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Abstract: Binary annular masks have recently been proposed to extend the depth of field (DoF)12

of single-molecule localization microscopy (SMLM). A strategy for designing optimal masks has13

been introduced based on maximizing the emitter localization accuracy, expressed in terms of14

Fisher information, over a targeted DoF range. However the complete post-processing pipeline15

to localize a single emitter consists of two successive steps: the detection, where the regions16

containing emitters are determined, and the localization, where the sub-pixel position of each17

detected emitter is estimated. Phase masks usually optimize only this second step. The presence18

of a phase mask also affecting the detection, the purpose of this article is to quantify and mitigate19

this effect. Using a rigorous framework built from a detection-oriented information theoretical20

criterion (Bhattacharrya distance), we demonstrate that in most cases of practical significance,21

annular binary phase masks maximizing Fisher information do also maximize the detection22

probability. This result supports the common design practice consisting of optimizing a phase23

mask by maximizing the Fisher information only.24

© 2023 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic25

reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or26

modifications of the content of this paper are prohibited. https://doi.org/10.1364/JOSAA.49265427

1. Introduction28

Over the past few decades, single-molecule localization microscopy (SMLM) and single particle29

tracking (SPT) have become indispensable tools for studying the structure and dynamics of30

biological samples with nanometer resolution [1]. Both approaches conceptually share the same31

principle: they rely on imaging sequentially single molecules that are sufficiently far away from32

each other to be optically resolved at the diffraction limit, allowing their individual localization33

to be determined at nanometer resolution in each image. In SMLM, one observes distinct34

photo-activatable or blinking molecules in each image of the sequence, whereas in SPT, the35

same diffusing molecule is tracked through the image sequence. In both modalities, the set of all36

localizations collected in the image sequence provides structural or dynamic information about37

the sample under study.38

Standard methods localize the molecule in 2D within the imaging plane. However, it is also39

possible to measure its 3D localization. This can be achieved using spatio-temporally modulated40

illumination and camera [2] or single pixel imaging [3]. It is also possible to insert a phase41

mask in the Fourier plane of the microscope [4], or a diffraction grating just before the imaging42

plane [5], in order to modify the detected point spread function (PSF) in a non-symmetric manner43

along the optical axis with respect to the imaging plane. Such PSF engineering methods have44
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been shown to be very efficient to estimate the 3D position of fluorescent emitters within the45

natural depth of field (DoF) range of the microscope [5, 6]. However, in SMLM and SPT, high46

numerical aperture (NA) is commonly used to maximize the collection efficiency of the photons47

emitted by weak single molecule emitters, and to ensure high lateral localization precision. The48

counterpart is that high NA objectives strongly limit the depth of field (DoF) of the acquired49

images. Several developments have thus aimed at extending the DoF range of SMLM and SPT50

microscopes. Two examples of commonly used masks that achieve extended DoF (EDoF) in51

3D are the double-helix [7] and the tetrapod [8] masks. The penalty for using such masks is a52

consequent broadening of the resulting PSFs which thus requires the use of bright emitters or53

particles for proper super-localization.54

In consequence, extending the DoF without trying to localize emitters along the optical axis55

(i.e., to localize them in 2D along an extended DoF range) can be useful in some applications,56

since doing so, projection of thick 3D volumes on a 2D plane can be obtained at nanometer57

resolution [9]. This can be particularly useful in SPT applications that aim to analyze single58

particle trajectories, such as, for instance, deep-tissue high speed SPT where the number of59

photons might be too low to apply 3D localization techniques.60

For those applications where the depth of the emitter is not estimated using a PSF engineering61

method, we have recently proposed an optimized annular binary phase mask that extends the62

microscope DoF range [10] (see Fig. 1). The optimization criterion is based on the Cramér-Rao63

bound (CRB), which defines the theoretical limit for localization accuracy of a fluorescent emitter64

in the imaging plane. We have shown that using a mask that minimizes the largest value of the65

CRB over the targeted EDoF range, and applying an adapted post-processing algorithm, makes66

it possible to generate excellent 2D super-localization accuracy throughout the desired imaged67

volume, at the cost of a moderate loss of localization accuracy in the focal plane as compared to68

the situation where no mask would be used [10]. The effectiveness of these masks was recently69

demonstrated in a SPT experiment [11].70

However, it has to be kept in mind that the complete post-processing pipeline to localize a single71

emitter in an image consists of two successive steps: the pre-localization (also called detection),72

where the regions of the image containing emitters are determined, and the localization, where the73

sub-pixel position of each detected emitter is estimated [12]. Phase masks are usually optimized74

by taking into account only this second step. However, it is clear that the presence of a phase75

mask also affects the detection step as well. It is therefore important to quantify the effect that the76

insertion of a phase mask optimized for localization in the microscope produces on the detection77

step. This is the question addressed in this article, which is organized as follows. Section 278

defines the imaging model, the microscope DoF range, and the phase mask architecture we use.79

The pre-localization step of a fluorescent emitter is then formalized in Section 3 as a classification80

problem. To quantify the effect of a phase mask on detection performance, we propose in81

Section 4 a detectability metric based on the Bhattacharyya distance [13]. This metric is then82

used in Section 5 to optimize phase masks for detection over a prescribed DoF range. In Section 6,83

these optimal masks are compared to the masks that were optimized for localization-only in a84

previous study [14]. Section 7 is devoted to concluding remarks and perspectives.85

2. The depth of field (DoF) and its extension86

We consider fluorescent emitters having nanometric size. They can be considered as point-like87

light sources since their dimensions are not resolved by the microscope. Let us denote the88

lateral position of an emitter in the sample by the coordinates 𝜽 = (𝑥p, 𝑦p) and its longitudinal89

position (along the optical axis) by the 𝑧p coordinate. It is assumed that the microscope objective90

is object-space telecentric, aplanatic (i.e., it fulfills the Abbe sine condition), and limited by91

diffraction over its field of view. As a consequence, the lateral magnification, denoted by 𝑀 , does92

not depend on the 𝑧p longitudinal coordinate and the image of the emitter is spatially invariant.93



The fluorescence signal distribution in the image plane (on the sensor), at coordinates (𝑥, 𝑦), is94

therefore proportional to:95

𝑓𝜓 (𝑥, 𝑦, 𝜽) ∝
����∫ 1
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𝐽0

(
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with
∬

𝑓𝜓 (𝑥, 𝑦, 𝜽) d𝑥 d𝑦 = 1 and where 𝐽0 (·) is the Bessel function of the first kind of order 0, 𝜆96

is the wavelength of the collected light and NA is the object numerical aperture.97

The pupil phase function Φ𝜓 (𝑟), involved in Eq. (1), characterizes the phase difference in the98

exit pupil between a real aberrant wavefront and a spherical reference surface. In the presence of99

defocus aberration, the function Φ𝜓 (𝑟) is classically described by a quadratic function of the100

reduced radial pupil coordinate 𝑟 [15]:101

Φ𝜓 (𝑟) ≃
2𝜋
𝜆
𝜓𝑟2 (2)

where 𝜓 is the defocus parameter which characterizes the phase deviation 2𝜋𝜓/𝜆 at the pupil102

edge (i.e., when 𝑟 = 1) in the presence of defocus aberration. The parameter 𝜓 has the following103

expression [16]:104

𝜓 ≃ NA2

2𝑛
(
𝑧p − 𝑧focus

)
(3)

where 𝑛 is the matched refractive index of the sample and 𝑧focus the position at which the105

instrument is focused.106

When the optical system is perfectly focused on the fluorescent emitter to be imaged (i.e.,107

𝑧focus = 𝑧p), there is no defocus aberration. The value of the defocus parameter 𝜓 is then equal to108

0, which cancels the pupil phase function Φ𝜓 (𝑟) defined in Eq. (2). The PSF defined in Eq. (1)109

is then described by the Airy spot:110
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where 𝐽1 denotes the Bessel function of the first kind of order 1.111

In the presence of defocus aberration (i.e., |𝜓 | > 0), the PSF of the imaging system degrades.112

If the Rayleigh criterion is respected (i.e., |𝜓 | ≤ 𝜆/4), the central value of the PSF decreases by113

more than 20% with an almost negligible deformation of the Airy spot. It is therefore common114

to define the natural DoF of the microscope by the interval 𝜓 ∈ [−𝜆/4, 𝜆/4].115

To extend the DoF of an imaging system without changing its aperture, a phase mask can116

be placed in its exit pupil [17]. The mask introduces a phase modulation in the aperture stop117

that modifies the PSF so that it becomes less sensitive to defocus aberration. Several mask118

architectures can be used. In this paper, we consider annular binary phase masks which have the119

advantage of being easy to manufacture while having a DoF extension capacity equivalent to that120

of masks whose phase varies continuously [18]. These masks are composed of concentric rings,121

as shown in Fig. 1. A mask with 𝐿 rings and unit aperture radius is defined by the set of its 𝐿 − 1122

radii represented by the vector 𝝆 = (𝜌1, · · · , 𝜌𝐿−1). Each ring adds to the incident wavefront a123

phase of 0 or 𝜋 radians at the nominal wavelength 𝜆 of the incident light. Thus, in the presence124

of defocus aberration and a phase mask, the pupil phase function defined in Eq. (2) becomes:125

Φ𝜓 (𝑟) ≃
2𝜋
𝜆
𝜓𝑟2 +Φmask (𝑟, 𝝆) (5)

where Φmask (𝑟, 𝝆) denotes the binary phase function of the mask (0 or 𝜋 radians) and 𝝆 its126

parameter vector.127



Fig. 1. Schematic diagram of an optical microscope whose its DoF has been extended
by placing an optimized annular binary phase mask in the aperture stop of its objective.

3. Statistical hypothesis testing128

The detection of a fluorescent emitter can be formulated as a classification problem, where129

the acquired data are automatically distinguished according to whether or not they contain130

a fluorescence signal from an emitter. For that purpose, let us consider a thumbnail of size131

(2𝑃 + 1) × (2𝑃 + 1) pixels and define the two following hypotheses.132

Hypothesis H1: One emitter (and only one) is present in the thumbnail. The signal measured133

at pixel (𝑖, 𝑗) is denoted by 𝑠𝑖 𝑗 and consists of the fluorescence signal from the emitter and of134

a spatially constant background of mean 𝑏 coming from e.g. from the electronic offset of the135

sensor or from the autofluorescence of the biological medium. Since both signals are disturbed136

by shot noise, the discrete random variable 𝑠𝑖 𝑗 under the hypothesis H1 is a Poisson distribution:137

𝑃1,𝑖 𝑗 [𝑘] =
𝜆𝑘

1,𝑖 𝑗

𝑘!
exp

(
−𝜆1,𝑖 𝑗

)
(6)

with mean equal to138

𝜆1,𝑖 𝑗 = 𝑁0𝜇
𝜓,𝜽
𝑖 𝑗

+ 𝑏 . (7)

In this equation, 𝑁0 denotes the average number of photo-electrons measured from the emitter139

and 𝜇
𝜓,𝜽
𝑖 𝑗

corresponds to the value of the imaging system PSF, defined in Eq. (1), integrated over140

the square pixel (𝑖, 𝑗) of side length Δ𝑥𝑦:141

𝜇
𝜓,𝜽
𝑖 𝑗

=

∫ (𝑖+ 1
2 )Δ𝑥𝑦

(𝑖− 1
2 )Δ𝑥𝑦

∫ ( 𝑗+ 1
2 )Δ𝑥𝑦

( 𝑗− 1
2 )Δ𝑥𝑦

𝑓𝜓 (𝑥, 𝑦, 𝜽) d𝑥 d𝑦 . (8)

Hypothesis H0: There is no fluorophore in the thumbnail; only the background signal is142

measured. The probability distribution of the discrete random variable 𝑠𝑖 𝑗 under this hypothesis143

is denoted by 𝑃0 [𝑘]. It is again a Poisson distribution, as defined in Eq. (6), but with a mean144

independent of the pixel (𝑖, 𝑗):145

𝜆0 = 𝑏 . (9)

Figure 2 illustrates these two hypotheses by a set of simulated thumbnails in which an emitter146

is either absent [see Fig. 2(a)] or present [see Figs. 2(b-d)] with three different values of the147



(a) (b) (c) (d)

Fig. 2. (a-d) Simulations of thumbnails 𝒔 verifying the H0 or H1 hypothesis for optical
microscopes without phase mask and for several values of the defocus parameter 𝜓.
(e) Histogram of the value of the central pixel (𝑖, 𝑗) = (4, 4) made on 8 000 noise
realizations. The microscope configuration and the simulation parameters are defined
in Table 1 with 𝑁0 = 500 ph.e− and 𝑏 = 30 ph.e−.

defocus parameter 𝜓, namely 𝜓 = {0, 0.25𝜆, 0.5𝜆}. Figure 2(e) represents the histogram of148

the central pixel value constructed from 8 000 different noise realizations. These numerical149

simulations are carried out with the parameters described in Table 1. It is clearly seen that as the150

defocus parameter 𝜓 increases, the PSF degrades: it spreads and disappears in the background151

fluorescence. With the naked eye, comparing Fig. 2(d) with Fig. 2(a), it is clear that it will become152

increasingly difficult to determine whether a fluorophore is present or not. This is also seen in153

Fig. 2(e), where the histogram associated with the central pixel 𝑃1,44 [𝑘] approaches 𝑃0 [𝑘] as 𝜓154

increases: the hypotheses H1 and H0 will “merge” and become less and less discernible.155

A decision algorithm consists in automatically classifying the acquired data sets 𝒔 =156

(𝑠𝑖 𝑗 ) (𝑖, 𝑗) ∈[−𝑃,𝑃 ]2 by distinguishing those containing a fluorescence signal (i.e., verifying the157

hypothesis H1) and those that are empty (i.e., verifying the hypothesis H0). Neyman et al.158

showed in 1933 that the optimal algorithm — i.e., the one that gives the maximal detection159

probability for a given probability of false alarm — consists in comparing the likelihood ratio to160

a threshold [19].161

4. Bhattacharyya distance162

No hypothesis test, even the optimal one like Neyman et al.’s, can lead to a perfect classification.163

Moreover, as shown in Fig. 2, it is expected that the farther a fluorophore is from the focal164

plane (i.e., |𝜓 | large), the less discernible the H1 and H0 hypotheses, and the more difficult the165

classification problem. In order to evaluate the performance of a hypothesis testing algorithm,166

we can compute its error probability, that is, the probability that a thumbnail 𝒔 is assigned to the167

wrong class.168

The Bayes error rate 𝜖 is the smallest possible error probability that a classification algorithm169

can lead to [19]. Since under both hypotheses H1 and H0 the measured pixel values 𝑠𝑖 𝑗 are170



Simulation parameters Symbols Values

Fluorophore position in the plane (𝑥p, 𝑦p) (0, 0) µm

Fluorophore wavelength emission 𝜆 700 nm

PSF image length 2𝑃 + 1 21 pixels

Pixel length Δ𝑥𝑦 10 µm

Object numerical aperture NA 1.3

Lateral magnification 𝑀 60

Table 1. Microscope configuration and simulation parameters used.

statistically independent of each other, the expression of 𝜖 depends on 𝑃1,𝑖 𝑗 [𝑘] and 𝑃0 [𝑘] as171

follows [20]:172

𝜖 =
∑︁

𝑠11 ,𝑠12 ,𝑠21 , · · ·
min

{
𝑝1

𝑃∏
𝑖=−𝑃

𝑃∏
𝑗=−𝑃

𝑃1,𝑖 𝑗 [𝑠𝑖 𝑗 ]; 𝑝0

𝑃∏
𝑖=−𝑃

𝑃∏
𝑗=−𝑃

𝑃0 [𝑠𝑖 𝑗 ]
}

(10)

with 𝑝1 and 𝑝0 the prior probabilities of the hypotheses H1 and H0. The sum is performed on173

all possible values of the (2𝑃 + 1)2 pixels, so that 𝑠𝑖 𝑗 = {0, 1, · · · , +∞}. Using the inequality174

min{𝑎; 𝑏} ≤ 𝑎𝛾𝑏1−𝛾 (where 𝑎, 𝑏 ≥ 0 and 0 ≤ 𝛾 ≤ 1), it is easily seen that Eq. (10) can be upper175

bounded by:176

𝜖𝑢 (𝛾) = exp

[
−

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

𝐶𝑖 𝑗 (𝛾)
]

0 ≤ 𝛾 ≤ 1 (11)

where177

𝐶𝑖 𝑗 (𝛾) = − ln

[ +∞∑︁
𝑘=0

𝑃1,𝑖 𝑗 [𝑘]𝛾𝑃0 [𝑘]1−𝛾

]
(12)

is the Chernoff distance between the probability laws 𝑃1,𝑖 𝑗 [𝑘] and 𝑃0 [𝑘] [21]. Since these laws178

follow Poisson distributions of means 𝜆1,𝑖 𝑗 and 𝜆0 respectively, as defined in Eqs. (7) and (9), the179

Chernoff distance has the following closed-form expression:180

𝐶𝑖 𝑗 (𝛾) = 𝛾𝜆1,𝑖 𝑗 + (1 − 𝛾)𝜆0 − 𝜆
𝛾

1,𝑖 𝑗𝜆
1−𝛾
0 . (13)

Thus, the smallest upper bound on 𝜖 (also called the Chernoff bound) is obtained with the value181

of 𝛾 that maximizes the sum of 𝐶𝑖 𝑗 (𝛾). This optimal value depends on the means 𝜆1,𝑖 𝑗 and 𝜆0182

and has no closed-form expression. However, it can be shown that for many applications, the183

optimal value of 𝛾 is close to 0.5 [22]. This is what can be observed in Fig. 3, where the optimal184

value of the parameter 𝛾 is plotted as a function of the defocus parameter 𝜓 for data simulated185

with the parameters defined in Table 1: for all the considered values of 𝜓, the Chernoff bound is186

reached for a value of 𝛾 close to 0.5.187

Thus, 𝜖𝑢 (0.5) is a good candidate to characterize the detectability of a fluorophore since it188

allows to approach the Chernoff bound by a closed-form expression. This metric, which is called189

the Bhattacharyya distance [13], has the following expression:190

B(𝝆, 𝜓) =
𝑃∑︁

𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

𝐶𝑖 𝑗 (0.5) =
𝑏

2

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

(√︂
𝑁0
𝑏
𝜇
𝜓,𝜽
𝑖 𝑗

+ 1 − 1

)2

(14)



Fig. 3. Optimal value of the parameter 𝛾, which minimizes the upper bound of the
Bayes error rate 𝜖𝑢 (𝛾). This value is plotted as a function of the defocus parameter
𝜓 for different mask parameters 𝝆. The microscope configuration and the simulation
parameters used are defined in Table 1 with 𝑁0 = 500 ph.e− and 𝑏 = 30 ph.e−.

Fig. 4. Evolution of the Bhattacharyya distance for an optical system without phase
mask (𝝆 = 0) as a function of the defocus parameter 𝜓. The microscope configuration
and the simulation parameters used are defined in Table 1 with 𝑁0 = 500 ph.e− and
𝑏 = 30 ph.e−.

where we have explicitly indicated its dependence on the mask parameter vector 𝝆 and on the191

defocus parameter 𝜓. It allows us to evaluate the intrinsic difficulty of a detection problem in the192

presence of spatially uncorrelated Poisson noise. The interest of using Eq. (14) as a measure of193

contrast in imaging science has been illustrated in Refs. [22] and [23].194

The Bhattacharyya distance B can be interpreted as a measure of similarity (or separability)195

between the hypotheses H0 and H1. It will therefore be used to evaluate the intrinsic ability196

with which the fluorescence signal of an emitter can be detected in a measured image. As an197

illustration, Fig. 4 represents the evolution of the distance B in Eq. (14) for an optical system198

without phase mask (𝝆 = 0) as a function of the defocus parameter 𝜓. We observe that it199

decreases as 𝜓 increases. In other words, the hypotheses H1 and H0 are less and less discernible.200

This logical result quantifies the fact that a fluorophore far from the focal plane (|𝜓 | > 0) is more201

difficult to detect than when it is located in the focal plane (𝜓 = 0).202

5. Phase mask optimization for detection applications203

To extend the depth over which fluorescent emitters can be detected, we propose to optimize204

annular binary phase masks using the criterion based on the Bhattacharyya distance defined in205

Eq. (14). A reasonable criterion for mask optimization is to maximize the smallest value of206

the Bhattacharyya distance within the targeted EDoF range [−𝜓max, 𝜓max]. The optimal mask207

parameters, denoted by the vector 𝝆opt, are thus obtained by solving the following optimization208



problem:209

𝝆opt = arg max
𝝆

𝐽det (𝝆) with 𝐽det (𝝆) = min
𝜓∈[−𝜓max ,𝜓max ]

B(𝝆, 𝜓) . (15)

Given the expression of B in Eq. (14), the optimal mask parameters 𝝆opt depend on the210

experimental conditions through the ratio 𝑁0/𝑏, which will be called the photon balance in211

the following. Since the cost function 𝐽det (𝝆) is highly non-convex, Eq. (15) is solved using212

the particle swarm optimization algorithm [24]. This approach relies on the collaboration of213

individuals. Based on simple displacement rules, a set of particles (whose coordinates describe214

the radii of the rings of a binary annular mask) explore the optimization landscape and gradually215

converge together towards a local minimum. Since there is no guarantee of finding the global216

minimum, different runs may converge to different optimal masks with similar performance.217

The optimization is performed with ring structures composed of a maximum of 𝐿 = 5 rings.218

However, considering the optical parameters of Table 1 and 𝑁0/𝑏 values belonging to the interval219

[8, 500], we observed that the mask performance stabilizes from a number lower than 5 rings.220

The optimal mask parameters 𝝆opt also depend on the lateral emitter position with respect to the221

pixel grid. However, one can show by simulation that this position has very little influence on the222

optimal mask parameters 𝝆opt. To facilitate the comparison between the masks that are optimal223

for detection and those optimal for localization obtained in Ref. [14], we will assume that the224

emitter is located at the center of a pixel so that 𝜽0 = (0, 0).225

Figure 5(a) plots the optimal mask parameters as a function of the photon balance 𝑁0/𝑏 for226

three different targeted DoF ranges: 𝜓max = {1𝜆, 1.5𝜆, 2𝜆}. For a given value of 𝑁0/𝑏, the mask227

parameters are represented by a vertical set of points: each point characterizes the radius 𝜌ℓ of a228

ring with ℓ ∈ {1, · · · , 𝐿 − 1} (radii equal to 0 or 1 are not represented). The performance of the229

masks is displayed using solid markers (associated with the legend “Detection”) in Fig. 5(b) for230

𝜓max = 1𝜆, in Fig. 5(c) for 𝜓max = 1.5𝜆 and in Fig. 5(d) for 𝜓max = 2𝜆. In these figures, the mask231

performance is normalized by dividing the optimal value of the criterion 𝐽det (𝝆opt) by 𝐽det (0)232

the value of the criterion obtained without a mask. We will comment in detail the curves with233

hollow markers in the next paragraph.234

Let us first analyze the results obtained for a targeted DoF range of 𝜓max = 1𝜆. In Fig. 5(a)235

(solid blue round markers), it is observed that whatever the value of 𝑁0/𝑏, the optimal masks are236

composed of only 𝐿 = 2 rings. When 𝑁0/𝑏 < 200, the parameter 𝜌1 of the optimal mask increases237

almost linearly from 0.56 to 0.66. It then stabilizes at 𝜌1 = 0.68 when 𝑁0/𝑏 ∈ [200, 450], and238

then when 𝑁0/𝑏 > 450, 𝜌1 is zero: the optimal configuration corresponds to the absence of a239

mask. Moreover, we observe in Fig. 5(b) (solid blue round markers) that the performance gap240

between the cases with and without mask is larger for small values of 𝑁0/𝑏. For example, when241

𝑁0/𝑏 = 8, we obtain 𝐽det (𝝆opt) = 1.78 × 𝐽det (0).242

The use of a phase mask therefore significantly improves the detection of fluorophores. Small243

values of 𝑁0/𝑏 correspond to situations where the dominant source of noise is due to background244

fluctuations (we shall call this situation Scenario B, as in Ref. [14]). In this scenario, the PSF245

of the imaging system is drowned in the background noise when no mask is used. The optimal246

mask allows the PSF to be modified in order to improve the contrast between the fluorophore247

image and the background.248

We also observe that 𝐽det (𝝆opt) tends asymptotically to 𝐽det (0) as the photon balance 𝑁0/𝑏249

increases, that is, when the dominant source of noise is the shot noise due to the fluorescence250

signal (this situation is called Scenario A in Ref. [14]). It means that in this case, the use of a251

phase mask does not improve nor deteriorate fluorophore detection: the contrast between the252

fluorophore and the background is sufficient for a correct detection over the DoF range 𝜓max = 1𝜆253

without the help of a mask.254

To explain this fact, we can notice that if the fluorescence signal is such that 𝑁0𝜇
𝜓,𝜽0
𝑖 𝑗

≫ 𝑏255



Fig. 5. (a) Evolution of the optimal annular binary phase mask parameters 𝝆opt, defined
in Eq. (15), as a function of the photon balance 𝑁0/𝑏 with 𝜓max = {1𝜆, 1.5𝜆, 2𝜆}.
(b-d) Comparison of normalized detection criterion values, i.e., 𝐽det (𝝆opt)/𝐽det (0),
respectively computed with optimal masks defined in Eqs. (15) and (20), for (b)
𝜓max = 1𝜆, (c) 1.5𝜆 and (d) 2𝜆. The microscope configuration and the simulation
parameters used are defined in Table 1 with 𝑁0/𝑏 ∈ [8, 500].



(Scenario A), then the Bhattacharyya distance B defined in Eq. (14) becomes:256

B ≃ 𝑁0
2

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

𝜇
𝜓,𝜽0
𝑖 𝑗

. (16)

This approximate expression no longer depends on the parameters 𝝆 and 𝜓 since the conservation257

of energy by a phase mask imposes:258

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

𝜇
𝜓,𝜽0
𝑖 𝑗

= constant . (17)

Thus, the criterion 𝐽det (𝝆opt) defined in Eq. (15) tends asymptotically to 𝐽det (0).259

As 𝜓max increases, it is seen in Fig. 5(a) that the optimal masks are composed of a larger260

number of rings: whereas for 𝜓max = 1𝜆, the optimal mask consists of 𝐿 = 2 rings, it is composed261

of 𝐿 = 3 rings for 𝜓max = 1.5𝜆 or 2𝜆. This reflects the increasing difficulty of optimizing a phase262

mask as the targeted DoF range widens. This result is similar to the one established for imaging263

or localization, where the number of rings of the optimal mask also increases with 𝜓max [10, 25].264

Moreover, the conclusions previously established in Fig. 5(b) for the DoF range 𝜓max = 1𝜆 remain265

similar when 𝜓max = 1.5𝜆 (see solid markers in Fig. 5(c)) or 2𝜆 (see solid markers in Fig. 5(d)):266

the performance gap between the cases with and without mask is maximum for 𝑁0/𝑏 = 8 and267

decreases as the photon balance increases. This means that 𝐽det (𝝆opt) tends to 𝐽det (0) when 𝑁0/𝑏268

increases.269

We can also notice in Fig. 5(a) that as the targeted DoF range 𝜓max widens, the optimal mask270

parameters vary less and less as a function of the photon balance 𝑁0/𝑏. This result can be271

explained by a conjecture established in Ref. [14] and observed in Figs. 2(b-d): for the same272

value of 𝑁0/𝑏, the PSF spreads and drowns into the background noise as 𝜓max increases. In273

this case, the inequality 𝑁0𝜇
𝜓,𝜽0
𝑖 𝑗

≪ 𝑏 (Scenario B) is even more valid and the Bhattacharyya274

distance B is approximated by:275

B(𝝆, 𝜓) ≃ 1
8
𝑁2

0
𝑏

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

(
𝜇
𝜓,𝜽0
𝑖 𝑗

)2
, (18)

and becomes proportional to the signal-to-noise ratio 𝑁2
0/𝑏. Thus, the optimal parameter vector276

𝝆opt that minimizes the criterion 𝐽det (𝝆) no longer depends on 𝑁0/𝑏. As a consequence, the277

optimal masks shown in Fig. 5(a) vary less and less with the photon balance as 𝜓max increases.278

To conclude, the use of an optimal mask for detection applications is only necessary for279

experimental conditions corresponding to the Scenario B (background noise dominant). For280

other experimental conditions, the fluorophore image is sufficiently contrasted and the use of the281

phase mask is no longer necessary for detection.282

6. Comparison of masks optimal for detection and for localization283

As mentioned in the Introduction, once the fluorescent emitter is detected, its position is finally284

estimated with a sub-pixel resolution in the localization step.285

In general, phase masks are never optimized for detection [8, 26]. For example, we have286

optimized binary annular phase masks based solely on localization accuracy in Refs. [10] and [14].287

In this case, the optimization criterion is based on the Fisher information matrix [20], which288

quantifies the difficulty of estimating the lateral fluorophore position 𝜽 = (𝑥p, 𝑦p), independently289

of the (unbiased) algorithm used to perform this estimation. We have shown in Ref. [14] that290

since the pixelated PSF described in Eq. (8) has almost circular symmetry, the non-diagonal291



terms of the Fisher information matrix are negligible. Moreover, when 𝜽0 = (0, 0), the diagonal292

terms are strictly equal and reach their minima. In this case, the Fisher information matrix is293

then characterized by a single scalar value equal to:294

I(𝝆, 𝜓) =
𝑃∑︁

𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

𝑁2
0𝑀

2

𝑁0𝜇
𝜓,𝜽0
𝑖 𝑗

+ 𝑏

©­«
𝜕𝜇

𝜓,𝜽0
𝑖 𝑗

𝜕𝑥

ª®¬
2

. (19)

To improve the localization accuracy of fluorescent emitters over a targeted EDoF range, annular295

binary phase masks were optimized by solving the following problem:296

𝝆opt = arg max
𝝆

𝐽loc (𝝆) with 𝐽loc (𝝆) = min
𝜓∈[−𝜓max ,𝜓max ]

I(𝝆, 𝜓) . (20)

Optimal masks for Scenario A (𝑁0𝜇
𝜓,𝜽0
𝑖 𝑗

≫ 𝑏) and Scenario B (𝑁0𝜇
𝜓,𝜽0
𝑖 𝑗

≪ 𝑏) have been297

determined in Ref. [14].298

𝜓max = 1𝜆 𝜓max = 1.5𝜆 𝜓max = 2𝜆

D
et

ec
tio

n

𝝆opt = 0.56 𝝆opt = (0.72, 0.90) 𝝆opt = (0.66, 0.84)

Lo
ca

liz
at

io
n

𝝆opt = 0.55 𝝆opt = (0.74, 0.92) 𝝆opt = (0.68, 0.84)

Table 2. Annular binary phase masks obtained by solving Eq. (15) [first row] and
Eq. (20) [second row] for a EDoF range such that𝜓max = {1𝜆, 1.5𝜆, 2𝜆}. The simulation
parameters are those defined in Table 1 with 𝑁0/𝑏 = 8.

We have shown in Section 5 that the use of an optimal mask for detection is only necessary in299

experimental conditions corresponding to Scenario B, which corresponds to dominant background300

fluctuations. Thus, we compare in this section the annular binary phase masks optimal for301

detection and localization in this scenario. These masks are represented in Table 2, where the first302

row corresponds to the masks optimal for detection when 𝑁0/𝑏 = 8, that have been represented303

in Fig. 5, and the second row corresponds to those optimized in Ref. [14] for localization under304

Scenario B.305

We notice that the masks optimized for detection are similar to those optimized for localization.306

For example, when 𝜓max = 1 the optimal mask for detection is composed of 2 rings with307



𝝆opt = 0.56 while the one optimized for localization has also 2 rings and 𝝆opt = 0.55. Furthermore,308

when 𝜓max = 1.5𝜆, it is seen in Fig. 5(a) that the optimal mask for detection has 3 rings and309

𝝆opt = (0.72, 0.90), while the one optimal for localization has also 3 rings with 𝝆opt = (0.74, 0.92).310

The same result is found when 𝜓max = 2𝜆: the optimal mask for detection has 𝝆opt = (0.66, 0.84)311

and the one optimal for localization 𝝆opt = (0.68, 0.84).312

This remarkable similarity can be theoretically explained by analyzing the optimization criteria313

for detection and localization defined respectively in Eqs. (15) and (20) when the photon balance314

is small. Indeed, if we assume that 𝑁0𝜇
𝜓,𝜽0
𝑖 𝑗

≪ 𝑏, these criteria can be respectively approximated315

by316

𝐽det (𝝆) ≃ min
𝜓∈[−𝜓max ,𝜓max ]

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

(
𝜇
𝜓,𝜽0
𝑖 𝑗

)2
(21)

and317

𝐽loc (𝝆) ≃ min
𝜓∈[−𝜓max ,𝜓max ]

𝑃∑︁
𝑖=−𝑃

𝑃∑︁
𝑗=−𝑃

©­«
𝜕𝜇

𝜓,𝜽0
𝑖 𝑗

𝜕𝑥

ª®¬
2

, (22)

where the pixelated PSF verifies Eq. (17). We notice that maximizing the criteria given in318

Eqs. (21) and (22) under this constraint corresponds to searching for a phase mask producing319

PSFs as concentrated as possible on a small number of pixels.320

To verify this conjecture, Figs. 6 and 7 display the cost functions 𝐽det (𝝆) and 𝐽loc (𝝆) respectively321

defined in Eqs. (15) and (20) as a function of the mask parameters 𝝆. The experimental conditions322

used for the simulation are those described in Table 1 with 𝑁0 = 500 ph.e− and 𝑏 = 30 ph.e− (i.e.,323

𝑁0/𝑏 = 16.7). Figure 6 represents the optimization landscapes for detection (solid blue line) and324

localization (dashed red line) of a 2-ring binary mask defined by its radius 𝜌1, for 𝜓max = 1𝜆 and325

𝑁0/𝑏 = 16.7. We notice that these two optimization landscapes have similar shapes and reach326

their local extrema for almost the same parameter value 𝜌1. For 𝜓max = 1.5𝜆 and 𝑁0/𝑏 = 16.7,327

Fig. 7(a) represents the 3-ring mask optimization landscape for detection as a function of its radii328

(𝜌1, 𝜌2), and Fig. 7(b) is the optimization landscape for localization. We notice again that these329

two optimization landscapes have similar shapes and almost the same extrema — thus, almost330

the same optimal masks — that are indicated by a white cross.331

The conditions of Scenario B (small number of useful photons and strong background), are the332

most demanding and frequently encountered in practice. We have shown that in these conditions,333

the EDoF masks optimized for detection and localization are identical. This result shows that334

the optimization method based on Fisher information to extend DoF that has been introduced in335

Ref. [10] optimizes both detection probability and localization accuracy.336

In order to quantify the loss of detection performance that would result from using localization-337

optimized masks, we have plotted in Figs. 5(b)-5(d), with hollow markers, the normalized values338

of the detection criterion obtained by these masks, respectively for 𝜓max = {1𝜆, 1.5𝜆, 2𝜆}, as339

a function of the photon balance 𝑁0/𝑏. We note that whatever the value of 𝑁0/𝑏, 𝐽det (𝝆loc
opt)340

(hollow markers) is always lower than 𝐽det (𝝆det
opt) (solid markers) where 𝝆loc

opt refers to masks341

optimized for localization with Eq. (20) and 𝝆det
opt masks optimized for detection with Eq. (15).342

The difference between these two curves quantifies the relative loss (expressed as a fraction of343

𝐽det (0)) caused by the use of a mask optimized for localization. We can see that this relative loss344

does not exceed 17% when 𝜓max = 1𝜆, 30% when 𝜓max = 1.5𝜆 and 6% when 𝜓max = 2𝜆. We345

therefore conclude that the masks optimized for localization only slightly degrade the probability346

of detection compared to the masks that optimize it.347

7. Conclusion348

We have investigated the DoF extension problem for single-molecule localization microscopy,349

focusing on the pre-localization step. After defining a rigorous framework built with an explicit350



Fig. 6. Optimization landscapes of a 2-ring binary phase mask for detection (solid
blue line) and localization (dashed red line) when 𝜓max = 1𝜆. The values of 𝐽det (𝝆)
defined in Eq. (15) and 𝐽loc (𝝆) defined in Eq. (20) are normalized by dividing them by
𝐽det (0) and I(0, 0) respectively. The simulation parameters are given in Table 1 with
𝑁0 = 500 ph.e− and 𝑏 = 30 ph.e−.

Fig. 7. Optimization landscapes of a 3-ring binary phase mask for (a) detection and
(b) localization applications when 𝜓max = 1.5𝜆. The values of 𝐽det (𝝆) defined in
Eq. (15) and 𝐽loc (𝝆) defined in Eq. (20) are normalized by dividing them by 𝐽det (0)
and I(0, 0) respectively. The white cross corresponds to the global minimum of the
criterion. [𝜌1, 𝜌2] are respectively equal to [0.90, 0.72] for detection and [0.92, 0.75]
for localization. The simulation parameters are given in Table 1 with 𝑁0 = 500 ph.e−
and 𝑏 = 30 ph.e−.



and general information theoretical criterion to evaluate the detection probability of a fluorophore351

in a thick imaged volume, we have shown that annular binary phase masks optimized using Fisher352

information are adequate for both the detection probability and the localization accuracy. Indeed,353

under the assumption of a low photon balance, the optimization criteria defined in Eqs. (15)354

and (20) lead to similar optimal masks. Conversely, if the photon balance is large, the use of a355

mask optimized for detection is not necessary and the one optimized for localization only slightly356

degrades the detection probability. This result supports the common design practice consisting of357

optimizing a phase mask with a criterion based solely on localization accuracy. In other words,358

annular binary phase masks for DoF extension in single-molecule localization microscopy can be359

optimized using only a criterion based on Fisher information.360

Although the formalism used in this paper assumes that the masks have circular symmetry361

(since they depend only on the radial coordinate 𝑟), the methodology developed can be easily362

extended to masks without particular symmetry. An interesting perspective of this work will363

therefore be to apply this methodology to other mask architectures, in order to verify the364

generalization of the conclusions that we have reached for masks with annular binary phase.365
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