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Renewable Energy in Data Centers: the
Dilemma of Electrical Grid Dependency and

Autonomy Costs
Wedan Emmanuel Gnibga, Anne Blavette, and Anne-Cécile Orgerie

Abstract—Integrating larger shares of renewables in data centers’ electrical mix is mandatory to reduce their carbon footprint.
However, as they are intermittent and fluctuating, renewable energies alone cannot provide a 24/7 supply and should be combined
with a secondary source. Finding the optimal infrastructure configuration for both renewable production and financial costs remains
difficult. In this paper, we examine three scenarios with on-site renewable energy sources combined respectively with the electrical
grid, batteries alone and batteries with hydrogen storage systems. The objectives are first, to size optimally the electric infrastructure
using combinations of standard microgrids approaches, secondly to quantify the level of grid utilization when data centers consume/
export electricity from/to the grid, to determine the level of effort required from the grid operator, and finally to analyze the cost of 100%
autonomy provided by the battery-based configurations and to discuss their economical viability. Our results show that in the
grid-dependent mode, 63.1% of the generated electricity has to be injected into the grid and retrieved later. In the autonomous
configurations, the cheapest one including hydrogen storage leads to a unit cost significantly more expensive than the electricity
supplied from a national power system in many countries.

Index Terms—Sustainable data centers, carbon-neutral computing, renewable resources, energy storage, optimal sizing.

✦

1 INTRODUCTION

In their quest for ever greater performance, the devices
that drive our daily lives rely on powerful computing ser-
vices through the Internet. Hence, the number of worldwide
Internet users has doubled, while global Internet traffic has
increased by 30% per year since 2010 [1]. This is due to
the rapid adoption of social media, video streaming, online
gaming, etc. Most of this traffic is handled by data centers
that process, manage and store massive amounts of data.
Huge efforts are made to increase the capacity of data
centers, leading to significant electrical and environmental
challenges. In fact, the global data centers electricity use in
2020 was equal to 200-250TWh, or 1% of the world electricity
consumption [1]. Fossil (such as natural gas, oil) energies
are currently the main sources used to supply the data
centers at a global scale [1]. Thus, they represent a source
of greenhouse gas (GHG) emissions that “will not reduce
without major concerted political and industrial efforts” [2].

A promising approach enabling to reduce these GHG
emissions and the related pollution is to improve the en-
ergy efficiency. It can be achieved by means of virtualisa-
tion, load balancing and consolidation. This combination of
techniques consists in making the data centers’ resources
available to the customers as virtual machines (VMs), dis-
tributing them optimally over the minimum physical re-
sources [3], and switching off the idle physical machines [4].
Another technique called Dynamic Voltage and Frequency
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Scaling (DVFS) dynamically adjusts the frequency and volt-
age of processors running VMs. It saves energy when the
machines are idle or run less demanding VMs, while meet-
ing the Service Level Agreement (SLA) [5].

Reducing the electricity consumption of data centers
is indispensable to reach sustainability. Yet, it does not
guarantee by itself carbon neutrality which is an objective
for European Union. Indeed, through its Green Deal, the EU
Commission committed to reach carbon neutrality by 2050
[6]. Several ways can be adopted to reach carbon neutrality
in data centers such as carbon offsetting or using renewable
energies use. In this paper, we investigate this later option.

Supplying data centers with renewable energies, also
labelled as ‘green’, is being intensively investigated by large-
scale data center operators who have announced that they
managed to purchase – through Power Purchase Agree-
ments (PPAs)– and/or to generate enough renewable energy
to meet 100% of their operational needs. Such operators
are, among others, Google (12 TWh in 2019), Apple (1.7
TWh in 2020) and Facebook (7 TWh in 2020) [1]. However,
renewable energies are intermittent and not fully control-
lable, making it challenging to synchronize their production
with the consumption of the data centers. Therefore, it is
essential to integrate an additional permanent and more
controllable energy source or combination of sources to
the electrical infrastructure for the power supply security.
This source may be the electrical grid or energy storage
systems. However, few studies analyzed the sizing of the
renewable energy source and storage equipment in order
to precisely meet the electrical demand of data centers. In
addition, none of them assess the level of grid utilization
when data centers are consuming energy from the grid,
nor do they examine the potential effort this may require
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from the grid operator. Furthermore, some works propose
configurations based on renewable energy to cover 100%
of data center demand without justifying their economic
relevance. This article presents a techno-economic study on
data centers that addresses these unresolved concerns. We
make the following contributions:

• We provide an optimal sizing of the energy sources
(renewable energy source and energy storage de-
vices) in different configurations, autonomous or not,
as well as the associated optimal costs.

• We quantify the contribution of the grid (respectively
the renewable energy source) to the consumption of
the data centers when they are consuming from the
grid and analyze the profiles of power exchanged
between the data centers and the grid to quantify the
power peak that the grid operator has to handle.

• We discuss the economical viability of autonomous
datacenters, and provide recommendations to
achieve a high penetration of renewable energies in
data centers at a lower cost.

The rest of this paper is organized as follows. Section 2
presents recent work using renewable energy in data cen-
ters. Section 3 describes the type of data centers considered
in this study and their electrical infrastructures. Section 4
describes the component and economic models whereas
Section 5 is dedicated to the infrastructure sizing method-
ology. Section 6 presents the results. Finally, Section 7 sum-
marises the work and analyses the aspects that may have an
influence on the results, and improve the work.

2 RELATED WORK

Cloud service providers are taking initiatives to reduce
GHG. In January 2021, data center operators and industry
associations in Europe made a tangible achievement by
launching the Climate Neutral data center Pact [7] which
includes a pledge to make data centers climate-neutral by
2030 and has intermediate (2025) targets for power usage
effectiveness and carbon-free energy. These efforts result in
a rapid penetration of renewable energies in data centers
to replace the traditional sources, and may help to reduce
or even eliminate the electricity transport and distribution
costs, in the case of on-site generation. This section presents
some techniques and technologies designed not only to min-
imize energy consumption, but also to manage it optimally.

2.1 Flexibility of the IT infrastructures
Cloud services fall into two categories. On one hand, inflex-
ible service tasks must be performed as soon as submitted.
On the other hand, batch jobs can be delayed provided
that the expected quality of service is fulfilled. Therefore,
batch jobs may be distributed according to the abundance of
renewable energy and may improve the use of renewable
energy. Based on this observation, Í. Goiri et al. promoted
GreenSlot [8], a scheduler that predicts the amount of solar
energy of the near future and schedules the workload to
maximize the renewable energy consumption while meet-
ing the jobs’ deadlines. When the solar generation is not
sufficient, it selects the time when the external grid energy
is cheap to submit the tasks with respect to the deadlines. L.

Grange et al. propose an approach for scheduling batch jobs
with due date constraints taking into account the renewable
energy’s availability to reduce the use of grid-imported
energy [9]. Some more recent contributions use machine
learning techniques to automatically learns effective job
scheduling policies by continually adapting them to the
data centers’ complex dynamic environment (computing
and renewable energy resources) [10], while others extend
the scheduling policy exploration to service tasks so as to
consume more on-site renewable energy [11].

Several Cloud providers expand their data centers over
regions and countries to be close to their customers and
for sake of fault tolerance. Each site delivers a local service
and may participate in a large ecosystem of data centers
via electrical and/or telecommunication interconnections.
In non-interconnected or weakly connected electrical net-
works, such Cloud providers can exploit the temporal vari-
ations in on-site productions by routing the load to a data
center with available computational resources and renew-
able electricity. However, for a well interconnected electrical
network, energy-aware load migration does not increase
the overall renewable energy consumption since it would
be consumed in the electrical grid, but allows to qualify
this consumption as self-consumption which benefits from
economic incentives in numerous countries. For instance, B.
Camus et al. [12] proposed algorithms that take advantage
of this cooperation between data centers to synchronize
their on-site photovoltaic production and their consumption
by migrating VMs to the most abundant sites and exchang-
ing green energy between sites. Yuan et al. [13] formulated
a bi-objective optimization problem for distributed green
data centers to maximize the profit of service providers and
minimize the average task loss possibility of all applications
by jointly determining the split of tasks and service rates
among multiple data centers.

The state of the art focuses either on proposing algo-
rithms for workload scheduling within a data center or
for load balancing among distributed data centers. In this
work, we consider a single data center and explore the
achievable limits in this case for on-site consumption. We
express these limits in terms of electrical grid dependency
and autonomy financial costs. To obtain limits independent
of specifically tweaked scheduling algorithms, we replay the
scheduling policy of real workloads (i.e. from Google and
video streaming servers) and do not consider flexing it other
than done in actual data centers.

2.2 Flexibility of the electrical infrastructure

As service tasks cannot be synchronized with renewable
energy production and since batch jobs can only be shifted
to a certain extent, there is a need for flexibility on the
power supply side. This is the purpose of integrating Energy
Storage Systems (ESSs) to the electrical infrastructure.

ESSs were first used as Uninterruptible Power Supply
(UPS), generating power for the data center only when there
is grid failure and remaining idle when the grid supply is
available. They are sized to the capacity of the data center:
a 10MW data center requires a 10MW UPS with several
minutes of energy capacity [14]. But in recent years, UPSs
also perform other ancillary functions such as load shaving
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when the power demand exceeds the power supply limit
(i.e. the contract power may be exceeded, thus leading to
penalties) [15], [16]. They are exploited as well to provide
frequency reserves and voltage control to the grid [17], [18].

ESSs are also adopted to store renewable energy for
long period use. Hence, the data centers consume more
renewable energy, and become more independent from the
grid [19]. For instance, in the green data center prototype
Parasol [20] whose power supply is composed of a set of
solar panels, a battery bank, and a grid-tie, Í. Goiri et al.
experimented a scheduling approach called GreenSwitch
that dynamically manages the workload and the energy
sources. This combination of supply-side and demand-side
mechanisms optimizes the overall cost of electricity, the
battery usage, and the quality of service.

The above-mentioned approaches involve an energy mix
including potentially non-renewable energy and require the
data center to consume electricity from the electrical net-
work. More and more research work focus on autonomous
data centers. In 2019, Datazero [21] proposed a data cen-
ter powered by 100% renewable energy without any con-
tribution from the grid. The renewable power supply is
composed of photovoltaic panels and wind turbines and
is associated with batteries and an hydrogen storage sys-
tem [22]. Both the electrical and the computation parts of
the data center have independent optimization mechanisms
and a negotiation protocol is introduced to match the power
consumption with the power generation. In the same di-
rection, N. Lazaar et al. [23] proposed an energy manage-
ment and sizing strategy for a 1MW standalone green data
center powered by a hybrid Tidal and Photovoltaic system
associated with a battery and an hydrogen storage system.
However, these studies do not provide a cost estimation of
such autonomous data centers electrical systems.

Running on 100% renewable energies only targets the
scope 1 and 2 of GHG emissions, i.e. the direct emissions
and indirect emissions from electricity use [24]. Scope 3 of
GHG, including the manufacturing, the outsourced trans-
portation, the post-life phase of each component (servers,
routers, etc.), as well as employees commuting and comfort
devices, business travels, waste disposal, etc., is usually the
largest one in terms of GHG emissions for data centers. This
scope is still too little addressed by data center operators,
and given the large amount of unknown figures for estimat-
ing it, it was considered out of the scope of this paper.

Although all these initiatives seek to capitalize on re-
newable energy use to reduce pollution in data centers, the
optimal sizes of the sources to be used are not investigated.
In fact, the survey [25] states about the sizing that ”this
problem is not new and has long been studied in the literature
for microgrids and similar systems, mostly for coupling renewable
energy sources with batteries, hydrogen and other means of
storage. However, few works so far have focused on data center
applications, especially when considering the specific character-
istics of IT load and availability requirements”. Moreover, the
studies using the grid as a source of flexibility do not assess
to which extent the data centers are consuming from the grid
or any inherent challenge to the grid. Thus, we consider a
configuration called grid-dependent where the data center
uses only the electrical network in order to analyze these
aspects. The survey [25] also found that ”only two works

consider powering the data center with only renewable energy
sources”, but none of them tested different configurations in
order to evaluate their cost.

In this paper, we propose an economical study of so-
called autonomous infrastructures supplying data centers
with renewable energies associated to storage devices un-
connected to the grid. We consider ESSs used for storing
renewable energy, targeting a 100% level of autonomy for
datacenters. We consider different configurations (i.e. with-
out storage, and with several types of storage units), and
we assess their economical costs for several data center
sizes and different workload types. In addition, contrary
to previous work, we consider the difference in storage
devices’ dynamics and their degradation. Hence, to the
best of our knowledge, our study is the first providing
together 1) indicative optimal sizes of several renewable-
energy based electrical systems for various data center
scales, 2) a quantification of the grid level of contribution to
their consumption (when the data centers consume from the
grid), and 3) a quantification of 100% autonomy cost (when
the data centers are powered exclusively by the association
renewable energy - storage system) for various workload
profiles and electrical configurations.

3 SYSTEM ARCHITECTURE

3.1 Data center infrastructure
We consider data centers made of a task manager, compute
nodes (servers) linked together by an intra-data center network
of homogeneous switches and to the external world by a
telecommunication network. The task manager is an interface
between the data center and its users. It receives some
requests from the users and schedules the corresponding
jobs on the nodes with available resources (CPU and RAM
mainly), by providing the starting and stop time, as well as
the required resources. The compute nodes are responsible
for executing the jobs received from the manager. Every
task instance runs in a virtual machine according to the
manager’s scheduling. In the data centers of 100 compute
nodes and more, the network is a n-ary tree topology with
three layers (core, aggregation and edge) [26]. Let n be the
number of ports on each switch. The topology can handle
up to n3

4 compute nodes and requires n2

4 + n switches. As
for small scale data centers (less than 100 compute nodes),
they are based on a light tree topology empirically designed
and the associated number of switches is precised hereafter.

3.2 Electrical infrastructure
Solar energy is seen today, and particularly in this work,
as one of the convenient and safe alternatives to tradi-
tional energy sources, due to its sustainability, its attractive
ease of installation – no nimbies issue as encountered for
wind turbines for example – and its less greedy spatial
requirement (most of the time, it is rooftop). Just like its
expansion over the last decades, the capacity of photovoltaic
(PV) generation increased by 23% in 2020 (representing the
second-largest generation growth of all renewable technolo-
gies) [27] , and by 19% in 2021 (leading the renewable
sources) [28]. However, solar energy generation is time and
weather related and needs to be associated with a second
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more controllable source that may be the electrical grid
and/or energy storage devices.

Our goal when examining the different configurations
presented in this section is twofold: 1) finding the minimum
sizing of the different energy sources in order to avoid
load shedding, 2) evaluating the operation cost of these
infrastructures in order to analyze their economical viability.

3.2.1 Grid-dependent infrastructure

Cloud operators like Apple have two ways to cover their
annual needs at 100% from renewables. On one hand, since
2011, Apple has invested in the creation of renewable energy
plants around the world (in the data-center premises or
elsewhere) and has reached a cumulative installed power
capacity of 1,524 MW (77.2% from solar source, 21.6% from
wind turbines, 0.22 % from micro-hydro, and 0.92 % from
biogas) in 2020 [29]. In the other hand, as in Nevada, Apple
delegates the process of production (not collocated with
the data centers), maintenance and management to third
party companies. This way of proceeding, known as Power
Purchase Agreement (PPA), provided a power capacity of
32MW to Apple data centers in 2020 [29].

Based on this case, we consider a data center with an on-
site photovoltaic source and connected to the utility grid,
with whom it exchanges some energy, as shown in Figure 1.
This electrical system does not include any ESS and uses the
grid as a virtual storage in which the surplus of production
is injected and retrieved when the renewable production
is not sufficient to meet the data center consumption. We
designate this infrastructure as ”grid-dependent”.

Let’s name PGex(t) and PGim(t) respectively the instan-
taneous power exported to and imported from the grid at
time t. Let’s also denote PPV (t) the power generation of the
PV plant and D(t) the power consumption of the data center
at time t. The electrical infrastructure satisfies the power
balance presented in Equation 1.

PGim(t) + PPV (t) = D(t) + PGex(t) (1)

The optimal sizing for this configuration corresponds
to the smallest PV plant that allows the annual power
generation to cover the data center annual demand.

Photovoltaic plant

PPV(t) 

Data Center

D(t) 

Electrical grid

PGex(t) PGim(t) 

Figure 1: Grid-dependent data center

3.2.2 Autonomous data center infrastructures

In an autonomous mode, a data center is powered through-
out the year by a combination of renewable energy and
energy storage sources without resorting to the electrical
grid. Figure 2 shows two autonomous infrastructures: one
with an electrochemical battery and the second with both a
battery and an hydrogen ESS.

Energy Management Strategy of the autonomous infras-
tructure using only a BESS

In this case, a Battery Energy Storage System (BESS) is as-
sociated with the renewable energy source. After powering
the data center, any surplus of PV production is used to
charge the BESS with an amount of power Pch(t). When
the BESS is full, the remaining surplus Pcurt(t) is curtailed
if any. In the case of insufficient production, the battery
is discharged with the power Pdisch(t) in order to meet
the load. However, due to physical restrictions, the battery
cannot be simultaneously in charge and discharge modes.
The instantaneous power exchanged is balanced as in Eq. 2.

Pdisch(t) + PPV (t) = D(t) + Pch(t) + Pcurt(t) (2)

Energy Management Strategy of the autonomous infras-
tructure using a BESS and a HESS

Batteries are found unreasonably expensive for inter-
seasonal storage applications, for which a combination with
hydrogen-based storage systems is usually considered. In
the third case study, we associate the BESS with a Hydrogen
Energy Storage System (HESS) that is cheaper and has a
better energy density. A HESS involves mainly an elec-
trolyzer, a tank and a fuel cell. The electrolyzer converts
electrical energy into chemical energy by decomposing wa-
ter into hydrogen (H2) and oxygen (O2). The resulting H2

is pressurized by a compressor (associated with the tank)
and injected in the hydrogen tank for storage. The fuel
cell carries out the reverse process of electrolysis and uses
hydrogen and oxygen or air to generate electrical power.

The BESS plays two roles in this infrastructure: it ensures
a daily storage and ensures the power balance for short-
term fluctuations. As for the HESS, it is dedicated to inter-
seasonal (annual) storage and is subject to the following
constraints. To prevent the electrolyzer (respectively fuel
cell) from starting repetitively for short slot operations, we
impose it to operate for a minimum duration H (Eq. 3a).
HESS equipment have slower dynamics compared to the
BESS, so they operate with fixed power for a predefined
duration H0 before being able to change (Eq. 3b). The
efficiency of the HESS is relatively low when it operates
with a low power. Therefore, we impose a power threshold
P0 above which the HESS equipment operates to ensure
efficient operation (Eq. 3d). Lower power threshold P0 was
set to 30% of the nominal power like in other work [30].
Finally, we limit the number of on/off switchings per day

Photovoltaic plant Data Center

Pel(t) Pfc(t)

Pch(t)  
 

 Pdisch(t)  

D(t) PPV(t) Pcurt(t)

Fuel Cell Hydrogen tank Electrolyzer Battery

Electrical bus

Figure 2: Autonomous data center
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(Eq. 3c). Also, the fuel cell and the electrolyzer are not
allowed to operate simultaneously (Eq. 3e).

Pi(t) ̸= 0 if δi(ton) = 1 for ton ≤ t ≤ ton +H (3a)
Pi(t) = Pi(t− 1) = Pi(t0) ̸= 0 if δi(t) = 1 for t0 +∆t ≤ t ≤ t0 +H0 (3b)∑

δiswitch(t) ≤ λi; With tk−1 ≤ t ≤ tk and 1 ≤ k ≤ 365 (3c)
Pi(t) ≥ P0 if δi(t) = 1 (3d) δfc(t) + δel(t) ≤ 1 (3e)

Where i ∈ {fc, el} are the fuel cell and electrolyzer,
ton the starting time, Pi(t) the operating power of i, t0 the
first time that the current operating power has been set, λi

the number of on/off cycles allowed per day for i, tk−1

(respectively tk) the beginning (respectively the end) of day
k, δi(t) a binary parameter that equals to 1 when the element
i is on at time t and 0 otherwise, and δiswitch(t) a binary
value that equals to 1 when there is a startup or a switch off
and 0 otherwise. δiswitch(t) = |δi(t)− δi(t−∆t)|.

The energy management of the infrastructure is based
on heuristics and contains two phases:
Phase 1: The BESS has the priority. It is the default energy
management mode and corresponds to when the HESS
is off. Hence, when the renewable power generation is
in excess, we first charge the battery. When it is full, the
electrolyzer can start if and only if the remaining power (if
any) is above P0. In this situation, the electrolyzer starts and
the system switches to Phase 2, otherwise we curtail the rest.
In the opposite case where the PV power generation is not
sufficient to power the data center, the battery is discharged
to meet the power demand. We define a security state-of-
charge margin (SoCsm) to avoid too deep discharges of the
battery. Once the battery state-of-charge reaches this margin,
the fuel cell starts and the system switches to Phase 2.
Phase 2: The HESS has the priority. When the hydrogen stor-
age system is active, the surplus and deficits are absorbed by
the HESS and the power balance is ensured, for rapid fluc-
tuations, by the BESS. The HESS operates with a constant
power for a time duration of H0 after which the power may
change (for another duration of H0) according to the data
center needs and the PV generation. When the electrolyzer
is active and the tank is full, we curtail the excess of power
and switch off the electrolyzer. The electrolyzer can also be
switched off if the allocated time exceeds H and the battery
is not full while the solar system is still generating in excess.
As for the fuel cell, we switch it off when the allocated time
H is exceeded, the power generation is enough to supply the
data center and the state-of-charge of the battery is above the
margin (SOCsm). Turning the fuel cell or the electrolyzer off
causes the system to switch back to the Phase 1.

Let’s name Pcurt(t) the power curtailed after the battery
and/or the tank is full, Pfc(t) and Pel(t) respectively the
operating power of the fuel cell and the electrolyzer. The
infrastructure satisfies the power balance in Equation 4.

Pdisch(t) + PPV (t) + Pfc(t) = D(t) + Pch(t) + Pel(t) + Pcurt(t) (4)

4 ENERGY MODELS

4.1 Energy Consumption of the data centers
Energy consumption is attributable to three main compo-
nents in data centers: the compute nodes, the intra-data
center network and the infrastructure including the cooling

system. The telecommunication network employed outside
the data center (i.e. in the Internet) is not included in this
study as we focus on the data centers itself.

As showed by Heinrich et al. [31], one identifies two
terms in the instantaneous power consumption of a com-
pute node (or server): a static term that represents the
consumption when the server is turned on but not running
any load (it includes the static power consumption of all
the server’s components like its motherboard,network cards
and disks), and a dynamic one that linearly depends on
the CPU frequency and the nature of the computational
workload. It is true for constant workloads, but remains
applicable to non-constant workloads like applications con-
taining several phases of different nature (by independently
characterizing each phase) and can be used with Cloud data
center traces that provide CPU usage at intervals of time.

After determining the number of ports per switch and
the number of switches needed in a data center as described
in Section 3.1, we proceed to the identification of corre-
sponding vendor hardware and estimated their consump-
tion using the Cisco Power Calculator [32]. We assume
that the switches operate at nominal power. This is slight
overestimation since the static consumption of a network
switch (without any traffic) is higher than 80% of its nominal
power [33]. Thus, the power consumed by the intra-data
center network is assumed to be the nominal power of a
single switch multiplied by the number of switches in the
topology. When the calculated number of ports n does not
correspond to any manufactured switch, we used as follows
the nearest switches able to satisfy the network topology,
while keeping unused links. Let’s define n1 (respectively
n2) so that n1 (respectively n2) is the number of hardware
ports immediately smaller (respectively greater) than n. For
instance n1 = 12, n2 = 16 and n = 13 means that no switch
of 13 ports exists but we can find switches of 12 and 16 ports
in the Cisco catalog. The power consumption when using n
ports is evaluated by a linear regression between the two
closest existing switches as expressed in Equation 5 where
P (x) is the power consumption of a x-ports switch.

P (n) = P (n1) +
P (n2)−P (n1)

n2−n1
× (n− n1) (5)

As for considering the infrastructure, Power Usage Effec-
tiveness (PUE) is the metric used to account for the energy
consumption of the other equipment available in the data
center such as the cooling system, the facilities lighting, etc.
It represents the ratio between the total facility consumption
and the IT power consumption (i.e. consumption of the
servers and the switches). Thus, the overall data center’s
power consumption can be estimated by multiplying the cu-
mulative consumption of the compute nodes and switches
by its PUE value.

4.2 Photovoltaic power production
PV systems are designed to convert sunlight into electrical
energy through PV cells arranged on a panel. The power
generated by a PV panel is the product of its surface, its ef-
ficiency of conversion and the solar irradiance [34]. For sake
of simplicity, we consider an homogeneous PV plant and
assume that the solar irradiance is equally distributed on it.
We also neglect the aging effect on the panels performance.
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4.3 Battery Energy Storage System

In this study, we consider a Lithium Ion (LI) battery which
is the most suitable technology for the type of application
considered in the Cloud as it presents the highest cycling
rate and energy density. A BESS is represented by its
instantaneous state-of-charge (SoC) and its state of health
(SOH). Whereas the former designates the amount of energy
available in the battery relative to its capacity, the latter
represents its state of degradation for having exchanged
some energy. Let’s consider a BESS whose SoC and capacity
at the beginning of the time t of duration ∆t are respectively
SoC(t − ∆t) and CBat(t − ∆t). Its instantaneous state-
of-charge at the end of the time slot is modeled as in
Equation 6, neglecting the self-discharge effect compared to
the controllable energy flow.

SoC(t) = SoC(t−∆t) + ∆t
CBat(t−∆t) .

(
ηch.Pch(t)− Pdisch(t)

ηdisch

)
0 ≤ Pch(t) ≤ PBat

max and − PBat
min ≤ −Pdisch(t) ≤ 0

SoCmin ≤ SoC(t) ≤ SoCmax

(6)

Where, ηch and ηdisch are respectively the efficiency of
charge and of discharge, PBat

max and PBat
min are respectively

the nominal power of charge and discharge. We consider
a battery with PBat

min = PBat
max . The state-of-charge is a

normalized value between 0 and 1 and is bound by SoCmin

and SoCmax.
The chemical constituents of a BESS deteriorate as it

operates, and that is visible by the decrease of its capacity.
In this model, we neglect calendar aging (due to time only)
compared to cycling aging (due to operating the battery)
which is assumed greater considering the BESS use here. We
design a model in which each amount of energy exchanged
during charge/discharge operations represent a linear drop
in the battery’s capacity (Eq. 7). It is assumed that the
battery can exchange during its life time Ncycles (number of
charge/discharge cycles that it can undergo), a total amount
of energy that equals to 2.DOD.Ncycles.CBat(0).

CBat(t) = CBat(t−∆t)

− CBat(0)−CBat(t
Bat
EOL)

2.DOD.Ncycles.CBat(0)
.
(
Pch(t).ηch − Pdisch(t)

ηdisch

)
.∆t

(7)

Where DOD (depth of discharge) refers to the amount of
energy flowing in and out of the battery over a cycle. It is
represented as a percentage of the total capacity. CBat(0)
and CBat(t

Bat
EOL) are respectively the initial capacity of the

battery and its remaining value at the end of life, tBat
EOL is

the time when the battery reaches its end of life.
SOH represents the capacity loss due to the aging pro-

cess (Eq. 8). It is a normalized value that equals to 1 for
a new battery and 0 when the battery lifetime has been
reached. In this study, we consider a BESS with the rated
energy capacity of a new BESS at the beginning of the
simulations but the model is applicable to a second life
BESS. Let’s name βBat the percentage of the BESS’s capacity
remaining at the end of its life. The capacity at end of life is
expressed as CBat(tEOL) = βBat.CBat(0).

SOHBat(t) = SOHBat(t−∆t)− CBat(t−∆t)−CBat(t)
CBat(0)−CBat(tEOL)

0 ≤ SOH(t) ≤ 1
(8)

To estimate the spatial size of the BESS, we compute its
volume by referencing to a battery used in the real-world

data centers: the EnerSys 12HX505+ model which nominal
dimensions are 338x173x2 mm (length x width x height) for
a capacity of 1,428 Wh [35]. We assume that the BESS is
designed by assembling modules of this reference type.

4.4 Hydrogen Energy Storage System
We choose a Solid Polymer Electrolyte (SPE) electrolyzer
and a Polymer Electrolyte Membrane (PEM) fuel cell among
the multiple types of electrolyzers and fuel cells, as in previ-
ous work from the literature [36]. Under fixed temperature
and pressure, and given the hydrogen mass density ρ (33
kWh/kg [22]), the level of hydrogen (LOH) representing the
mass of hydrogen in the tank is given by Equation 9.

LOH(t) = LOH(t−∆t) +
(

ηel.Pel(t)
ρ − Pfc(t)

ηfc.ρ

)
.∆t

0 ≤ Pel(t) ≤ P el
max(t) and 0 ≤ Pfc(t) ≤ P fc

max(t)
LOHmin ≤ LOH(t) ≤ LOHmax

(9)

Where ηel and ηfc are respectively the fixed efficiency of the
electrolyzer and the fuel cell, P el

max(t) and P fc
max(t) are their

rated power, LOHmin and LOHmax are the minimum and
maximum mass of hydrogen to keep in the tank.

An electrolyzer (respectively a fuel cell) operates for a
fixed amount of time Nel

unit (respectively Nfc
unit) over its life-

time, at rated operating power. Two types of operation con-
tribute to the reduction of the lifetime: the start/shutdown
cycles and the continuous operation. A fuel cell manual [37]
states that one start/stop cycle from zero to its nominal
power is equivalent to 3 hours of continuous operation. For
sake of generality, let’s name αfc (respectively αel) the time
that a fuel cell (respectively an electrolyzer) loses when it
starts and switches off, at rated power. Because the fuel
cell (respectively electrolyzer) is not always operating at
nominal power, we need to approximate the time lost by
starting, operating and shutting down at any power Pfc(t)
(respectively Pel(t)).

We consider the actual amount of life reduction to be
proportional to the actual power as in [38] and neglect the
transient phase in comparison with the time step ∆t. Thus,
the startup and shutdown are considered instantaneous.
Equation 10 models the lifetime reduction during the time
slot ∆t. The first term is the effect of continuous operation,
and the second represents the effect of the switching mode
of operation.

timeilost(t) =
Pi(t)

P i
max(t−∆t) .

(
∆t+ δiswitch(t).

αi

2

)
; i ∈ {fc, el}

(10)
Where P i

max(t − ∆t) is the rated power of component i at
the beginning of the time slot.

The degradation phenomenon results in the increase of
the electrolyzer nominal power and the decreases of the fuel
cell’s life [39]. Let’s define βel and βfc as the portion of nom-
inal power remaining at the end of the electrolyzer and the
fuel cell life respectively. We consider a linear degradation
and neglect the calendar aging over the operational aging
(Eq. 11).

P i
max(t) = P i

max(t−∆t)− P i
max(0)−P i

max(t
i
EOL)

Ni
unit

.timeilost(t) (11)

In this model, i ∈ {fc, el}, P i
max(t) is the rated power at

time t, tiEOL is the time when i reaches its end of life,
P i
max(t

i
EOL) is the rated power of component i at the end
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of its life and can be calculated as follows : P i
max(t

i
EOL) =

βi.P
i
max(0).

We also define the state of health of the fuel cell (SOHfc)
and that of the electrolyzer (SOHel) as normalized parame-
ters that depict the performance loss with aging. Similar to
the BESS, SOHi is equal to 1 for a new component i and gets
to 0 at its end of life. We assume that the hydrogen storage
system is new at the beginning of the simulation. The SOH
at any time t is shown in Equation 12.

SOHi(t) = SOHi(t−∆t)− |P i
max(t)−P i

max(t−∆t)|
|P i

max(t
i
EOL)−P i

max(0)|
(12)

We use the H-TEC PEM Electrolyzer ME450 [40] which
dimensions are 13.2x4.0x5.7m for a nominal power of 1MW,
as reference to estimate the volume of the electrolyzer. In
the same approach, we use FP-100iH fuel cell [41] which
dimensions are 5.5×2.2×3.4m for a nominal power of 99 kW
as a reference. Let’s name P and T the respective absolute
pressure (N/m2) and the temperature (K) in the tank, V the
volume (m3) of the tank, m the mass/LOH (kg) of hydrogen
in it, R the specific gas constant (J/kg.K) that equals to 4,116
J/kg.K [42]. The volume of the tank is estimated based on
the law of perfect gases (P.V = m.R.T). In fact, hydrogen can
be considered as an ideal gas over a wide temperature range
and even at high pressures [36]. These conditions are met in
the tank. The overall volume occupied by the HESS is the
sum of the individual volumes of its components.

4.5 Economic modeling

The global cost of an energy source falls into two categories :
costs unaffected by the energy management strategy and costs
impacted by the management strategy [43]. For sake of general-
ity, the economic models include a PV plant, a BESS and a
HESS. In the case studies where some of these elements are
not present, their cost is made equal to zero.

4.5.1 Costs unaffected by energy management strategy

These costs are fixed and the energy management strategy
has no impact on them. There are two terms composing
them: an investment cost and a fixed operation and maintenance
cost. For the PV plant and the hydrogen tank, we consider
that the costs are linked to the calendar aging and that
the initial investment is spread over the equipment fixed
lifetime. The investment cost ∆costinv(t) ($) incurred by the
infrastructure during slot ∆t is expressed in Equation 13.

∆costinv(t) =
(

NPV .PPV
max.c

PV
inv

NPV
unit

+
ctank
inv .LOHmax

Ntank
unit

)
.∆t (13)

Where PPV
max is the nominal power generated by a PV

panel, cPV
inv ($/kW) and ctankinv ($/kg) are respectively the

initial investment unit cost in a photovoltaic panel and the
tank, NPV

unit and N tank
unit are respectively the life span of the

panel and that of the tank (in units of time).
The fixed operational and maintenance (O&M) costs are

periodical fees – such as insurances, property taxes, cleaning
and repairing the component, land lease, salaries, etc – paid
for the ownership of a component. They are computed
by multiplying the fixed O&M unit cost by the nominal
power/energy of the considered component. Equation 14

expresses the overall fixed O&M cost ∆costO&Mfix(t) gen-
erated within ∆t. In this model, the O&M costs of the tank
are counted in the O&M of the fuel cell and electrolyzer.

∆costO&Mfix(t) = NPV .P
PV
max.c

PV
O&Mfix.∆t

+cBat
O&Mfix.CBat(0).∆t

+
∑

i∈{el,fc}
ciO&Mfix.P

i
max(0).∆t

(14)

Where for j ∈ {el, fc, PV }, cjO&Mfix ($/kW .unit time) is
the fixed O&M unit cost in j, cBat

O&Mfix ($/kWh.unit time)
is the fixed O&M unit cost in the BESS. Generally, the O&M
cost is provided on a periodical (annual/monthly) basis,
that is divided by the number of time units in the period
to obtain the unit cost.

4.5.2 Costs impacted by the energy management strategy

These costs are operating costs and concern the battery,
the fuel cell and the electrolyzer. We identify a degradation
cost and a variable operation and maintenance cost. The initial
investment of these three components is spread over their
lifetimes and each portion of health drop represents a unit of
degradation cost. The overall degradation cost ∆costdegr(t)
($) generated during ∆t is expressed in Equation 15.

∆costdegr(t) =
cBat
inv

2.DOD.Ncycles
.

(
ηch.Pch(t) +

Pdisch(t)

ηdisch

)
.∆t

+
∑

i∈{el,fc}

ciinv.P
i
max(0)

N i
unit

.timeilost(t)
(15)

Where cBat
inv ($/kWh) is the initial investment unit cost

in the battery, ciinv ($/kW), for i ∈ {el, fc}, is the initial
investment unit cost in the fuel cell and the electrolyzer.
N i

unit is the lifetime of component i expressed in time units.
The variable O&M costs of an electrical component is the

product of its unit variable O&M cost and the amount of
energy it consumes or generates. The overall variable O&M
cost ∆costO&var(t) ($) generated during a slot of duration
∆t is expressed in Equation 16. The solar panels do not
include variable O&M cost.

∆costO&Mvar(t) = cBat
O&var.

(
ηch.Pch(t) +

Pdisch(t)
ηdisch

)
.∆t

+
∑

i∈{el,fc}
δi(t).c

i
O&Mvar.Pi(t).∆t (16)

Where cBat
O&var ($/kWh) is the unit variable O&M cost in

the battery, ciO&Mvar ($/kW) – i ∈ {el, fc} – is the variable
O&M cost in the fuel cell and the electrolyzer.

4.5.3 Total cost function

We assume that an equipment is replaced at the same
purchase price when its lifetime is over. However, a dy-
namic price could be considered to reflect the reality of
the market without any prejudice to the validity of the
economic methodology nor the models. The overall cost,
cost(t) ($), of the electrical system at time t is the addition
of all the costs incurred from t = 0 to that time (Eq. 17 with
l ∈ {inv,O&Mfix,O&Mvar, degr}.).

cost(t) = cost(t−∆t) +
∑

l ∆costl(t) =
∑

l

∑t
τ=0 ∆costl(τ) (17)
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5 METHODOLOGY

In this paper, we present three case studies where renewable
energy covers 100% of data centers’ energy needs. This
section describes the infrastructures’ sizing methods in each
case. This methodology is applied to several sizes of data
centers characterized by their number of compute nodes.

5.1 Sizing the grid-dependent infrastructure

The goal is to find the number of panels (NPV ) and the
area occupied by the PV plant, so that the annual energy
generation balances the data center energy demand. The
number of panels is computed by dividing the annual
consumption of the data center by the annual production
of a single PV panel (Eq. 18).

NPV =

⌈ ∑tyr
0 D(t)∑tyr

0 P1PV (t)

⌉
(18)

Where tyr is the end of the year and P1PV (t) is the
instantaneous power production of one solar panel.Let’s
name A and Atotal respectively the surface of a single solar
panel and the surface needed to install the solar plant.
Atotal = NPV .A. This formula is also applicable to the
autonomous case studies.

5.2 Sizing the autonomous infrastructure with a BESS

The objective is to find the number of panels (NPV ), the total
surface of the solar plant (Atotal), the capacity of the battery
(CBat(0)), its initial SoC (SoC(0)) and its nominal power
(Pmax

Bat ) in order to meet the annual demand. Any eligible
BESS should ensure the power supply all along the year
(Eq. 19a) and contain at least the same amount of energy at
the end of the year as at beginning (Eq. 19b).

SoCmin ≤ minSoC(t) ≤ maxSoC(t) ≤ SoCmax (19a)
SoC(tyr) ≥ SoC(0) (19b)

To do so, let’s consider arbitrarily a battery presenting
an important capacity C0 with an initial level of energy
SoC0 that satisfies Equation 19a. The first step is to size the
primary source. To size the PV plant, we use a dichotomy
search to find the smallest candidate NPV that meets the
battery requirements (Eq. 19). The search space range is
bounded by Nmin

PV – the PV plant generates the same amount
of power as the data center consumption – and Nmax

PV – the
generated power is stored into the BESS and is then used to
supply the data center– as shown in Equation 20.⌈ ∑tyr

0 D(t)∑tyr

0 P1PV (t)

⌉
︸ ︷︷ ︸

Nmin
PV

≤ NPV ≤

⌈ ∑tyr

0 D(t)

ηch.ηdisch.
∑tyr

0 P1PV (t)

⌉
︸ ︷︷ ︸

Nmax
PV

(20)

The second step is to find the smallest CBat(0) and the exact
SoC(0) that ensures the power supply (19a) and SoC(0) =
SoC(tyr). They can be deducted by homothety (Eq 21).

CBat(0) =
SoCM−SoC(tyr)+SoC0−SoCm

SoCmax−SoCmin .C0

SoC(0) = SoCmin + (SoCmax−SoCmin).(SoC0−SoCm)
SoCM−SoC(tyr)+SoC0−SoCm

With SoCm = min
0≤t≤tyr

SoC(t) and SoCM = max
0≤t≤tyr

SoC(t)

(21)

The last step consists in choosing a nominal power for the
battery according to the following two criteria. First, the bat-
tery must satisfy the entire power demand of the data center
(Eq. 22a). Secondly, its capacity and its nominal power
should be consistent, as a small battery might satisfy the
energy requirement but not be able to deliver the required
nominal power. We use a Ragone diagram that describes
the relationship between the energy density and power
density of diverse storage units including LI batteries [44].
Let’s define ρmin

e and ρmax
e as respectively the minimum

and maximum energy density of a battery, and ρmin
p and

ρmax
p its respective minimum and maximum power density.

Equation 22 describes the constraints imposed on the BESS
nominal power.

max(maxPch(t),maxPdisch(t)) ≤ PBat
max (22a)

CBat(0).ρ
min
p

ρmax
e

≤ PBat
max ≤ CBat(0).ρ

max
p

ρmin
e

(22b)

Algorithm 1, performing with a complexity of
O(log2(N

max
PV −Nmin

PV )), summarizes the sizing process.

Algorithm 1: Algoritm for sizing battery and PV

Input: Nmin
PV , Nmax

PV , C0 , SoC0

Output: NPV , CBat(0), P
Bat
max , SoC(0)

OFFGRID-PV-BESS-SIZING(Nmin
PV , Nmax

PV )
Find by dichotomy the smallest NPV satisfying the
constraints (Eq. 19) and report SoCm, SoCM and
SoC(tyr)

Calculate SoC(0) and CBat(0) using SoCm, SoCM

and SoC(tyr) as in (Eq. 21)

Choose the smallest PBat
max that meets (Eq. 22)

End Function
return (NPV , CBat(0), P

Bat
max , SoC(0))

5.3 Sizing the autonomous infrastructure with a BESS
and a HESS

In this case, we aim to find the number of PV panels (NPV ),
the overall surface of the solar plant (Atotal), the capacity
of the BESS (CBat(0)), its initial SoC (SoC(0)), the security
margin (SoCsm) and its nominal power (Pmax

Bat ). As for the
HESS, we need to find the capacity of the tank (LOHmax),
the initial quantity of hydrogen (LOH(0)), the rated power
of the electrolyzer (P el

max) and that of the fuel cell (P fc
max).

We used a brute force method to size CBat(0), SoC(0),
SoCsm, LOHmax and LOH(0) in order to minimize the
overall operation cost (Eq. 17). Pmax

Bat is chosen to satisfy
Equation 22, using the Ragone diagram. Lastly, P fc

max and
P el
max are chosen with regard to Equation 23.

max
i∈{fc,el}

Pi(t) ≤ min
i∈{fc,el}

P i
max(t) (23)

6 EVALUATION

6.1 Experimentation setup
The models and strategies described above are implemented
on top of the SimGrid simulation toolkit [45]. We used a time
step of 5 minutes and performed simulations for one and ten
years. The input data are reported in Table 1.
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The considered servers are based on the Nova cluster
installed in Lyon, available on the Grid’5000 experimental
platform [50]. They are equipped with 32 Intel Xeon E5-
2620 v4 with 8 cores each, 64GB memory, 598GB HDD,
2.3GHz frequency and an Intel Ethernet 10G Ethernet card.
We use external wattmeters to make power consumption
measurements of these nodes. They consume 79W at idle
state and 145W when all the CPUs are 100% loaded.

We use 2 workloads to observe the influence of variable
workloads. Google Cluster Workload Traces 2019 [51] contains
real-world Google jobs spread on 9,993 machines. This trace
is collected for 1 month (May 2019) and we assume a
monthly periodicity to build an annual workload. We con-
sider the jobs as non flexible and simulate them over homo-
geneous servers described above. We build a power profile
by streaming videos on a VLC server on the nodes and
measuring their consumption. For these streaming servers,
we use the network traffic (from February 2021 to February
2022) provided by the AMS-IX platform [52] as network
output and linearly scale their number according to our
needs. This hand-made workload is introduced to analyze
the impact of the various types of Cloud applications on
the costs and dimensions of the autonomous infrastructures,
video-streaming being currently one of the most network-
hungry type of traffic. Figure 3 shows the annual power
consumption of 4,000 Google servers (top) and 4,000 stream-
ing servers (down). One can observe that Google trace is
extremely flat (low variations), while the streaming trace
presents a higher variability.

We used real rooftop solar power trace collected over
one year (2018), in Austin Texas, and available on the Pecan
street website [53]. Figure 4 shows the first week power
generation. The specifications of the switches are listed in
Table 2, based on Cisco equipment. We consider a PUE value
of 1.2 in all cases. As a comparison, Google current data
centers have a PUE ranging from 1.09 to 1.12 [54].

6.2 Results
6.2.1 Grid-dependent case study
We consider several sizes (number of compute nodes) of
data center running the Google workload. Table 3 shows
after sizing that we need on average 6.2 m2 to 10.2 m2 of
solar panels to meet the annual energy demand of a server.
Hence, a data center of 8,000 servers requires 49,276m2 that

Table 1: Input parameters

PV panels
[46] [47]

PPV
max = 175 W Lifetime = 25yr A = 1.305 m2

cPV
O&Mfix = 18 $/kW-y cPV

inv = 1.56 $/W

Battery
[48] [39]

SoCmin = 0.2 SoCmax = 0.8 DOD = 0.8
N cycle = 2,000 ηdisch = 0.9 ηch = 0.9

cBat
O&Mfix = 4.4 $/kW-yr cBat

inv = 448 $/kWh βBat = 0.8

cBat
O&Mvar = 0.5125 $/MWh

Fuel cell
[48] [39]

Lifetime = 30,000 h ηfc = 0.35 βfc = 0.9

cfcO&Mvar = 0.25625 $/MWh αfc = 3 h λfc = 6

cfcO&Mfix = 14.255 $/kW-y cfcinv = 1,320 $/kW

Electrolyzer
[48] [39]

Lifetime = 30,000 h ηel = 0.35 βel = 1.1

celO&Mvar = 0.25625 $/MWh celinv = 1,503 $/kW λel = 6

celO&Mfix = 14.255 $/kW-y αel = 3 h

Tank [49]
[36]

T = 288.15 K P = 7.107 N/m2 ctank
inv = 333 $/kg H2

Lifetime = 30 yr LOHmin = 0 kg
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Figure 4: Solar trace example for the first week of 2018

Table 2: Intra-data center network characteristics

# Servers # ports # switches Power (W) Switch reference
10 8 4 124 3560CX-8PC-S
50 12 13 200 C8500-12X
100 8 24 124 3560CX-8PC-S
500 13 56 227 3560CX-8PC-S
1000 16 80 282 S-X6516-GE-TX
4000 26 195 395 S-X6516-GE-TX
8000 32 288 470 C6800-32P10G

is equivalent to 12.2 soccer fields of 45mx90m and may
be challenging to acquire. For each size of data center, we
compute the self-consumption rate which describes the por-
tion of the data centers’ annual consumption that originates
from the on-site PV generation (Eq. 24a). The results show
that only 35.9% to 37.7% of the power demand is actually
satisfied by the on-site PV plant. In other words, 62.3% to
64.1% of the data center actual consumption comes from
the utility grid. This is consistent with the theoretical lower
bound of 50%, as PV panels do not generated power half
of the time on average during the year, and as the Google
traces are relatively flat.

1−
∑tyr

t=0 PGim(t)∑tyr

t=0 D(t)
(24a) PGim(t)

D(t)
(24b)∑tyr

t=0 PGex(t)∑tyr

t=0 PPV (t)
(24c) PGex(t)

D(t)
(24d)

max
t≤tyr

(PGex(t))

Drated(t)
(24e)

∑tyr

t=0 cost(t)∑tyr

t=0 D(t)
(24f)

We also introduce a power importation ratio as the ratio
of the instantaneous power imported from the grid by the
instantaneous power consumed by the data center (Eq. 24b),
in order to determine the level of implication of the grid.
Figure 5 shows the power importation ratio (in orange) for
a data center of 4,000 servers. The data center is very often
powered entirely by the electrical grid. It is the same for
other sizes of data centers.
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Figure 5: Injection and importation ratio for 4,000 servers using
Google trace (with a zoom for 10 days)

In addition to that, we evaluate the power injection
rate that corresponds to the proportion of the annual PV
generation injected into the grid (Eq. 24c). It appears that
62.8% to 64.1% of the on-site PV production needs to be
virtually stored in the grid as it is not synchronized with the
data center consumption. Therefore, it strongly relies on the
electrical network as an external energy source.

Power injection ratio is the ratio between the instanta-
neous power injected into the grid, and the instantaneous
power consumption (Eq. 24d). Figure 5 shows that ratio (in
blue) for the data center of 4,000 servers. We can observe
a high prevalence of injections that can exceed 5 times the
instantaneous consumption of the data center. We identify
the peak injection ratio as the ratio of the annual peak power
injected into the grid, by the nominal power of the data
center (Eq. 24e where Drated(t) is the rated consumption
of the data center.). The data centers export peak power
ranging from 3.4 (340%) to 4.9 (490%) times their nominal
power, to the electrical network for the two workload traces
respectively. Regarding the penetration of renewable energy
in the energy mix, injecting such amount of renewable
production into the grid can be positive because it reduces
the production from more polluting sources. However, it has
a downside due to the non-synchronization of these high
injected peaks with the consumption in the grid. So, in order
to absorb this large amount of renewable energy, the electri-
cal network operator must bear dispatching costs linked to
other power plants, store any excess – thus shifting the issue
and responsibility of investing in energy storage equipment
from the data center operator to the grid operator – or
activate demand-side flexibility means. In other words, the
grid operator must handle alone the challenges linked with
a potentially high penetration level of renewables.

6.2.2 Autonomous case study using only a BESS

In this configuration, we consider autonomous data centers
of different sizes, using only a battery as energy storage
mean. The servers first run the Google workload. Table 4
shows an increase of the photovoltaic plant, compared to the
grid-dependent infrastructure. As a matter of fact, energy
losses occur during the charge and discharge of the battery
and they need to be compensated by a higher production.
We also observe less than 0.23% (or 2.3% over a 10 year
period) degradation of the batteries. However, the lifespan
of a battery is 10 years, which means that the batteries are
under-utilized in this infrastructure. In terms of volume, the
data centers require on average 2.4m3 of battery per server.

0 25 50 75 100
Streaming share (%)

100

105

110

115

120

125

St
re

am
in

g 
ef

fe
ct

 (%
)

Data center of 4000 servers
Battery capacity
PV cost
Battery cost
Total cost

0.99768

0.99769

0.99770

0.99771

0.99772

0.99773

0.99774

St
at

e 
of

 h
ea

lth

Figure 6: Impact on the cost of BESS-only infrastructure when
increasing the number of streaming servers.

It is important to note that space may be a limiting factor for
deploying this infrastructure in large data centers.

We describe the unit operation cost as the ratio between
the overall annual cost and the annual energy consumed
(Eq. 24f). It is evaluated to 1.115$/kWh in this configuration.
Compared to the European electricity tariffs (for consumers
of more than 500MWh/year) in the second half of 2021 [55],
this autonomous architecture is equivalent to 5.7 times the
average cost and 3.2 times the highest cost (recorded in
Denmark), while it is equal to 5.35 times the French tariff.
Although the world went through an energy crisis in 2022,
such a price is far from being competitive. However, this
configuration is theoretical as composed only of expensive
batteries, but it provides a basis for exploring more complex
infrastructures including hydrogen storage.

Cloud users usually submit applications with various
profiles of energy consumption. Therefore, we mix the
Google workload with video streaming trace in order to
evaluate the effect of the energy profile on the electrical
components. We set the percentage of streaming workload
from 0 to 100% of the overall load, in each data center.
Figure 6 shows the results for a data center of 4,000 servers.
Using streaming servers leads to a linear increase of the
number of PV (thus their surface and cost), the battery
size (thus its cost) and the operation costs. There are two
reasons for these observations: streaming applications are
more energy consuming and have a higher dynamic range
(Fig. 3), therefore they induce more cycles than the Google
workload. However, similarly to the Google trace, streaming
has a negligible degradation effect on the battery.

6.3 Autonomous case study using a BESS and a HESS

Let’s consider data centers of several sizes as before, running
the Google traces. In this configuration, the storage system
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Figure 7: Comparison of off-grid infrastructures on Google trace
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Table 3: Grid-dependent infrastructure results with Google trace

# Servers Atotal(m2) Injection rate (%) Self-consumption rate (%) Peak exportation (kW) Peak importation (kW) Peak injection ratio
10 108.2 62.8 37.6 11.5 2.2 4.9
50 374.3 64.1 35.9 40 7.1 3.4
100 700.3 64.1 35.9 74.6 13.3 3.6
500 3,552.4 64.1 35.9 378.3 67.5 3.6

1,000 6,524.4 64.1 35.9 695 124.3 3.5
4,000 25,239.6 64.1 35.9 2,688.2 482.1 3.4
8,000 49,276.7 64.1 35.9 5,248.4 942 3.4

Table 4: Autonomous infrastructure using only a BESS results with Google trace

# Servers Atotal(m2) CBat(0) (MWh) PV cost (k$) BESS cost (k$) Operation cost (k$) Operation unit cost ($/kWh) Pmax
Bat (MW) Volume SOH 1 year

100 803.3 22.2 7.5 120.2 127.7 1.115 5.33 252.7 0.997737
500 4,079.2 112.6 38.3 610.3 648.6 1.114 27.1 1,282.4 0.997736

1,000 7,490.8 207.1 70.3 1,121.5 1,191.8 1.115 49.7 2,357.1 0.997737
4,000 28,979.7 801 272.2 4,338.4 4,610.6 1.115 193 9,117.8 0.997737
8,000 56,579.7 1,564 531.5 8,471.2 9002.7 1.115 376 17,803.9 0.997737

is a combination of an HESS and a BESS. We investigate the
annual operation cost, the surface occupied by the PV panels
and the volume of the storage units in order to conduct
a comparative study between this infrastructure and the
one including only a BESS. Thus, we compute the ratio
between the value of each factor for this infrastructure and
that of the previous infrastructure, as presented in Figure 7.
The unit operation cost is estimated to 0.450$/kWh in this
configuration, thus 248% cheaper than using only a BESS.
Meanwhile, the PV plant has almost doubled in size and
the storage devices volume has increased by 1.27. That is
due to the low – but representative of most of the current
devices – efficiency (35%) of the hydrogen component that
we considered. However, the efficiency of new generation
fuel cells and electrolyzers can exceed 70% [30], [40], [41]
and that will further reduce the cost and the size of the
energy sources. As the data center consumption profiles are
globally flat and the PV production profiles are obtained
by proportionality, the ratios shown in Figure 7 are not
significantly influenced by the size of the data center.

Even though this infrastructure is more profitable, it
remains less competitive than the average European, French
or even Danish electricity tariff. Yet, it is much closer to
being competitive in some countries with high tariff (e.g.
0.3203 $/kWh in Denmark), and it is expected that storage
prices will decrease in the coming years. Until it happens,
100% autonomy is not economically attractive and it would
be reasonable to combine the storage units with the grid
while maintaining a self-consumption above an acceptable
threshold.

Let’s vary the percentage of streaming from 0 to 100% of
the data centers load to quantify the impact of the workload
pattern on the equipment sizing and costs. Figure 8a shows
a linear increase in the annual operating cost of the electrical
infrastructure for 4,000 servers. It has the same overall effect
on the size of the battery (capacity and power rating),
the tank, the fuel cell and the electrolyzer, as presented in
Figure 8b. In this scenario, the battery has an average SOH
of 0.937 (or 6.3% of degradation) at the end of the year,
with a deviation of 8.3 × 10−4. Thus, the battery keeps a
nearly constant degradation with respect to the streaming
share. We also observe that it is better exploited as 63% of
its energy potential is exchanged within 10 years (which
correspond to the calendar lifespan of the battery).

0 40 80 100
Streaming share (%)

0

20

40

60

80

100

120

Ec
on

om
ica

l e
ffe

ct
 (%

)

Data center of 4000 servers

Total cost
PV cost
BESS cost
HESS cost

(a) Economical impact

0 25 50 75 100
Streaming share (%)

100

105

110

115

120

125

130

135

Ef
fe

ct
 o

n 
siz

in
g 

(%
)

Data center of 4000 servers
CBat(0)
ATotal

LOHmax

Pfc, el
max

(b) Sizing impact

Figure 8: Impact of streaming on the infrastructure.

7 DISCUSSION

This study shows that data centers using the electrical grid
with on-site solar energy source are highly dependent on
the grid from which they are quasi permanently powered.
Moreover, they inject important peaks of power into the
grid, which represent a challenge for the grid operator.
On the other hand, as expected, combining a BESS and a
HESS is the most profitable way to reach a full autonomy.
But, it is still costlier than the traditional energy tariffs in
European countries. Future work could test intermediate
configurations combining the electrical network and storage
means, in order to reduce the size of the storage equip-
ment (and thus their cost) while ensuring a high autonomy
threshold – that one will progressively increase according to
the improvement of storage efficiency and price drop.

Our analysis could be affected by some issues discussed
hereafter. First, we consider a given server model and derive
its power consumption based on the type of application and
the frequency and load of the active processors. This model
is extensively used in literature, yet it may be inaccurate for
unknown workload. This is why we calibrated it with CPU-
intensive workload for Google trace (to get the worst case)
and with real streaming measurements for the streaming
case. We consider a model based on CPU and memory
utilization as these are the metrics provided in the trace.
This trace does not include I/O utilization. Other models
in the literature [56] can be used to integrate this metric
in future work. Also, the base power consumption of our
server (79W) represents almost 55% of the peak power con-
sumption (145W). While such a percentage is not unusual
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for data center servers, other servers may have different
idle-to-peak-power ratio especially when running GPUs.
We focused here on a unique server model on which we
perform real measurements in order to simplify the analysis,
since having heterogeneous servers would make the results
more sensitive to workload allocation policy.

The economic model of the battery is relatively conser-
vative: it considers that all expenses, described in [48], must
be paid again when the storage is replaced. This would
result in a slight overestimation, as some costs (e.g. some
installation costs) are paid only for the first time. The solar
source may be replaced or combined with wind turbines
and drastically impact generation patterns and possibly
the conclusions. We focus here on solar energy since it is
the most common renewable sources for powering data
centers [1]. Indeed, it presents fewer constraints compared
to wind generation in terms of required space and nuisance
to nearby residents. Yet, the same methodology that was
developed here can be employed to conduct a techno-
economic study for powering data center through wind
sources or for combining solar and wind sources.

Consolidation policies (i.e. allocating the tasks to a min-
imum number of servers) can reduce the consumption of
data centers and thus their electricity bill. Yet, here, the
workload comes from a real data center, that apparently
does not use consolidation. Modifying the allocation would
distance us further from a real data center-based study.

Finally, our study relies on modeling and simulation,
which represents an abstraction of the physical environ-
ment. However, we carefully selected up-to-date models for
their accuracy and practicality. All the models employed for
the various physical components (servers, batteries, photo-
voltaic plants, hydrogen tanks, electrolyzers, etc.) have been
validated and used by other work in the literature as shown
in Section 4, for purposes different from this study.

8 CONCLUSIONS

In this paper, we conducted a techno-economic study of
three types of electric infrastructures (using the external
grid, autonomous with battery-based storage only, and au-
tonomous with both battery and hydrogen-based storage)
supplying data centers of 10 to 8,000 servers, from 100%
renewable energy sources, solar energy here. Our simula-
tions reveal that in the grid-dependent mode, most of the
data centers consumption stems from the grid, to which
they are therefore highly dependent. We also realize that
the data centers regularly inject high peaks of energy into
the electrical grid which may be challenging for the grid
operator to handle. By assessing the autonomous infrastruc-
tures costs, we quantified the additional cost of autonomy,
using a combination of BESS and HESS, compared to using
PV and network electricity without storage.. In future work,
we will consider other renewable energies such as wind that
present additional constraints compared to PV electricity in
terms of intermittence duration, uncertainty, etc.. We will
also consider techniques of load shifting in order to explore
their impact on the electricity bill.
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