
HAL Id: hal-04189025
https://hal.science/hal-04189025v2

Preprint submitted on 28 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From System Events to Software Operations for
Refinement-based Modeling of Hybrid Systems *

Zheng Cheng, Dominique Méry

To cite this version:
Zheng Cheng, Dominique Méry. From System Events to Software Operations for Refinement-based
Modeling of Hybrid Systems *. 2023. �hal-04189025v2�

https://hal.science/hal-04189025v2
https://hal.archives-ouvertes.fr


From System Events to Software Operations for
Refinement-based Modeling of Hybrid Systems*

Zheng Cheng† Dominique Méry
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Abstract

Hybrid systems are widely used in a variety of safety-critical applications. Therefore,
it is vital to provide a high-level safety guarantee for their implementations. Based on the
action system and the refinement methodology, researchers show how to model a safe time-
triggered design in the Event-B language. It consists of system events that monitor the
system state periodically and make appropriate actuation decisions for the system’s safety.
However, two crucial types of system events are missing in such design, i.e. sensing and
actuation, which hinders the development of robust hybrid systems. In addition, Event-B
is specialized in high-level system modeling. Its primitives are not expressive enough to
naturally support refining system events into low-level software implementations. In this
work, we propose a way to refine (by decomposition) the time-triggered design to intro-
duce the missing system events, without complex high-level system modeling. Based on
the decomposition, we identify which system events are implementable. Then, we define a
translational approach to the B language. Our translational approach: 1) systematically
modularizes a specified Event-B software operation from associated system events. 2)
defines a verified translation to obtain a semantically equivalent correspondent in the B
language for each modularized Event-B software operation. This translational approach
allows us to reuse the primitives of B for refining system events down to implementations,
and reuse the predicate transformers defined on the B primitives to reason for the correct-
ness of refinements. It also ensures that the behaviors of the implementations obtained via
refinements in B do not divert from the corresponding system events specified in Event-B.
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B method, code generation

*Supported by the ANR DISCONT Project ANR-17-CE25-0005.
†Zheng Cheng contributed to this work when he was a postdoctoral fellow in the DISCONT project. He now

holds another position.

1



Contents
1 Introduction 3

1.1 Context of the Problem and Sketch of Ideas . . . . . . . . . . . . . . . . . . . 3
1.2 To B(e), or not to B(e), that is the question:. . . . . . . . . . . . . . . . . . . . . 3
1.3 From Hybrid Modelling to Correct-by-Construction Controller . . . . . . . . . 4
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview 5

3 Summary on the B-software language and the Event-B language 8

4 Running Example 10

5 Refining Time-triggered Design 13
5.1 Sense Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Control Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Actuate Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Plant Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Methodological Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 A Translational Approach for Code Generation of System Events 17
6.1 Modularization of Software Operators . . . . . . . . . . . . . . . . . . . . . . 18

6.1.1 Predicate Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.2 Encapsulation of Software Operators . . . . . . . . . . . . . . . . . . 18
6.1.3 Merging of System Events . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Verified Translation to B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.1 Syntax and Semantics for the Event-B and B Constructs . . . . . . . . 19
6.2.2 Translation and Verification . . . . . . . . . . . . . . . . . . . . . . . 20

7 Discussion 20

8 Related Work 21

9 Conclusion 23

2



1 Introduction

1.1 Context of the Problem and Sketch of Ideas
Whenever continuous dynamics and discrete control interact, hybrid systems arise. This is espe-
cially the case in embedded and distributed systems where decision-making logic is combined
with physical continuous processes. Nowadays, hybrid systems are becoming increasingly com-
plex and autonomous in building applications such as self-driving vehicles, and robotics. There-
fore, it is vital to provide a high-level safety guarantee for their implementations. Various tools
and formalisms are proposed to provide high-level safety guarantees for hybrid systems at the
design level [?, ?, 6]. Recently, their extensions are developed for safety guarantees at the im-
plementation level [10, 42], which maximizes state-of-the-art verification technology to meet
real-world’s needs without error-prone work of implementing design models by hand. Event-
B [2] is an evolution of the B language [1], specialized in high-level system design and analysis.
Its development is supported by the Rodin toolbox [3], which provides effective features for
stepwise refinement and mathematical proofs. It provides a subset of primitives (generalized
substitutions) of B for modeling the behaviors of system events and developing reactive sys-
tems. However, it is not the focus of Event-B to use these primitives to keep refining the system
events into low-level software implementations.

This last remark is important, and is based on the difference between a model corresponding
to software and a model corresponding to a system that may include software. A software is a
system, but a system is not necessarily a software. These elements serve to warn the reader who
might confuse these two notions, expressed in very similar languages such as B [1]’s generalized
substitution language with abstract machines. For this paper, an (abstract) system is modeled
by a set of events that observe changes of states described by state variables; a software or a
program also describes state transformations defined as operations that are conditionally called.
Moreover, we aim to provide ,a general technique for integrating Event-B models and B mod-
els and for illustrating a complete chain for developing correct-by-construction controllers. A
controller is a small program which interacts with a plant through sensors and actuators and it
will be a C program in our current paper.

1.2 To B(e), or not to B(e), that is the question:. . .
Confusion may arise in the mind of readers unfamiliar with the dialects using the B notation.
The B-Software language [1] is dedicated to software modeling and uses the wp calculus to
generate verification conditions called proof obligations; it is supported by the Atelier-B tool-
box [17]. The Event-B/Rodin language (Event-B) [2] or the Event-B/Atelier-B language (B-
System) [?] are dedicated to modeling systems which may include software; the B-System
language is supported by the Atelier-B toolbox and the Event-B language is supported by the
Rodin toolbox [3]. A first point is that B-Software and B-System are both supported by the
same platform namely Atelier-B; however, the bridge between, the two kinds of modelling is
not defined and supported by the current toolbox. Our paper defines, analyzes and checks the
translation between the Event-B models and the B-Software models. We have chosen the Rodin
platform, which is open and offers a more pedagogical proof assistant. However, we wanted to
take advantage of the Atelier-B to C translators to get a complete development chain. Another
point should be stated in our so called Event-B models, we are dealing with hybrid systems and
we aim to express very complex mathematical properties as Banach spaces or differential equa-
tions. Thanks to Back’s action systems [6] which are extending the scope of classical action
systems and which are extending Event-B models by applying same ideas in a first attempt for
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modelling hybrid systems [40]. Technical details will be given later and we hope that this short
introduction will provide a clear view of what we did and what we did not. A second point
is related to the possibility to extend Event-B models in Rodin using the Theory plugin [?, ?].
Finally, the choice of B notation and these two dialects, Event-B and B-Software, is justified by
the tools available. Naturally, the question arises of using another Formal IDE (FIDE) [8, 36]
and we can consider the use of Keymaera [?], which implements the dL logic with the HP (Hy-
brid Programs) language equipped with the
leq refinement. There are worksIsabelle/HOL [?, ?] on using dL together with Isabelle/HOL
but with no refinement strategy. They need the translation of a validated model into a form
amenable to verification in a proof environment such as Isabelle/HOL. HHL [?] is another pos-
sible candidate for deriving a correct controller, but without refinement. A point which is not
addressed when using those tools as well as the B-related tools is the certification of proofs and
it is not considered by our approach ,and is left for further works.

1.3 From Hybrid Modelling to Correct-by-Construction Controller
There are many works on designing hybrid systems w.r.t. given safety properties using Event-
B [4, 7, 13, 19–23, 31, 39, 40]. However, we do not aware of existing works on extending them
for implementing designed Event-B models. Compared to existing works on code generation of
Event-B for discrete algorithms [12, 16, 25, 32–34, 41], deriving implementations from hybrid
system designs in Event-B requires two new properties: 1) identifying system events that need
to be generated. 2) categorizing and modularizing system events to facilitate implementations.

Our proposal is based on [13], where the input is a time-triggered design that contains
system events for the plant and the controller. The design periodically monitors the system
state and specifies that, when certain conditions are met, how the system should be actuated to
behave safely (Example shown in Section 2).

First, inspired by [22], we propose to refine the time-triggered design to introduce additional
system events for sensing and actuation (Section 3). The goal is to model the limitations of the
real world in the corresponding system events, and to construct more robust implementations.

Next, we categorize all system events of a time-triggered design into the physical component
(plant) and the software-based components (sensor, controller, actuator). The physical compo-
nent is modeled by the law of physics using for example differential equations. It is given for
developing time-triggered designs and should be fixed. We can only observe its behaviors and
actuate accordingly, but we cannot program it to change its behaviors to obtain what we want.
The software-based components on the other hand are implementable.

To soundly refine the software-based components down to low-level software implementa-
tions, in Section 4, we define a translational approach to the B language [1]. The essential idea
is to systematically modularize a specified Event-B software operator from associated system
events of each software-based component. Then, by defining a verified translation, we can ob-
tain a semantically equivalent correspondent in the classical B language for each modularized
Event-B software operator. This translational approach allows us to reuse the primitives of the B
notation for refining system events down to implementations, and reuse the predicate transform-
ers defined on the B primitives to reason about the correctness of refinements. It also ensures
that the behaviors of the implementations obtained via refinements in B-Software do not divert
from the corresponding system events specified in Event-B.

In addition, the source of our certified translation is the specification of modularized soft-
ware operation, this greatly reduces the certification effort, and makes our proposal practical.
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1.4 Summary
The paper is organized as follows: Section 2 motivates our approach by an example. Section 3
details how we refine the time-triggered design of [13] to introduce the missing system events
for sensing and actuation. Then, in Section 4, we define a translational approach to the B
language for code generation of system events. We discuss lessons learned in Section 5, and
compare our approach to the state-of-the-art in Section 6. Finally, we summarize our work and
lines for future work in Section 7.

2 Overview

Box 1
Dynamic Model
Requirements

Box 2
Event− B Model
Invariant&Safety

Box 3
Mixed Framerwork
Hybrid Programs
Invariant&Safety

elicitation

e2o translationdesign

iteration

Figure 1: Events to Operations

Development methods based on refinement make it possible to develop software systems
that are correct by construction. The approach is progressive and follows a series of checks that
ensure that a system model is maintained without errors or dust as emphasized by a fairly old
technique developed for software engineering and known as Cleanroom Model [?, ?, ?, ?] but
with a notion of refinement less well taken into account contrary to the case of the B method [1]
which paces the activity by checking verification conditions called proof obligations implement-
ing an inductive theory allowing to derive safety properties or weak invariants: B-software [1]
for software design, Event-B [2,3] or B-System [17] for system modelling, constitute instances
of the Cleanroom Model method, which rely on verification tools, in particular proof assistants.
The development process is thus organized as a progressive transformation, controlled by the
proof tools, of the model of the system to be built, which is enriched by different aspects or
elements indicated by the specifications. The general idea is therefore to progressively add ele-
ments to a ¡model in order to obtain an instance as concrete and complete as possible, allowing
in fine to produce a logical system preserving model properties. This step of passing from a con-
crete model of the system to the software model amounts to transforming pairs of (condition,
action) called events in Event-B (or B-System) into (precondition, action) called operations in
B-Software. Intuitively, an event observes a transformation of the system and an operation is
called or executed by a computer. The general process can be enriched by validation of differ-
ent intermediate models of the refinement chain. It is important to note that the system model
integrates both events modeling software transformations and physical transformations such as
temperature, force, mass, etc. On the semantic level, an operation is called and an event is
observed. Thus, in an Event-B or B-System or event-based model, we identify events that al-
low us to produce software operations and other events are not translated because they concern
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the environment or elements that have a life of their own. We cite a short example on the link
between plant and computer.

Example 2.1. (Plant and Software) An event-based model for a thermostat integrates events
modeling the control and decision and events modeling the process that increases or decreases
the temperature. It is clear that only the control and decision events are managed by the com-
puter and the other events are only there to express the physical process and are therefore not
programmable. We do not reboot a pressure cooker but we reboot the system that controls this
pressure cooker. This means that the physical process associated with the temperature involves
energy and that this energy is in fact continuously produced and that one can only interact via
actuators.

More generally, this work considers a very specific step of the design process (see Fig:
??) starting from specification and requirements, then iterating a refinement process until an
event-based model concretizes expected requirements with an incremental verification and a
validation using Rodin [3] tools when using Event-B, but also tools like simulation [?]. The
event-based model produced is thus correct by construction, but it is then necessary to extract a
controller in our case and identify the events concerned. This last step has to be checked and the
translation is relatively systematic. The new derived model is in fact expressed in the form of a
B-Software operation which corresponds at the time of its call to the observation of one of the
events of the event model. The interest is that this new model is then automatically translated
into a programming language such as C, C++ or ADA according to the translators available in
the support environment of the B method, Atelier-B [17]. We thus obtain a refinement chain of
models whose transformations are verified.

This work highlights the difference between a software operation that is called and an event
that is observed. It is based on two very similar environments Rodin for Event-B and Atelier-B
for B-Software. It illustrates the feasibility of such an approach from requirements to controller
code. It is possible also to use Atelier-B for B-System Atelier-B for B-Software for B-Software
but the main advantage of Rodin remains the clever interface of the proof tools making proofs
easier to build. We have summarized the main steps in the global process (see Fig: ??).

Figure ?? shows the different steps of the proposed and sketched methodology. To a certain
extent, we extend the Cleanroom Model of software engineering by filling the holes that exist
between the different formalisms or languages when considering CPS systems and thus hybrid
models. The proof effort is probably the most critical point in these development activities. For
each box, we can associate a language or formal model and thus justify the proposed work. Box
1 is the one where requirements are described and a sketch of the hybrid system to be designed is
given and this box 1 is for example what is classically described by a set of differential equations
and safety properties ( temperature is always between two values). MathWork manages
these elements and we can also note that hybrid automata [?, ?] undoubtedly constitute a clear
and rigorous framework of expressions to model a hybrid system described by linear differential
equations and safety properties. This Box 1 is thus occupied by hybrid automata and one can
thus use the tools of these models to have a first expression of the problem to be solved as a
hybrid automaton satisfying a set of properties. In particular, SpaceEx [?] offers possibilities
that we have explored. The transition from Box 1 to Box 2 is possible by a translation that we
have studied and defined but which will be the subject of a separate document. The interest of
this transformation is to allow then a use of the refinement in Box 2 which is in fact the Event-B
laboratory where we can play with the abstractions.

Box 2 is thus the laboratory allowing the development of hybrid models written in Event-
B and expressed quite directly in the Event-B formalism which is in fact initially defined on
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discrete structures but which can be extended by the use of continuous variables [6, 40]. This
box is developed in a more operational way by the recent works on the integration of continuous
mathematics in the Rodin environment thanks to the Theory plugin [19–23, 39]. The Event-
B/Rodin framework provides a way to simulate models under development as it was proposed
by [?]. The same is true of the work [?, 4] which followed the path of an extension of the set
of variables by continuous variables and a partial integration of the work of Platzer dL [?].
However, the modeling is particular and takes up the work of [19] by preserving a modeling
independent of the time which evolves (dt or time progression event in Event-B model [?, 4] )
but not at the same time as the state function f of the system (df or plant progression event in
Event-B [?, 4] ) ) and that leads to an original modeling but far from the standards of physics
where the function f and t evolve according to the quantity df/dt. This means that we will
use event models [22] with no explicit time progression events in accordance with the physical
realist assumptions of the Hybrid Event-B [7] extension. Back [6] had proposed an extension
of action systems by interpreting action systems on continuous time-dependent variables and
the notation x : |R(x, x′) where x is a discrete variable is extended to y : −e or y := y/now/e
meaning y/now/e = if t < now then y(t) else e(t) fi. Finally, Back defines ẏ : −f by
{y : −z|z(now) = y(now) ∧ ż = f(z), z ≥ now}. The Event-B generalized substitution can
thus be quite simply extended to continuous variables. To complete the box 2, we must point out
the importance of the refinement relation defined initially on discrete structures but extensible
to continuous variables and to events handling differential equations. In general, this relation
is established between an event of an abstract model, possibly skip, and a concrete event but
this relation can be more specific and a concrete event can refine several events by the merge
construction and this possibility will be useful for our work.

The Box 3 is called Mixed Framework to indicate that it can contain several techniques
of quite different nature. Examples of frameworks are Mathworks [?], Keymaera-X [?], or
Aterlier-B [17],. To some extent, these frameworks are very different but we can use some fea-
tures offered by Atelier-B for example which is the translator of implementation B machines
into C, C++ or ADA code. This functionality is available and we will use it in our work consid-
ering it as reliable. Atelier-B is used for the discrete part of the model from Box 2. Of course,
classical tools such as Matlab or Simulink allow to understand the hybrid systems under con-
struction. However, the Keymaera-X framework and the associated tools offer more concrete
possibilities thanks to the diiferential dynamic logic and to the proof techniques for the design
of hybrid programs. To a certain extent this tool is complementary to what we use and we could
consider applying Keymaera to validate the program produced by our transformation but this
requires a specific study and an adaptation of our transformation.

Our contribution concerns the transformation e2o which transforms a part of the events of
a time-triggered event-driven model into a software operation corresponding to the controller.
The problem is that event-driven models are all event-driven models and it is clear that the move
to a discrete implementation necessarily induces assumptions to be verified and models to be
evolved to obtain a model that is time-triggered but also interacts well with the external world of
physics, in particular the management of sensor information and the relationship to actuators.
To a certain extent, the event-driven models must be sufficiently concrete and time-triggered
concrete and time sensitive to be refined into a single operation modeling the controller call.

We wanted to set the scene and situate this work in a larger whole. In the next section,
we will specify some elements about the example used to explain this transformation from a
suitable concrete model which is a model allowing to merge events to get an operation in a
time-triggered view.
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C o n t e x t c1
E x t e n d s c2
S e t s S

C o n s t a n t s C

Axioms Ac
Theorems Tc
End

Listing 1: Abstract syntax of Event-B contexts

Machine m1

R e f i n e s m2

S e e s c1
V a r i a b l e s V

I n v a r i a n t s I

E v e n t s E

End

Listing 2: Abstract syntax of Event-B machines

3 Summary on the B-software language and the Event-B lan-
guage

Event-B [2] is an evolution of the B language [1], specialized in high-level system modeling and
analysis. When we model a reactive system in Event-B, it usually consists of 2 parts: contexts
and machines. Each context (abstract syntax shown in Listing ??) gives static properties of the
system at a particular refinement level, in terms of user-defined types (specified under Sets),
static objects (specified under Constants), presumed properties (specified under Axioms), and
derived properties (specified under Theorems). It can extends other contexts for reuse (specified
under Extends).

Each machine (abstract syntax shown in Listing ??) gives dynamic behaviors of the system
at a particular refinement level, which allows to access the contexts specified under Sees. A ma-
chine can be refined by another one to make its specific part of dynamic behaviors more concrete
(specified under Refines), e.g. changing data structure (data refinement) or adding complexity
(guard strengthening, superposition refinement). Each machine describes the observation of a
reactive system modifying a finite list of state variables (specified under Variables) satisfying
invariant properties (specified under Invariants). State variables are only modifiable through
events (specified under Events).

Each event (abstract syntax shown in Listing ??) can be parametrized (specified under Any).
It defines under which guards (specified under Where) the state variables are changed by actions
(specified under Then). Each action can be either deterministic or non-deterministic.

• Deterministic actions take the form of general assignment, which deterministically as-
signs values to state variables.

• Non-deterministic actions take the general form of a before-after predicate x : |P (x, x′),
i.e. the state variable named x is updated such that the post-state x′ and its pre-state x
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have the relation stated by the predicate P 1.

It is the user’s responsibility to ensure the feasibility of each action.

E v e n t e

Any P

Where G

Then A

End

Listing 3: Abstract syntax of Event-B events

From a methodological point of view, classical refinements are generally used to make ab-
stract specifications implementable. Therefore, in this setting, actions need to be gradually
refined to make them more suitable for implementation (e.g. non-deterministic actions being
refined into deterministic ones). However, some state variables can be model variables, i.e. their
corresponding updates facilitate proofs, but do not contribute to the final implementation.

O p e r a t o r op

P a r a m e t e r s ins

R e t u r n s outs

Axioms axioms

End

Listing 4: Abstract syntax of Event-B operators developed by the Theory plugin

The Rodin platform is an Eclipse-based IDE for Event-B. It provides effective supports for
stepwise refinement and mathematical proofs. The platform is open-source and can be extended
by various plugins. Among existing ones, the Theory plugin contributes to Rodin by providing
facilities to define mathematical extensions [11]. Its functionality is quite similar to contexts.
However, unlike contexts that are only visible within the developed Event-B system, the Theory
plugin allows users to introduce ones that can be reused across different systems modeled in
Event-B. Moreover, it provides a mechanism to guide how the prover should use the defined
mathematical extensions.

A theory developed by the Theory plugin consists of a list of interpreted and uninterpreted
operators. The interpreted operators must define their function body. The semantics of unin-
terpreted operators are axiomatized, which takes the form shown in Listing ??. Each operator
needs to define its inputs and outputs (specified under Parameters and Returns respectively).
It can have a list of axioms to define its semantics (specified under Axioms).

We have briefly introduced the Event-B language which is supported by Rodin [3], an open
toolset for modelling and reasoning in Event-B, and for completeness, we should also recall
that the B-System language is associated with the Atelier-B environment [17]. Event-B and B-
System are two dialects for modeling reactive systems and are based on the same assumptions.
Historically, Atelier-B was used to develop software and the B Book [1] is the first book pre-
senting the B language. J.-R. Abrial and his collaborators have evolved the language to allow
a so-called system approach. Therefore, it is important to remember that there is a separation
between the B models and the Event-B models. The passage from an Event-B model to a B
model requires the identification of events corresponding to software operations. Thus, the B
language provides a way to produce code from an implementation B-machine via a process of

1The P predicate of an event can only refer to the constants and sets in the context it allows to Sees, and the
event parameters, and the variables in its machine.
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refinement of operations. Also, in the case of a B model, operations are called and in the case
of Event-B, events are observed. The distinction is fundamental and is the focus of this paper.
We recall some elements of B.

A B abstract machine AM is defined by variables x that should satisfy an invariant I(x) and
by a list of operations which should preserve the invariant when they are called.

The next concept is to state what is the proof obligation of an operation O of the machine
AM O is defined as follows:

• O def
=

out ←− NAMEOP(in)
PRE
C(in, x)

THEN
out, x : |(R(in, x, x′, out′))

END

where in is an input parameter and out is an output parameter.

• I(x) ∧ C(in, x) ∧ trm(R)(in, x)⇒ [O](I(x)) where trm(R)(in, x) expresses the termi-
nation condition for R.

An operation O is called and the precondition should be true when calling it and it allows
to communicate values as in the interaction with sensors and actuators. The key transformation
is the merging of events into one event, which is in fact corresponding to an operation. Finally,
using events-based modelling, namely Event-B, makes possible the expression of events by
operations as long as it corresponds to a software activity.

4 Running Example
As a sample hybrid system, we consider a car position tracking system [37]: while the car is
driving down the lane, the controller must choose when to begin decelerating so that it stops at
or before a stop sign. The following informal information is given for the modeling.

• the hybrid system has two state variables p for the car position, and v for the car velocity.
The direction towards the stop sign is the positive direction.

• the possible behavior of the hybrid system is given by the differential equation ṗ = v, v̇ =
u.

• the user could alternate the behaviors of the hybrid system every δ seconds, by actuating
the acceleration u in the differential equation.

• the acceleration can be chosen from 3 simple actuation commands: it may cause the car
to accelerate with the rate A > 0, maintain velocity by choosing acceleration 0, or brake
with rate −B < 0.

• the safety constraint of the hybrid system is that assuming the stop sign is at the position
S, the car position should always satisfy p ≤ S. Moreover, in reality, when a car brakes,
after its velocity reaches 0, it is not possible to drive a car backward by braking. To model
this physical limitation of the hybrid system, we have a property that restricts v ≥ 0
always.
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Cheng and Méry [13] develop a refinement strategy to model such hybrid systems in Event-
B (we refer to the complete paper [13]). The outcome of their strategy is a time-triggered design
that is proven to ensure the given hybrid system behaves safely w.r.t. the given safety property.
It can be abstracted as shown in Listing 1.1. It has variables:

• x to represent the system state, which is of type R+ → D to represent a time series that
maps from the time domain (positive real numbers) to the system state domain D. In
our example, we thus have p, v ∈ R+ 7→ R to represent the car position and velocity
respectively; both p and v are partial functions.

• now for indexing the time series, e.g. x(now) represents the system state x at time now.
System events use now to explicitly model the time progression of the hybrid system
according to the relationship ∆f = f ′ ∗∆t. Domains of p and v are 0..now.

• s to distinguish between two system modes: 1) discrete control (DECISION ), and 2)
continuous progression (RUN ).

• u and tu to keep track of the chosen actuation command and the safety time envelope
under the chosen actuation command. The two variables are shared between the discrete
control and the continuous progression modes.

The safety property of the hybrid system is declared as an Event-B invariant, i.e. up until now
the system state is safe w.r.t. to the safety property Safe.

Then, the behaviors of the hybrid system are modeled by system events, which forms a
simplified closed-loop architecture. At the beginning of each cycle, the discrete control will be
executed first. It is modeled by a set of Predictioni system events. Each Predictioni event
predicts an actuation command ui from all possible commands (grd3), such that under certain
conditions Ci(x), its corresponding trajectory xui is verified to progress safely for the next
sampling time δ from now (thm1). For example, the car example yields 3 Prediction events2:

Machine M TIME TRIGGERED
V a r i a b l e s x now s u tu
I n v a r i a n t s . . .

safex : ∀t · t ∈ [0, now]⇒ Safe(x(t))

saferun : s = RUN ⇒(
∀t · t ∈ (now, now + tu]⇒ Safe(xu(t))

)
E v e n t s . . .

E v e n t Predictioni =̂

Where . . .
grd1 : Ci(x)

grd2 : s = DECISION

grd3 : ui ∈ U
Theorem
thm1 : ∀t · t ∈ (now, now + δ]⇒ Safe(xui(t))

Then . . .
act1 : u, tu := ui, δ

act2 : s := RUN

2For each event with the actuation command ui, pui
, vui

are the analytical solutions of the differential equations
ṗ = v, v̇ = u, where pui

(t) = p(now)+v(now)(t−now)+ 1
2ui(t−now)

2, and vui
(t) = v(now)+ui(t−now).
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End
E v e n t Progression =̂

Any tr
Where . . .
grd1 : tr ∈ [0, tu]

grd2 : s = RUN

Then
act1 : x := xC− ((now, now + tr]C xu)

act2 : now := now + tr
act3 : s := DECISION

End
End

Listing 5: Time-triggered design from [13]

• under Ci(p, v) =̂ pA(now + δ) + vA(now+δ)2

2B
≤ S, ui is set to accelerate at the rate of A.

• under Ci(p, v) =̂ pA(now+δ)+ vA(now+δ)2

2B
> S∧v = 0, ui is set to maintain acceleration

at the rate of 0.

• under Ci(p, v) =̂ pA(now + δ) + vA(now+δ)2

2B
> S ∧ v 6= 0, ui is set to brake at the rate of

−B.

The predicted actuation command is then stored by u and the safety envelope is stored by tu
(act1). As thm1 is proven on all the Prediction events, we can deduce that the saferun is an
invariant of the system: i.e. the system can follow the trajectory xu (resulting from taking the
predicted command u) to progress safely for the next tu seconds.

Next, the Progression event will be observed and it models the continuous progression of
the hybrid system. The progression is modeled to take tr seconds, which is between 0 and tu
(grd1). Because of the invariant saferun, we can ensure that when the system experiences the
full predicted cycle (tr = tu), or exits prematurely (tr ∈ [0, tu)), it will behave safely. Thus, the
Progression event will then update the system state x to follow the trajectory xu (resulted from
taking the predicted command u) for the next tr time from now (act1)3. now is simultaneously
updated to now + tr to model the duration of this continuous progression (act2). Finally, the
system alternates back to the discrete control mode to predict the next cycle (act3). Such time-
triggered designs allow the controller to specify system events that monitor the system state
periodically and make appropriate actuation decisions for the system to behave safely.

In this work, we aim to extend [13] for implementing designed Event-B models. Firstly,
our proposal is inspired by the work of Dupont et al. to introduce additional system events for
sensing and actuation [22]. They allow us to model the limitations of the real world, and to
construct more robust implementations. A small difference of our proposal compared to [22]
is that for a modular refinement strategy, we refine the initial design to introduce the additional
events, instead of directly adding them to the initial design. For example, when we refine the
time-triggered design of the car example, we introduce a Sense event to model the process that
digitizes the true system state p(now) and v(now) into the observed system state ps and vs
respectively. Then, it allows us to introduce bounded sensor error between the true state and the
observed state, and propagate the error via invariants. Next, the recipients of the sensor data can

3Event-B is based on the set theory. C− here means relational override, and C means domain restriction.
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O p e r a t o r car ctrl =̂

P a r a m e t e r s ps, vs

R e t u r n s ud, tu
Axioms

(ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B ≤ S ⇒
ud = ACC ∧ tu = δ) ∧

(ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B > S ∧ v = 0⇒
ud = STOP ∧ tu = δ) ∧

(ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B > S ∧ v 6= 0⇒
ud = BRAKE ∧ tu = δ)

End

Listing 6: A specified Event-B software operator for the discrete controller of the car position
tracking example

consider the bounded error for a more robust design (i.e. the system remains to behave safely
in presence of sensor error).

Secondly, to soundly refine the system events of Event-B down to low-level software imple-
mentations, we define a translational approach from Event-B to the B language. We exemplify
our approach to the controller development of the car system. We first systematically modularize
the Prediction events into a specified Event-B software operator called car ctrl (Listing 1.2).

It encapsulates the input parameters, returned outputs, and the specification of the discrete
controller that we want to implement. We then translate the specified Event-B software operator
into a B operation (Listing 1.3)4. The translated B operation is initially given by a precondi-
tioned substitution of B (Pre...Then...): the type information of translated inputs and outputs is
given in the Pre section, and the Then section uses a before-after predicate of the B language
to encode the translated operator specification5.

We verify that the specification of the Event-B software operator and its translation in B
are semantically equivalent. This verification is to ensure that the behaviors of the implemen-
tations obtained via refinements in B do not divert from the corresponding system events spec-
ified in Event-B. Next, we reuse the programming primitives of B (e.g. local variable, if and
sequence substitutions) to refine the translated B operation for producing software implementa-
tion (Listing 1.4). The refinement correctness is verified on the Atelier-B platform [27], which
implements the existing predicate transformers defined on the B primitives [1].

5 Refining Time-triggered Design
From the time-triggered design developed in [13] (Listing 1.1), our proposal starts by refining it
into: 1) physical component (physical plant). 2) software-based components (sensor, controller,
actuator). We cannot directly program the differential equations of a physical component to

4By an Event-B software operator, we refer to an axiomatic operator introduced by the Theory plugin of Rodin
for mathematical extensions of Event-B [11]. By a B(-software) operation, we refer to the standard operation
construct in the B(-software) language. A B(-software) operation intends to model a software call and is supported
by the B-software language using Atelier-B [27].

5In Event-B, x′ refers to the post-state of x after the updating. In B, x$0 is the pre-value of x and x is the next
value of x. The before-after predicate in B takes the format of x : (P (x$0, x)), which means the variable x is
updated in a way that satisfies the predicate P . The notation is changed to x :| P (x, x′) in Event-B.
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ud, tu ← car ctrl(ps, vs) =
Pre
ps ∈ Real ∧ vs ∈ Real ∧ ud ∈ Ud ∧ tu ∈ Real

Then
ud, tu :

(ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B ≤ S ⇒
ud = ACC ∧ tu = δ) ∧

(ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B > S ∧ v = 0⇒
ud = STOP ∧ tu = δ) ∧

(ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B > S ∧ v 6= 0⇒
ud = BRAKE ∧ tu = δ)

End

Listing 7: The translated B operation of Listing 1.2

ud, tu ← car ctrl(ps, vs) =
Var
v1, v2

In

v1 := ps+ vsδ + 1
2Aδ

2 + (vs+Aδ)2

2B ;
v2 := S ;
I f v1 ≤ v2 Then
ud, tu := ACC, δ

E l s e
I f vs = 0 Then
ud, tu := STOP, δ

E l s e
ud, tu := BRAKE, δ

End
End

End

Listing 8: The implemented B operation of Listing 1.3
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change its behaviors. However, we can program software-based components to do that.
These components together form an improved closed-loop architecture: 1) at the start, the

system state is observed via sensors (the Sense event). 2) Then, the observed data is passed
to the controller to make a control decision (the Control events). 3) Next, the control decision
is received by the actuator to generate the actuation command (the Actuate event). 4) Finally,
the generated actuation command is sent to the plant. The plant reacts to the command, and
produces a new system state for observation, thereby closing the loop (the Plant event).

Compared to [13], we introduce two missing system events for sensing and actuation. This
allows us to model the limitations of the real world in the corresponding system events, and
allow us to construct a more robust design. To establish its refinement relationship with the time-
triggered design introduced in [13], we introduce a new mode variable ss ∈ {SENSE,CONTROL,ACT -
UATE, PLANT}, and the following glue invariants with the mode variable s ∈ {DECISION,R-
UN} in the time-triggered design:

• ss = SENSE ⇒ s = DECISION

• ss = CONTROL⇒ s = DECISION

• ss = ACTUATE ⇒ s = RUN

• ss = PLANT ⇒ s = RUN

In what follows, we detail our development for such an improved closed-loop architecture.

5.1 Sense Event
In reality, sensors are used to measure the system state and to convert measurements into digital
data to be processed on a computer. However, the measurements could be inaccurate, and the
conversion inevitably loses precision. Thus, we introduce the Sense event (Listing 1.5) to
model the transformation from the true system state to the digital data, i.e. the state observed
by the controller.

The semantics of the Sense event is that it takes the full system state x as the input (after
continuous progression), and it outputs the observed state xs. The types of x and xs can be
different.

Through external engineering efforts (such as reading the specification for the chosen sen-
sors, and/or via observability analysis from the control theory), the user needs to determine a
specification Rs that establishes the relationship between x and xs (act1).

Then, the specification of the Sense event is propagated via a glue invariant invxs, and is
used for designs of other software-based components.

Example. In the car position tracking example, the Sense event should model the translation
from the true system state p and v to the observed state ps and vs. One scenario could be that
the state observation does not introduce any noise. Thus, we introduce an invariant to establish
their equalities, i.e. Rs(ps, vs, p, v) =̂ ps = p ∧ vs = v. A different scenario could be that the
state observation introduces bounded errors εp and εv for the state p and v respectively. Then,
we can introduce an invariant, i.e. Rs(ps, vs, p, v) =̂ |ps− p| ≤ εp ∧ |vs− v| ≤ εv to propagate
this information to other software-based components.
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Machine M IMPL
R e f i n e s
M TIME TRIGGERED
V a r i a b l e s x xs . . .
I n v a r i a n t s
invxs :Rs(xs, x)

E v e n t s
E v e n t Sense =̂

Where
grd2 : ss = SENSE

Then
act1 :xs :| Rs(x′s, x)
act2 : ss :=CONTROL

End
. . .

End

Listing 9: The Sense event

E v e n t Controli =̂

R e f i n e s Predictioni
Where
grd1 :CCi(xs)
grd2 : ss = CONTROL

Then
act1 :ud , tu :|

u′d = udi ∧ t′u = δ

act2 : ss := ACTUATE

End

Listing 10: The Control event

Machine M IMPL
R e f i n e s
M TIME TRIGGERED
I n v a r i a n t s
invud :Ra(ud, u)

E v e n t s
E v e n t Actuate =̂

Where
grd1 : ss = ACTUATE

Then
act1 :u :| Ra(ud, u′)
act2 : ss := PLANT

End
. . .

End

Listing 11: The Actuate event

5.2 Control Event
Each Control event refines a Prediction event of the time-triggered design. It still models the
discrete control, However, its semantics is slightly changed in this refinement (Listing 1.6): the
guard of the Prediction event Ci that predicts the true system state is refined into CCi that
predicts the observed state, where CCi needs to be as strong as Ci (i.e. CCi(xs) ⇒ Ci(x)).
Moreover, instead of directly producing the desired actuation command u, we introduce a dis-
crete variable ud. This allows us to encapsulate actuation-related matters into a separate system
event called Actuate.

Example. In the car position tracking example, we refine each Predictioni event to a Controli
event to model that the observed state is received by the controller to generate a discrete actua-
tion command ud.

The additional complication here is that the 3 sub-cases in the control logic of the time-
triggered design are written in terms of the system state p and v, which are not available any-
more and need to be rewritten in terms of the observed state ps and vs sent by the Sense event.
For example, assuming that there is no sensor error (i.e. using ps = p ∧ vs = v as the invariant
via the Sense event), let us consider one of the case Ci(p, v) =̂ pA(now+ δ) + vA(now+δ)2

2B
≤ S,

we can expand the definition of pA and vA, and replace the reference to p and v with ps and
vs to obtain CCi(ps, vs) =̂ ps + vsδ + 1

2
Aδ2 + (vs+Aδ)2

2B
≤ S, which is trivial to prove that it

is as strong as Ci(p, v). We can do such replacement analogously when there are bounded
sensor errors to be considered. Furthermore, the new control logic will no longer directly
produce the actuation command u ∈ {A, 0,−B}, but produce a discrete actuation command
ud ∈ {ACC, STOP,BRAKE}.
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5.3 Actuate Event
The Actuate event is demonstrated by the snippets shown in Listing 1.7. It models how the
discrete actuation command ud is mapped to the desired actuation command u that affects the
state of the hybrid system. The goal is to encapsulate actuation-related matters into this system
event.

Through external engineering efforts (such as reading the specification for the chosen actu-
ator), the user needs to determine a specification Ra that establishes the relationship between
ud and u. Then, the specification of the Actuate event is propagated via a glue invariant invud.
Such invariant informs other components on what the Actuate event is produced.

Example. In the car example, the Actuate event models the translation from the discrete actu-
ation command ud to the desired actuation command u, where the glue invariant Ra(ud, u):

• ud = ACC ⇒ u = A

• ud = STOP ⇒ u = 0

• ud = BRAKE ⇒ u = −B

5.4 Plant Event
The Plant event corresponds to the Progression event from the time-triggered design, which
has the same inputs/outputs behavior as the Progression event: it still receives the desired
actuation command u and produces the true system state x. Therefore, there is no adaption
required on the Progression event except to change its mode control from s to ss to integrate
into the new closed-loop architecture.

5.5 Methodological Summary
The specifications of the Sense and Actuate events are explicitly defined using two predicates
Rs(xs, x) and Ra(ud, u). Making explicit information on the sensing precision or on the actuat-
ing effectiveness is related to the domain analysis and formalization [5, 9]. The domain experts
may provide a list of properties or assumptions on those predicates. One can consider that those
properties are expressed in frameworks as ontologies or knowledge domains.

TheControl event emphasizes on concrete control logic development based on the digitized
data (i.e. the observed state xs, and the discrete actuation command ud). The developed concrete
control logic should refine the abstract control logic defined by the Prediction event of the time-
triggered design. To establish such refinement generically, a global mathematical theory should
be defined based on the explicit information from domain experts, which can be developed via
the theory mechanism of Event-B (supported by the Theory plugin from Rodin [11]).

6 A Translational Approach for Code Generation of System
Events

By the proposed refinement in Section 3, we categorize system events of a time-triggered design
into the physical component (plant) and the software-based components (sensor, controller,
actuator). In this section, we define a translational approach to the B language. Our translational
approach: 1) systematically modularize a specified Event-B software operator from associated
system events of each software-based component (Section 4.1). 2) defines a verified translation
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to obtain a semantically equivalent correspondent in the B language for each modularized Event-
B software operator (Section 4.2).

6.1 Modularization of Software Operators
To capture the overall expected semantics of each software-based component, we systematically
modularize each software-based component into a specified Event-B software operator in 3
steps.

6.1.1 Predicate Extraction

For each software-based component, we extract a predicate from each of its associated Event-
B system events, which takes the form of Ge(x) ⇒ BAe(x, x

′) (where Ge(x) is the guard of
the associated system event e, and BAe(x, x′) is the action of e represented by a before-after
predicate) 6.

We then refine the action of each associated event (i.e. BAe(x, x′)) by the extracted predicate
(i.e. Ge(x)⇒ BAe(x, x

′)).
For example, by predicate extraction, each Control event of the controller component

shown in Listing 1.6 is refined into the snippet shown in Listing 1.8.

E v e n t Controli =̂

R e f i n e s Controli
Where
grd1 :CCi(xs)
grd2 : ss = CONTROL

Then
act1 :ud, tu :|(
CCi(xs)⇒

(u′d = udi ∧ t′u = δ)
)

act2 : ss := ACTUATE

End

Listing 12: The refined
Control event of Listing 1.6
in Event-B

O p e r a t o r fc =̂

P a r a m e t e r s xs
R e t u r n s ud, tu
Axioms

∧i
(
CCi(xs)⇒

(ud = udi ∧ tu = δ)
)

End

Listing 13: The template
for encapsulating a spec-ified
Event-B software operator for
the controller component

E v e n t Control =̂

R e f i n e s Control1 ,
. . . , Controli

Where
grd1 :CC1(xs) ∨

. . . ∨ CCi(xs)

grd2 : ss = CONTROL

Then
act1 :ud , tu := fc(xs)

act2 : ss := ACTUATE

End

Listing 14: The merged event
for the controller component
in Event-B

6.1.2 Encapsulation of Software Operators

For each software-based component, we then encapsulate a specified Event-B software oper-
ator via the theory mechanism of Event-B (using the Theory plugin from Rodin [11]). This
encapsulation requires to provide: 1) the inputs of the operator, which are gathered from vari-
ables/constants in the guards of associated events of a component. 2) the outputs of the operator,
which are gathered from variables in the actions of associated events of a component. 3) the

6mode variable ss is excluded since it does not contribute to the implementation logic.
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specifications of the operator, which are the logical conjunction of the extracted predicates in
the actions of associated events of a component.

The template for encapsulating a specified Event-B software operator for the controller com-
ponent is demonstrated in Listing 1.9. We thus can instantiate the template to obtain Listing 1.2
for the controller component of the car position tracking example. The other two components
are developed analogously.

6.1.3 Merging of System Events

We then refine the action of each associated system event by referring to the encapsulated op-
erator. This is to engineer all associated events of a software-based component to: 1) take the
same number/type of inputs, and 2) produce the same number/type of outputs, and 3) perform
the same form of behaviors.

Then, we merge all associated events of each software-based component into a single system
event of Event-B. This is done by the event merging mechanism of Event-B, where: 1) the
actions of the events to be merged must be identical, and become the actions of the merged
event. 2) the guards of the events to be merged form a logical disjunction, which becomes
the guard of the merged event. We demonstrate the merging for the controller component in
Listing 1.10.

6.2 Verified Translation to B
Next, we translate each specified Event-B software operator into a B operation. The translated
B operation is initially given by a preconditioned substitution of B (Pre...Then...), where the
type information of translated inputs and outputs is given in the Pre section, and the translated
operator specification is given in the Then section (See Listing 1.3 for an example).

If we incorrectly translate the specifications of Event-B software operators, our development
in B would start with the wrong specifications, and thus not able to obtain the implementation
that we want. Thus, in this section, we verify that the specification of the Event-B software
operator and its translation in B are semantically equivalent.

6.2.1 Syntax and Semantics for the Event-B and B Constructs

First, we formalize the syntax and semantics for a subset of the Event-B and B languages in the
Dafny language [28]. The subsets consist of constructs for expressions and predicates, which
we use to express the operator specifications in both languages. We choose Dafny because of its
proof automation, but other languages with equivalent expressiveness can be used for the same
task (e.g. Coq [8], Lean [35], Isabelle [36]).

We first inductively define the syntax of the Event-B and B expressions. For example, the
following Dafny code defines the integer expression for Event-B, which can be constructed from
either a literal expression, an identifier, an unary expression (negation), or a binary expression
(addition, subtraction, multiplication, and division):

data type e b I n t E x p r =
| e b I n t L i t E x p r ( n : i n t )
| e b I n t I d E x p r ( v : s t r i n g )
| ebIn tUnExpr ( op : ebIntUnOp , e : e b I n t E x p r )
| e b I n t B i n E x p r

( op : ebIntBinOp , e1 : e b I n t E x p r , e2 : e b I n t E x p r )

We construct a similar inductive type in Dafny for defining the syntax of the real expressions.
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Based on the syntax of the Event-B and B expressions, we then define the syntax for their
predicates. For example, the following Dafny code defines the predicate for Event-B, which
consists of: boolean literal predicate (true, false), unary predicate (not), binary predicate (logical
and, or, implication and equivalence), and relational predicate for integers and reals (arithmetic
equality, and comparisons):

data type ebPred =
| e b L i t P r e d ( v : e b L i t P r e d V a l )
| ebUnPred ( op : ebUnPredOp , p : ebPred )
| ebBinPred ( bop : ebBinPredOp , p1 : ebPred , p2 : ebPred )
| e b I n t R e l P r e d

( op : ebIn tRelOp , e1 : e b I n t E x p r , e2 : e b I n t E x p r )
| e b R e a l R e l P r e d

( op : ebRealRelOp , e1 : ebRealExpr , e2 : ebRea lExpr )

Then, we model the semantics for expressions and predicates of both languages in Dafny.
For this task, we first define the evaluation context as a simple mapping from the identifier string
to its value (either an integer or a real number):

data type v a l u e = v i n t ( i : i n t ) | v r e a l ( r : r e a l )
type C o n t e x t = map<s t r i n g , va lue>

We then define an evaluation function in Dafny to encode how the Event-B and B expres-
sions and predicates are interpreted given an evaluation context. For example, we can look up
the value of an Event-B identifier expression in the given context by (which returns 0 if not
found or not an integer identifier expression):

f u n c t i o n method i n t e r p e b I n t E x p r
( e : e b I n t E x p r , c t x : C o n t e x t ) : i n t
d e c r e a s e s e

{ match e { . . .
case e b I n t I d E x p r ( v ) ⇒

i f v in c t x . Keys then
i f c t x [ v ] . v i n t ? then c t x [ v ] . i e l s e 0

e l s e 0
. . . }}

As we use an intermediate language to encode the semantics of source and target languages,
we need to pay attention to potential semantic differences, and we rely on three language refer-
ences to reduce the potential errors in this process [2, 17, 24].

6.2.2 Translation and Verification

The translation from the Event-B expressions/predicates to the B expressions/predicates is de-
fined based on their corresponding syntax. It is a straightforward one-to-one mapping between
the constructs of the two languages. We then verify that the specification of the Event-B soft-
ware operator and its translation in B are semantically equivalent. The semantic equivalence is
defined as:

f u n c t i o n method c o m p i l e P r e d ( p : ebPred ) : abPred
d e c r e a s e s p
ensures ∀ c t x : C o n t e x t •

i n t e r p a b P r e d ( c o m p i l e P r e d ( p ) , c t x )=
i n t e r p e b P r e d ( p , c t x )

That is by giving the same context, the interpretation of the compiled B predicate yields the same
result as the interpretation of the input Event-B predicate. It can be verified by case analysis
on the input Event-B predicate, which is automatically proved in Dafny due to its automated
induction capability [29].
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7 Discussion
In addition to the car position tracking system, we also validate our approach to the design
of a smart heating system that is used by [13]. The artifacts of this work are publicly and
anonimously available on [14]. While the example shows the feasibility of our proposal, we
identify the following points that are not yet addressed in our proposal for modeling hybrid
systems.

Currently, we assume that the actuation command is sent from the control logic to the phys-
ical plant without disturbance. To ensure the system would behave correctly under actuation
command interference, one needs to model that the designed control logic could produce a
range of actuation commands (constrained by user-defined predicates). Then, it needs to prove
that under any of these commands, the system should still be able to progress safely for the next
cycle. Such a model for handling actuation command interference has a larger set of behaviors
than the time-triggered design of [13], which requires modifying the initial abstraction of [13]
to include it in the refinement.

When we design control logic in Event-B based on exact future predictions, it is straight-
forward and accurate when system dynamics have analytical solutions and initial conditions are
known (like in the car position example). However, systems in real life rarely meet these crite-
ria, which makes such an exact prediction more of an approximation. The problem is that when
we use any approximation method in place of exact mathematical procedures, the truncation
error occurs. Therefore, if we want to adapt control logic cases by approximations, we need
to consider truncation errors carefully. The feasibility of bounding truncation error depends
on various factors such as the complexity of system dynamics, or the chosen approximation
method. Assuming that truncation errors are boundable, we need to introduce new refinement
to the Event-B model defined in Section 3, which rewrites the designed control logic in terms
of bounded error and the approximation result.

Atelier-B [27] defines a subset of B, called the B0 language. When a B component is
encoded in this subset, it can be automatically translated to C programs using the Atelier-B
code generator. One of the main restrictions of B0 is that it requires its program to only use
integers. We think that we could introduce data-type conversion predicates in Event-B (e.g. real
to integers), and bound the conversion error. This allows us to rewrite control logic in a similar
way that deals with truncation errors. An alternative is to introduce float-point arithmetic in
Event-B, and rewrite control logic based on that. Consequently, we can extend our verified
translation to target B0 for reusing its code generator.

We use real numbers for modeling system state, which are not finitely representable on a
computer. Languages/frameworks generally restrict their usage in the implementation. For ex-
ample, Atelier-B requires its program logic to be defined in integers for using its code generator.
To facilitate the implementation of software-based components, we should introduce data-type
conversion predicates (e.g. real to integers), and bound the conversion error. This allows us
to rewrite control logic in a similar way that deals with truncation errors. An alternative is to
introduce float-point arithmetic, and rewrite control logic based on that.

To simplify our modeling, we assume that sensing/computation/actuation takes no time.
However, most realistic systems take time for these tasks, and the time taken might not be
neglectable. Thanks to the refinement introduced in Section 3, we could introduce delays in the
corresponding system events for modeling the time taken for sensing/computation/actuation.
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8 Related Work
Researchers have developed various techniques to concretize models for hybrid system designs.
One approach is to write verified translations to generate control software directly from safe
hybrid models [10, 42]. Its main difficulty is that the source and target languages might have
quite different semantics. In this work, we adopt refinements to generate control software from
safe hybrid models in two steps: 1) control software specification from safe hybrid models, 2)
control software implementation from its specification. The first step involves several refine-
ment steps to reduce the semantic gap between the source and target models, which simplifies
the verification of their translation.

Various works design hybrid systems using Event-B [4, 7, 19–23, 39, 40]. They are broadly
under the framework of the continuous action systems developed by Back et al. [6]. Our current
work is highly influenced by these works. However, we do not aware of existing works on ex-
tending them for implementing designed Event-B models as we did in this work and we remain
in the philosophy of the initial B method starting by an abstract machine which is progres-
sively refined into an implementation machine. It plays the correct by construction paradigm
but in a software perspective. The complete paper [15] gives a better description of the Event-B
modelling language and of the B-software modelling language.

There are also several works on generating implementations from Event-B models (e.g. [12,
16, 25, 32–34, 41]), focused on different aspects of generating implementations for discrete al-
gorithms, such as scheduling and arithmetic overflow. While we are investigating how these
aspects can be integrated into our proposal, we think that hybrid programs offer at least 2 new
properties to be considered in the generation process: 1) not all the events participate in the
process. 2) events should be categorized and modularized for facilitating implementations.

Our proposal is based on a translational approach to the B-software language for its capa-
bilities of refinement-based program construction and analysis. Koenig and Leino introduce
programming language features for refinement in the Dafny language [26]. Sall et al. introduce
a formalized theory for stepwise refinement of imperative programs in the Coq proof assis-
tant [38]. Thus, these works potentially allow our translational approach to extend to more
target languages.

9 Conclusion
In this work, we aim to extend [13] abstract Event-B models for implementing designed time-
triggered Event-B models. The main steps of the transformation are sketched in the figure 1.
First, we propose to refine a given time-triggered design with additional system events for sens-
ing and actuation, which allow us to model the limitations of the real world in the corresponding
system events and to construct more robust implementations. Then, we categorize all system
events of a time-triggered design into the physical component and the software-based compo-
nents. In addition, to soundly refine the software-based components down to low-level software
implementations, we define a translational approach to the B-software language.

Our future works would focus on generating artifacts to validate the implementation pro-
duced by our translational approach, e.g., code for Frama-C [18] and Polyspace to check against
certain industry code standards (e.g. absence of runtime error), or simulation models for Simulink
and Stateflow to give a holistic view of the developed hybrid system.
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Concrete Event− B Model
Time− Triggered

e1, e2, e3 . . . en; p1, p2, . . . pm
Invariant&Safety

Merged Concrete Event− B Model
merge(e1, e2, e3 . . . en); p1, p2, . . . pm

Invariant&Safety

Control op(merge(e1, . . . , en))

Controler C Plant p1, . . . pm

merging

event2operation

o2p

Yellow nodes are Event-B models, Green nodes are B software models, Blue nodes are codes.

Figure 2: Merging Events into Operation
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Veriphy: verified controller executables from verified cyber-physical system models. In
39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 617–630. ACM, 2018.

[11] Michael Butler and Issam Maamria. Mathematical extension in Event-B through the Rodin
theory component, 2010.
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[32] Dominique Méry. Playing with state-based models for designing better algorithms. Future
Generation Computer Systems, 68:445–455, 2017.
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[34] Dominique Méry and Neeraj Kumar Singh. Automatic code generation from event-b mod-
els. In 2nd symposium on information and communication technology, pages 179–188,
2011.

[35] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In 25th International Conference
on Automated Deduction, pages 378–388. Springer, 2015.

[36] Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

[37] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and André Platzer. How
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