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Abstract
A common theme emerging from nutrient omission trials conducted extensively across sub-Saharan Africa has been the large
variability in yield response to applied nutrients. Yet, little is known about the factors associated with this variability. Therefore,
the objectives of this review were to (1) synthesize the available data from nutrient omission trials of maize and rice and quantify
spatial variability in yield responses and the probability of attaining specified yield targets; (2) identify the genotypic, environ-
mental, and nutrient management factors associated with yield responses; and (3) provide insights and actionable information for
setting priorities for future nutrient management research and development. Here, we provide distributions and expected values
of yield response and agronomic efficiencies of nitrogen (N), phosphorus (P), and potassium (K) to serve as benchmarks for
improving fertilizer recommendations. We also show that with the combined application of NPK fertilizer, rain-fed maize and
rice yields can be raised from the current yields of ~2 Mg ha−1 to 4 Mg ha−1. Yield responses to N, P, and K were in the ratio of
11:6:1 in maize and 13:7:5 in rice, probably arising from differences in uptake requirements and growing environments. K yield
responses were 2–3 times higher in rice than in maize. Explorative analysis using machine learning algorithms provided further
insights into the possible interaction of agroecology, soil type, and exchangeable cations on the spatial variability in yield
responses to N, P, and K in maize and rice. We recommend future research to address site-specific interactions between the
applied and indigenous soil nutrients, focusing on optimizing application rates of K, other macronutrients and micronutrients for
sustainable intensification of maize and rice production. This study highlights the critical need for balanced fertilization to
optimize the productivity and nutrient use efficiencies in rice and maize production in smallholder farming systems in SSA.
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1 Introduction

Despite the availability of improved cultivars and agronomic
management options, the productivity of staple cereals such as
maize and rice has remained low in many countries in sub-
Saharan Africa (SSA) (Grassini et al. 2013; Kuyah et al.
2021). In some countries, up to 200 improved maize varieties
and 570 improved rice varieties with yield potentials exceed-
ing 5Mg ha−1 have been released since the 1960s (Abate et al.
2017; Futakuchi et al. 2021; Kuyah et al. 2021), yet yields on
farmers’ fields are far below the yield potentials (van Dijk
et al. 2017), with current meanmaize and rice yields estimated
at 1.6 and 2.1 Mg ha−1, respectively (USDA 2020). Past pro-
duction gains in SSA were achieved mainly by increasing the
area under production, a trend that is not sustainable in the
future (Arouna et al. 2021; Cairns et al. 2021; Kuyah et al.
2021). To meet the food needs of future generations, maize
production must increase from the current ~20% of water-
limited yield potential (WYP) to 50–75% of WYP (Ten
Berge et al. 2019). The WYP of maize ranges from 6 to
13.9 Mg ha−1 across nine major maize-producing countries
in SSA (GYGA 2021). Similarly, the WYP of rice is in the
range of 4.1–8.5 Mg ha−1 in irrigated lowland systems
(GYGA 2021). Agronomic practices that support sustainable
intensification, including nutrient management, constitute the
most critical factors for reducing the yield gaps (Kuyah et al.
2021; Saito et al. 2021; Vandamme et al. 2018).

From an agronomic perspective, poor soil fertility is the
primary factor limiting agricultural productivity in SSA
(Giller 2021; Saito et al. 2019). While increased fertilizer
use is necessary to improve cereal crop yields in nutrient-
depleted soils in SSA, frequent occurrences of low and vari-
able crop yields following increased fertilizer applications
limit the use of fertilizers by smallholder farmers (Cairns
et al. 2021; Chamberlin et al. 2021). For example, the

application of the recommended N, P, and K fertilizers failed
to increase maize yields by more than 0.5 Mg ha−1 in up to
68% of farmers’ fields in Kenya, DR Congo, Tanzania, and
Nigeria (Roobroeck et al. 2021). Crop yield response to ap-
plied fertilizer is often limited by low soil organic matter
(SOM), moisture stress, soil acidity, and associated toxicities
prevalent in maize and rice production systems across SSA
(Agegnehu et al. 2021; Chamberlin et al. 2021; Tsujimoto
et al. 2019). Unbalanced nutrient applications and suboptimal
agronomic practices have also been identified as key factors
limiting crop yield responses to increased fertilizer applica-
tions (Bindraban et al. 2015; Kihara et al. 2016; Mtangadura
et al. 2017; Roobroeck et al. 2021; Ten Berge et al. 2019; van
der Velde et al. 2014; Fig. 1). Recent analyses (e.g., Aliyu
et al. 2021; Kihara et al. 2017; Mtangadura et al. 2017;
Tsujimoto et al. 2019) have documented diminished re-
sponses to NPK fertilizers due to widespread deficiencies of
other macronutrients and micronutrients. For example, in a
long-term experiment in Zimbabwe, the decline in maize
yields was linked to depletion of soil exchangeable Ca, Mg,
and K and concomitant reduction in soil pH under continuous
application of low rates of N fertilizer (Mtangadura et al.
2017). Accelerated loss of Ca, Mg, and K with mineral N
fertilization was attributed to their removal with crop off-
take and leaching of NO−

3, which is accompanied by ex-
changeable cations to maintain electrical balance
(Mtangadura et al. 2017).

While crop yield responses to nutrient applications are
highly heterogeneous under various climatic, soil, and water
management conditions (Ibrahim et al. 2021; Waqas et al.
2020), fertilizer recommendations in many countries in SSA
are mostly generalized and are rarely tailored to site-specific
growing conditions. Most of these recommendations apply to
large administrative areas or agroecological zones (Rurinda
et al. 2020; Snapp et al. 2003), despite the variability of envi-
ronmental and farmer management factors at short distances
in the smallholder landscapes (Zingore et al. 2007).

To enhance crop productivity and reduce the variability in
crop yield responses to fertilizer application, there is growing
emphasis on the need for site-specific nutrient management
(SSNM) practices (Buresh et al. 2019; Chivenge et al. 2021;
Dobermann et al. 2002; Saito et al. 2015, 2019). The SSNM
concept (Dobermann et al. 2002) uses nutrient omission trials
(NOTs) as a basis for generating data for estimating crop
nutrient requirements for specific crops, and soil and climatic
conditions (Buresh et al. 2019; Chivenge et al. 2021). NOTs
provide information about the indigenous soil nutrient supply
capacity and crop response to nutrient application from which
site-specific nutrient recommendations are estimated for a
targeted yield (Buresh et al. 2019; Dobermann et al. 2002).
Over the last decades, a large number of NOTs have been
implemented across SSA, focusing mainly on maize and rice
(Kihara et al. 2015; Njoroge et al. 2017; Nziguheba et al.
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2009; Rurinda et al. 2020; Saito et al. 2019; Shehu et al. 2018;
Vanlauwe et al. 2006). Several researchers have analyzed the
data generated (e.g., Aliyu et al. 2021; Kafesu et al. 2018;
Kenea et al. 2021; Kihara et al. 2015; Kihara et al. 2016;
Kurwakumire et al. 2014; Njoroge et al. 2017; Nziguheba
et al. 2009; Rurinda et al. 2020; Saito et al. 2019; Shehu
et al. 2018; Vanlauwe et al. 2006), but inferences have mainly
focused on mean responses in isolated studies. Inferences
based on means can, however, lead to ecological fallacy,
which occurs when the response of individuals is deduced
from inferences about the group, for example, when a state-
ment such as “the mean response of maize to K application is
not significantly different from zero” (Ten Berge et al. 2019)
is interpreted as “K is non-limiting in African soils,” as is the
case in many fertilizer recommendations omitting K (cf.
chapters in Wortmann and Sones 2016). Another common
theme emerging from these analyses has been the large vari-
ability in the trends of yield response to applied nutrients,
which affects fertilizer use efficiency and crop productivity
(Kihara et al. 2016; Niang et al. 2017; Njoroge et al. 2017;
Rurinda et al. 2020; Saito et al. 2019). However, our knowl-
edge of the factors that drive the variability in nutrient re-
sponses at scale is still limited. Information on the possible
values of attainable yields, yield responses to individual nutri-
ents, and agronomic efficiencies is not well integrated to judge
the sustainability of maize and rice production systems. The
distributions of attainable yields; use efficiencies of N, P, and
K; and associated conditions have not been adequately ad-
dressed in the literature reviewed. Therefore, there are major

gaps in the integrated analysis of available key data to assess
crop yield response patterns, and the conditions that dictate
response patterns. Such analysis is essential for providing in-
sights into how fertilizer can be used effectively to sustainably
increase crop yields while decreasing the variability in yield
responses and optimizing nutrient use efficiency.

This review aimed to identify critical factors associated
with yield responses and draw parallels in genotypic, environ-
mental, and management factors that influence nutrient re-
sponses in maize and rice using linear mixed modeling and
supplementary analysis with machine learning algorithms.
The objectives of this paper are to (1) synthesize the available
regional data from nutrient omission trials of maize and rice
and quantify spatial variability in yield responses and the
probability of attaining benchmark yield targets; (2) identify
the genotypic, environmental, and nutrient management fac-
tors associated with yield responses; and (3) provide insights
and actionable information for setting priorities for future in-
vestments in nutrient management research and development.

2 Review and data analysis

2.1 Context of the review

We chose maize and rice as the crops of focus because of the
large volumes of nutrient omission trial data available and
their strategic importance for food security in SSA (Abate
et al. 2017; Arouna et al. 2021; Ibrahim et al. 2021; Sileshi

Fig. 1 An aerial view of maize
nutrient omission plots in
northern Ghana. Treatments are
Control, no nutrient input; PK, N
omission; NK, P omission; NP, K
omission; NPK, no omission;
NPK+SMN = NPK +other
macronutrients and
micronutrients added.
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and Gebeyehu 2021; Tsujimoto et al. 2019). Maize and rice
rank first and second in terms of total cereal production in
Africa (FAOSTAT 2019), yet many African countries have
deficits and depend on substantial imports to supplement local
production (Sileshi and Gebeyehu 2021).

In much of SSA, maize is grown under rainfed conditions,
where water, nutrients, soil, and other agronomic constraints
impose major yield limitations (van Ittersum et al. 2013). For
rice, irrigated lowland (IL), rainfed lowland (RL), and rainfed
upland (RU) production systems represent contrasting envi-
ronments and constraints (Niang et al. 2017). Under irrigated
conditions with a non-limitingwater supply, the attainable rice
yields are mainly determined by varieties, nutrient inputs, and
agronomic management (van Ittersum et al. 2013). Under
rainfed conditions, attainable yields are additionally affected
by precipitation (van Ittersum et al. 2013), soil texture, bulk
density, and rooting depth (Cambouris et al. 2016; Nyakudya
and Stroosnijder 2014).

2.2 Literature search and data acquisition

We adopted a structured process to conduct the literature
search for the review and included papers based on predefined
selection criteria. The general format for searches was based
on the Population Intervention Comparator Outcome catego-
ries complemented by the authors’ expert knowledge of the
subject area. The inclusion/exclusion criteria for papers or
datasets to be considered for the analysis were as follows:
(1) randomized and replicated on-farm nutrient omission trials
of maize and rice from any area of SSA; (2) replication can be
within or across sites; (3) must satisfy the minimum data re-
quirement, namely, identifiable site name, study type (e.g., on
research station or farmers’ fields), year/season of implemen-
tation, variety, yields and yield components and pre-planting
soil analysis; (4) trials that provide a minimum set of four
treatments, namely NPK (no macronutrient omitted), PK (N
omitted), NK (P omitted), NP (K omitted) to determine re-
sponse to N, P and K responses; and (5) published or unpub-
lished datasets. Our search strategy and details of the search
including the keywords are summarized in the Supplementary
Methods.

From the studies selected, we compiled primary data on
nutrient application rates, crop genotypes, grain yield (i.e.,
dry weight in t ha−1), soil texture, soil organic carbon
(SOC), soil pH, total N, available P, exchangeable K, Ca
and Mg recorded at the commencement of each trial. In the
maize dataset, primary data came from studies conducted for a
duration ranging from 1 to 7 seasons on farmers’ fields across
35 sites in seven countries. In the case of rice, the primary data
came from trials conducted for 1–2 seasons on 1,037 farmers’
fields across 30 sites in 17 countries, of which 12 sites were in
irrigated lowland, 15 in rainfed lowland, and 3 in rainfed up-
land systems (Saito et al. 2019).

In all trials, relatively high N, P, and K rates were applied to
achieve high yield targets. The minimum and maximum N, P,
and K application rates in maize NOTs were 100 and 150, 22
and 50, and 30 and 60 kg ha−1, respectively. In all but one of
the maize studies, nutrients were supplied through spot appli-
cation close to the planting hole or planting hill during basal
and top-dress applications. The one study where this was not
the case included the application of 100 kg N ha−1, 100 kg P
ha−1, and 100 kg K ha−1, with a third of the N fertilizer and the
entire amounts of P and K fertilizer applied through broad-
casting and incorporation in the whole experimental plot be-
fore planting, and the rest of the N fertilizer applied through
banding of urea in the maize rows as topdressing (Vanlauwe
et al. 2006). The minimum and maximum N, P, and K appli-
cation rates in irrigated lowland rice were 160 and 200, 25 and
30, and 70 and 100 kg ha−1, respectively. In both rainfed
lowland and upland rice, the minimum and maximum N, P,
and K application rates were 110 and 160, 20 and 25, and 50
and 70 kg ha−1, respectively. All fertilizer applications in the
rice trials were applied through broadcasting. At some sites,
the maize trials also included the combined application of
NPK and other macronutrients and micronutrients (hereafter
referred to as NPK + SMN), combined application of NPK
and lime (NPK+ lime), and combined application of NPK and
manure (NPK + manure). A total of 24 sites had NPK + Ca +
Mg + S + Zn + Bwhere Ca, Mg, S, and Zn were applied at 10,
5, 5, and 3 kg ha−1, respectively, with trace amounts of B.
Manure was applied at 10 Mg ha−1 on dry matter basis and
lime at 500 kg ha−1. Analysis of management effects focused
on nutrient inputs since all other crop management practices
(e.g., weeding, planting date, density, etc.) had been applied
uniformly following the recommended practices across all the
trial sites.

The maize and rice genotypes differed in their improve-
ment status (hybrid or open-pollinated), maturity dates (early,
medium, or late maturity), and yield potential in the different
trials. A total of 16maize and 98 rice varieties were used in the
NOTs. This meant that the same variety was not used across
many sites. However, maturity dates were available for the
different varieties. Therefore, we captured the genotype com-
ponent by maturity groups.

Soil data were collected using different analytical methods
or expressed in different units. For example, soil P was ana-
lyzed using Olsen or Mehlich extraction. Before combining
such data for analysis, these were standardized and converted
into a single unit using pedo-transfer functions. Available P
given in Olsen P was converted into Mehlich III P as follows:
0.68+2.33 Olsen P for the sites with soil pH at 5.9 to 8.1, and
0.133+1.987 Olsen P for other sites (Buondonno et al. 1992;
Mallarino and Blackmer 1992). We opted for simple conver-
sion functions due to the limited soil parameters measured
across all study sites. However, this may result in high uncer-
tainty in the converted available P values. To standardize data
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for combined analysis, available P was expressed in mg kg−1,
and exchangeable cations were expressed in cmol kg−1, while
SOC and total N were expressed in %. The soil C:N ratios and
cations ratios, namely, Ca:K, Mg:K, and Ca:Mg, were derived
on a meq basis (considering electrical charge) from exchange-
able K, Ca, and Mg values. These ratios were calculated to
indicate imbalances and availability of one element over the
other on the cation exchange complex. In addition, the struc-
tural stability index (SSI) was calculated as an indicator of
degradation and the sufficiency of soil organic matter
(SOM) to maintain soil structural stability (Pieri 1992). SSI

was calculated as follows: SSI ¼ 100� SOM %ð Þ
Clay %ð ÞþSilt %ð Þ. SSI

≤5% indicates a structurally degraded soil, SSI 5 to 7% indi-
cates a high risk of structural degradation, and SSI > 7%
indicates a low risk (Pieri 1992).

We compiled other auxiliary data from databases and the
literature for each trial site, including agroecological zone
(AEZ), climate zone, soil type, and rainfall (total annual and
crop growing season rainfall). Five AEZs (highland, humid,
sub-humid, semi-arid, and arid) as defined by HarvestChoice
(2009) were adopted.Wherever available, the soil type of each
site was extracted from the site description in the original
report. Given the transitory nature of soil classification, we
cross-checked all reports of soil type against the names in
the third edition of the World Reference Base (WRB) for soil
resources (IUSS Working Group WRB 2014). We assigned
soils classified according to other systems (e.g., USDA or
local systems) to theWRB group through pro partematching.
For sites where soil types were not reported, information was
extracted from the harmonized Soil Atlas of Africa (Jones
et al. 2013). In cases where soil types were not provided, the
soil types were deduced from the Soil Atlas based on the
geographic coordinates of the sites reported in the publica-
tions. The designated soil types represented the dominant soils
at the study sites.

2.3 Analytical framework

The first part of the analysis focused on defining the empirical
distribution of yield response to N, P, and K, agronomic effi-
ciency (AE) and partial factor productivity (PFP) to provide
baselines against which future improvements in nutrient use
efficiency can be judged. Yield responses were calculated as
the differences between the NPK yield (YNPK) and the nutrient-
limited yield (Yl) on the same site, year and season following
similar analyses on maize (e.g., Rurinda et al. 2020) and rice
(e.g., Xu et al. 2019). Accordingly, response to N = YNPK − YPK;
response to P = YNPK − YNK; and to K = YNPK − YNP.

The AE more closely reflects the impact of the applied
nutrients and integrates the recovery efficiency and physiolog-
ical use efficiency (Ladha et al. 2005). It is a more important
measure than PFP for decision-making concerning fertilizer

use. Following the approach used for nutrient omission trials
(e.g., Kurwakumire et al. 2015), AE was calculated as follows:

AE ¼ YNPK−YO
Nx

� �
where YNPK is the grain yield (in kg ha−1) in

the NPK treatment, YO is the yield (in kg ha−1) in the omission
plot (in kg ha−1) for the nutrient in question, andNx is the nutrient
application rate of the nutrient in question (in kg ha−1). AE esti-
matesmay be biasedwhen applied tomulti-year experiments due
to the residual effects of nutrients applied in previous seasons.
Therefore, AE was calculated only for the first-year data in all
trials. When comparing NPK applied, we used the PFP as the
nutrient use efficiency indicator. The PFP was calculated as
follows: PFP ¼ GY

Nx
where GY is the grain yield (in kg ha−1),

and Nx represents the N, P, or K input from inorganic fertilizer
(in kg ha−1). The PFP is a broader measure of nutrient use
efficiency than AE because it constitutes an aggregate effi-
ciency index that includes contributions to crop yield derived
from the uptake of indigenous soil nutrients, the uptake effi-
ciency of applied nutrients, and the efficiency with which the
nutrient acquired by the plant is converted to grain yield
(Dobermann 2005). The N, P, and K input from manure was
not taken into account due to the uncertainty of estimating
nutrient mineralization rates of manure and the short duration
of the studies including manure application.

Variable N:P:K ratios of applied nutrients from various
studies can potentially affect nutrient-specific yield responses
and nutrient use efficiencies. The N:P:K application ratios for
rice were within a narrow band of 1: (0.15 – 0.18): (0.44 –
0.50) and had insignificant effects on the performance indica-
tors evaluated. However, the N:P:K ratios varied extensively
for maize NOTs. To evaluate the influence of nutrient appli-
cation ratios on nutrient use efficiencies, the maize data was
separated into seven representative N:P:K ratio categories,
which formed the basis for disaggregated assessment of nutri-
ent ratios on yield response, AE and PFP. The nutrient ratio
categories were as follows: (i) 1:0.18:0.3; (ii) 1:0.27:0.27; (iii)
1:0.27:0.40; (iv) 1:0.30:0.60; (v) 1:0.33:0.33; (vi) 1:0.36:0.36;
and (vii) 1:1:1.

Uncertainty around the estimated values was represented
by 95% confidence intervals (CIs). In situations where we
could not apply a model, we calculated the 95% CIs using
bias-corrected bootstrapping with 9999 replicates.
Preliminary diagnostic analyses indicated that none of the re-
sponse variables was symmetrically distributed. Therefore, we
focused the interpretation of our results on the empirical quar-
tiles and the % CV. The lower quartile (Q1) represents the
midpoint of values that fall between the smallest and the me-
dian of the distribution of the analyzed variable. The median
(Q2) represents the midpoint of the entire frequency distribu-
tion. The upper quartile (Q3) represents the midpoint of values
that fall between the median and the highest value. In asym-
metric distributions, the median is preferred because it always
falls closest to the mode.
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In the context of sustainable intensification, one of the
most commonly used measures of production risk is spatio-
temporal variability, which is usually indexed by the coef-
ficient of variation (CV). A larger CV reflects more vari-
ability and hence greater production risk (Kiwia et al.
2019). Therefore, we calculated the CV and its
bootstrapped 95% confidence interval. Another measure
of production risk is downside risk, which can be measured
either as the number of years or sites for which yields are
below a target yield (Kiwia et al. 2019). We estimated the
downside risk as the probability of yields falling below a
prescribed yield target for maize and rice. In the case of
maize, we evaluated the probability of exceeding the
African Green Revolution target yield of 3 Mg ha−1 for
the various treatments. In the case of rice, the target yields
were 5–9 Mg ha−1 in irrigated and rainfed lowland and 5–
7 Mg ha−1 in rainfed upland rice (Saito et al. 2019).
Accordingly, we estimated the probability of exceeding
the yield targets of 5 Mg ha−1 in rice. We evaluated the
downside risks of yield response to N, P, and K as the
probability of the yield difference between NPK and treat-
ment (YNPK−YT) falling below 0. As such, we calculated the
risks of "no response" to applied N, P, and K as the prob-
ability of YNPK−YPK < 0, YNPK−YNK < 0 and YNPK − YNP < 0,
respectively. We also conducted stochastic dominance ana-
lysis — a non-parametric risk analysis tool often used in
decision theory. It refers to situations where one probability
distribution over outcomes can be ranked as superior to
another. This mainly involves plotting the cumulative prob-
ability distribution of the outcome variable (Sileshi et al.
2010). A cumulative distribution function X is said to dom-
inate Z in the first order if the distribution of X lies any-
where to the right of the cumulative distribution of Z. We
used this method to estimate the probability (ϕ) of exceed-
ing a target value of grain yields.

We analyzed the effects of genotype, management, and en-
vironmental variables on yield response using linear mixed
models, where nutrient management and environmental vari-
ables were entered as the fixed effects and one ormore variables
used as the random effect. To accommodate imbalances in
sample sizes, we used the Kenward–Roger method for approx-
imating the degrees of freedom (Spilke et al. 2005). Various
models were tested by adding or removing variables until an
optimal model was achieved. Improvement in model fit was
examined at each step using Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC). As a rule of
thumb, changes in BIC (differences between BICs of two
models) of 2 to 6 provide weak evidence favoring the more
complex model, while differences >10 provide very strong ev-
idence favoring the more complex model. The main effects
were country (C), soil type (S), agroecological zones (A), treat-
ment (T), and variety (V) represented by maturity groups. The
models were modified depending on the availability of

explanatory variables. For example, in the case of rice the data
were hierarchical, and the most complex model was:

yijkl ¼ μþ Ci þ Aj þ S j þ Tk þ Vl þ S � Tð Þjk
þ T � Vð Þkl þ ϵijkl

where μ is the intercept, which represents the grand mean of the
response variable across all explanatory variables and εijkl is the
residual (a random error term). Here μ was set as a random
intercept where “country”was used as the subject specifying that
data from one country aremore correlated than data from another
country. LMMwas also applied to a subset of the data involving
the combined application of NPK with micronutrients, lime, or
manure. These combinations were tested on seven sites in four
countries across SSA. The sites were Sidindi in Kenya, Kasungu,
Nkhata Bay and Tuchila in Malawi, Kiberashi and Mbinga in
Tanzania, and Pampaida in Nigeria. In all seven sites, data were
available for the no-input control, NPK, NPK + SMN and NPK
+manure, whereas data for NPK+ limewas available for all sites
except Mbinga and Pampaida. In both the large dataset and the
subset analyses, planned comparisonswere used to determine the
magnitude and direction of differences in response between the
NPK (used as the control) and all other treatments. Planned com-
parisons focus on a few theoretically sensible comparisons, and
therefore have the advantage of increased statistical power rela-
tive to the conventional “all possible comparison.”Dunnett’s test
was applied because it is designed for comparing treatment
groups with a control group and adjusts P-values to overcome
the multiplicity problem.

We used machine learning algorithms to explore the geno-
typic, environmental, and management variables that influ-
ence yield response and agronomic efficiencies of applied
nutrients. We used random forest (RF) ensemble models to
rank the importance of each of the variables and to predict the
yield responses (Breiman 2001). The RF algorithm creates
and merges several decision trees to get the most reliable fore-
cast. Sets of 22 and 25 predictor variables were used for maize
and rice, respectively. These were variety (maturity type),
AEZ, total rainfall, solar radiation, minimum temperature
(Tmin), maximum temperature (Tmax), soil type, soil organic
carbon (SOC), total N, C:N ratio, clay content, sand content,
soil pH, total N, available P, exchangeable K, Ca, Mg, Ca:Mg,
Ca:K, Mg:K ratios and soil stability index (SSI), N rate, P rate
and K rate. We used the coefficient of determination (R2),
cross-validation root mean square of error (RMSE), residual
prediction deviation (RPD), and bias for the assessment of
model accuracy. To estimate the importance of each variable,
predictions based on the data used for the training of the RF
model were compared to observations not used in the creation
of the trees (i.e., the out-of-bag samples). Then, we created the
partial dependence plots (PDPs) for each response variable
using the top five influential variables.
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3 Synthesis

3.1 Overall effects of nutrient applications on yields
and NUE

The cumulative frequency distributions of yields (Fig. 2) re-
vealed that the water-limited grain yield ceiling of maize is
10 Mg ha−1 (at ~88% dry matter); the probability of exceeding
this value with either NPK or NPK + SMN was only 0.01. This

value is slightly higher than the 7–8 Mg ha−1 reported in earlier
analyses (e.g., Kihara et al. 2017; Sileshi et al. 2010). On average,
attainable yields of maize with combined application of NPK
were 4.1 Mg ha−1, which is about two times the current average
yields on farmers’ fields (~2 Mg ha−1; van Ittersum et al. 2013).
Unlikemaize, the cumulative distribution function ofNPKyields
in rice stochastically dominated -K yields (Fig. 2).

The overall effects of treatments on grain yields and partial
factor productivity of N, P, and K were highly significant (P <

Fig. 2 The cumulative probability distribution of grain yields (at 86 to
88% dry matter) of a rainfed maize, b irrigated lowland rice, c rainfed
lowland rice, and d rainfed upland rice using different combinations of N,
P, K, NPK +other macronutrients and micronutrients (NPK+SMN). -N =

PK; -P = NK; -K = NP. The cumulative distribution function of NPK
yields is said to dominate yields from treatment X if the distribution of
NPK lies to the right without overlapping or crisscrossing.
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0.001; Table 1). Although no significant differences were
found in maize grain yield between NPK and -K, NPK was
superior to -K in terms of partial factor productivities of N and
P (Table 1). This indicates that N and P are more efficiently
utilized in maize production systems when K is applied. This
agrees with earlier findings on the synergistic effects of N and
K on yield elsewhere (Hirniak 2018; Hou et al. 2019; Rietra
et al. 2017). While -K, NPK and NPK + SMN were indistin-
guishable in terms of mean yields (Table 1) and their cumu-
lative probability distributions of yields (Fig. 2), spatiotempo-
ral variability in yield was greatly reduced with NPK + SMN
(CV = 43.3%) relative to NPK (CV~49%). The probability of
exceeding the African Green Revolution maize yield target of
3 Mg ha−1 was higher with NPK + SMN (ϕ = 0.81) than with
NPK alone (ϕ = 0.73; Table 1).

Under irrigation, the rice yield ceiling was ~10 Mg ha−1

(at ~86% dry matter), while the corresponding value was
~8 Mg ha−1 in both lowland and upland rainfed rice pro-
duction systems (Fig. 2). The probability of achieving the

target yields of 7 and 9 Mg ha−1 was <0.02, and this
occurred only on Luvisols. The estimated attainable yield
is comparable with attainable yields of 10.8 Mg ha−1 in
Tanzania and 10.3 Mg ha−1 in Madagascar reported in the
GYGA database (GYGA 2021), but higher than the values
of 8.3 Mg ha−1 reported by Niang et al. (2017) for irrigat-
ed lowland rice. The rice yield ceilings observed in rainfed
lowland and rainfed upland are also higher than the 6.5
and 4.0 Mg ha−1 reported in Niang et al. (2017). Across
the three rice production systems, NPK significantly (P <
0.001) increased rice grain yields and partial factor pro-
ductivities over -N, -P, and -K (Table 1). The partial factor
productivities of N and P were significantly higher (P <
0.001) with NPK than -K in all rice production systems
(Table 1).

The results in Table 1 demonstrate that with the balanced
application of NPK fertilizer, grain yields of about 4 Mg ha−1

are attainable for rainfed maize and rice at scale. This indicates
that maize and rice yields can be doubled with the balanced

Table 1 Grain yield (Mg ha−1), coefficients of variation (CV), the
probability of failing to achieve a target yield of 3 Mg ha−1 (ϕ < 3) and
partial factor productivity (kg grain kg−1 nutrient) of N, P, and K following
different fertilizer treatments in maize, irrigated lowland (IL), rainfed lowland
(RL), and rainfed upland (RU) rice. †Treatments are: -N, -P, -K, no-input
control; -N, omission of N (PK alone); -P, omission of P (NK alone); -K,

omission of K (NP alone); NPK + SMN, combined application of NPKwith
other macronutrients and micronutrients. ‡Sample size represents site-season
(year) combinations. According toDunnett’s test,means followed by ***, **,
and * are significantly different from NPKmeans (shaded gray) at the 0.001,
0.01, and 0.05α levels, respectively, while ns, not significantly different from
NPK means.

Crop/ Treatment
†

Mean Production risk Partial factor productivity

system (sample size)
‡

grain yield CV  < 3 N P K

Maize -N, -P, -K (1521) 1.7*** 77.1 0.77 -- -- --

-N (1374) 2.0*** 69.5 0.67 -- 53.8*** 37.9***

-P (1299) 2.9*** 67.4 0.50 25.0*** -- 57.7***

-K (1308) 3.9
ns

49.7 0.28 33.0* 110.9* --

NPK (1580) 4.1 49.0 0.27 34.9 117.8 82.1

NPK + SMN (1026) 4.2
ns

43.3 0.19 36.7* 125.6* 86.8*

IL rice -N (323) 3.5*** 60.3 0.55 -- 132.1*** 43.8***

-P (321) 4.3*** 53.2 0.40 24.6*** -- 51.9***

-K (323) 4.4*** 55.2 0.41 25.1*** 161.0*** --

NPK (327) 5.0 49.7 0.27 28.3 182.3 59.9

RL rice -N (510) 2.6*** 56.7 0.68 -- 118.4*** 44.5***

-P (508) 3.4*** 54.6 0.49 25.0*** -- 55.5***

-K (506) 3.6*** 51.8 0.45 26.4*** 157.3*** --

NPK (512) 4.1 47.2 0.35 30.8 182.3 68.3

RU rice -N (175) 2.3*** 63.0 0.78 -- 103.4*** 40.0***

-P (175) 2.5*** 66.0 0.75 19.7*** -- 43.6***

-K (175) 2.9*** 58.9 0.64 22.7*** 129.5** --

NPK (175) 3.4 56.1 0.47 27.1 154.6 60.1
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application of NPK. The mean rice yields achieved with NPK
(Table 1) are higher than those reported on farmers’ fields
(Tanaka et al. 2017) in irrigated lowland (2.2–5.8 Mg ha−1),
rainfed lowland (1.1–5.2 Mg ha−1), and rainfed upland (1.0–
2.5 Mg ha−1) rice across SSA. The attainable yields, however,
significantly (P < 0.001) varied with soil type (Fig. 3). The
highest and lowest maize yields were achieved on Nitisols
(8.1 Mg ha−1) and Leptosols (1.7 Mg ha−1), respectively.
In irrigated and rainfed lowland rice, the highest yields
were recorded on Nitisols (6.1 Mg ha−1) and Vertisols
(6.8 Mg ha−1), respectively (Fig. 3). The highest yield of
rainfed upland rice (3.6 Mg ha−1) was attained on Luvisols,
but this did not significantly differ from yields achieved on
other soils. In contrast, Vertisols gave lowest yield for irrigat-
ed rice, while they gave the highest yield in rainfed lowland
rice.

On a subset of the sites where NPK was applied in combi-
nation with other macronutrients and micronutrients or manure,
grain yields and partial factor productivity of N, P, and K were
significantly (P < 0.001) higher than with NPK alone (Table 2).
NPK + manure achieved the highest yield increase over NPK
(24.2%) and the no-input control (127.8%). With a CV of
~49%, the lowest spatiotemporal variability was recorded with
NPK +manure (Table 2). Themean increase in grain yield with
NPK + SMN (18.2%) over NPK was lower than the 25%
increase reported in Kihara et al. (2017). The highest PFPN,
PFPP, and PFPK were recorded in NPK + manure, which were
significantly higher than in NPK alone (Table 2).

The trends in Fig. 3 suggest that soil type is one of the key
determinants of the large-scale variability in yield. Earlier
analyses have also identified soil type as a major determinant
of indigenous soil nutrient supply, crop yield response, and
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input use efficiency (Kihara et al. 2017; Sileshi et al. 2010).
Many soil properties are related to clay mineralogy and tex-
ture. Clay minerals play an important role in the supply, re-
tention and fixation of nutrients and, consequently, crop yield
responses to nutrient applications. Generally, soils with low-
activity and 1:1 clay lattice (e.g., Acrisols, Ferralsols, Lixisols,
Nitisols and Plinthosols) have low CEC and poor capacity to
supply nutrients compared to high-activity clays with 2:1 lat-
tice (e.g., Alisols, Cambisols, Fluvisols, Luvisol and
Vertisols). Soils that contain 2:1 clay may fix NH4 and K
within their lattice structures, while highly weathered soils
rich in 1:1 lattice and amorphous clay minerals have high
levels of free Al and Fe with a high P-fixing capacity (Batjes
2011). The consistently high yields of maize and rice on
Vertisols and Nitisols could be attributed to their high clay
content (>30%), SOM and high water-holding capacity
(IUSS Working Group WRB 2014). The strongly acidic con-
ditions and P sorption on Alisols, Acrisols and Ferralsols
(Batjes 2011) may also result in low N and P use efficiencies.
The omission of P led to a 50% reduction in maize yield on the
acidic Ferralsols in eastern Kenya (Kihara and Njoroge 2013).
AEP is expected to be low on soils with inherently high plant-
available P or high P retention, such as Andosols, Alisols,
Acrisols, and Ferralsols (Batjes 2011). The low maize yields
observed on Leptosols (Fig. 3) may be associated with their
poor physical characteristics. Leptosols are shallow soils rich
in coarse fragments, making them susceptible to erosion
(IUSS Working Group WRB 2014). This may also explain
the low yield response to P and AEP on Leptosols
(Supplementary Fig. S2). Although Arenosols are sandy and
have poor water and nutrient holding capacity, they had higher

maize and rice yields and yield responses than many other soil
types.

3.2 Spatial variability in yield response and agronomic
efficiency

This analysis established the empirical distributions (Figs. 4 and
5) and expected values (Table 3) of yield responses to N, P, and
K and agronomic efficiencies. In both maize and rice, N ac-
counted for the largest yield response (Table 3). This is consis-
tent with earlier observations that N is the most yield-limiting
nutrient, followed by P and K in SSA (e.g., Saito et al. 2019).
Based on the median values in Fig. 4, we estimate yield re-
sponses to N, P, and K in the ratio of 11:6:1 in maize and
2.6:1.4:1 in rice. The ratio found for rice was similar to ratios
found for irrigated rice in China (Xu et al. 2019). The higher
yield response to N in maize compared to rice could be attrib-
uted to the differences in their photosynthetic pathways.
Photosynthetic N use efficiency is known to be higher in maize
(a C4 plant) than in rice (a C3 plant) (Makino et al. 2003). Due
to the different carbon fixation mechanisms, C4 plants such as
maize have a higher photosynthesis efficiency than C3 plants
such as rice (Wang et al. 2012). C3 photosynthesis only uses
the Calvin cycle to fix CO2 catalyzed by ribulose-1,5-
bisphosphate carboxylase (Rubisco), which takes place inside
the mesophyll cell’s chloroplast. For C4 plants such as maize
(NADP-ME subtype), photosynthetic activities are partitioned
between mesophyll and bundle sheath cells that are anatomi-
cally and biochemically distinct (Wang et al. 2013).

The CVs indicate that maize yield response to K is 6–9
times more variable than the response to N (Table 3). The high

Table 2 Mean maize grain yields (Mg ha−1), coefficients of variation (CV),
the probability of failing to achieve a target yield of 3 Mg ha−1 (ϕ < 3) and
partial factor productivity (kg kg−1 nutrient) of N, P, and K on sites where a
combination of NPK, other macronutrients, micronutrients, lime and manure
were compared. †Treatments are: -N, -P -K, no-input control; -N, omission ofN
(PK alone); -P, omission of P (NK alone); -K, omission of K (NP alone); NPK

+ SMN, combined application of NPK with other macronutrients and
micronutrients. ‡Sample size represents site-season (year) combinations.
Means followed by *** and * are significantly different from NPK means at
0.001 and 0.05 α levels, respectively, while ns, not significantly different
according to the Dunnett’s test.

Treatment
†

Mean Production risk Partial factor productivity

(sample size)
‡

grain yield CV  < 3 N P K

-N, -P, -K (349) 1.8*** 78.2 0.84 -- -- --

-N (211) 2.2*** 73 0.74 -- 74.3*** 37.2***

-P (135) 2.9* 66.3 0.64
30.1

ns
-- 48.8

ns

-K (138) 3.0
ns

62.5 0.61
31.1

ns
100.9

ns
--

NPK (385) 3.3 58.1 0.50 34.2 112.1 56.1

NPK + lime (160) 3.5
ns

63.6 0.53
36.2

ns
117.4

ns
58.8

ns

NPK + SMN (187) 3.9* 54.8 0.34 38.8* 128.0* 64.1*

NPK + manure (247) 4.1*** 49.4 0.34 41.1*** 135.5*** 67.8***
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variability in response to K clearly emphasizes the need for
site-specific K application recommendations. It also under-
scores the need for a better understanding of conditions under
which yield responses to K are expected.

In maize, the probabilities of no response (ϕ <0) to N, P,
and K were 0.11, 0.22, and 0.43, respectively (Fig. 4). In the
case of rice, the corresponding probabilities were 0.12, 0.19,
and 0.22, respectively (Fig. 4). The average maize yield re-
sponses to N, P, and K with NPK + SMN were not signifi-
cantly different from responses with NPK alone (Table 3).

However, spatial variability in N and P responses was lower
with NPK + SMN than NPK alone (Table 3). The opposite
effect was observed with response to K; the 95% confidence
intervals of the CV were wider under NPK + SMN (563–
1829%) compared with NPK (388–1455%). With NPK +
SMN, yield response to N increased by 80–400% on
Luvisols, Leptosols, and Vertisols compared to NPK alone.
Agronomic efficiency of P was also significantly improved
with NPK + SMN (36.5 kg increase in grain kg−1 P) over
NPK alone (24.5 kg increase in grain kg−1 P). P response

Fig. 4 Frequency distributions of maize and rice yield responses (Mg
grain ha−1) to N, P, and K across sites. Q1 is the first quartile, Q2 is the
median, Q3 is the third quartile, ϕ is the probability of values falling
below (<) or exceeding (>) a given level and CV is the coefficient of

variation (%). For maize, sample sizes were 1302, 1225, and 1237 for
yield responses to N, P, and K, respectively. The respective sample sizes
in rice (production systems combined) were 647, 642, and 647 for N, P,
and K.
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was higher with NPK + SMN than NPK alone on most soils
except Acrisols. On the other hand, K response was lower
with NPK + SMN than NPK alone on Arenosols, Lixisols,
Nitisols, and Plinthosols. This indicates that the effects of the
other macronutrients and micronutrients on the agronomic
efficiency of N, P, and K are location-specific.

Rice yield response to N significantly (P < 0.001) varied
with production systems (Table 3), but responses to P and K
did not vary significantly. The yield responses to P recorded in
this study (Table 3) are strikingly similar to yield response of
irrigated rice to P (0.9 Mg ha−1) in a large number of on-farm
nutrient omission trials in the major rice-producing regions of
China (Xu et al. 2019). K yield responses were 2–3 times higher
in rice than in maize. This is probably because of differences in
the soil available K status and K uptake requirements. For ex-
ample, a 1Mg ha−1 rice straw harvest requires an annual uptake

of 16.6 kg K ha−1 in lowland rice and 23.8 kg K ha−1 K in
upland rice, while a 1 Mg ha−1 maize straw harvest requires
12.9 kg K ha−1 (Rietra et al. 2017). On average, 68−90% of the
K taken up by rice is stored in the straw; K contents in straw
typically increase with K supply (Ye et al. 2019). Higher re-
sponse to K in rice could also be attributed to the relatively
higher N rates applied, especially in irrigated rice. Generally,
rice yield response to K increases with an increase in N appli-
cation rates (Hou et al. 2019).

Table 3 summarizes the estimated values of yield response
and agronomic efficiency, and their uncertainty in the differ-
ent cropping systems. Figure 4 and Supplementary Fig. S2
provide the empirical distributions and variations with soil
type. These values may be used as baselines against which
future improvements in response and AE can be judged. Even
though the N rates applied were the same, agronomic

Fig. 5 Frequency distributions of the agronomic efficiency (kg grain
increase kg−1) of applied N, P, and K in maize (left panel) and rice
(right panel). Smooth lines represent the normal probability distribution

of the variable. Q1 is the first quartile, Q2 is the median, Q3 is the third
quartile,ϕ is the probability of values falling below (<) or exceeding (>) a
given level, and CV is the coefficient of variation (%).
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efficiencies for N were lower in rainfed rice than in maize
(Table 3). This is probably because N is more efficiently uti-
lized by maize, a C4 plant (Makino et al. 2003). In contrast,
applied K was used with greater efficiency in rice than in
maize production systems, although higher rates of K were
applied in rice cropping systems (Table 3).

The mean AEN recorded in this analysis is comparable
with values reported elsewhere for maize (Ten Berge et al.
2019) and rice (Chivenge et al. 2021). The AEP and AEK of
maize recorded in this analysis (Table 3) are also comparable
with the range of AEP values (23–26 kg grain increase kg−1 P)
and AEK values (0.9–5.4 kg grain increase kg−1 K) reported
in Ten Berge et al. (2019) and Dhillon et al. (2019). However,
our results (Supplementary Fig. S2) provide additional evi-
dence for significant variation with soil type and production
system.

In both maize and rice cropping, soil type followed by
agroecological zone and maturity period of varieties account-
ed for the largest proportion of explained variation in N, P, and
K responses (Supplementary Table S4). This is consistent
with the results of farm surveys, which show differences in
rice yield between the agroecological zones (Tanaka et al.
2017). Mean maize yield response to N was significantly (P
= 0.0012) higher in humid (2.1 Mg ha−1) and subhumid
(1.9 Mg ha−1) sites than in semi-arid (1.4 Mg ha−1) sites.
Similarly, maize yield responses to P and K were significantly
(P < 0.001) higher in humid sites than in subhumid and semi-
arid sites. Maize and rice yield responses to N significantly (P
< 0.001) varied with soil types (Fig. 6) and maturity periods of
varieties. In both crops, yield responses to N were significant

and positive (YR > 0 Mg ha−1) on all soil types; the exception
being on Luvisols and Leptosols in maize and Acrisols in
rainfed lowland rice (Fig. 6). The highest maize response to
N (4.0 Mg ha−1) was recorded on Vertisols, while the lowest
(0.2 Mg ha−1) was recorded on Luvisols, which was signifi-
cantly lower than all other soils, except Leptosols (Fig. 6), as
indicated by the non-overlapping 95%CI. Rice yield response
to N was highest on Arenosols (2.4 Mg ha−1) in irrigated
lowland, Vertisols (2.7 Mg ha−1) in rainfed lowland, and
Luvisols (2.7 Mg ha−1) in rainfed upland rice (Fig. 6).

Maize and rice yield responses to P were significantly
higher than zero on most soil types except Nitisols,
Luvisols, Leptosols, Acrisols, and Andosols (Fig. 6). The
highest maize yield response to P (1.5 Mg ha−1) was recorded
on Plinthosols, while the lowest response (0.1 Mg ha−1) with
the largest spatial variability was recorded on Luvisols. The
highest mean yield response to K (0.7 Mg ha−1) with the
smallest spatial variability was recorded on Acrisols, while
the lowest (0.01 Mg ha−1) was on Leptosols (Fig. 6). Maize
yield response to K was not significant on most soils except
Lixisols, Acrisols, and Cambisols.

In irrigated lowland rice, the highest yield response to N was
recorded on Arenosols (2.5 Mg ha−1), while the lowest was on
Vertisols (0.7 Mg ha−1). The opposite was observed in rainfed
lowland, where the highest yield response to Nwas recorded on
Vertisols (2.7 Mg ha−1). These differences could be due to
differences in management and water relations between irrigat-
ed and rainfed lowlands. Yield response to P was higher on
Vertisols and Alisols in rice production systems (Fig. 6).
Although Vertisols have good chemical fertility, their physical

Table 3 Estimates of yield responses (in Mg ha−1) to N, P, and K,
agronomic efficiencies (kg increase in grain kg−1) and their spatial
variability (expressed in CV%) in maize and irrigated lowland (IL),

rainfed lowland, and rainfed upland (RU) rice cropping systems.
Figures in parentheses are bias-corrected 95% CIs.

Mean CV (%)

Crop N P K N P K

Yield response
Maize with NPK alone 2.2 (2.0, 2.4) 1.0 (0.9, 1.2) 0.2 (0.1, 0.4) 96.8 184.0 619.1

Maize with NPK + SMN 2.1 (2.0, 2.2) 1.2 (1.0, 1.3) 0.2 (0.1, 0.3) 92.5 169.9 875.8

IL rice 1.8 (1.6, 2.0) 0.8 (0.6, 0.9) 0.6 (0.5, 0.8) 78.7 139.8 169.1

RL rice 1.4 (1.3, 1.6) 0.7 (0.6, 0.9) 0.6 (0.5, 0.7) 94.7 151.2 166.8

RU rice 1.0 (0.9, 1.2) 0.9 (0.8, 1.1) 0.5 (0.4, 0.6) 106.6 107.3 136

Agronomic efficiency
Maize with NPK alone 17.6 (15.9, 19.3) 24.5 (19.9, 28.9) 5.3 (2.1, 8.5) 96.5 188.3 613.9

Maize with NPK + SMN 16.7 (15.7, 17.6) 36.5 (32.3, 40.7) 3.3 (1.3, 5.4) 92.2 187.7 996.3

IL rice 9.7 (8.7, 10.8) 28.1 (22.8, 33.7) 7.4 (5.6, 9.1) 76.9 138 166.2

RL rice 11.3 (10.1, 12.5) 35.0 (29.3, 40.6) 10.2 (8.3, 12.1) 98.5 148.3 165.1

RU rice 8.8 (7.2, 10.3) 45.0 (37.2, 52.7) 9.5 (7.4, 11.6) 106.2 107.7 135.9
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Fig. 6 Variations in yield response to N, P, and K by soil type in maize,
irrigated lowland (IL), rainfed lowland (RL), and rainfed upland (RU)
rice. Horizontal bars represent the 95% confidence limits. Numbers on the
y axis represent mean yield responses for each soil type. The red dotted
vertical line represents the point where there was no yield gain or loss

(YNPK = Yt) due to treatment relative to NPK. The 95% confidence limits
falling above that line indicate significant response to the nutrient in
question. Calculations are as follows: response to N = YNPK − YPK;
response to P = YNPK − YNK; response to K = YNPK − YNP.
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characteristics, notably their complex water relations, pose
management challenges (IUSS Working Group WRB 2014).
In rainfed upland rice, response to applied P was highest on
Alisols (Fig. 6). This is probably because applied P alleviated
the constraints due to the high P-fixing capacity on these soils.
Alisols are strongly acidic and suffer from aluminum toxicity, P
sorption, and poor water relations (Batjes 2011; IUSSWorking
Group WRB 2014). Responses to K were significant and pos-
itive on most soils except Nitisols, Vertisols, and Acrisols in
rice cropping systems (Fig. 6). The trends in agronomic effi-
ciency (Supplementary Fig. S2) generally followed the trends
in yield response (Fig. 6).

Although the highest grain yields of maize and irrigated
rice were recorded on Nitisols, yield responses to P and K
were consistently low on Nitisols (Fig. 6). The low yield re-
sponse in maize and irrigated rice to K on Nitisols and
Vertisols may be partly caused by the naturally high K re-
serves (Elephant et al. 2019) and interactions between applied
K and the exchangeable Mg, Ca, and Na (Rietra et al. 2017).

Beyond the crop and environmental factors affecting agro-
nomic nutrient use efficiencies, there were significant differ-
ences in maize yield responses and agronomic nutrient use
efficiencies for various categories of N:P:K application ratios
(Table 4). The differences were due to a combination of the
different N:P:K application ratios, nutrient application rates,
and the differences in nutrient-specific yield responses at var-
ious study sites. Agronomic N and P use efficiencies were low
in low-yield-response data sets (1:0.33:0.60 and 1:1:1), irre-
spective of nutrient application ratios. For the 1:1:1 category, a
high application rate of P (100 kg P ha−1) coupled with the
mode of application (broadcasting and incorporation) contrib-
uted to the extremely low AEP value. Spot placement of fer-
tilizer P has been shown to result in more efficient crop uptake
of applied P compared to broadcasting and incorporation due
to the higher concentration of P close to plant roots in spot
application compared to in broadcast application (Van der
Eijk et al. 2006). The relatively low AEN observed for the
1:1:1 category could also be partly attributed to the lower yield
response to applied N due to the broadcast application of a

third of the N applied. Agronomic K efficiency was highest
for the 1:0.27:0.27 ratio category, partly due to the lower
proportion of K applied (Table 4). The results underscore
the importance of accounting for nutrient application ratios
and nutrient application methods in interpreting trends in ag-
ronomic nutrient use efficiencies.

3.3 Predictors of yield and yield response

The random forest algorithms provided further insights into
the factors associated with the spatial variations in grain yields
and responses to N, P, and K in maize and rice. To focus on
key results, the top six variables are summarized in Table 5. A
complete set of all the variable importance plots is provided in
Supplementary Fig. S3 for maize and Supplementary Fig. S4
for rice. The partial dependence plots (PDPs) and predictions
of yield, yield response, and agronomic efficiency are given in
Supplementary Fig. S5 for maize and Supplementary Fig. S6
for rice.

In maize, exchangeable Ca, Mg, K, pH, soil type, Mg:K
and Ca:K ratios were identified as the most influential vari-
ables for yield, yield responses, and agronomic efficiency
(Table 5). The results are consistent with past studies in SSA
(Farina et al. 1992; Lombin 1981; Mtangadura et al. 2017;
Roobroeck et al. 2021) that have established correlations be-
tween maize yields and exchangeable Ca, Mg, and K. In long-
term trials in the northern Nigerian savannah, Lombin (1981)
noted depression of maize yield by K, which created unfavor-
able soil Ca:K and Mg:K ratios.

Rice yields and yield responses to N, P, and K were mainly
driven by exchangeable cations and their ratios, rainfall, tem-
perature, solar radiation, soil type, and variety (Table 5). In
irrigated rice, exchangeable Ca, AEZ, maximum temperature
(Tmax), soil type and minimum temperature (Tmin) were
identified as the five most influential variables associated with
grain yield. The emergence of Ca as a strong determinant in
maize and irrigated rice was most likely associated with soil
type and clay mineralogy. Exchangeable bases are a function
of soil clay (amount and type) and SOM.

Table 4 Mean estimates of maize yield responses (in Mg ha−1) to N, P and K, and agronomic efficiencies (kg increase in grain kg−1) as influenced by
differences in N, P, and K application ratios. Values in the same column followed by a different superscript are significantly different at P<0.05).

N:P:K ratio N yield response Agronomic efficiency N P yield response Agronomic efficiency P K yield response Agronomic efficiency K

1: 0.18: 0.35 2.3a 19.2a 1.59a 72.7a 0.1a 2.45a

1: 0.27: 0.27 2.12a 20.2ab 1.31abc 43.7b 0.75bc 25.16b

1: 0.27: 0.40 2.8b 18.6ab 1.35ab 33.8bc 0.78b 12.99c

1: 0.30: 0.60 1.1c 11c 0.41d 13.7d 0.23a 3.78a

1: 0.33: 0.33 2.5ab 21a 0.8cd 21.2cd 0.12a 3.48a

1: 0.36: 0.36 2.34a 16.7b 1.61a 32.3bc 0.1a 1.98a

1: 1: 1 1.24c 12.5c 0.94bcd 9.49d 0.31ac 3.12a
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In rainfed lowland rice, total rainfall, Tmin, Tmax, soil type
and sand content were the most influential variables associat-
ed with grain yield. In rainfed upland rice, grain yield was
influenced primarily by Tmax followed by total rainfall, solar
radiation, variety, Mg:K and Ca:Mg ratios (Table 5). Yield
response to N was influenced primarily by Ca:Mg followed
by Tmax, Mg:K, solar radiation, variety and exchangeable K,
whereas yield response to P was influenced by Tmax, ex-
changeable K, SSI, clay content, Mg:K and exchangeable
Mg (Table 5). On the other hand, yield response to K was
influenced primarily by exchangeable K, followed by solar
radiation, variety, Ca:Mg, Ca:K and available P (Table 5).
As expected, medium and late maturing varieties
outperformed early maturing varieties in the rainfed upland
rice. This is probably because medium and late-maturing va-
rieties did not face drought at crucial phenology stages. The
more extended growth period for medium and late varieties
also supported more interception of photosynthetically active
radiation resulting in more energy accumulation and conver-
sion to grain.

The emergence of P, K, Ca, Mg, Ca:K and Mg:K as influ-
ential variables (Table 5) in maize and rice cropping systems
emphasizes the need to prioritize the most valuable soil param-
eters in predicting yields and yield responses. The Ca:K and
Mg:K ratios in soils are essential for the balanced uptake of
mineral nutrients by plants because excess concentrations of
one can negatively influence plant growth. For example, there
is growing evidence of K deficiency in Africa, even in soils

with optimum amounts of exchangeable K (Laekemariam
et al. 2018). This is associated with induced deficiencies due
to Ca, Mg, and K imbalances (Laekemariam et al. 2018). The
literature also suggests that K-induced Mg deficiency is wide-
spread in agroecosystems (Rietra et al. 2017; Xie et al. 2020).
Therefore, improved response to applied nutrients and more
efficient utilization can occur only when such interactions are
fully understood, and corrective measures are taken. K is of
particular interest as it is underappreciated despite its interac-
tions with almost all of the essential macronutrients and
micronutrients, and its uptake and utilization are closely related
to the availability and uptake of other nutrients (Rietra et al.
2017). The total soil K content is also a poor indicator of
plant-available K due to inaccurate sampling and analysis
methods. Although most soils may have abundant K, highly
weathered soils have limited weatherable K reserves. The frac-
tion of plant-available K in soil solution is 0.1–0.2% of total soil
K, and the fraction of exchangeable K is 1–2% (Dhillon et al.
2019). The availability of K also depends on the soil type, clay
mineralogy, SOM and pH (Dhillon et al. 2019), while K uptake
may depend on the amount of ammonium (NH4

+), sodium
(Na2+), copper and zinc oxides in the soil (Bindraban et al.
2015; Wang et al. 2013). The capacity of some soils to fix
added K (Elephant et al. 2019) is underappreciated in SSA.
These observations highlight the urgent need for research that
furthers our understanding of the site-specific interactions be-
tween K and other nutrients, and the K fixation capacity of soil
in Africa for better soil fertility management.

Table 5 The top six influential variables identified out of 22 and 25
variables used in random forests algorithm for maize and irrigated
lowland (IL), rainfed lowland, and rainfed upland (RU) rice cropping

systems (complete details are provided in Supplementary Figs. S3-S4).
For a complete set of variable importance plots, refer to Supplementary
Figs. S3 and S4 for maize and rice, respectively.

Crop-
system

Response variable Influential var

1st 2nd 3rd 4th 5th 6th

Maize Grain yield Ca pH Mg Soil type K Mg:K

N response Soil type Mg Ca K Ca:K Mg:K

P response P Ca Mg Clay pH Mg:K

K response Mg K pH Ca Mg:K Soil type

Rice-IL Grain yield Ca AEZ Tmax Soil type Tmin SSI

N response Rainfall Ca:K Soil type Tmax Tmin Na

P response Sand Mg:K Soil type pH Ca:K Total N

K response Soil type Tmax Na Rainfall P SOC

Rice-RL Grain yield Rainfall Tmin Tmax Soil type Sand Radiation

N response Tmin Rainfall Tmax Ca:Mg Sand Soil type

P response Soil type Tmin AEZ Rainfall K rate SSI

K response P Rainfall AEZ Tmin Na SSI

Rice-RU Grain yield Tmax Rainfall Radiation Variety Mg;K Ca:Mg

N response Ca:Mg Tmax Mg:K Radiation Variety K

P response Tmax K SSI Clay Mg:K Mg

K response K Radiation Variety Ca:Mg Ca:K P
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4 Limitations of the study and data gaps

Although this work aimed to assess the genotype (G) x envi-
ronment (E) x management (M) interactions in maize and rice
yields, the genotype effects could not be adequately addressed
because no single variety of maize or rice was used across a
large number of sites. Information was also lacking on the
days to maturity and yield potentials of the cultivars used.
Therefore, it was not possible to group genotypes into homo-
geneous categories to perform the desired analysis to reveal
the genotype effect. It is necessary to assess G x E x M in
specific breeding target domains (Futakuchi et al. 2021) to
better understand genetic gains, management gains, and their
interaction.

Unlike maize, not many NOTs have tested rice responses
to the combined application of NPK with micronutrients, lime
or manure. Therefore, we were unable to provide an analysis
of such results. The limited number of recent studies (e.g.,
Awio et al. 2021; Senthilkumar et al. 2021) and reviews
(Ibrahim et al. 2021) shows that rice response to macronutri-
ents and micronutrients is context-specific. For example, NPK
+ other macronutrients and micronutrients enhanced lowland
rice yield on Fluvisols in Tanzania but not on Plintosols in
Uganda (Awio et al. 2021). The effect of micronutrients on
yield was consistent in irrigated rice but was highly variable in
rainfed lowland and upland rice in Tanzania (Senthilkumar
et al. 2021). Therefore, there is a need to identify soils and
production systems where specific macronutrients and
micronutrients are limiting. In future NOT experiments, con-
sistent inclusion of micronutrients and macronutrients other
than NPK will be of value to better assess their influence on
maize and rice yield responses and nutrient use efficiencies.

In both maize and rice NOTs, 19–43% of the sites did not
have complete soil test data (Supplementary Tables S2 and
S3). This has limited the use of these variables in the random
forests model, especially for maize, where more sites had
missing values. Therefore, we recommend standardizing
methods and reporting of soil clay and sand content, soil pH,
SOC, total N, available N, available P, available K, exchange-
able K, Ca and Mg to be a minimum data requirement for
NOTs. With advances in soil analysis techniques (e.g., near-
infrared spectrometry), many soil properties could be quanti-
fied fairly rapidly and cheaply. Therefore, we strongly recom-
mend standardizing soil test data for all NOTs and other relat-
ed trials.

The omission trials analyzed here did not adequately cover
the main soil types. For example, >80% of the data for maize
response to NPK came from just six soil types: Lixisols,
Acrisols, Leptosols, Arenosols, Plinthosols and Vertisols,
while Ferralsols, one of the dominant soils of SSA, where
maize is cultivated, has not been covered. As in maize,
~80% of the NPK yields of rice came from just six soil types:
Luvisols, Arenosols, Alisols, Gleysols, Cambisols and

Ferralsols. Data gaps exist for most soil types where rice and
maize can be potentially cultivated. In agroecological zones,
subhumid and semi-arid zones represented over 70% of the
maize and rice yield data using NPK. The review also revealed
regional imbalances in the representativeness of NOTs. For
example, maize NOTs were available only from six countries,
but over 80% of the NPK yield data came fromNigeria (33%),
Tanzania (22%), Malawi (21%), and Ethiopia (12%). In this
situation, the main maize growing areas are not adequately
represented. The rice NOTs came from 16 countries covering
the main rice-growing areas. Although the data adequately
covered the major lowland rice production systems, the
rainfed upland system was not. We strongly recommend
inter-institutional collaboration to develop a standard frame-
work for guiding the selection of trial sites to adequately rep-
resent soil types, breeding domains, agroecological zones and
socio-economic factors at the regional level. Further effort is
needed to reduce the cost of implementation of NOTs, stan-
dardizing sampling frameworks and the design of the trials.

The random forest modeling results motivate further stud-
ies on interactions between the applied and indigenous soil
nutrients as well as farmer management practices and history
of input use which affect crop response (Adolwa et al. 2019).
More in-depth information on farmer management and water
regimes is also required to better understand crop nutrient
response patterns.

5 Conclusions

Yields of 4 t ha−1 in maize and rice were achievable with
balanced fertilization. This implies that it is possible to double
maize and rice yield with improved nutrient management,
even without changes in the varieties used. The balanced ap-
plicat ion of NPK with other macronutr ients and
micronutrients reduces spatial variability in maize production
systems. It was also revealed that response to K was lower in
maize than rice cropping systems. There is a profound vari-
ability in maize and rice yield response to K fertilizer, which is
driven by the soil available K status and the interactions be-
tween applied K and base cations in the soil. The reliability of
available K as an indicator of K requirements is often limited
by inaccurate sampling and analysis methods. Our analysis
also showed that the effect of the other macronutrients and
micronutrients on the agronomic efficiency of K is context-
specific, highlighting the need for targeted K recommenda-
tions. We recommend further research and diagnostic trials
to address site-specific interactions between soil nutrients to
avoid imbalances and induced deficiencies. These results have
important implications for governments, farmers and private
sector fertilizer and seed producers in SSA. To optimize
returns to investment in fertilizer in maize and rice production
systems, there is a need to tailor specific fertilizer formulations
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to specific growing conditions. This is particularly relevant for
areas with strong yield responses to K, other macronutrients
and micronutrients.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s13593-022-00821-4.
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