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Abstract

There has recently been renewed interest in the theoretical modeling of Greenwood and John-
son (1965)’s mechanism of transformation plasticity of metals and alloys. Neglecting the effects
of elasticity and using an analogy with problems of ductile rupture, El Majaty et al. (2018)
transposed to transformation plasticity the powerful methods of limit-analysis usually applied
to plastic porous materials, by replacing empty voids through nuclei of daughter-phase expand-
ing within a shrinking matrix of mother-phase. This work, based on the hypothesis of spherical
growth of nuclei of daughter-phase implying overall geometric isotropy, disregarded the fre-
quently observed effects of morphological anisotropies. The present study introduces these effects
by extending El Majaty et al. (2018)’s limit-analysis-based approach to spheroidal, instead of
spherical, nuclei of daughter-phase. A typical consequence of the morphological anisotropy thus
introduced is the prediction of a nonzero transformation plastic strain even in the absence of

any external stress applied. The theory is completed by FFT-based numerical simulations. While
essentially confirming the theory, these simulations suggest to overhaul it through heuristic cor-
rections of the expression of the transformation plastic strain rate, accounting for the presence
and influence of elasticity.

Keywords : Transformation plasticity; Greenwood-Johnson’s mechanism; morphological anisotropies;
limit-analysis; FFT micromechanical simulations

1 Introduction

The anomalous plastic behavior (temporary increase of deformability) of metals and al-
loys during phase transformations, especially during the cooling period of thermome-
chanical treatments, is classically termed transformation plasticity. It is commonly at-
tributed to two mechanisms: (i) plastic accommodation, within the weaker mother-phase,
of the internal stresses due to the difference of specific volume between the phases -
the volumetric part of the transformation strain (Greenwood and Johnson, 1965); (ii)
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external-stress-induced orientation, within the daughter-phase, of the deviatoric part of
the transformation strain (Magee, 1966). Among the large body of literature devoted to
the subject, a non-exhaustive list of significant experimental, theoretical and numerical
works includes, in addition to the seminal papers of Greenwood and Johnson (1965) and
Magee (1966), those of Leblond et al. (1986a,b, 1989); Ganghoffer et al. (1993); Diani
et al. (1995); Cherkaoui et al. (2000); Coret et al. (2002); Taleb and Sidoroff (2003);
Vincent et al. (2003); Coret et al. (2004); Barbe et al. (2007, 2008); Barbe and Quey
(2011); Fischlschweiger et al. (2012); Weisz-Paltrault (2017). Within this list, works de-
voted to modeling generally focussed on Greenwood and Johnson (1965)’s mechanism,
more amenable by its purely mechanical nature to some theoretical treatment, than that
of Magee (1966) involving complex metallurgical aspects. Such a restriction is sufficient
in many practical cases, as discussed in Appendix B of (El Majaty et al., 2018).

A new avenue to the theoretical study and modeling of Greenwood and Johnson (1965)’s
mechanism - again disregarding that of Magee (1966), in line with most previous the-
oretical works - was recently opened by El Majaty et al. (2018). First, these authors
remarked that neglecting the effects of elasticity, following the classical work of Leblond
et al. (1989) and many subsequent ones, permitted to employ limit-analysis, the powerful
theory for rigid-plastic materials developed in the 50’s by Hill (1951) and Drucker et al.
(1952). (For a recent, brief but comprehensive summary of the theory, see Leblond et
al. (2018)). Second, they noted an analogy between ductile rupture, involving materials
containing empty, stress-free voids, and transformation plasticity, involving some mother-
phase containing growing nuclei of daughter-phase; the sole difference being, in the second
situation, the presence within the matrix of some internal loading arising from the volu-
metric part of the transformation strain (Greenwood and Johnson (1965)’s mechanism).
On such bases, they extended Monchiet et al. (2011)’s limit-analysis-based study of a
hollow plastic sphere containing a spherical concentric stress-free void, so as to include
an additional internal loading on the void’s boundary. This led to the definition of a re-
fined model of Greenwood and Johnson (1965)’s mechanism of transformation plasticity,
essentially confirming the much earlier and cruder model of Leblond et al. (1989), but
improving it through incorporation of new effects such as the nonlinear increase of the
transformation plastic strain with the stress applied - well-documented experimentally
but hitherto ignored by micromechanical analyses.

El Majaty et al. (2018)’s analysis and model were completed by El Majaty et al. (2021),
using an efficient FFT-based numerical homogenization method (Moulinec and Suquet,
1998), by simulations of large RVEs containing numerous nuclei of daughter-phase gradu-
ally growing within some shrinking mother-phase. In these computations, phase transfor-
mation at a given discretization point was simulated by switching the local values of the
yield stress and specific volume from these of the mother-phase to those of the daughter-
phase; thus giving rise in a natural way to Greenwood and Johnson (1965)’s mechanism,
as a consequence of the microplasticity resulting from incompatibilities of specific volume
between the coexisting phases. The numerical values of the transformation plastic strain
were found to agree very well with both the theoretical predictions of El Majaty et al.
(2018)’s new theory and Desalos (1981)’s old, but high quality experimental measurements
for the A 508 Cl. 3 steel.
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These works however relied - like previous ones - on the hypothesis of spherical shape
of the growing nuclei of daughter-phase, implying isotropy of the macrostructure. Such
a hypothesis bears important consequences. For instance, in the absence of any external
stress applied, the transformation plastic strain is inevitably predicted to be zero, as a
byproduct of macroscopic isotropy of the geometric and mechanical state combined with
plastic incompressibility of the deforming matrix (Leblond et al., 1986a). Such a prediction
is frequently fulfilled. But it is also often in contradiction with experimental studies, an
example being Desalos (1981)’s seminal work on transformation plasticity in laminated
plates containing long inclusions, generating similarly elongated nuclei of daughter-phase
during the transformation: Fig. 1 shows that in the absence of any stress applied, the strain
observed depended on the direction of measurement (parallel to the main dimension of the
specimen), relative to the orientation of the elongated nuclei of daughter-phase (parallel to
the rolling direction) - thus clearly evidencing a nonzero, anisotropic transformation plastic
strain. In view of the major impact of transformation plasticity upon residual stresses
and distortions resulting from thermomechanical processes (see the works of Miyao et al.
(1986); Fukumoto et al. (2001); Taleb et al. (2004), among many others), such an effect is
bound to have a significant influence upon these features of major practical interest. Its
modeling represents an important, non-trivial challenge.

Fig. 1. Free dilatometry curves obtained by Desalos (1981) on specimens extracted in various
directions from laminated plates of A 508 Cl. 3 steel. (Reprinted with permission).

The aim of this paper is precisely to overcome the restriction of previous theoretical analy-
ses to nuclei of daughter-phase of spherical shape, by considering nuclei of a more general,
prolate spheroidal shape, schematizing those encountered in laminated plates. Like in our
previous work (El Majaty et al., 2018) - and again disregarding Magee (1966)’s mechanism
- we shall use the analogy between ductile rupture and transformation plasticity explained
above; but now employing as a basis, instead of Monchiet et al. (2011)’s work on ductile
rupture with spherical voids, their more recent work involving spheroidal ones (Monchiet
et al., 2014). Our ultimate goal is to pave the way to more accurate predictions of resid-
ual stresses and distortions due to thermomechanical processes, through possible use in
FE codes of a more refined model of transformation plasticity including morphological
anisotropy effects.

The paper is organized as follows:
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• Section 2 extends Monchiet et al. (2014)’s study, based on the powerful kinematic
approach of limit-analysis, of a plastic porous RVE containing a stress-free spheroidal
void, by adding a possible internal loading applied on the void’s boundary.

• Section 3 applies the results obtained to the modeling of Greenwood and Johnson
(1965)’s mechanism of transformation plasticity involving elongated growing nuclei of
daughter-phase. Particular, though not exclusive attention is paid to the special case
of a zero external stress applied.

• Finally Section 4 presents results of some FFT-based numerical simulations of large
RVEs, analogous to those of El Majaty et al. (2021) but for the spheroidal, instead of
spherical shape of the growing nuclei of daughter-phase. Special attention is paid to the
influence of elasticity disregarded by the theoretical model based on limit-analysis.

2 Limit-analysis of a hollow prolate spheroidal cell subjected to external and
internal loadings

2.1 The prolate spheroidal geometry

We first introduce some basic notions and notations pertaining to the prolate spheroidal
geometry. We thus consider (Fig. 2) a prolate spheroid of center O and axis of rotational
symmetry Ox3; additional perpendicular axes Ox1, Ox2 are chosen arbitrarily within the
plane orthogonal to Ox3 so as to define a Cartesian frame (O, x1, x2, x3), with associated
orthonormal basis (e1, e2, e3). The semi-length of the major axis of the spheroid, parallel
to the direction x3, is denoted a1, and the common semi-length of the perpendicular minor
axes is denoted b1 (a1 > b1).

Fig. 2. The prolate spheroidal geometry: basic notations.

Within this spheroid, we consider the family of internal prolate confocal spheroids, indexed
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by the ratio f = volume of internal spheroid
volume of external spheroid - the largest, external spheroid thus corresponding

to the value f = 1. The semi-lengths of the major and minor axes of the f -spheroid are
thus denoted af and bf , and are related to f through the relation

f =
afb2f
a1b21

. (1)

The common focal distance c of all spheroids is given by

c =
√
a2f − b2f =

√
a21 − b21 (∀f), (2)

and the eccentricities of the f -spheroid and the outer one are defined by

ef =
c

af
; e1 =

c

a1
. (3)

From equations (1), (2) and (3), one may establish the following relation between f , ef
and e1:

f =
e31
e3f

1− e2f
1− e21

, (4)

which permits to determine the eccentricities ef of all f -spheroids from that of the outer
one, e1.

Use will be made of the following functions of the eccentricity e:

α(e) =
1− e2

e3
arg tanh e−

1− e2

e2
; β(e) = −

1− 3α(e)

e2
; (5)

the values of these functions on the internal and external spheroids will be logically de-
noted αf , βf , α1, β1. The notation

γf = αf −
1− e2f
3− e2f

(6)

will also be employed to lighten some expressions.

2.2 The prolate spheroidal voided representative element

We now consider (Fig. 3) a prolate spheroidal representative volume element (RVE) con-
taining a prolate spheroidal void. The entire domain is denoted Ω, the shell of material
lying between the inner and outer spheroids ΩM , and the void ΩD. 1 The porosity is
f = volΩD

volΩ . On the outer boundary ∂Ω, a single unit normal vector n, oriented outwards,
is considered. On the inner boundary ∂ΩD, two unit normal vectors are considered, n+

oriented toward the exterior of ΩD, and n− = −n+ oriented toward the exterior of ΩM .

1 The notations ΩM and ΩD are logical insofar as in the application to transformation plasticity,
the material domain will be occupied by the mother-phase (M) and the void by the daughter-
phase (D).
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Fig. 3. The prolate spheroidal representative volume element.

The outer and inner boundaries of the material domain ΩM , identical to ∂Ω and ∂ΩD,
are subjected to conditions of homogeneous stress, as defined by Mandel (1964) and Hill
(1967):






σ(x) .n(x) = Σ .n(x) on ∂Ω

σ(x) .n−(x) = −Σ .n−(x) on ∂ΩD.
(7)

In these equations the symmetric second-rank tensorsΣ andΣ represent the “macroscopic
stress” applied onto the RVE on the one hand, and the “internal loading” on the other
hand. 2 There are no body forces.

For any displacement field u(x) defined over ΩM and extended smoothly but otherwise
arbitrarily over ΩD, we define the “overall external and internal strain tensors” E, E by
the formulae

E ≡ 〈ε(u)〉Ω ; E ≡ 〈ε(u)〉ΩD
. (8)

By Green’s theorem, the components of E and E may equivalently be written as

Eij =
1

vol(Ω)

∫

∂Ω

1

2
(ui nj + uj ni) dS ; Eij =

1

vol(ΩD)

∫

∂ΩD

1

2

(
ui n

+
j + uj n

+
i

)
dS,

(9)
which clearly shows that the values of E and E are the same no matter how the displace-
ment field is extended over ΩD.

2 A minus sign is conventionally introduced in equation (7)2 so as to produce more natural-
looking expressions in the sequel.
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With the boundary conditions (7), the virtual power Pe of external forces is given by

Pe ≡
∫

∂Ω
σij nj u̇i dS +

∫

∂ΩD

σij n
−
j u̇i dS =

∫

∂Ω
Σij nj u̇i dS +

∫

∂ΩD

Σij n
+
j u̇i dS

= Σij

∫

∂Ω

1

2
(u̇i nj + u̇j ni) dS + Σij

∫

∂ΩD

1

2

(
u̇i n

+
j + u̇j n

+
i

)
dS ,

or equivalently by equations (9) and the definition of the porosity f :

Pe = vol(Ω)ΣijĖij + vol(ΩD)ΣijĖij = vol(Ω)(Σ : Ė+ f Σ : Ė). (10)

2.3 Number and choice of trial displacement fields

We shall consider only axisymmetric problems, for which the components of the overall
stress and strain tensors are of the form






Σ11 = Σ22 ≡ Σ1 '= 0 ; Σ33 ≡ Σ3 '= 0 ; other Σij = 0

Σ11 = Σ22 ≡ Σ1 '= 0 ; Σ33 ≡ Σ3 '= 0 ; other Σij = 0





E11 = E22 ≡ E1 '= 0 ; E33 ≡ E3 '= 0 ; other Eij = 0

E11 = E22 ≡ E1 '= 0 ; E33 ≡ E3 '= 0 ; other Eij = 0.

(11)

The problem thus involves 4 kinematic parameters E1, E3, E1 and E3. But in the limit-
analysis to follow, the material in the domain ΩM will considered as incompressible; this
entails the following relation between kinematic parameters:

trE = 2E1 + E3 = f trE = f(2E1 + E3). (12)

Thus there are only 3 independent kinematic parameters, implying that at least 3 inde-
pendent incompressible trial displacement fields are required.

Like in our previous work on transformation plasticity assuming growing nuclei of daughter-
phase of spherical shape (El Majaty et al., 2018), we shall exploit an analogy with the
problem of a prolate spheroidal RVE containing a confocal spheroidal traction-free void.
The additional internal loading considered here is of no consequence upon the space of
kinematically admissible, incompressible displacement fields adapted to the problem. The
difference with our previous work (El Majaty et al., 2018) is that we shall use, instead of
the limit-analysis of a hollow sphere of Monchiet et al. (2011), the later work of the same
authors on a hollow spheroid (Monchiet et al., 2014).

The trial displacement fields employed are detailed in Appendix A. They are three-fold:

(1) The first, u(1), depicts an incompressible expansion of the material domain.
(2) The second, u(2), corresponds to a uniform deviatoric straining of the RVE.
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(3) The third, u(3), which first arose in the context of Eshelby (1957)’s seminal study
of the ellipsoidal elastic inclusion problem, depicts a change of shape, without any
expansion, of the spheroidal void.

The expressions of the components of the external and internal overall strain tensors E(i),

E
(i)

corresponding to these displacement fields are as follows:






E(1)
1 = 3

2(1− α1)

E(1)
3 = 3α1

;






E
(1)
1 = 3

2f (1− αf)

E
(1)
3 = 3

fαf

(13)






E(2)
1 = −1

2

E(2)
3 = 1

;






E
(2)
1 = −1

2

E
(2)
3 = 1

(14)






E(3)
1 = 3

4(−1 + α1 + β1)

E(3)
3 = 3

2(1− α1 − β1)
;






E
(3)
1 = 3

4f (−1 + αf + βf )

E
(3)
3 = 3

2f (1− αf − βf)
(15)

Note that the fields u(2) and u(3) have trE(2) = trE(3) = 0; hence the volumetric strain
of the RVE is to be described by the single field u(1).

2.4 Conjugate parameters

We consider “general” incompressible trial displacement fields of the form

u(x) = q1u
(1)(x) + q2u

(2)(x) + q3u
(3)(x) (16)

where q1, q2, q3 are kinematic parameters. By equations (13), (14) and (15), the compo-
nents of the corresponding external and internal overall strain tensors read:






E1 = 3q1
2 (1− α1)− q2

2 + 3q3
4 (−1 + α1 + β1)

E3 = 3q1α1 + q2 +
3q3
2 (1− α1 − β1)





E1 = 3q1
2f (1− αf)− q2

2 + 3q3
4f (−1 + αf + βf )

E3 = 3q1
f αf + q2 +

3q3
2f (1− αf − βf)

(17)

The “conjugate” mechanical parameters Q1, Q2, Q3 are defined through the equation
Pe = Q1q̇1+Q2q̇2+Q3q̇3 where Pe denotes the virtual power of external forces like above.
Combination of equations (10) and (17) then yields their expressions:






Q1

vol(Ω) = 3(1− α1)Σ1 + 3α1Σ3 + 3(1− αf )Σ1 + 3αfΣ3

Q2

vol(Ω) = −Σ1 + Σ3 − fΣ1 + fΣ3

Q3

vol(Ω) = 3
2(1− α1 − β1)(Σ3 − Σ1) +

3
2(1− αf − βf)(Σ3 − Σ1).

(18)
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2.5 Overall plastic dissipation

The material domain ΩM is henceforward assumed to be made of a rigid-ideal-plastic
medium (no elasticity, no strain hardening) obeying the von Mises criterion with yield
stress σM and the associated flow rule. The local plastic dissipation is then defined as
σM ε̇eq where ε̇eq = (23 ε̇ : ε̇)1/2 (ε̇ being the traceless strain rate tensor) denotes the von
Mises equivalent strain rate. For any incompressible trial velocity field u̇(x), defined as
the time-derivative of a displacement field u(x) of type (16), the overall plastic dissipation
D is then, by definition,

D(q̇1, q̇2, q̇3) =
∫

ΩM

σM ε̇eq dΩ. (19)

This dissipation being independent of the internal loading characterized by the tensor Σ,
its value is theoretically the same as in the case of a spheroidal cell containing a traction-
free void, considered by Monchiet et al. (2014). We shall nevertheless use approximations
slightly differing from those of these authors, for reasons explained in Appendix B where
the calculations required are presented in some detail. The result reads as follows:

D(q̇1, q̇2, q̇3)

vol(Ω)
( σM

∫ 1

f

[
f 2q̇22 + (2Pmm q̇21 + Pdd q̇

2
3)u

2
]1/2 du

u2
(20)

where Pmm and Pdd are the diagonal components of a symmetric 2× 2 matrix, given by






Pmm = 2 +
f(1− 3α1)2 − (1− 3αf )2

2(1− f)

Pdd =
3

4(1− f)
[f(1− α1 − β1)(1− 3α1 − 3β1)− (1− αf − βf)(1− 3αf − 3βf)]

×g(f, e1)

(21)
where

g(f, e1) = 1 + 3f

(

1−
e21
e2f

)(

1−
e21
e2f

1− e2f
1− e21

)

×
α1(1− 3β1)− (1− β1)2

f(1− α1 − β1)(1− 3α1 − 3β1)− (1− αf − βf)(1− 3αf − 3βf)
.

(22)

2.6 Overall yield criterion

From now on, the derivation of the overall yield criterion and flow rule basically follows
the same lines as in our previous study of transformation plasticity for spherical nuclei of
daughter-phase (El Majaty et al., 2018), although detailed calculations are different and
more complex; this warrants a shorter presentation.

According to the classical theory of limit-analysis (Hill, 1951), the parametric equations

9



of the overall yield locus, in the space of triplets of load parameters (Q1, Q2, Q3), read

Qi =
∂D
∂q̇i

(q̇1, q̇2, q̇3) (i = 1, 2, 3) (23)

where the q̇i’s act as parameters. The elimination of these parameters between the ex-
pressions of Q1, Q2, Q3, if possible, then leads to the explicit equation of the overall yield
locus, Φ(Q1, Q2, Q3) = 0.

This elimination is achieved with the aid of the so-called Gurson’s lemma, the simplest
presentation and proof of which is to be found in (Madou and Leblond, 2012):

Gurson’s lemma. Consider the integral

J(p, q) =
∫ u2

u1

√
p2 + q2u2

du

u2
(24)

where u1 and u2 are given positive bounds. Then the derivatives ∂J/∂p and ∂J/∂q are
connected through the relation (where p and q no longer appear):

(
∂J

∂p

)2

+
2

u1u2
cosh

(
∂J

∂q

)

−
1

u2
1

−
1

u2
2

= 0. (25)

Applied to equation (20) with u1 = f , u2 = 1, p = f q̇2, q =
√
2Pmm q̇21 + Pdd q̇23, J(p, q) =

D(q̇1,q̇2,q̇3)
vol(Ω) σM

, this lemma yields

(
∂D/∂p

vol(Ω) σM

)2

+
2

f
cosh

(
∂D/∂q

vol(Ω) σM

)

−
1

f 2
− 1 = 0. (26)

The rest consists of somewhat heavy but straightforward calculations. One must first relate
∂D/∂p and ∂D/∂q to the derivatives ∂D/∂q̇1, ∂D/∂q̇2, ∂D/∂q̇3 using the expressions of p
and q, then substitute the mechanical parameters Q1, Q2, Q3 for these derivatives using
equation (23), and finally use equations (18) to express these parameters in terms of
overall stress components.

The criterion Φ(Q1, Q2, Q3) = 0 obtained in this way involves somewhat complex linear
combinations of overall stress components. These expressions may however be put into a
more appealing format by introducing the following definitions:






Xf = 3
2(1− αf)(e1 ⊗ e1 + e2 ⊗ e2) + 3αfe3 ⊗ e3

X1 = 3
2(1− α1)(e1 ⊗ e1 + e2 ⊗ e2) + 3α1e3 ⊗ e3

; S = Σ : X1 +Σ : Xf (27)






T = Σ+ fΣ

T̃ = 3
2(1− α1 − β1)Σ+ 3

2(1− αf − βf)Σ
; SH =



 S2

2Pmm
+

T̃ 2
eq

Pdd




1/2

; (28)

note that by equations (18), the quantities thus introduced are connected to the mechani-

cal parametersQ1,Q2,Q3 through the relations S = Q1

vol(Ω) , T
2
eq =

(
Q2

vol(Ω)

)2
, T̃ 2

eq =
(

Q3

vol(Ω)

)2
.
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The quantities Teq ≡
(
3
2T

′ : T′
)1/2

, T̃eq ≡
(
3
2T̃

′ : T̃′
)1/2

(T′, T̃′: deviators of T, T̃) here

denote the von Mises norms of the tensors T′, T̃′ in the sense of stresses.

With the notations introduced in equations (27) and (28), the overall yield criterion takes
the following appealingly simple form:

Φ(Σ,Σ; f, e1) =
T 2
eq

σ 2
M

+ 2f cosh
(
SH

σM

)
− 1− f 2 = 0. (29)

Although this criterion has just been established for axisymmetric stress states only, it
may be heuristically applied to general stress states using the definitions (27) and (28) of
the quantities S, T, T̃ and SH , of general scope. One should bear in mind, however, that
such an extension of equation (29) to non-axisymmetric situations will inevitably entail
some extra 3 errors, owing to its purely phenomenological character.

2.7 Overall flow rule

We again follow here Hill (1951)’s classical approach of limit-analysis. We consider:

• a pair (Σ,Σ) of overall external and internal stress tensors inducing a pair (Ė, Ė) of
overall external and internal strain rates, with σ(x) and ε̇(x) denoting the corresponding
stress and strain rate fields;

• another pair (Σ∗,Σ
∗
) of plastically admissible overall external and internal stress ten-

sors, with σ
∗(x) denoting some stress field statically admissible with that pair and

plastically admissible (σ∗
eq(x) ≤ σM everywhere in ΩM).

Then, by equation (10) and the principle of virtual work,

vol(Ω)
[
(Σ−Σ∗) : Ė+ f(Σ−Σ

∗
) : Ė

]
=
∫

ΩM

(σ − σ
∗) : ε̇ dΩ ≥ 0

where the last inequality follows from the non-negativeness of the integrand here, a conse-
quence of Hill’s well-known principle in plasticity of metals. The geometric interpretation
of this result is as follows: in the space of pairs (W,W) of symmetric second-rank ten-
sors, equipped with the Euclidian scalar product (W,W) • (Z,Z) ≡ W : Z+W : Z, the

scalar product of the pairs (Σ − Σ∗,Σ − Σ
∗
) and (Ė, fĖ) is non-negative whatever the

plastically admissible pairs (Σ∗,Σ
∗
). This entails, following a classical reasoning, that the

pair (Ė, fĖ) is orthogonal (in the sense of the scalar product •) to the yield locus at the
“point” (Σ,Σ), and directed outwards; hence there exists a non-negative scalar Λ̇ - the
overall plastic multiplier - such that

Ė = Λ̇
∂Φ

∂Σ
(Σ,Σ, f) ; fĖ = Λ̇

∂Φ

∂Σ
(Σ,Σ, f). (30)

3 Extra because even in the axisymmetric case, the procedure of derivation involved various
approximations, as was seen above.
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Evaluating the derivatives here using equations (27), (28) and (29), we get the overall
flow rule in its final form:





Ė =
Λ̇

σ 2
M

{

3T′ + f
sinh(SH/σM)

SH/σM

[
S

Pmm
X1 +

9

2Pdd
(1− α1 − β1)T̃

′
]}

Ė =
Λ̇

σ 2
M

{

3T′ +
sinh(SH/σM)

SH/σM

[
S

Pmm
Xf +

9

2Pdd
(1− αf − βf )T̃

′
]} , Λ̇ ≥ 0.

(31)
where again a prime denotes a deviator.

3 Application to transformation plasticity

3.1 Geometric preliminaries

A few complements now become necessary with regard to the prolate spheroidal geometry
introduced in Subsection 2.1.

First we introduce classical prolate spheroidal coordinates (λ,ψ,φ), defined through their
relations with the Cartesian coordinates (x1, x2, x3):






x1 = c sinh λ sinψ cosφ

x2 = c sinh λ sinψ sin φ

x3 = c cosh λ cosψ

(32)

where c is the common focal distance of confocal spheroids, introduced in equation (2).
The coordinates λ, ψ and φ play the same respective roles for the spheroidal geometry
as the distance to the origin, the polar angle and the azimuthal angle for the spherical
geometry. They are “orthogonal” in the sense that the tangent vectors ∂x/∂λ, ∂x/∂ψ,
∂x/∂φ to the coordinate lines form an orthogonal (but not orthonormal!) basis. The iso-λ
surfaces are prolate confocal spheroids of major and minor semi-axes a = c coshλ and
b = c sinh λ, respectively.

One immediately gets the vector ∂x/∂λ from the definition (32):

∂x

∂λ
= c coshλ sinψ(cosφ e1 + sin φ e2) + c sinh λ cosψ e3. (33)

This vector is locally orthogonal to the confocal spheroid of parameter λ, but its norm
differs from unity:

∥∥∥∥∥
∂x

∂λ

∥∥∥∥∥ = c(cosh2 λ sin2 ψ cos2 φ+ cosh2 λ sin2 ψ sin2 φ+ sinh2 λ cos2 ψ)1/2

= c(cosh2 λ− cos2 ψ)1/2;

(34)
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the unit vector eλ positively collinear to ∂x/∂λ is therefore given by

eλ =
∂x/∂λ

‖∂x/∂λ‖
=

coshλ sinψ(cosφ e1 + sinφ e2) + sinh λ cosψ e3
(cosh2 λ− cos2 ψ)1/2

. (35)

Now consider two infinitesimally close confocal spheroids of parameters λ and λ+δλ. The
infinitesimal thickness δh of the layer lying between these spheroids, measured perpendic-
ularly to them, is obviously

δh =

∥∥∥∥∥
∂x

∂λ

∥∥∥∥∥ δλ = c(cosh2 λ− cos2 ψ)1/2 δλ. (36)

Note that this thickness is not uniform over the spheroid (unlike that between concentric
spheres).

Finally let λf and λ1 denote, like in Subsection 2.1 and subsequent ones, the values of the
parameter λ on the innermost and outermost spheroids. By equation (1), the ratio f of
the volumes of these spheroids is given by

f =
cosh λf sinh

2 λf
cosh λ1 sinh

2 λ1
. (37)

3.2 Principle of the treatment

For feasibility of the mathematical treatment, we introduce the hypothesis that the grow-
ing nucleus of daughter-phase assumes the shape of increasing confocal spheroids. (As-
suming homothetical growth of this nucleus would admittedly be more natural, but lead
to intractable algebraic complications. The effect of the variation in time of the shape of
the growing nucleus will be evoked in Subsection 4.1 below).

With this hypothesis, the principle of the treatment is basically the same as in the case
of a growing nucleus of daughter-phase of spherical shape (El Majaty et al., 2018). We
represent an elementary volume in a metal or alloy, undergoing some solid-solid phase
transformation under stress, by the spheroidal RVE presented in Subsection 2.2. This
RVE is subjected not only to some given external stress Σ, but also to some internal

strain rate Ė resulting from the expansion of the growing core of daughter-phase.

The problem to be solved is as follows:

• The given data include the external stress tensor Σ and the internal strain rate tensor

Ė imposed by the transformation - the calculation of which is presented in Subsection
3.3 below.

• The unknowns to be determined are the internal stress tensor Σ, the overall strain rate
Ė and the plastic multiplier Λ̇; but among these, one should distinguish between Ė,
which is the true quantity of interest, and Σ and Λ̇, which are mere ancillary unknowns
to be eliminated.

13



• The equations to be used for the determination of the unknowns from the data are the
overall yield criterion (29) and the double flow rule (31).

3.3 Calculation of the internal strain rate due to the transformation

The geometric and mechanical situation is depicted schematically in Fig. 4. At time t, the
daughter-phase occupies the interior of the spheroid of parameter λf . Between times t and
t+ δt, the layer between the spheroids of parameters λf and λf + δλf transforms from the
mother- to the daughter-phase; thus at time t+δt the daughter-phase occupies the interior
of the spheroid of parameter λf + δλf . Because of the volume change accompanying the
transformation, the spheroid of parameter λf+δλf moves between times t and t+δt by the
amount δuλ in the direction of the unit vector eλ - thus generating some microplasticity
in the surrounding mother-phase, responsible for transformation plasticity in Greenwood
and Johnson (1965)’s interpretation of the phenomenon.

Fig. 4. Growth of a prolate spheroidal nucleus of daughter-phase within a confocal spheroidal
domain of mother-phase.

The first task is to relate the increase δλf of the parameter λf , characterizing the boundary
of the spheroidal domain of daughter-phase, to the increase δf of the volume fraction f
of this phase. This is easily done through differentiation of equation (37) with respect to
time (at fixed parameter λ1):

δf =
(3 cosh2 λf − 1) sinhλf

coshλ1 sinh
2 λ1

δλf . (38)

Now consider (Fig. 5) some elementary domain within the layer transformed between
times t and t + δt, located around the point of coordinates (λf ,ψ,φ). At time t, the
volume of this domain is δS δh, where δS is the elementary area on the spheroid of
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parameter λf , and δh the local elementary thickness given by equation (36) with λf and
δλf instead of λ and δλ. At time t + δt, this volume has become δS(δh + δuλ), since
the thickness has increased by δuλ. But neglecting the elastic volumetric strain of the
daughter-phase, this final volume also amounts to δS δh (1 + ∆V

V ) where ∆V
V denotes the

(known) relative variation of specific volume from the mother- to the daughter-phase
(hereafter termed “volumetric transformation strain” for brevity). Identity of these two
expressions demands that

δuλ =
∆V

V
δh =

∆V

V
c(cosh2 λf − cos2 ψ)1/2 δλf (39)

where equation (36) has been used.

Fig. 5. Transformation of an elementary domain enclosed between the spheroids of parameters
λf and λf + δλf .

One must now calculate the increment δE of internal strain corresponding to the increment
of displacement δuλ given by equation (39). The calculation is made much easier by the
remark that such a δuλ is generated by an increment of displacement δu(x) of the form

δu(x) = δE.x = δE1(x1e1 + x2e2) + δE3x3e3 (∀x ∈ ∂ΩD) (40)

for some values of δE1 and δE3; this indeed permits to circumvent the calculation of
integrals in equation (9)2. 4 To establish the property announced, calculate the component
δuλ of the vector δu given by equation (40) in the direction of the unit vector eλ:

δuλ = δu.eλ = δE1(x1 e1.eλ + x2 e2.eλ) + δE3x3 e3.eλ

= c
δE1 coshλf sinh λf sin

2 ψ + δE3 cosh λf sinh λf cos2 ψ

(cosh2 λf − cos2 ψ)1/2

(41)

where the definition (32) of spheroidal coordinates and the expression (35) of the vector
eλ have been used. Coincidence of the two expressions (39) and (41) of δuλ demands,

4 A classical, and easily proved result asserts that if equation (40) holds, then equation (9)2
also holds (for the same value of δE).
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upon multiplication by (cosh2 λf − cos2 ψ)1/2, that

∆V

V
(cosh2 λf − cos2 ψ) δλf = δE1 coshλf sinh λf sin

2 ψ + δE3 cosh λf sinhλf cos
2 ψ

at every point of coordinates (λf ,ψ,φ) on the spheroid of parameter λf . Such an identity
is perfectly possible, since the dependence with respect to the position on the spheroid
of parameter λf is of the same type (that is, A cos2 ψ + B) in both sides of the equality.
Identifying thus terms proportional to cos2 ψ and independent of ψ, one gets after a short
calculation






δE1 =
∆V

V
cothλf .δλf =

∆V

V
cothλf

coshλ1 sinh
2 λ1

(3 cosh2 λf − 1) sinhλf
δf

δE3 =
∆V

V
tanhλf .δλf =

∆V

V
tanhλf

coshλ1 sinh
2 λ1

(3 cosh2 λf − 1) sinhλf
δf

(42)

where equation (38) has been used.

These results may be put into a more appealing format by combining them in two different
ways:

(1) first, note that

tr δE = 2δE1 + δE3 =
∆V

V
(2 cothλf + tanhλf )

coshλ1 sinh
2 λ1

(3 cosh2 λf − 1) sinhλf
δf

=
∆V

V

3 cosh2 λf − 1

coshλf sinh λf

cosh λ1 sinh
2 λ1

(3 cosh2 λf − 1) sinhλf
δf =

∆V

V

δf

f

where equation (37) has been used;
(2) second, note also that

δE3

δE1
= tanh2 λf = 1−

1

cosh2 λf
= 1− e2f

since ef = c/af = 1/ coshλf .

Thus equations (42) are equivalent (upon division by δt) to the system






tr Ė = 2Ė1 + Ė3 =
∆V

V

ḟ

f

(1− e2f)Ė1 − Ė3 = 0

(43)

which is simpler, and as a bonus eliminates all reference to the spheroidal coordinate λf
- which will therefore no longer be needed in the sequel.

An interesting final remark pertains to the component of the displacement field δu(x)
given by equation (40) along the direction of the ψ-coordinate line, proportional to the
scalar product δu. ∂x∂ψ . Using equations (32) and (40), one finds after a bit of calculation
that this component is zero. This means that the field δu(x) given by equation (40) depicts,
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between times t and t+δt, a purely normal extension, parallel to the vector eλ, of the layer
lying between the spheroids of parameters λf and λf + δλf , without any shear strain. 5

This further demonstrates the physical soundness of this field to describe the expansion of
the layer during the transformation; indeed in the limit δλf → 0, this expansion becomes
analogous to the laterally constrained thermal dilation of a thin thermoelastic film bonded
onto some rigid planar substrate, which occurs without any shear for obvious symmetry
reasons.

3.4 Calculation of the transformation plastic strain rate for a zero external stress

For growth of a spherical nucleus of daughter-phase, the case of a zero external stress is
devoid of interest, because in this case overall geometric and mechanical isotropy combined
with incompressibility of plastic deformation implies that the transformation plastic strain
must necessarily be zero. For growth of a spheroidal nucleus the situation is different
because global isotropy is lost, and the non-vanishing of the transformation plastic strain
under zero applied stress is a characteristic feature of the anisotropic mechanical behavior
during the transformation (Desalos, 1981).

For Σ = 0, the mechanical parameters defined in equations (27) and (28) take the values

S = Σ : Xf ; T = fΣ ; T̃ =
3

2
(1−αf−βf )Σ ; SH =



 S2

2Pmm
+

9

4
(1− αf − βf )

2Σ
2
eq

Pdd




1/2

.

(44)
With these values the yield criterion (29) and the two-part flow rule (31) take the form






f 2Σ
2
eq

σ 2
M

+ 2f cosh
(
SH

σM

)
− 1− f 2 = 0

Ė =
Λ̇

σ 2
M

{

3fΣ
′
+ f

sinh(SH/σM)

SH/σM

[
S

Pmm
X1 +

27

4Pdd
(1− α1 − β1)(1− αf − βf )Σ

′
]}

Ė =
Λ̇

σ 2
M

{

3fΣ
′
+

sinh(SH/σM)

SH/σM

[
S

Pmm
Xf +

27

4Pdd
(1− αf − βf)

2Σ
′
]}

.

(45)

The first task is to evaluate the internal stress state, that is the tensor Σ. This can be done
in three steps. First, combination of eqns. (43)2 and (45)3 yields after some calculation

Σ1 − Σ3 =
γfS/Pmm

2f
3

SH/σM

sinh(SH/σM ) +
3

2Pdd
(1− αf − βf)2

(46)

where the parameter γf has been defined in equation (6). Now this parameter has been
checked numerically to always be positive, and S is positive as a consequence of combi-

5 The component of the field δu(x) along the direction of the φ-coordinate line is also trivially
zero due to axisymmetry.
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nation of equation (43)1 (where ∆V
V is positive) 6 and the trace of equation (45)3. Hence

equation (46) implies in particular that Σ1 − Σ3 is positive.

In a second step, with this result in mind, solving equation (45)1 with respect to Σeq =
Σ1 − Σ3 yields:

Σ1 − Σ3

σM
=

√

F
(
SH

σM

)
where F (X) =

1

f 2

(
1 + f 2 − 2f coshX

)
. (47)

Then combination of this result and equation (46) yields

S

σM
=

Pmm

γf

[
2f

3

SH/σM

sinh(SH/σM)
+

3

2Pdd
(1− αf − βf )

2

]√

F
(
SH

σM

)
. (48)

Finally in a third step, combination of equations (44)4, (46) and (48) yields the following
nonlinear equation on the sole unknown SH :

(
SH

σM

)2

=




9

4Pdd
(1− αf − βf)

2 +
Pmm

2γ2f

[
2f

3

SH/σM

sinh(SH/σM)
+

3

2Pdd
(1− αf − βf)

2

]2

F
(
SH

σM

)
.

(49)

Equation (49) on SH may be solved numerically by various methods, the most robust
(if not the quickest) of which is a simple dichotomy. 7 Once this is done, Σ1 − Σ3 and S
may be deduced from equations (47) and (48). Hence the internal stress state is entirely
determined.

The second task is to determine the transformation plastic strain rate Ėtp. First, we deduce
the plastic multiplier Λ̇ from combination of equation (43)1 and the trace of equation (45)3:

Λ̇

σ 2
M

=
1

3

∆V

V

ḟ

f

SH/σM

sinh(SH/σM)

Pmm

S
. (50)

We then insert this value into equation (45)2 to get the external strain rate Ė. This “total”
strain rate is composed of a hydrostatic part connected to the volumetric transformation
strain ∆V

V and the transformation rate ḟ , plus a deviatoric part identical by definition to

the transformation plastic strain rate Ėtp:

Ė =
1

3

∆V

V
ḟ 1+ Ėtp , tr Ėtp = 0 ⇒ E(f) =

1

3

∆V

V
f 1+ Etp(f) , trEtp(f) = 0 (51)

where E(f) and Etp(f) denote the total strain and transformation plastic strain result-
ing from transformation up to the fraction f of daughter-phase. It follows, upon some

6 This is true in practical situations of solid-solid transformations resulting from cooling during
thermomechanical treatments.
7 Such a method is especially convenient in view of the fact that the possible interval of variation
of the variable SH , namely |SH | ≤ σM ln 1

f , is known a priori from the criterion (29).
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calculation, that the axial component of Ėtp amounts to

Ėtp
3 = Ė ′

3 =

∆V

V
ḟ

[

α1 −
1

3
−

2

3

Pmm

S
(Σ1 − Σ3)

(
SH/σM

sinh(SH/σM)
+

9

4Pdd
(1− α1 − β1)(1− αf − βf)

)]

.

(52)
The value of Etp

3 (f = 1) after complete transformation may then be obtained from equa-
tion (52) through integration in time, for given values of the volumetric transformation
strain ∆V

V and the eccentricity e1 of the RVE.

Two special cases of equation (52) are of particular interest:

(1) The spherical case in which the eccentricity e1 of the RVE is zero; in this case α(e) =
1
3 , β(e) =

2
5 , γf = 0 (see equations (5) and (6)), Σ1 − Σ3 = 0 (see equation (46)), so

that Ėtp
3 = 0. This result was to be expected in view of the overall isotropy of the

geometry in this case, combined with incompressibility of plastic deformation.
(2) The cylindrical case in which the eccentricity e1 of the RVE is unity; in that case

α(e) = 0, β(e) = 1, γf = 0 (see equations (5) and (6)), Σ1 − Σ3 = 0 (see equation
(46)), so that Ėtp

3 = −1
3
∆V
V ḟ and Ė3 =

1
3
∆V
V ḟ + Ėtp

3 = 0. Again, this last result, con-
cerning now the total strain, could be expected in view of the rigid vertical constraint
imposed at each step of the transformation by the previously transformed cylindrical
core of daughter-phase. (This point is illustrated in Figs. 8(c) and 8(d) below, and
discussed in more detail in Subsection 4.2).

Figure 6 illustrates the predictions of equation (52) by displaying the axial transformation
plastic strain Etp

3 under zero external stress (obtained through integrating Ėtp
3 in time) as

a function of the volume fraction f of the daughter-phase (representing the progress of the
transformation). The values (corresponding to the A508 Cl.3 steel around a temperature of
350◦) of the material parameters are ∆V

V = 0.0252 for the volumetric transformation strain
and σM = 145MPa for the yield stress of the (γ) mother-phase 8 ; and various possible
eccentricities e1 of the RVE are considered. Note in particular the values of Etp

3 (f = 1)
after complete transformation in the (almost) spherical and (almost) cylindrical cases, 0
and −1

3
∆V
V = −0.0084 respectively, in agreement with what has just been said.

3.5 Calculation of the transformation plastic strain rate for a nonzero external stress

The calculation of Ėtp for an arbitrary external stress (Σ '= 0) is more involved but
basically follows the same lines. We first define, for every symmetric second-rank tensor
W, a “modified deviator” DW by the formula

DW = W − trW

[
1

3− e2f
(e1 ⊗ e1 + e2 ⊗ e2) +

1− e2f
3− e2f

e3 ⊗ e3

]

(53)

8 Note however that for the zero external stress envisaged here, Ėtp
3 and Etp

3 are in fact inde-
pendent of the value of σM , as appears in equations (47)1, (48), (49) and (52).
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Fig. 6. Predicted axial transformation plastic strain Etp
3 versus volume fraction f of daugh-

ter-phase, in the absence of any stress applied, for various values of the RVE eccentricity e1.

(one immediately checks that trDW = 0). The advantage of this definition is that for
an axisymmetric tensor (with sole possibly nonzero components W11 = W22 = W1 and
W33 = W3), the relations DW = 0 and (1−e2f )W1−W3 = 0 are equivalent; thus equation

(43)2 is equivalent to DĖ = 0.

Applying then the operator D to equation (31)2, we then get, after some calculations, the
internal stress deviator Σ

′
as a function of S and SH :

Σ
′
=

1

f SH/σM

sinh(SH/σM ) +
9

4Pdd
(1− αf − βf)2

×

{

−
[

SH/σM

sinh(SH/σM)
+

9

4Pdd
(1− α1 − β1)(1− αf − βf)

]

Σ′

+
γfS

Pmm

[
1

2
(e1 ⊗ e1 + e2 ⊗ e2)− e3 ⊗ e3

]}

.

(54)

Combined with equations (28)1,2, equation (54) permits to calculate T 2
eq and T̃ 2

eq in terms
of S and SH . Two independent equations on the latter unknowns may then be obtained

(1) from the yield criterion (29);
(2) from the expression of S2

H deduced from the definition (28)3 of SH .

The resulting system of coupled nonlinear equations on S and SH may be solved numer-
ically by various methods, among which a simple one is sketched in Appendix C.

Once SH , S and Σ
′
are known, one may calculate the plastic multiplier Λ̇ by combining

equation (43)1 and the trace of equation (31)2 (the result is equation (50), like in the
absence of external stress); then the transformation plastic strain rate Ėtp = Ė′ from
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equation (31)1. The final result reads

Ėtp = Ė′ =
∆V

V
ḟ

[
Pmm

fS

SH/σM

sinh(SH/σM)
T′ +

(
1

3
X′

1 +
3Pmm

2SPdd
(1− α1 − β1)T̃

′
)]

. (55)

Figure 7 illustrates the predictions of equation (55) in the same way (and for the same val-
ues of model parameters) as Figure 6, but now for various nonzero tensile and compressive
axial external stresses. 9

Several points are noteworthy here:

• In the spherical case (e1 = 0), the predicted results are symmetric in tension and
compression (Etp

3 (−Σ) = −Etp
3 (Σ)). Note also that the transformation plastic strain

Etp
3 (f = 1) after complete transformation increases nonlinearly with the stress applied,

in agreement with various experimental results (see e.g. Greenwood and Johnson (1965))
and El Majaty et al. (2018)’s recent theoretical approach.

• In the cylindrical case (e1 = 0.9999 ( 1), results in tension and compression are asym-
metrical (Etp

3 (−Σ) '= −Etp
3 (Σ)): indeed Etp

3 (f = 1) always takes the same value of
−1

3
∆V
V = −0.0084 (corresponding to a total strain E3(f = 1) = 0) whatever the exter-

nal stress applied. Like in the case of a zero external stress, this seemingly paradoxical
effect results from the rigid vertical constraint imposed by the previously transformed
cylindrical core of daughter-phase, see Figs. 8(c) and 8(d) and Subsection 4.3.

• In some intermediary, spheroidal case (e1 = 0.8), symmetry between tension and com-
pression in lost like in the cylindrical case, but not to the point where Etp

3 (f = 1)
becomes independent of the stress applied.

Fundamentally, asymmetry between tension and compression (always present except in
the special spherical case) arises from the definite (positive) sign of the volumetric trans-
formation strain ∆V

V .

4 Comparison with numerical FFT-based simulations

4.1 Principle of the simulations

In this Section, we present simulations, using an FFT-based numerical homogenization
method (Moulinec and Suquet, 1998), of large RVEs containing numerous growing nuclei
of daughter-phase. These simulations being similar in principle to those presented in our
earlier work (El Majaty et al., 2021) 10 but for the different assumed shapes of the nuclei,
a brief presentation will suffice.

9 Unlike for a zero external stress, the results now depend upon the value of the yield stress σM

of the mother-phase.
10 Note that the prototype of such FFT-based simulations of transformation plasticity was pre-
sented by Otsuka et al. (2018), with a however somewhat different focus on crystal plasticity
effects.
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(a) e1 = 0.0, tension. (b) e1 = 0.0, compression.

(c) e1 = 0.8, tension. (d) e1 = 0.8, compression.

(e) e1 = 0.9999, tension. (f) e1 = 0.9999, compression.

Fig. 7. Predicted axial transformation plastic strain Etp
3 versus volume fraction f of daugh-

ter-phase, under various tensile and compressive axial stresses applied, for various RVE eccen-
tricities e1.

A parallelepipedic RVE (Fig. 8) subjected to periodic mechanical boundary conditions is
discretized through some parallelepipedic lattice of 100× 100× 100 voxels. (Such a large
number of discretization points is much more efficiently dealt with the FFT-based method
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than with the classical FE method). At each step of the calculation, each voxel is ascribed
mechanical constants corresponding to one of the two phases: that is, Young’s modulus
and Poisson’s ratio, 182GPa and 0.3 for both phases; yield stress, 145MPa for the (γ)
mother-phase and 950MPa for the (α) daughter-phase; initial inelastic strain (identical in
all directions), 0 for the mother-phase and 0.0084 for the daughter-phase. (These constants
correspond to the A 508 Cl.3 steel around 350◦, like in Figs. 6 and 7 and our previous
work (El Majaty et al., 2021)).

(a) Slightly elongated nuclei, f ( 9%. (b) Slightly elongated nuclei, f ( 41%.

(c) Cylindrical nuclei, f ( 12%. (d) Cylindrical nuclei, f ( 52%.

Fig. 8. Growth of spheroidal nuclei of daughter-phase within a RVE of mother-phase - (a) and
(b): moderately elongated nuclei; (c) and (d): cylindrical nuclei.

The “transformation” at any point and instant simply corresponds to the imposed switch
from one set of constants to the other, 11 which allows complete flexibility in the geometri-
cal aspects of the transformation considered: absence vs. presence of continuous nucleation
of new transformation sites (nucleation vs. growth), confocal vs. homothetical growth of

11 In fact, for numerical reasons of no interest here, the switch is imposed only gradually,
using some control parameter ξ varying continuously between 0 (pure mother-phase) and 1
(pure daughter-phase); this explains the seemingly paradoxical gradual change of color from the
mother- to the daughter-phase in Fig. 8.
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pre-existing nuclei, etc. For instance, Fig. 8 illustrates two stages of the homothetical
growth of moderately elongated or cylindrical nuclei present from the start of the trans-
formation, in the absence of continuous nucleation of new ones. A detailed study of the
influence of such features and similar ones upon transformation plasticity, not presented
here for space reasons, has been performed, with the conclusion that their impact is small.
We shall therefore be content with presenting only results corresponding to homothetical
growth of pre-existing nuclei (no continuous nucleation of new transformation sites). The
RVE considered will be a parallelepiped of dimensions proportional to the semi-axes of the
nuclei, so as to well represent typical deformed elementary volumes in laminated plates
(except for cylindrical nuclei for which considering an infinitely long cylinder would not
only be impossible but pointless in view of axial translational invariance - a cubical RVE
is considered in that case); see Fig. 8.

4.2 Case of a zero external stress: first elastic correction to the expression of Ėtp

We first present numerical results obtained in the absence of external stress (Σ = 0).
Exceptionally, in order to more clearly illustrate our comments, we do not plot in Fig.
9 the axial transformation plastic strain Etp

3 , but the total axial strain E3 = 1
3
∆V
V + Etp

3

obtained in the simulations, versus the fraction f of daughter-phase, for various RVE
eccentricities e1.

Fig. 9. Numerical total axial strain versus volume fraction of daughter-phase, for various values
of the RVE eccentricity e1.

For spherical nuclei (e1 = 0), the total strain E3(f = 1) after complete transformation
amounts to 8 × 10−3, just slightly less than the theoretical value of 1

3
∆V
V + Etp

3 (f =
1) = 1

3
∆V
V = 8.4 × 10−3. Such a small discrepancy is tolerable, all the more so since

it certainly arises from some slight macroscopic anisotropy of the simulated RVE. For
cylindrical nuclei (e1 = 0.995 ( 1), however, the total strain E3(f = 1) after complete
transformation amounts to 2.2×10−3, which disagrees more markedly with the theoretical
value of 1

3
∆V
V + Etp

3 (f = 1) = 1
3
∆V
V − 1

3
∆V
V = 0. Although the difference is not large, it
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may be of some importance in the context of numerical predictions of residual stresses
and distortions resulting from thermomechanical treatments, and should therefore be
accounted for in a refined model of transformation plasticity.

The nonzero value of the axial final total strain for cylindrical nuclei clearly means that
the effect of rigid vertical constraint imposed by the previously transformed cylinders
of daughter-phase, already alluded to in Subsections3.4 and 3.5, is not as absolute as
predicted by the theory. This effect may be due to two possible causes:

• Plasticity in the harder daughter-phase (disregarded in the theory since the core of
daughter-phase was considered not to deform after the transformation). But calculations
with cylindrical nuclei have been performed with a value of the yield stress in the
daughter-phase of 9, 500MPa instead of 950MPa, thus eliminating any possibility of
plastic straining of this phase, without any change in the results. The explanation of
the effect therefore cannot lie there.

• Presence of elasticity. To test this possible cause, calculations with cylindrical nuclei
have been performed with various values of the ratio σM/E. Results showed that the
smaller this ratio, that is the stiffer the material elastically, the closer to 0 the total
strain E3(f = 1) after complete transformation. This unambiguously shows that the
origin of the effect lies in the presence of elasticity.

It is not difficult to understand the mechanism by which, in the cylindrical case, elasticity
somewhat influences transformation plasticity. Between times t and t+δt, when thin cylin-
drical shells of mother-phase are transformed into daughter-phase, and want to expand
axially because of the volumetric transformation strain, their expansion is not completely
hindered by the rigidity of the already existing cylinders of daughter-phase, but permitted
to some extent by the elasticity of these cylinders. This phenomenon generates a slight
increase of the plastic strain in the remaining mother-phase, which is later irreversibly
transferred to the daughter-phase upon transformation; whence a slight increase, due to
elasticity of the daughter-phase, of the axial transformation plastic strain and the total
axial strain after complete transformation.

Unfortunately limit-analysis, the basis of the model developed here, considers only by
definition loading states large enough for elasticity to become ineffective (see Drucker
et al. (1952) and Leblond et al. (2018)). It cannot therefore account for the effects of
this aspect of the mechanical behavior. Recent years have witnessed the development
of sophisticated theories for homogenization of nonlinear materials including elasticity,
but they have not yet reached a point where their results become explicit enough to be
easily applied. This leaves only one possibility to account for the effect of elasticity upon
Greenwood and Johnson (1965)’s mechanism of transformation plasticity, through some
heuristic correction of the theoretical expression of Ėtp.

Our proposal is to add to the expression Ėtp theor of Ėtp provided by equation (55), an
elastic correction given by

Ėcorr 1 = k1 e
2
1

∆V

V

σM

E
ḟ
[
−
1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

]
with k1 = 1.2×102. (56)

This proposed correction exhibits the following nice features:
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• being proportional to e21, it is effective for cylindrical nuclei (e1 = 1), as desired, but
not for spherical nuclei (e1 = 0), for which it is not needed;

• it is proportional to the volumetric transformation strain ∆V
V , the source of Greenwood

and Johnson (1965)’s mechanism of transformation plasticity;
• it is proportional to the ratio σM/E, so as to be a decreasing function of the elastic
stiffness;

• collinearity with the tensor −1
2(e1⊗e1+e2⊗e2)+e3⊗e3 warrants both incompressibility

and transverse isotropy with respect to the major axis of the nuclei;
• the parameter k1, being dimensionless (material constants are accounted for in other
factors), may be expected to be material-independent.

With the material parameters considered in the example under discussion, the value of the
axial component of the correction for cylindrical nuclei is, after complete transformation,
2.4 × 10−3, corresponding to a total axial strain of 1

3
∆V
V + Etp theor

3 (f = 1) + Ecorr 1
3 (f =

1) = 1
3
∆V
V − 1

3
∆V
V + 2.4 × 10−3 = 2.4 × 10−3, close to the value of 2.2 × 10−3 apparent in

Fig. 9. 12

4.3 Case of a nonzero external stress applied: second elastic correction to the expression
of Ėtp

Figure 10 now presents the axial transformation plastic strain Etp
3 obtained in the sim-

ulations versus the fraction f of daughter-phase, for an applied tensile axial stress Σ3 of
80MPa and various RVE eccentricities e1.

Fig. 10. Numerical axial transformation plastic strain versus volume fraction of daughter-phase,
under a tensile axial stress of 80MPa, for various values of the RVE eccentricity e1.

A fresh issue unfortunately arises again in the cylindrical case (e1 = 0.995 ( 1). If the
elastic correction Ėcorr 1 defined by equation (56) is not accounted for in the expression

12 The slight discrepancy arises from the fact that all values of the RVE eccentricity e1, not just
that corresponding to cylindrical nuclei, have been used for the fit of the value of k1.
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of Ėtp, the model value of Etp
3 (f = 1) after complete transformation amounts to −1

3
∆V
V =

−8.4×10−3, in disagreement with the numerical value of −2.5×10−3 apparent in Fig. 10;
no wonder here. But even if this correction is accounted for, the model value of Etp

3 (f = 1)
amounts to −1

3
∆V
V +Ecorr 1

3 = −8.4× 10−3+2.4× 10−3 = −6× 10−3, which still disagrees
with the numerical value.

Thus the elastic correction defined above in the absence of any external stress does not
suffice. Again, it is not difficult to understand why. Referring to the discussion in Sub-
section 4.2, when thin cylindrical shells of mother-phase are transformed between times t
and t+δt, the axial expansion of the RVE allowed by the elasticity of the already existing
cylinders of daughter-phase depends upon the axial stress in these cylinders, and there-
fore upon the external stress. Hence the elastic correction of the transformation plastic
strain rate, which is determined by the axial expansion of the RVE, must depend upon
this external stress.

To account for this phenomenon, we propose to add to the expression Ėtp theor of Ėtp

defined by equation (55), a second elastic correction now depending on Σ, given by

Ėcorr 2 = k2 e1[1 + k3 e1(1− e1)]
∆V

V

Σ2
eq

EσM
(1− f)4 ḟ .

3

2

Σ′

Σeq

with k2 = 2.4× 103 and k3 = 1.85.

(57)

Some comments on this correction are again in order:

• being proportional to e1, it is again effective for cylindrical nuclei (e1 = 1) but not for
spherical nuclei (e1 = 0) - as desired;

• it is again proportional to the volumetric transformation strain ∆V
V , the driving force

of Greenwood and Johnson (1965)’s mechanism;

• it is proportional to
Σ2

eq

EσM
, being thus an increasing function ofΣ (as naturally expected),

and a decreasing function of both E and σM (there is no elasticity-dependent trans-
formation plasticity if the daughter-phase is elastically very stiff, or the mother-phase
plastically very hard);

• collinearity with Σ′ ensures incompressibility;
• the factors [1+k3 e1(1−e1)] and (1−f)4 were required for a good fit with the numerical
results;

• again, the parameters k2 and k3 are dimensionless and thus may be expected to be
material-independent.

4.4 Final comparison between numerical results and theoretical predictions

The transformation plastic strain rate Ėtp being finally taken in the form

Ėtp = Ėtp theor + Ėcorr 1 + Ėcorr 2 (58)

with Ėtp theor, Ėcorr 1 and Ėcorr 2 given by equations (55), (56) and (57) respectively, Figure
11 illustrates the comparison between model values and numerical results for the axial
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transformation plastic strain Etp
3 as a function of the fraction f of daughter-phase, ob-

tained under various tensile and compressive axial stresses, for various RVE eccentricities
e1. The agreement is very good in all cases.

(a) e1 = 0.0, tension. (b) e1 = 0.0, compression.

(c) e1 = 0.8, tension. (d) e1 = 0.8, compression.

(e) e1 = 0.9999, tension. (f) e1 = 0.9999, compression.

Fig. 11. Comparison of theoretical and numerical values of the axial transformation plastic strain
versus volume fraction of daughter-phase, under various tensile and compressive axial stresses
applied, for various RVE eccentricities e1.
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It is also naturally interesting to consider multiaxial loads. Figure 12 again illustrates the
comparison between model predictions and numerical results for the axial transformation
plastic strain Etp

3 , but now under combination of a tensile stress Σ3 and a shear stress
Σ23. The numbers in the figures provide the values of Σ3, and the ratio Σ3/Σ23 amounts
to 1 in the three figures on the left, and 2 in the three figures on the right. Again, the
agreement between the model and the FFT-based simulations is very good.

5 Synthesis and perspectives

This paper was devoted to an extension of El Majaty et al. (2018)’s recent modeling of
Greenwood and Johnson (1965)’s mechanism of transformation plasticity of metals and
alloys, initially limited to growing nuclei of daughter-phase of spherical shape, to nuclei
of prolate spheroidal shape. The goal was essentially to incorporate into the model the
possible influence upon transformation plasticity of morphological anisotropies, arising
notably from growth of nuclei of elongated shape in laminated plates (Desalos, 1981).
Like in El Majaty et al. (2018)’s previous work, the treatment was based on disregard
of Magee (1966)’s mechanism, neglect of elasticity and use of the powerful theory of
limit-analysis (the theory for rigid-plastic materials).

In Section 2, using the same analogy between problems of ductile rupture and trans-
formation plasticity as in (El Majaty et al., 2018), we began by extending Monchiet et
al. (2014)’s limit-analysis-based study of a hollow prolate spheroidal RVE containing a
stress-free confocal prolate spheroidal void, by including the possibility of some internal
load applied on the void’s boundary.

In Section 3, we showed how to apply the results obtained previously to transformation
plasticity, by interpreting the sound domain of the RVE of Section 2 as representing
the mother-phase gradually shrinking as a result of the transformation, and the internal
loading as due to the correspondingly growing nucleus of daughter-phase, which expands
as a result of the volumetric transformation strain (the relative difference of specific volume
between the phases). The major result evidenced in this Section was the nonzero value of
the transformation plastic strain even in the absence of application of any external load,
due to the macroscopic anisotropy arising from the preferred orientation of the elongated
nuclei of daughter-phase.

Finally in Section 4, we presented some simulations of Greenwood and Johnson (1965)’s
mechanism of transformation plasticity in large RVEs containing many nuclei of growing
daughter-phase, aimed at assessing and completing the theory developed, using an FFT-
based numerical homogenization method (Moulinec and Suquet, 1998). These simulations,
for spheroidal nuclei, paralleled those presented in a previous work for spherical ones (El
Majaty et al., 2021), similarly aimed at assessing (El Majaty et al., 2018)’s model for such
nuclei; but they evidenced an unexpected influence of the elasticity of the daughter-phase
upon Greenwood and Johnson (1965)’s mechanism, negligible for spherical nuclei but of
importance growing with their elongation. This influence was accounted for by introducing
heuristic elastic corrections into the theoretical, limit-analysis-based expression of the
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(a) e1 = 0.0, Σ3/Σ23 = 1. (b) e1 = 0.0, Σ3/Σ23 = 2.

(c) e1 = 0.8, Σ3/Σ23 = 1. (d) e1 = 0.8, Σ3/Σ23 = 2.

(e) e1 = 0.9999, Σ3/Σ23 = 1. (f) e1 = 0.9999, Σ3/Σ23 = 2.

Fig. 12. Comparison of theoretical and numerical values of the axial transformation plastic
strain versus volume fraction of daughter-phase, under various multiaxial loads, for various RVE
eccentricities e1.

transformation plastic strain rate.

Perspectives include notably:
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• Experimental studies of transformation plasticity coupled with observations of morpho-
logical anisotropies (metallurgical structure) after complete transformation. Although
the impact of such anisotropies upon transformation plasticity has been known exper-
imentally for quite some time, experiments do not seem to have been accompanied by
such observations, compulsory to assess models of the kind developed here.

• Development of models aimed at predicting the elongation of growing nuclei of daughter-
phase (a free, adjustable parameter in the present work!) as a function of the past
mechanical history of the metallic component considered.

• Incorporation into the model of strain hardening effects in the mother-phase (disre-
garded in the present work based on the assumption of ideal plasticity, admittedly
rather unrealistic at the temperatures of interest). Such a development could use a
trick already employed by Gurson (1977) for this purpose in his pioneering work on
plastic porous materials.

• Finally incorporation of the models developed in FE codes, permitting to better account
for transformation plasticity during thermomechanical treatments, and thus leading to
more accurate predictions of residual stresses and distortions.
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A Appendix : Monchiet et al. (2014)’s displacement fields for the prolate
spheroidal geometry subjected to axisymmetric loadings

We refer here to Section 3 and Appendix A of Monchiet et al. (2014)’s paper. For a general,
non-axisymmetric loading, the trial incompressible displacement fields 13 considered by
Monchiet et al. (2014) depend on 11 parameters: the 5 independent components of a
traceless, symmetric second-rank tensor A, and the 6 independent components of an
arbitrary symmetric second-rank tensor D∗. 14 In the axisymmetric case, the sole possibly
nonzero components of A are A11 = A22 ≡ A1 = −A33/2 ≡ −A3/2, and the sole possibly
nonzero components of D∗ are D∗

11 = D∗
22 ≡ D∗

1 and D∗
33 ≡ D∗

3; hence Monchiet et al.
(2014)’s axisymmetric trial fields depend on 3 parameters only.

The detailed expressions of Monchiet et al. (2014)’s trial displacement fields are given
by their equations (10) and (12), but will not be needed here. On the other hand the
components of the corresponding overall external and internal strain tensors are given, in
the axisymmetric case, by their equations (26):






E1 = −A3

2 + f
[
1
2(3− 3α1 − β1)D∗

1 +
β1
2 D

∗
3

]

E3 = A3 + f [(3α1 + β1 − 1)D∗
1 + (1− β1)D∗

3]




E1 = −A3

2 + 1
2(3− 3αf − βf)D∗

1 +
βf
2 D

∗
3

E3 = A3 + (3αf + βf − 1)D∗
1 + (1− βf)D∗

3.

(A.1)

We select, within the three-dimensional space of axisymmetric trial fields, a basis consist-
ing of the three following fields:

• A field u(1) having A(1)
1 = A(1)

3 = 0 and D(1)∗
1 = D(1)∗

3 = 1
f .

• A field u(2) having A(2)
1 = −1

2 , A
(2)
3 = 1 and D(2)∗

1 = D(2)∗
3 = 0.

• A field u(3) having A(3)
1 = A(3)

3 = 0 and D(3)∗
1 = − 1

2f , D
(3)∗
3 = 1

f .

Using equations (A.1), one then obtains equations (13), (14) and (15) of the text providing
the individual components of the overall external and internal strain tensors corresponding
to these three fields.

13 In fact Monchiet et al. (2014) did not define “displacement” but “velocity” fields; in the present
context they are considered as “displacement” fields, from which “velocity” fields are obtained
through time-differentiation (denoted with a dot).
14 In Monchiet et al. (2014)’s work the tensor D∗ was noted d∗; the notation D∗ is preferred
here in order to avoid any possible confusion with the local strain rate tensor.
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B Appendix : estimation of the overall plastic dissipation for Monchiet et al.
(2014)’s axisymmetric velocity fields

B.1 A simplified formalism for axisymmetric second- and fourth-rank tensors

The first task in this Appendix is to define a formalism permitting to simplify linear
algebraic operations on axisymmetric tensors.

• First, for any axisymmetric, symmetric second-rank tensor W (with sole possibly
nonzero components W11 = W22 and W33), we define a corresponding 2-dimensional
vector W of components 





Wm = λ(2W11 +W33)

Wd = µ(W33 −W11)
(B.1)

where λ and µ are parameters. The choice of these parameters is dictated by the re-
quirement that it “preserve the scalar product” so that the relation

W : W′ = WijW
′
ij = W.W ′ = WαW ′

α (B.2)

be satisfied for every W and W′; a simple calculation then leads to the values

λ =
1√
3

; µ =

√
2

3
. (B.3)

• Second, for any axisymmetric fourth-rank tensor L possessing the minor symetries
Lijk' = Ljik' = Lij'k, we define a corresponding 2-dimensional second-rank tensor (2×2
matrix) L in such a way that for every axisymmetric, symmetric second-rank tensor
W,

Z = L : W (Zij = Lijk'Wk') ⇔ Z = L.W (Zα = LαβWβ). (B.4)

Simple calculations based on equations (B.1) and (B.3) then provide the components
of the tensor L:






Lmm = 1
3(2L1111 + 2L1122 + 2L1133 + 2L3311 + L3333)

Lmd =
√
2
3 (−L1111 − L1122 + 2L1133 − L3311 + L3333)

Ldm =
√
2
3 (−L1111 − L1122 − L1133 + 2L3311 + L3333)

Lmm = 1
3(L1111 + L1122 − 2L1133 − 2L3311 + 2L3333).

(B.5)

Note that if L possesses the major symetries Lijk' = Lk'ij , L is itself symmetric (Lmd =
Ldm).

• Finally it is easy to see that the second-rank tensor corresponding to the transpose of L
(of components LT

ijk' = Lk'ij) is simply the transpose of L (of components LT
αβ = Lβα).

One thus sees that with such a formalism, complex tensorial operations on axisymmetric
fourth-rank tensors reduce to simple matrix operations on 2× 2 matrices.
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B.2 Calculation of some tensors

The first tensor playing an important role in Monchiet et al. (2014)’s work is Eshelby
(1957)’s tensor S(e) for a prolate spheroidal inclusion of eccentricity e, embedded in an
infinite elastic incompressible medium (Poisson’s ratio ν = 1/2). The components of this
tensor are given by equations (20) of their paper. The components of the associated 2-
dimensional second-rank tensor S are easily deduced from equations (B.5):






Smm = 1

Sdm = 1√
2
[3α(e)− 1]

;






Smd = 0

Sdd = 3
2 [1− α(e)− β(e)].

(B.6)

A second important tensor is noted L(e) in Monchiet et al. (2014)’s work; its components
are given by equations (C.6) of their paper, and those of the corresponding 2-dimensional
second-rank tensor L by






Lmm = 2

Ldm = Lmd =
1√
2
[1− 3α(e)]

Ldd = 1
2 [−1 + 3α(e) + 3β(e)].

(B.7)

Note that this tensor is symmetric.

Two additional tensors are defined from there: first, a tensor P defined by (equation (C.5)
of Monchiet et al. (2014):

P = 1
1−f

[
ST (ef ) : L(ef )− fST (e1) : L(e1)

]

⇔ P = 1
1−f

[
ST (ef) : L(ef )− fST (e1) : L(e1)

]
;

(B.8)

the components of P are easily deduced from equations (B.5):






Pmm = 2 +
f(1− 3α1)2 − (1− 3αf)2

2(1− f)

Pdm = Pmd =
3

2
√
2(1− f)

[(1− 3αf)(1− αf − βf)− f(1− 3α1)(1− α1 − β1)]

Pdd =
3

4(1− f)
[f(1− α1 − β1)(1− 3α1 − 3β1)− (1− αf − βf )(1− 3αf − 3βf)] ;

(B.9)
again, this tensor is symmetric. Also, Monchiet et al. (2014) define a last tensor Q through
their equation (C.2):

Q =
1

1− f
[S(e1)− S(ef )] ⇔ Q =

1

1− f
[S(e1)− S(ef )] ; (B.10)
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the components of Q are given by






Qmm = 0

Qdm =
3√

2(1− f)
(α1 − αf)

;






Qmd = 0

Qdd =
1

2(1− f)
(3αf + 2βf − 3α1 − 2β1).

(B.11)

B.3 Monchiet et al. (2014)’s formula for the overall dissipation and its modifications

Monchiet et al. (2014)’s formula for the overall dissipation D reads (see their equations
(29) and (B.8):

D
vol(Ω)

( σMf
∫ 1

f

[
A2

eq +
2

3
(D∗ : P : D∗ + 2A : Q : D∗)u2

]1/2 du

u2

= σMf
∫ 1

f

[
A2

eq +
2

3
(D∗.P.D∗ + 2A.Q.D∗)u2

]1/2 du

u2
.

(B.12)

In this equation:

• One integrates over successive spheroids confocal with the surface of the void and the

external boundary, each spheroid being characterized by the parameter u =
af b

2

f

ab2 with
a and b denoting its major and minor semi-axes.

• The tensors A and D∗ are those corresponding, in the sense of Appendix A, to the
general trial velocity field u̇(x) resulting from time-differentiation of the general dis-
placement field u(x) defined by (16); it follows from the values of these tensors for the
displacement fields u(1), u(2), u(3), given in Appendix A, that






A1 = − q̇2
2

A3 = q̇2
;






D∗
1 = q̇1

f − q̇3
2f

D∗
3 = q̇1

f + q̇3
f

(B.13)

• Aeq ≡ (23A : A)1/2 denotes the von Mises norm of the traceless tensor A in the sense
of strain rates.

We now introduce two approximations not made by Monchiet et al. (2014), but which
are perfectly admissible in the case of prolate spheroids and lead to a greatly simplified
final expression of the overall dissipation. Both of these approximations are based on
consideration of the two extreme cases where the prolate (internal and external) spheroids
become either spherical or cylindrical (infinitely elongated); by equations (3) and (5), the
first case corresponds to ef = e1 = 0, αf = α1 = 1

3 , βf = β1 = 2
5 , and the second to

ef = e1 = 1, αf = α1 = 0, βf = β1 = 1.

First, it was remarqued by Monchiet et al. (2014) themselves, and it is easily checked
using the expressions (B.11) of the components of the tensor Q, that the “crossed” term
2A.Q.D∗ in the expression (B.12)2 of the overall dissipation is nil in the two extreme,
spherical and cylindrical cases. It thus seems reasonable to neglect this crossed term in all
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intermediary cases where the eccentricities ef and e1 are neither zero nor unity. Equation
(B.12) then becomes

D
vol(Ω)

( σMf
∫ 1

f

(
A2

eq +
2

3
D∗.P.D∗u2

)1/2 du

u2

= σMf
∫ 1

f

[
A2

eq +
2

3

(
PmmD∗2

m + PddD∗2
d + 2PmdD∗

mD∗
d

)
u2
]1/2 du

u2
.

(B.14)

Second, it may also be remarked that according to the expressions (B.9) of the components
of the tensor P, the other “crossed” term 2PmdD∗

mD∗
d in the expression (B.14) of the overall

dissipation is also nil in the two extreme spherical and cylindrical cases, so that it also
seems reasonable to neglect it in all intermediary cases. Equation (B.14)2 then becomes

D
vol(Ω)

( σMf
∫ 1

f

[
A2

eq +
2

3

(
PmmD∗2

m + PddD∗2
d

)
u2
]1/2 du

u2
. (B.15)

Now by equations (B.1), (B.3) and (B.13), A2
eq = q̇22, D∗

m =
√
3 q̇1

f and D∗
d =

√
3
2

q̇3
f , so

that equation (B.15) takes the form

D
vol(Ω)

( σM

∫ 1

f

[
f 2q̇22 +

(
2Pmmq̇

2
1 + Pddq̇

2
3

)
u2
]1/2 du

u2
. (B.16)

Unfortunately equation (B.16) raises the following issue. In the spherical case where αf =
α1 =

1
3 and βf = β1 =

2
5 , this equation becomes, by equation (B.9):

D
vol(Ω)

( σM

∫ 1

f

[
f 2q̇22 +

(
4q̇21 +

6

25
q̇23

)
u2
]1/2 du

u2
. (B.17)

But prior to Monchiet et al. (2014)’s limit-analysis of a hollow spheroid, these authors
performed a similar analysis of a hollow sphere, with a slightly different result (Monchiet
et al., 2011):

D
vol(Ω)

( σM

∫ 1

f

[
f 2q̇22 +

(
4q̇21 +

6

25
g(f)q̇23

)
u2
]1/2 du

u2
with g(f) = 1− 4f

(
1− f 2/3

)2

1− f
.

(B.18)
Equations (B.17) and (B.18) are equivalent only in the case of small porosities (f 3 1,
g(f) ( 1). The hypothesis of small porosity was made in (Monchiet et al., 2014) (implicitly
in their Appendix C) but not in (Monchiet et al., 2011), which explains the difference
between expressions (B.17) and (B.18).

In the context of ductile rupture considered in the works of Monchiet et al. (2011) and
Monchiet et al. (2014), the hypothesis of small porosity is perfectly acceptable. (The
porosity may take larger values, but then new phenomena such as coalescence of cavities
set in, thus anyway invalidating models of void growth of the type developed in (Monchiet
et al., 2011) and (Monchiet et al., 2014)). But in the context of transformation plasticity
envisaged in this paper, the situation is different. The parameter f no longer represents the
volume fraction of voids but that of the daughter-phase, which spans the entire interval
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[0, 1] when the transformation from the mother- to the daughter-phase proceeds. The
hypothesis f 3 1 is thus no longer acceptable.

It thus becomes indispensable to repeat the treatment of Monchiet et al. (2014) by drop-
ping the hypothesis f 3 1. Without entering into details, it will suffice to say that such
an improved treatment leads to the same expression (B.16) of the overall dissipation -
identical to equation (20) of the text - but for an expression of the component Pdd of the
tensor P slightly corrected through introduction of some multiplicative factor g(f, e1),
given by equation (22) of the text.

C Appendix : Numerical method for solving the system of coupled nonlinear
equations on S and SH

It is easy to check that the equations on S and SH obtained, as indicated in Subsection 3.5,
from combination of equation (54), the criterion (29) and the expression of S2

H resulting
from (28)3, are complex in SH but quadratic in S; that is, the system is of the form






A1(SH)S2 +B1(SH)S + C1(SH) = 0

A2(SH)S2 +B2(SH)S + C2(SH) = 0
(C.1)

with complex expressions of the coefficients A1(SH), B1(SH), C1(SH), A2(SH), B2(SH),
C2(SH). This permits to eliminate the term in S2 between these equations so as to obtain
an algebraic equation of the first degree on S, the solution of which is

S = −
A1(SH)C2(SH)− A2(SH)C1(SH)

A1(SH)B2(SH)− A2(SH)B1(SH)
. (C.2)

Reinserting this result into either of equations (C.1), one gets a nonlinear equation on
the sole variable SH , which may be solved numerically by various methods, most simply
a dichotomy. 15

15 Again, such a method is facilitated by the a priori knowledge of the possible interval of
variation of the variable SH , |SH | ≤ σM ln 1

f .
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