non-trivial function of z that generates an estimation bias when it is ignored.

As in a standard ERS framework, we assume that variables z are exogenous with respect to error

terms vr and ur. From that we derive that xr
2 and vr are correlated conditional on z only if error terms

vr and ur are correlated. We assume that error terms vector (vr,ur, e) is jointly normal and independent

of control and instrumental variables z1, with:

(ur, vr, e)|z ∼ N (0,Ωr) with Ωr =


Ωr

uu Ωr
uv Ωr

ue

(Ωr
uv)

′ ωr
vv ωr

ve

(Ωr
ue) ωr

ve 1

 for r ∈ {0, 1}, (5)

where

Ωr
uv = (ωr

k,uv : k ∈ K), Ωr
ue = (ωr

k,ue : k ∈ K) and Ωr
uu = [ωr

kℓ,uu : (k, ℓ) ∈ K ×K].

3 A multistep estimation procedure

We consider a fully parametric endogenous regime switching model. We assume that m(·), the model for

regimen variable r, is a Probit link function and that dr(·), the model for endogenous covariates x2, is a

linear function. Finally, we suppose that sr, the model for yr, is non-linear in its parameters βr. Both

the simultaneous estimation with ”full information” maximum likelihood and the instrumental variable

”limited information” least squares approaches considered in Schwiebert (2015) and Murtazashvili and

Wooldridge (2016) are hardly tractable in a non-linear framework. Our estimation approach relies on the

1The joint normality is usually imposed in an ERS framework. In our case, because of the well-known properties of
multivariate normal variables, this assumption is convenient to deal with the multiple endogeneity issues we face.
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distributional assumptions given in Equation (5). It consists in a sequence of estimation problems that

are easy to solve, i.e. Probit model and least squares estimation problems. It relies on two sets of control

functions. The first one is used to deal with the input use endogeneity issue in the production function

while the second one is used to deal with the sample selection issues due to the production practice choice.

As for Heckman two-step estimation procedure, first step consists in estimating the Probit model of

r|z by maximum likelihood to obtain consistent estimates of parameters γ. This estimates can then be

used for obtaining consistent estimates of Mills ratio terms λr (m(z, γ)). Second step requires Heckman’s

standard result Heckman (1976, 1979):

E[urk|z, r = r] = ωr
k,ueλ

r(m(z, γ)),

to consistently estimate using standard linear least squares the model for x2 with:

xr2,k = dr(w;αk) + ωr
k,ueλ

r(m(z, γ)) + ηrk, (6)

where E[ηrk|z, r = r] = 0. Term ωr
k,ueλ

r(m(z, γ)) defines a control function for endogenous selection

of the observation characterized by r = r in the considered sub-sample. Error term ηrk is defined by

ηrk = urk − ωr
k,ueλ

r(m(z, γ)), which implies that exogeneity condition E[ηrk|z, r = r] = 0 necessarily holds

(in the sub-sample characterized by r = r).

Because of x2 endogeneity, standard Heckman’s result E[vr|x, z, r = r] = ωr
k,veλ

r(m(z, γ)) does not

hold for y. First, we can rewrite E[vr|x, z, r = r] as E[vr|ur, z, r = r]. The joint normality distribution

of error terms vector (ur, vr, e) yields

(vr, e)|(z,ur) ∼ N (Rrur,Ψr) (7)

where

Rr =

 (ρr
uv)

′

(ρr
ue)

′

 =

 (ωr
uv)

′(Ωr
uu)

−1

(ωr
ue)

′(Ωr
uu)

−1


Ψr =

 ψr
vv ψr

ve

ψr
ve ψr

ee

 =

 ωr
vv − (ωr

uv)
′(Ωr

uu)
−1ωr

uv ωr
ve − (ωr

uv)
′(Ωr

uu)
−1ωr

ue

ωr
ve − (ωr

uv)
′(Ωr

uu)
−1ωr

ue 1− (ωr
ue)

′(Ωr
uu)

−1ωr
ue


.
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These results imply that terms vr and e can be decomposed as the following:

vr = (ρr
uv)

′ur + εrv

e = (ρr
ue)

′ur + εre

,

where (εrv, ε
r
e)|(z,ur) ∼ N (0,Ψr). This also implies that:

E[vr|z,ur, r = r] = (ρr
vu)

′ur + E[εrv|z,ur, r = r].

Observing that r = 1[m(z, γ) + (ρr
ue)

′ur + εre= ≥ 0], it suffices to apply standard results on the means of

truncated normal variables for obtaining:

E[εrv|z,ur, r = r] = ψr
ve(ψ

r
ee)

−1/2λr
(
(ψr

ee)
−1/2(m(z, γ) + (ρr

eu)
′ur)

)
= ψr

veλ
r
y,

where (ψr
ee)

−1/2 is a scale parameter to account for ur being an argument of λr. This corrected version

of the standard inverse Mills ratio account for the double selection process, i.e. on x2 and y. From this

result we can derive that:

E[y|x, z,ur, r = r] = sr(x;βr) + (ρr
vu)

′ur + ψr
veλ

r
y,

and

y = sr(x;βr) + (ρr
vu)

′ur + ψr
veλ

r
y + µr (8)

where error term µr is defined by µr = vr − (ρr
vu)

′ur − ψr
veλ

r and satisfies E[µr|z,ur, λr, r = r] = 0.

Term (ρr
vu)

′ur is a control function for the endogeneity of x2 that plays the role of instrumental variables.

Consistent estimates of this vector can be obtained by using the residual terms of the model of xr
2 as

described by Equation (6). Term ψr
veλ

r
y is a control function for the regimen choice accounting for xr2

endogeneity. From λry, we already have consistent estimates of ur and m(z, γ). To obtain consistent

estimates of λry, we need to get consistent estimates of ψr
ee and ρr

eu. From the definition given in (7),

estimating ψr
ee and ρr

eu consists in estimating ωr
ue and Ωr

uu =
[
ωr
kℓ,uu : (k, ℓ) ∈ K ×K

]
. Consistent

estimates of ωr
ue are given by Equation (6). ωr

kℓ,uu are marginal covariance parameters between urk and
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urℓ . To get an expression of ωr
kℓ,uu, we need first to use the normality assumption on e|z to write:

E[e|z, r = r] = λr(m(z, γ))

V [e|z, r = r] = 1−m(z, γ)λr(m(z, γ))− λr(m(z, γ))2
,

which yields:

E[(e)2|z, r = r] = 1−m(z, γ)λr(m(z, γ)).

Then, from the joint normality of vectors (ur, vr, e)|z , we can derive that:

ur = ωr
uee+ εru

where εru|(z, e) ∼ N (0,Ωr
uu − ωr

ue(ω
r
ue)

′). This result allows us to draw the conditional independence of

εru and e on zit, implying in turn that residual terms εru = (εrk,u : k ∈ K) do not depend on r conditionally

on z which yields to:

urk,itu
r
ℓ,it = ωr

k,ueω
r
ℓ,ue(eit)

2 + ωr
k,ueeitε

r
ℓ,u,it + ωr

ℓ,ueeitε
r
k,u,it + εrk,u,itε

r
ℓ,u,it

E[eitε
r
ℓ,u,it|zit, rit = r] = E[εrℓ,u,it]E[eit|zit, rit = r] = 0

E[εrk,u,itε
r
ℓ,u,it|zit, rit = r] = E[εrk,u,itε

r
ℓ,u,it] = ωr

kℓ,uu − ωr
k,ueω

r
ℓ,ue

.

Collecting these results permits to write:

E[urku
r
ℓ |z, r = r] = ωr

k,ueω
r
ℓ,ueE[(e)2|z, r = r] + ωr

kℓ,uu − ωr
k,ueω

r
ℓ,ue,

and, finally

E[urku
r
ℓ |z, r = r] = ωr

kℓ,uu − ωr
k,ueω

r
ℓ,uem(z, γ)λr(m(z, γ)). (9)

From Equation (9), we derive ωr
kℓ,uu = E[urku

r
ℓ |z, r = r] + ωr

k,ueω
r
ℓ,uem(z, γ)λr(m(z, γ)). Consistent

estimates of ωr
k,ueω

r
ℓ,uem(z, γ)λr(m(z, γ)) are already available and E[urku

r
ℓ |z, r = r] can be consistently

estimated by its empirical counterpart from Equation (6). As a result, we obtain a consistent estimator of

parameter ωr
kℓ,uu and thus of term λry. Finally, we can estimate Equation (8) by applying non-linear least

squares and get consistent estimates of parameters (βr,ρr
vu, ψ

r
ve). The detailed steps of this estimation

procedure can be found in Appendix 5.1.
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4 Discussion/Conclusion

This paper presents a novel estimation approach for an ”extended” endogenous regime switching model

with endogenous covariates. Previous approaches were unsatisfactory when considering a non-linear

framework. We thus consider an approach relying on control functions for both endogenous covariates

and regime. We develop an estimation approach inspired by Heckman two-step approach for selection

model with a corrected inverse Mills ratio. The great asset of such estimation procedure is its simple

implementation combined with its parcimony. Yet it relies on restrictive assumptions: the conditional

joint normality assumption given in Equation (5) are necessary to ensure the consistency of the estima-

tion procedure results. Relaxing the independence assumption of error term vectors (vr,ur, e) and z is

very difficult, excepted for allowing heteroscedasticity of the error terms conditionally on z. Relaxing

the normality assumptions for vectors (vr,ur, e) would require substantial adjustments in the estimation

procedure presented above.

Another consistent estimation process for CMP specific yield models can be derived from Wooldridge

(2010). The estimation procedures relies on (i) a set of conditional mean linearity conditions given by

E[vr|z, e] = θrve and E[ur|z, e] = θrue for r ∈ {0, 1} and (ii) the normality assumption for the CMP

choice model i.e. e|z ∼ N (0, 1). Under these assumptions, augmented yield model with control func-

tion ωr
veλ

r(γ0 + γ ′
zz) can be estimated by two-stage least squares. Mills ratio terms λr(γ0 + γ ′

zz) are

included in the instrument set of the two-stage least squares estimator and permit to deal with the en-

dogenous sample selection issues. Yet, because we consider non-linear yield models, estimators based on

orthogonality conditions, such as non-linear two-stage least squares, are more complex to estimate.2 The

generalized method of moments can be a solution to get better estimation results. Indeed, the generalized

method of moments relies on estimated instruments that are designed for making better use of the infor-

mation content of instrumental variables than standard non-linear two-stage least squares estimators.3

An interesting extension of this work would be to evaluate how much estimation results differ when using

the different estimation approaches.

2For instance, Latruffe et al. (2017) report estimation results that document this point. Standard non-linear two-stage
least squares estimators perform poorly when estimating their non-linear stochastic production frontier models.

3See, e.g., Chamberlain (1987) and Newey (1990, 1993). The considered instruments need to be sufficiently close to the
efficient instrument of the considered estimation problem, the form of which was determined by Chamberlain (1987). They
can be built based on preliminary estimation steps. Latruffe et al. (2017) report that the generalized method of moments
estimators based on suitably designed instruments substantially outperform standard two-stage least squares estimators
when estimating non-linear stochastic production frontiers.
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Kumbhakar, S. C., E. G. Tsionas, and T. Sipiläinen (2009). “Joint estimation of technology choice and

technical efficiency: an application to organic and conventional dairy farming”. In: Journal of Pro-

ductivity Analysis 31.3, pp. 151–161.

Kyriazidou, E. (1997). “Estimation of a Panel Data Sample Selection Model”. In: Econometrica 65.6,

pp. 1335–1364.

Latruffe, L. et al. (2017). “Subsidies and technical efficiency in agriculture: Evidence from European dairy

farms”. In: American Journal of Agricultural Economics 99.3, pp. 783–799.

Lee, L.-F. (1978). “Unionism and wage rates: A simultaneous equations model with qualitative and limited

dependent variables”. In: International economic review, pp. 415–433.

9



Murtazashvili, I. and J. M. Wooldridge (2016). “A control function approach to estimating switching

regression models with endogenous explanatory variables and endogenous switching”. In: Journal of

Econometrics 190.2, pp. 252–266.

Newey, W. K. (1990). “Efficient instrumental variables estimation of nonlinear models”. In: Econometrica:

Journal of the Econometric Society, pp. 809–837.

— (1993). “16 Efficient estimation of models with conditional moment restrictions”. In: Econometrics.

Vol. 11. Handbook of Statistics. Elsevier, pp. 419–454.

Pitt, M. M. (1983). “Farm-level fertilizer demand in Java: a meta-production function approach”. In:

American Journal of Agricultural Economics 65.3, pp. 502–508.

Schwiebert, J. (2015). “Estimation and interpretation of a Heckman selection model with endogenous

covariates”. In: Empirical Economics 49.2, pp. 675–703.

Shively, G. E. (1998). “Modeling impacts of soil conservation on productivity and yield variability: ev-

idence from a Heteroskedastic Switching Regression”. In: Selected paper at the Annual Meeting of

American Agricultural Economics Association. Salt Lake City, Utah.

Takeshima, H. and A. Winter-Nelson (2012). “Sales location among semi-subsistence cassava farmers in

Benin: a heteroskedastic double selection model”. In: Agricultural Economics 43.6, pp. 655–670.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

— (2015). “Control function methods in applied econometrics”. In: Journal of Human Resources 50.2,

pp. 420–445.

Wu, J. and B. A. Babcock (1998). “The choice of tillage, rotation, and soil testing practices: Economic

and environmental implications”. In: American Journal of Agricultural Economics 80.3, pp. 494–511.

10



5 Appendices

5.1 Detailed estimation procedure

(A.1) Compute the maximum likelihood estimate of γ, γ̂, by estimating the Probit model of r|z based

on the full sample.

(A.2) Compute the estimates of the Mills ratio terms λr(m(z,γ)), λ̂r(0) = λr(m(z, γ̂)), for the subsam-

ple with regimen r, r ∈ {0, 1}.

(B.1) Compute the least squares estimates of (αr
k, ω

r
k,ue), (α̂

r
k, ω̂

r
k,ue), by regressing x2,k on (w, λ̂r(0))

based on the sup-sample with regimen r, for k ∈ K and r ∈ {0, 1}.

(B.2) Compute the estimates of error terms urk, û
r
k = x2,k − dr(w, α̂r

k), for the sampled observations

with regimen r, for k ∈ K and r ∈ {0, 1}. Construct the estimate of vector ωr
ue, ω̂

r
ue = (ω̂r

k,ue : k ∈ K),

for r ∈ {0, 1}.

(C.1) Compute the estimates of parameters ωr
kℓ,u, with

ω̂r
kℓ,uu = (

∑
1(r = r))−1(∑
1(r = r)ûrkû

r
ℓ + ω̂r

k,ueω̂
r
ℓ,ue

∑
m(z, γ̂)λ̂r(0)(m(z, γ̂))

)
for (k, ℓ) ∈ K ×K and r ∈ {0, 1}.

(C.2) Construct the estimate of matrix Ωr
uu, Ω̂

r
uu = [ω̂r

kℓ,uu : (k, ℓ) ∈ K × K], that of term ψr
ee,

ψ̂r
ee = 1− (ω̂r

ue)
′(Ω̂

r
uu)

−1ω̂r
ue, and that of vector ρr

eu, ρ̂
r
eu = (Ω̂

r
uu)

−1ω̂r
ue, for r ∈ {0, 1}.

(C.3) Compute the estimates of control terms λry, λ̂
r = (ψ̂r

ee)
−1/2λr

(
(ψ̂r

ee)
−1/2

[m(z, γ̂) + (ρ̂r
eu)

′ûr]
)
,

for the sampled observations with regime r, for r ∈ {0, 1}.

(D) Compute the non-linear least suqares estimates of (βr,ρr
vu, ψ

r
ve), (β̂

r
, ρ̂r

vu, ψ̂
r
ve), by considering the

approximate “doubly augmented” model of y,

y = sr(x;βr) + (ρr
vu)

′ûr + ψr
veλ̂

r
y + µ̂r

with E[µ̂r] = 0, based on the sub-sample of observations with regime r, for r ∈ {0, 1}.

(E) Use resampling techniques for computing the empirical distribution of the corresponding estima-

tors of parameter vector (βr,ρr
vu, ψ

r
ve), as well as of parameter vector (αr

k, ω
r
k,ue) for k ∈ K, for r ∈ {0, 1}.
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5.2 Insight on a generalized method of moments estimation approach for our en-

dogenous regime switching model with endogenous covariates

Let’s consider the yield functions from the second step of the approach proposed by Wooldridge (2010):

y = sr(x;βr) + ωr
veλ

r(m(z, γ)) + µr,

where E[µr|z, r = r] = 0. The efficient instrument corresponding to this model is given by:

ζr(z) = E[(µr)2|z, r = r]−1 ∂
∂(βr,ωr

ve)
E[sr(x;βr) + ωr

veλ
r(m(z, γ))|z, r = r],

or, equivalently by:

ζr(z) = V [µr|z, r = r]−1

 sr(z;βr)

λr(m(z, γ))

 ,
where sr(z;βr) = E

[
∂

∂βr sr(x;β
r)|z, r = r

]
. In what follows, the conditional heteroskedasticity correction

term V [µr|z, r = r]−1 is ignored, as it is usually the case in practice. When sr(·) is linear in x, we have

for the following formula for the gradient term:

sr(z;βr) = (1, E[x|z, r = r]).

In this case, (near)-efficient instrument ζr(z) can easily be estimated a priori. It suffices to observe

that the considered ERS model yields E[xk|z, r = r] = αr
k,0 + w′αr

k,w + ωr
k,ueλ

r(m(z, γ)). Yet, in cases

where sr(·) is nonlinear in x, computing gradient term sr(z;βr) is much more challenging. Given that

E[x|z, r = r] can be computed, a possible solution consists of giving a rough approximation for the

gradient term as

sr(z;βr) ≈ ∂
∂βr s

r (E[x|z, r = r];βr) ,

for determining instruments for estimating the model of y in the GMM framework. The structure of

efficient instruments depending heavily on the functional form of the model, we cannot give a general

result here.
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