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Abstract—This study investigates the impact of gender infor-
mation on utility, privacy, and fairness in voice biometric systems,
guided by the General Data Protection Regulation (GDPR) man-
dates, which underscore the need for minimizing the processing
and storage of private and sensitive data, and ensuring fairness in
automated decision-making systems. We adopt an approach that
involves the fine-tuning of the wav2vec 2.0 model for speaker
verification tasks, evaluating potential gender-related privacy
vulnerabilities in the process. Gender influences during the fine-
tuning process were employed to enhance fairness and privacy
in order to emphasise or obscure gender information within the
speakers’ embeddings. Results from VoxCeleb datasets indicate
our adversarial model increases privacy against uninformed
attacks, yet slightly diminishes speaker verification performance
compared to the non-adversarial model. However, the model’s
efficacy reduces against informed attacks. Analysis of system
performance was conducted to identify potential gender biases,
thus highlighting the need for further research to understand
and improve the delicate interplay between utility, privacy, and
equity in voice biometric systems.

Index Terms—Speaker verification, privacy preservation, fair-
ness, gender concealment, wav2vec 2.0

I. INTRODUCTION

The voice is an appealing approach to biometric authenti-
cation. Its merits include ease of use, contactless and natural
interaction, efficiency, and application to authentication at a
distance, e.g. over the telephone. However, the voice is a rich
source of personal information and recordings of speech can
be used to infer far more than just the speaker’s identity, e.g.
the speaker’s gender [27], ethnicity [10], and health status [22].
The safeguarding of such extraneous personal information
is nowadays essential; without it, there is no guarantee that
recordings of speech will not be used for purposes beyond
person authentication [19].

The General Data Protection Regulation (GDPR)1 calls for
adequate protections for personal data, encompassing both sen-
sitive biometric information like voice and personal attributes
such as gender2. In adherence to Art. 4(1) of the GDPR,
personal data processing must abide by principles of legality
and fairness, managing data in line with reasonable expecta-
tions and avoiding unjust harm. Any AI-driven data processing
resulting in unfair discrimination violates this principle.

1https://gdpr-info.eu/
2https://www.gdpreu.org/the-regulation/key-concepts/personal-data/

As mandated by GDPR, this study particularly emphasizes
privacy and fairness, focusing on gender due to its demon-
strated influence on speaker authentication services [9] and the
observed gender bias in voice assistant responses [13]. GDPR
aims to protect the rights and freedoms of individuals, includ-
ing privacy and non-discrimination, with regard to personal
data processing. Concealing gender adheres to the principles
of data minimization and privacy by design, limiting the risk
of misuse or unauthorized data access.

In this research, we grapple with the triple challenge of
utility, privacy, and fairness in speaker verification systems.
Starting with fine-tuning a pre-trained wav2vec 2.0 for speaker
verification tasks, we then evaluate potential vulnerabilities
tied to gender privacy and the fairness of Automatic Speaker
Verification (ASV) performance across genders. Subsequently,
we implement an adversarial technique during the fine-tuning
process to conceal gender information in the speaker embed-
dings, thereby enhancing user privacy. To conclude, we present
a comprehensive analysis of the impact of gender information
on the utility, privacy, and fairness of the systems we propose.

II. RELATED WORK

Significant strides have been made in speaker verification,
with efforts concentrated on enhancing user privacy. These
strategies prioritize the protection of gender-specific data with-
out sacrificing system utility. Noé et al. [15] suggested an
Adversarial Auto-Encoder (AAE) method to separate gender
aspects from speaker embeddings while preserving ASV per-
formance. The approach uses an external gender classifier to
analyze encoded data. Later, they leveraged a normalizing flow
to control gender information in a flexible manner [16]. In
another study, Benaroya et al. [2] developed a novel neural
voice conversion framework using multiple AEs to create
separate linguistic and extra-linguistic speech representations,
allowing adjustments during the voice conversion process.
Recently, Chouchane et al. [3] used an adversarial approach
to hide gender details in speaker embeddings while ensuring
their effectiveness for speaker verification. They incorporated a
Laplace mechanism layer, introducing noise to obscure gender
information and offering differential privacy during inference.

In terms of fairness, research reveals a distinct disparity
in ASV system performance based on gender, exposing gen-



der bias [23]. Two primary strategies to mitigate this bias
include pre-processing and in-processing. Pre-processing uses
balanced datasets for training, as Fenu et al. [7] demonstrated
with gender, language, and age-balanced data. In contrast, in-
processing infuses fairness directly during training, as seen
in Shen et al.’s Group-Adapted Fusion Network (GFN) [21]
and Jin et al.’s adversarial re-weighting (ARW) approach [12].
Peri et al. [18] recently proposed adversarial and multi-task
learning techniques for bias mitigation, highlighting a potential
trade-off between system utility and fairness.

Finally, shifting focus to system utility, a cornerstone in
ASV performance, the wav2vec 2.0 [1], a self-supervised
framework for speech representation learning, enters the scene.
The wav2vec 2.0 can be effectively adapted for speaker
verification tasks [6], [25].

III. AUTOMATIC SPEAKER VERIFICATION, GENDER
RECOGNITION AND SUPPRESSION USING WAV2VEC 2.0

In this section, we outline our use of the wav2vec 2.0
model, a versatile speech feature encoder that is pre-trained
through self-supervision and can be adapted to specific tasks.
We fine-tuned wav2vec 2.0 for three distinct tasks: speaker
recognition, and gender recognition and suppression. Section
3.1 elaborates on the pre-training process, while Section 3.2
details our contributions to fine-tuning. Both procedures are
graphically depicted in Fig. 1.

A. Pre-training

Given a raw audio input signal x, wav2vec 2.0 produces a
set of T feature vectors c1, . . . , cT . The model is split into a
1D-convolutional encoder and a Transformer module [24] two
main parts. First, the encoder maps the raw audio x to latent
feature vectors z1, . . . , zT . The latent features are then fed
into the Transformer module to produce output feature vectors
c1, . . . , cT , and are also used to compute a set of quantised
macro-codewords q1, . . . ,qT . Each macro-codeword qt is the
concatenation of G codewords qt,1, . . . ,qt,G selected from
G different codebooks Q1, . . . ,QG, each of size V , learned
at training time. Each codeword qt,j is sampled from Qj

according to a V -fold categorical distribution. The distribution
is optimized during pre-training and computed as pt,j =
GS(zt), where GS indicates a linear layer projecting zt to
V dimensions followed by a straight-through Gumbel-softmax
estimator [11].

During pre-training, the model attempts to simultaneously
minimize a contrastive loss Lm and a diversity loss Ld.
To compute the former, some of the latent feature vectors
z1, . . . , zT are randomly masked. Then, for each masked zt,
the Transformer module attempts to compute ct so that it is
as similar as possible to the corresponding quantised macro-
codeword qt, and as dissimilar as possible from other “distrac-
tor” macro-codewords q̃ randomly sampled from the rest of
the batch. The quantised macro-codewords are computed with
no masking. The diversity loss Ld encourages the model to
make uniform use of all the V codewords in each codebook by
maximizing the entropy of the average probability distribution

p̄g produced by all zt in a batch for each codebook g. The
overall loss is:

L = −
∑

masked
steps t

log
exp (s(ct,qt)/κ)∑
q̃ exp (s(ct, q̃)/κ)︸ ︷︷ ︸
Lm

−α
1

GV

G∑
g=1

H (p̄g)︸ ︷︷ ︸
Ld

(1)
Where κ is a temperature coefficient, s is the cosine similarity,
α is a weight hyperparameter and H indicates entropy.

B. Fine-tuning for speaker verification and gender recognition

In this paper, we fine-tune wav2vec 2.0 for the down-
stream tasks of speaker verification and gender recognition.
In both cases, for each input utterance x, the output features
c1, . . . , cT are averaged across time to obtain a 1-dimensional
embedding c. In the case of gender recognition, c is then
passed through a linear layer fg which is trained by optimising
the cross-entropy loss Lg between the predicted logits and the
true gender label for each utterance (0 for male, 1 for female).
For speaker verification, c is passed through a different linear
layer fs of N output neurons, where N is the number of
speakers in the training dataset. The layer is then optimized
to perform speaker identification by minimizing the additive
angular margin (AAM) softmax loss Ls [26]. At test time,
the final embedding c is used as a trial or enrollment vector.
Overall, the final loss can be formulated as:

L = λLs + (1− λ)Lg (2)

where λ is a hyper-parameter between 0 and 1 that controls the
weight of each loss component. We experimented with three
different model configurations: Model 1 (Ms) is fine-tuned for
speaker verification, i.e. λ = 1; Model 2 (Msg) is fine-tuned
for both tasks, i.e. λ = 0.5; Model 3 (Msga) is optimised in
a similar manner, though with a gradient reversal layer [8] gr
to suppress gender information.

The optimization process becomes an adversarial game
between fg , which attempts to minimize Lg , and the backbone,
which attempts to maximize it. Meanwhile, the Ls component
is optimized as usual.

IV. EXPERIMENTAL SETUP

Described in this section are the databases used for all
experimental work, the metrics used for evaluation, and the
fine-tuning procedure.

A. Databases

We used the VoxCeleb1 and VoxCeleb2 speaker recogni-
tion databases [4], [14]. VoxCeleb1 includes over 100,000
utterances from 1,251 celebrities, while VoxCeleb2 contains
over a million utterances from 6,112 speakers. Both datasets,
compiled from YouTube videos, are widely used for speaker
recognition and voice-related machine-learning tasks. Fine-
tuning is performed using the VoxCeleb2 development set
which contains data collected from 5994 unique speakers of
which 3682 are male and 2312 are female, corresponding to
an imbalance in favour of male speakers of 22.9%. To assess



Fig. 1. Graphical depiction of the proposed systems. Ms: fine-tuning the speaker identification task. Msg: fine-tuning gender and speaker identification.
Msga: similar to Msg , but the gender identification task is made adversarial.

the performance of our systems, we used the VoxCeleb1 test
set, which consists of 40 unique speakers of which 25 are male
and 15 are female.

B. Metrics

A range of key metrics was selected, many of which
are derived from the evaluation of biometric classification
systems, e.g. speaker verification and gender classification.
The following describes how they are used to jointly assess
the utility, privacy, and fairness of the models under scrutiny.

Utility is measured by assessing the performance for the
task of automatic speaker verification (ASV) in terms of
equal error rate (EER). EER is the operating point defined
by the detection threshold τ at which the false acceptance
rate (FAR) and the false rejection rate (FRR) are equal.

Privacy relates to the difficulty of an adversary to infer
sensitive attributes. We use AUC (area under the receiver
operating characteristic curve) metric to gauge privacy. In
contrast to EER, AUC provides a comprehensive view, which
is ideal for evaluating system security across diverse threshold
selections.

Fairness is aimed at ensuring that a system behaves equally
with all subgroups of the target population. Many approaches
for measuring fairness have been proposed recently and there
is still no agreement on which is the most appropriate. We
adopted two different metrics with the aim of giving a more
meaningful insight into the fairness of the models.

The first adopted approach aims at ensuring that the error
rates for all demographic groups fall within a small margin ϵ.
However, for practical purposes, given a pair of demographic
groups D = d1, d2, we calculate A(τ) and B(τ), as:

A(τ) = max
(∣∣FARd1(τ)− FARd2(τ)

∣∣) (3)

B(τ) = max
(∣∣FRRd1(τ)− FRRd2(τ)

∣∣) . (4)

These represent the maximum absolute differences in FAR
and FRR across all groups. In a perfect system, both A(τ) and
B(τ) would equal 0, reflecting identical error rates across all
groups.

The Fairness Discrepancy Rate (FDR) [5] is defined as:

FDR(τ) = 1− (αA(τ) + (1− α)B(τ)) (5)

where the hyper-parameter α ∈ [0, 1] determines the
relative importance of false alarms. FDR ranges between
0 and 1 and would equal 1 in the case of a perfectly
fair system. However, achieving perfect fairness is often
unrealistic, leading to the introduction of ϵ which allows
for certain discrepancies. Though ϵ isn’t included in the
FDR calculation, it’s vital for defining an acceptable level of
fairness and interpreting FDR results.
Given the absence of a universal ϵ and the complexities of
biometrics, absolute fairness often isn’t achievable. Thus,
FDR and Area Under FDR (auFDR) are used to compare
the fairness of different biometric systems. The auFDR is
calculated by integrating the FDR over a specific threshold
range τ , denoted as FARx. To fairly compare the auFDR
between different systems, the specific range of τ used must
be reported, as the value of the auFDR depends on this range.
Like the FDR, the auFDR varies from 0 to 1, with higher
values denoting better fairness. In our experiments, we set the
range to FARs below 0.1; FARs above this value correspond
to a system with little practical interest.

The second metric is the fairness activation discrep-
ancy (FAD), which we use to investigate fairness within the
network. FAD is inspired by InsideBias [20], a fairness metric
developed originally for the study of face biometrics and
which we adapt to our study of voice biometrics. Notably,
this adaptation of FAD for voice biometrics is a novel metric
in this context.



InsideBias is based upon the examination of neuron activa-
tions and the comparison of model responses to demographic
groups within distinct layers. In [20], the authors observed
that underrepresented groups corresponded to lower average
activations. In the case of voice biometrics, the output of each
network layer can be viewed as a bi-dimensional tensor of
neurons over temporal frames:

A
[l]
ij = Ψ[l](·) (6)

where i = 1, ..., N , j = 1, ...,M , Aij is the activation of the
ith neuron for the jth temporal frame, Ψ[l] is the activation
function at layer l, and N and M are the total number of
neurons and frames respectively. For each layer l we calculate
the root mean square of Aij over the jth frame which serves
to account for large positive or negative activations. Then, we
take the maximum along the ith feature dimension:

Λ[l] = max
i

√√√√√
 1

M

∑
j

A2
ij

 (7)

The FAD is defined as the absolute difference between Λ
for a pair of two distinct groups and is given by FAD =
|Λd1

−Λd2
|. Near-zero values of FAD indicate better fairness.

C. Fine-tuning procedure

Ms, Msg and Msga models are fine-tuned as described in
Section III-B. An initial warm-up is applied to the linear clas-
sification heads for the first 10k optimization steps, keeping
the wav2vec 2.0 backbone frozen. The entire model is then
fine-tuned in an end-to-end fashion for the remaining steps.
We use the pre-trained model provided by Baevski et al. [17]3.
Performance for the speaker identification task exceeded 95%
accuracy for all three models whereas the adversarial system
delivered a gender recognition accuracy of only 47%.

D. Gender privacy threat models

The ability of the systems to conceal the gender information
contained in its embeddings is measured by simulating the
presence of a third party (an attacker) training a 2-layer fully-
connected neural network N to infer the speaker gender from
utterance embeddings. We consider two threat models. In the
first one, the attacker is not aware that gender concealment
has taken place (uninformed attack (uIA)) and therefore trains
N on embeddings that are not gender-protected (in this case,
those produced by Ms and Msg). In the second one, the
attacker is aware that model Msga was used to protect the
gender identity (informed attack (IA)), has access to that
model, and trains N on embeddings produced by that same
model. We expect this to result in a more effective attack.

3https://github.com/facebookresearch/fairseq/tree/main/examples/

Models
Ms Msg Msga

EER(%)
Overall 2.36 3.23 3.89
Male 3.12 4.22 4.98

Female 3.05 4.21 5.26

auFDR α

0 0.98 0.97 0.96
0.25 0.97 0.97 0.95
0.5 0.97 0.96 0.94

0.75 0.96 0.95 0.92
1 0.95 0.94 0.91
TABLE I

PERFORMANCE ANALYSIS OF THE THREE MODELS FOR UTILITY AND
FAIRNESS, INCLUDING EER BREAKDOWN BY GENDER AND AUFDR

ACROSS VARIOUS α VALUES (REFER TO EQ.5) FOR τ RANGING FROM
0.1% TO 10%.

Data Attack
Training Test AUC (%)

uIA

Ms Ms 97.09
Ms Msga 46.80
Msg Msg 98.07
Msg Msga 40.76

IA Msga Msga 96.27
TABLE II

ASSESSMENT OF GENDER CONCEALMENT EFFECTIVENESS UNDER
DIFFERENT THREAT SCENARIOS IN TERMS OF AUC.

10 3 10 2 10 1

= FARx

0.85

0.90

0.95

1.00

1.05

1.10

FD
R(

)

Ms

Msg

Msga

Fig. 2. FDR of different ASV systems for different decision thresholds for
τ from 0.1% to 10%

V. EXPERIMENTAL RESULTS

We present results for each of the three models Ms, Msg ,
and Msga. Performance is assessed in terms of utility, privacy,
and fairness.

In terms of utility, the performance of model Ms is in line
with state-of-the-art automatic speaker verification systems,
achieving an EER of 2.36% as shown in Table I. The per-
formance of model Msg and Msga are slightly worse, 3.23%
and 3.89% respectively, showing that gender influence does
not improve speaker recognition. Furthermore, an analysis of



Fig. 3. PCA visualizations of features from three models illustrating gender recognition capabilities. Blue points correspond to males and red to females.

Fig. 4. Normalised Fairness Activation Discrepancy (FAD) of different systems at different wav2vec 2.0 module layers.

the EER broken down by gender shows small differences in
speaker recognition for the two genders.

Fairness performances are shown at the bottom of the
Table I in terms of the auFDR for different values of α. All
auFDR results are close to 1, indicating reasonable fairness
for each group. Fig. 2 depicts a plot of the FDR against the
threshold for α = 0.5. Profiles are shown for all three systems.
The FDR is in all cases above 0.9, and the Ms system is
always the fairest for each τ . Again, gender influence does
not improve fairness.

Privacy performances are presented in Table II. AUC results
for uninformed attacks (uIA) are shown at the top. When
training and testing are performed using embeddings generated
using the same, unprotected models, the AUC is 97.09% and
98.07% for Ms and Msg models, respectively, demonstrating
a lack of privacy protection. In contrast, when the same
uninformed attack is made on the gender-protected model
Msga, the AUC drops to 46.80% and 40.76% respectively.

This significant decrease indicates that the gender classifier
predictions become nearly random, successfully concealing
the gender information, demonstrating effective protection of
privacy.

Performances for the informed attack (IA) are shown in the
last row of Table II. When embeddings are extracted with the
Msga model, the AUC is much higher, at 96.27%. This result
underlines the difficulty of obfuscating gender information
from embeddings. Fig. 3 reveals an explanation. It illustrates a
projection by principal component analysis of the embeddings
generated by each of the three models. While the Msga model
is adversely trained with respect to gender cues, Fig. 3c shows
that they persist. We see that, rather than fully obfuscating
gender cues, Msga only rotates the principal components
hence why, when trained on similarly-treated training data,
gender can still be recognised.

Finally, an analysis of internal bias in terms of FAD has been
performed at different network layers considering male and



female groups. This analysis aims to provide insights into the
comparative measures of fairness across three distinct models
and how they dynamically propagate through the various
layers. By examining the internal bias at each layer, we can
better understand the impact of model architecture and training
data on fairness outcomes. As illustrated in Fig. 4, 32 layers
were selected in total from the wav2vec 2.0 model. These
include 8 layers from the 1D-convolutional encoder and 24
intermediate activation layers from the Transformer modules.

Fig. 4 shows the FAD values calculated at different layers.
The first layers of the CNNs display similar fairness, likely
due to their focus on low-level features.

Contrastingly, Transformer layers, which handle high-level
features, have wider fairness variations. Ms and Msga show
a complementary behavior as when one achieves high FAD,
the other has lower FAD, and vice versa. This could be
because Ms was fine-tuned for speaker verification, while
Msga, with its gradient reversal layer, was trying to suppress
gender information. As layers progress, all models converge to
FAD values, with Ms being the fairest at the end, confirming
what is observed in terms of auFDR.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This research explored the influence of gender information
while fine-tuning wav2vec 2.0 for speaker verification. We
proposed three models: Ms, Msg , and Msga, each with a
different focus: speaker recognition, speaker recognition with
gender classification, and speaker recognition with gender
obfuscation, respectively. Our experiments revealed that Ms

succeeds in speaker verification (EER of 2.36%), while Msga,
designed to hide gender information, performed much worse
(EER of 3.89%). Interestingly, improving gender recognition
in the Msg model did not lead to better speaker verification
performance (EER of 3.23%). Privacy evaluations showed
effective gender obfuscation against uninformed attacks, but
informed attackers could still extract gender information.
Fairness evaluations, based on FDR, revealed that highlighting
or hiding gender did not significantly impact the fairness of
the systems. Furthermore, an analysis of FAD across model
layers showed more disparities within Transformer layers, but
all systems eventually converged to FAD values that match the
auFDR assessment, with system Ms showing superior fairness.

In summary, while we achieved notable results in utility
and privacy protection against uninformed attacks, future work
includes strengthening gender obfuscation against informed
attacks and enhancing fairness across systems.
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