
HAL Id: hal-04189025
https://hal.science/hal-04189025v1

Preprint submitted on 16 Mar 2023 (v1), last revised 28 Aug 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From System Events to Software Operations for
Refinement-based Modeling of Hybrid Systems

Zheng Cheng, Dominique Méry

To cite this version:
Zheng Cheng, Dominique Méry. From System Events to Software Operations for Refinement-based
Modeling of Hybrid Systems. 2023. �hal-04189025v1�

https://hal.science/hal-04189025v1
https://hal.archives-ouvertes.fr

From System Events to Software

Operations for Refinement-based

Modeling of Hybrid Systems ⋆

Zheng Cheng and Dominique Méry

Université de Lorraine, LORIA, France.

Abstract. To reduce error-prone work of implementing hybrid system
designs in Event-B by hand, we revisit the refinement methodology to
systematically identify, categorize and modularize software operators
from system events. Then, by defining a verified translation, we can ob-
tain a semantically equivalent correspondent in the B language for each
modularized Event-B software operator. Thus, we can reuse the prim-
itives of B (which are superset of Event-B) for refining system events
down to implementations, and reuse the predicate transformers defined
on the B primitives to reason about the correctness of refinements. The
verified translation also ensures that the behaviors of the implementa-
tions obtained via refinements in B do not divert from the corresponding
system events specified in Event-B. We evaluate our proposal on two case
studies, and discuss the lessons learned.

Keywords: hybrid system, system modeling, program development,
refinement, Event-B, B method, code generation

1 Introduction

Various tools and formalisms are proposed to provide high-level
safety guarantees for hybrid systems at the design level [6, 25, 36].
Recently, their extensions are developed for safety guarantees at the
implementation level [10, 42], which maximizes state-of-the-art ver-
ification technology to meet real-world’s needs without error-prone
work of implementing design models by hand.

Event-B [2] is an evolution of the B language [1], specialized in
high-level system design and analysis. Its development is supported

⋆ This work is supported by the grant ANR-17-CE25-0005 (The DISCONT Project
http://discont.loria.fr) from the Agence Nationale de la Recherche (ANR).

2 Zheng Cheng and Dominique Méry

by the Rodin platform [3], which provides effective features for step-
wise refinement and mathematical proofs. It provides a subset of
primitives (generalized substitutions) of B for modeling the behav-
iors of system events and developing reactive systems. However, it is
not the focus of Event-B to use these primitives to keep refining the
system events into low-level software implementations.

There are many works on design hybrid systems w.r.t. the given
safety properties using Event-B [4, 7, 13, 18–22, 30, 39, 40]. However,
we do not aware of existing works on extending them for implement-
ing designed Event-B models. Compared to existing works on code
generation of Event-B for discrete algorithms [12, 15, 24, 31–33, 41],
deriving implementations from hybrid system designs in Event-B re-
quires 2 new properties: 1) identifying system events that need to be
generated. 2) categorizing and modularizing system events to facili-
tate implementations.

Our proposal is based on [13], where the input is a time-triggered
design that contains system events for the plant and the controller.
The design periodically monitors the system state and specifies that
when certain conditions are met how the system should be actuated
to behave safely (Example shown in Section 2).

First, inspired by [21], we propose to refine the time-triggered de-
sign to introduce additional system events for sensing and actuation
(Section 3). The goal is to model the limitations of the real world
in the corresponding system events, and to construct more robust
implementations.

Next, we categorize all system events of a time-triggered design
into the physical component (plant) and the software-based com-
ponents (sensor, controller, actuator). The physical component is
modeled by the law of physics using for example differential equa-
tions. It is given for developing time-triggered designs and should
be fixed. We can only observe its behaviors and actuate accordingly,
but we cannot program it to change its behaviors to obtain what we
want. The software-based components on the other hand are imple-
mentable.

To soundly refine the software-based components down to low-
level software implementations, in Section 4, we define a translational
approach to the B language [1]. The essential idea is to systemat-
ically modularize a specified Event-B software operator from asso-

Title Suppressed Due to Excessive Length 3

ciated system events of each software-based component. Then, by
defining a verified translation, we can obtain a semantically equiva-
lent correspondent in the B language for each modularized Event-B
software operator. This translational approach allows us to reuse the
primitives of B for refining system events down to implementations,
and reuse the predicate transformers defined on the B primitives to
reason about the correctness of refinements. It also ensures that the
behaviors of the implementations obtained via refinements in B do
not divert from the corresponding system events specified in Event-
B.

2 Running Example

As a sample hybrid system, we consider a car position tracking sys-
tem [37]: while the car is driving down the lane, the controller must
choose when to begin decelerating so that it stops at or before a stop
sign. The following informal information is given for the modeling.

– the hybrid system has two state variables p for the car position,
and v for the car velocity. The direction towards the stop sign is
the positive direction.

– the possible behavior of the hybrid system is given by the differ-
ential equation ṗ = v, v̇ = u.

– the user could alternate the behaviors of the hybrid system ev-
ery δ seconds, by actuating the acceleration u in the differential
equation.

– the acceleration can be chosen from 3 simple actuation com-
mands: it may cause the car to accelerate with the rate A > 0,
maintain velocity by choosing acceleration 0, or brake with rate
−B < 0.

– the safety constraint of the hybrid system is that assuming the
stop sign is at the position S, the car position should always
satisfy p ≤ S. Moreover, in reality, when a car brakes, after its
velocity reaches 0, it is not possible to drive a car backward by
braking. To model this physical limitation of the hybrid system,
we have a property that restricts v ≥ 0 always.

In [13], Cheng and Méry develop a refinement strategy to model
such hybrid systems in Event-B (we refer to Appendix A for a short

4 Zheng Cheng and Dominique Méry

introduction of Event-B). The outcome of their strategy is a time-
triggered design that is proven to ensure the given hybrid system
behaves safely w.r.t. the given safety property. It can be abstracted
as shown in Listing 1.1. It has variables:

– x to represent the system state, which is of type R+ → D to
represent a time series that maps from the time domain (positive
real number) to the system state domain D. In our example, we
thus have p, v : R+ → R to represent the car position and velocity
respectively.

– now for indexing the time series, e.g. x(now) represents the sys-
tem state x at time now. System events use now to explicitly
model the time progression of the hybrid system.

– s to distinguish between two system modes: 1) discrete control
(DECISION), and 2) continuous progression (RUN).

– u and tu to keep track of the chosen actuation command and
the safety time envelope under the chosen actuation command.
The two variables are shared between the discrete control and
the continuous progression modes.

The safety property of the hybrid system is declared as an invariant,
i.e. up until now the system state is safe w.r.t. to the safety property
Safe.

Then, the behaviors of the hybrid system are modeled by system
events, which forms a simplified closed-loop architecture. At the be-
ginning of each cycle, the discrete control will be executed first. It
is modeled by a set of Predictioni system events. Each Predictioni

event predicts an actuation command ui from all possible commands
(grd3), such that under certain conditions Ci(x), its corresponding
trajectory xui

is verified to progress safely for the next sampling time
δ from now (thm1). For example, the car example yields 3 Prediction
events1:

1 For each event with the actuation command ui, pui , vui are the analytical solutions
of the differential equations ṗ = v, v̇ = u, where pui(t) = p(now) + v(now)(t −
now) + 1

2
ui(t− now)2, and vui(t) = v(now) + ui(t− now).

Title Suppressed Due to Excessive Length 5

Machine M TIME TRIGGERED
Variables x now s u tu
Invariants . . .

safex : ∀t · t ∈ [0, now]⇒ Safe(x(t))

saferun : s = RUN ⇒
(
∀t · t ∈ (now, now + tu]⇒ Safe(xu(t))

)
Events . . .

Event Predictioni =̂
Where . . .

grd1 : Ci(x)
grd2 : s = DECISION
grd3 : ui ∈ U

Theorem
thm1 : ∀t · t ∈ (now, now + δ]⇒ Safe(xui(t))

Then . . .
act1 : u, tu := ui, δ
act2 : s := RUN

End
Event Progression =̂
Any tr
Where . . .

grd1 : tr ∈ [0, tu]
grd2 : s = RUN

Then
act1 : x := x◁− ((now, now + tr]◁ xu)
act2 : now := now + tr
act3 : s := DECISION

End
End

Listing 1.1. Time-triggered design from [13]

– under Ci(p, v) =̂ pA(now+ δ) + vA(now+δ)2

2B
≤ S, ui is set to accel-

erate at the rate of A.
– under Ci(p, v) =̂ pA(now + δ) + vA(now+δ)2

2B
> S ∧ v = 0, ui is set

to maintain acceleration at the rate of 0.
– under Ci(p, v) =̂ pA(now + δ) + vA(now+δ)2

2B
> S ∧ v ̸= 0, ui is set

to brake at the rate of −B.

The predicted actuation command is then stored by u and the safety
envelope is stored by tu (act1). As thm1 is proven on all the Prediction
events, we can deduce that the saferun is an invariant of the system:
i.e. the system can follow the trajectory xu (resulting from taking
the predicted command u) to progress safely for the next tu seconds.

Next, the Progression event will be observed and it models the
continuous progression of the hybrid system. The progression is mod-
eled to take tr seconds, which is between 0 and tu (grd1). Because
of the invariant saferun, we can ensure that when the system ex-
periences the full predicted cycle (tr = tu), or exits prematurely

6 Zheng Cheng and Dominique Méry

(tr ∈ [0, tu)), it will behave safely. Thus, the Progression event will
then update the system state x to follow the trajectory xu (resulted
from taking the predicted command u) for the next tr time from
now (act1)

2. now is simultaneously updated to now + tr to model
the duration of this continuous progression (act2). Finally, the system
alternates back to the discrete control mode to predict the next cy-
cle (act3). Such time-triggered designs allow the controller to specify
system events that monitor the system state periodically and make
appropriate actuation decisions for the system to behave safely.

In this work, we aim to extend [13] for implementing designed
Event-B models. Firstly, our proposal is inspired by the work of
Dupont et al. to introduce additional system events for sensing and
actuation [21]. They allow us to model the limitations of the real
world, and to construct more robust implementations. A small dif-
ference of our proposal compared to [21] is that for a modular re-
finement strategy, we refine the initial design to introduce the addi-
tional events, instead of directly adding them to the initial design.
For example, when we refine the time-triggered design of the car
example, we introduce a Sense event to model the process that dig-
itizes the true system state p(now) and v(now) into the observed
system state ps and vs respectively. Then, it allows us to introduce
bounded sensor error between the true state and the observed state,
and propagate the error via invariants. Next, the recipients of the
sensor data can consider the bounded error for a more robust design
(i.e. the system remains to behave safely in presence of sensor error).

Secondly, to soundly refine the system events of Event-B down
to low-level software implementations, we define a translational ap-
proach from Event-B to the B language. We exemplify our approach
to the controller development of the car system. We first system-
atically modularize the Prediction events into a specified Event-B
software operator called car ctrl (Listing 1.2). It encapsulates the
input parameters, returned outputs, and the specification of the dis-
crete controller that we want to implement. We then translate the

2 Event-B is based on the set theory. ◁− here means relational override, and ◁ means
domain restriction.

Title Suppressed Due to Excessive Length 7

specified Event-B software operator into a B operation (Listing 1.3)3.
The translated B operation is initially given by a preconditioned sub-
stitution of B (Pre...Then...): the type information of translated
inputs and outputs is given in the Pre section, and the Then sec-
tion uses a before-after predicate of the B language to encode the
translated operator specification4. We verify that the specification of
the Event-B software operator and its translation in B are seman-
tically equivalent. This verification is to ensure that the behaviors
of the implementations obtained via refinements in B do not divert
from the corresponding system events specified in Event-B. Next,
we reuse the programming primitives of B (e.g. local variable, if and
sequence substitutions) to refine the translated B operation for pro-
ducing software implementation (Listing 1.4). The refinement cor-
rectness is verified on the Atelier-B platform [27], which implements
the existing predicate transformers defined on the B primitives [1].

Operator car ctrl =̂
Parameters ps, vs
Returns ud, tu
Axioms(

ps+ vsδ + 1
2
Aδ2 + (vs+Aδ)2

2B
≤ S ⇒ ud = ACC ∧ tu = δ

)
∧(

ps+ vsδ + 1
2
Aδ2 + (vs+Aδ)2

2B
> S ∧ v = 0⇒ ud = STOP ∧ tu = δ

)
∧(

ps+ vsδ + 1
2
Aδ2 + (vs+Aδ)2

2B
> S ∧ v ̸= 0⇒ ud = BRAKE ∧ tu = δ

)
End

Listing 1.2. A specified Event-B software operator for the discrete controller of the
car position tracking example

ud, tu ← car ctrl(ps, vs) =
Pre

ps ∈ Real ∧ vs ∈ Real ∧ ud ∈ Ud ∧ tu ∈ Real
Then

ud, tu : (
(
ps+ vsδ + 1

2
Aδ2 + (vs+Aδ)2

2B
≤ S ⇒ ud = ACC ∧ tu = δ

)
∧(

ps+ vsδ + 1
2
Aδ2 + (vs+Aδ)2

2B
> S ∧ v = 0⇒ ud = STOP ∧ tu = δ

)
∧(

ps+ vsδ + 1
2
Aδ2 + (vs+Aδ)2

2B
> S ∧ v ̸= 0⇒ ud = BRAKE ∧ tu = δ

)
)

End

Listing 1.3. The translated B operation of Listing 1.2

3 By an Event-B software operator, we refer to an axiomatic operator introduced by
the Theory plugin of Rodin for mathematical extensions of Event-B [11]. By a B
operation, we refer to the standard operation construct in the B language.

4 In Event-B, x′ refers to the post-state of x after the updating. In B, x$0 is the
pre-value of x and x is the next value of x. The before-after predicate in B takes
the format of x : (P (x$0, x)), which means the variable x is updated in a way that
satisfies the predicate P . The notation is changed to x :| P (x, x′) in Event-B.

8 Zheng Cheng and Dominique Méry

ud, tu ← car ctrl(ps, vs) =
Var

v1, v2
In

v1 := ps+ vsδ + 1
2
Aδ2 + (vs+Aδ)2

2B
;

v2 := S ;
I f v1 ≤ v2 Then

ud, tu := ACC, δ
Else

I f vs = 0 Then
ud, tu := STOP, δ

Else
ud, tu := BRAKE, δ

End
End

End

Listing 1.4. The implemented B operation of Listing 1.3

3 Refining Time-triggered Design

From the time-triggered design developed in [13] (Listing 1.1), our
proposal starts by refining it into: 1) physical component (physical
plant). 2) software-based components (sensor, controller, actuator).
We cannot directly program the differential equations of a physi-
cal component to change its behaviors. However, we can program
software-based components to do that.

These components together form an improved closed-loop archi-
tecture: 1) at the start, the system state is observed via sensors (the
Sense event). 2) Then, the observed data is passed to the controller
to make a control decision (the Control events). 3) Next, the con-
trol decision is received by the actuator to generate the actuation
command (the Actuate event). 4) Finally, the generated actuation
command is sent to the plant. The plant reacts to the command,
and produces a new system state for observation, thereby closing
the loop (the Plant event).

Compared to [13], we introduce two missing system events for
sensing and actuation. This allows us to model the limitations of
the real world in the corresponding system events, and allow us
to construct a more robust design. To establish its refinement re-
lationship with the time-triggered design introduced in [13], we in-
troduce a new mode variable ss ∈ {SENSE,CONTROL,ACT -

Title Suppressed Due to Excessive Length 9

UATE, PLANT}, and the following glue invariants with the mode
variable s ∈ {DECISION,RUN} in the time-triggered design:

– ss = SENSE ⇒ s = DECISION

– ss = CONTROL ⇒ s = DECISION

– ss = ACTUATE ⇒ s = RUN

– ss = PLANT ⇒ s = RUN

In what follows, we detail our development for such an improved
closed-loop architecture.

3.1 Sense Event

In reality, sensors are used to measure the system state and to con-
vert measurements into digital data to be processed on a computer.
However, the measurements could be inaccurate, and the conversion
inevitably loses precision. Thus, we introduce the Sense event (List-
ing 1.5) to model the transformation from the true system state to
the digital data, i.e. the state observed by the controller.

Machine M IMPL
Refines
M TIME TRIGGERED
Variables x xs . . .
Invariants

invxs :Rs(xs, x)
Events
Event Sense =̂
Where
grd2 : ss = SENSE

Then
act1 :xs :| Rs(x

′
s, x)

act2 : ss :=
CONTROL

End
. . .

End

Listing 1.5. The Sense
event

Event Controli =̂
Refines Predictioni

Where
grd1 :CCi(xs)
grd2 : ss = CONTROL

Then
act1 :ud ,tu :|

u′
d = udi ∧ t′u = δ

act2 : ss := ACTUATE
End

Listing 1.6. The Control
event

Machine M IMPL
Refines
M TIME TRIGGERED
Invariants

invud :Ra(ud, u)
Events
Event Actuate =̂
Where
grd1 : ss = ACTUATE

Then
act1 :u :| Ra(ud, u

′)
act2 : ss := PLANT

End
. . .

End

Listing 1.7. The Actuate
event

The semantics of the Sense event is that it takes the full system
state x as the input (after continuous progression), and it outputs
the observed state xs. The types of x and xs can be different.

10 Zheng Cheng and Dominique Méry

Through external engineering efforts (such as reading the specifi-
cation for the chosen sensors, and/or via observability analysis from
the control theory), the user needs to determine a specification Rs

that establishes the relationship between x and xs (act1).
Then, the specification of the Sense event is propagated via a

glue invariant invxs, and is used for designs of other software-based
components.

Example. In the car position tracking example, the Sense event
should model the translation from the true system state p and v
to the observed state ps and vs. One scenario could be that the
state observation does not introduce any noise. Thus, we introduce
an invariant to establish their equalities, i.e. Rs(ps, vs, p, v) =̂ ps =
p ∧ vs = v. A different scenario could be that the state observation
introduces bounded errors ϵp and ϵv for the state p and v respectively.
Then, we can introduce an invariant, i.e. Rs(ps, vs, p, v) =̂ |ps−p| ≤
ϵp ∧ |vs − v| ≤ ϵv to propagate this information to other software-
based components.

3.2 Control Event

Each Control event refines a Prediction event of the time-triggered
design. It still models the discrete control, However, its semantics
is slightly changed in this refinement (Listing 1.6): the guard of the
Prediction event Ci that predicts the true system state is refined
into CCi that predicts the observed state, where CCi needs to be as
strong as Ci (i.e. CCi(xs) ⇒ Ci(x)). Moreover, instead of directly
producing the desired actuation command u, we introduce a discrete
variable ud. This allows us to encapsulate actuation-related matters
into a separate system event called Actuate.

Example. In the car position tracking example, we refine each
Predictioni event to a Controli event to model that the observed
state is received by the controller to generate a discrete actuation
command ud.

The additional complication here is that the 3 sub-cases in the
control logic of the time-triggered design are written in terms of the
system state p and v, which are not available anymore and need to
be rewritten in terms of the observed state ps and vs sent by the

Title Suppressed Due to Excessive Length 11

Sense event. For example, assuming that there is no sensor error
(i.e. using ps = p ∧ vs = v as the invariant via the Sense event), let

us consider one of the case Ci(p, v) =̂ pA(now+ δ) + vA(now+δ)2

2B
≤ S,

we can expand the definition of pA and vA, and replace the reference
to p and v with ps and vs to obtain CCi(ps, vs) =̂ ps + vsδ +
1
2
Aδ2 + (vs+Aδ)2

2B
≤ S, which is trivial to prove that it is as strong

as Ci(p, v). We can do such replacement analogously when there
are bounded sensor errors to be considered. Furthermore, the new
control logic will no longer directly produce the actuation command
u ∈ {A, 0,−B}, but produce a discrete actuation command ud ∈
{ACC, STOP,BRAKE}.

3.3 Actuate Event

The Actuate event is demonstrated by the snippets shown in List-
ing 1.7. It models how the discrete actuation command ud is mapped
to the desired actuation command u that affects the state of the hy-
brid system. The goal is to encapsulate actuation-related matters
into this system event.

Through external engineering efforts (such as reading the spec-
ification for the chosen actuator), the user needs to determine a
specification Ra that establishes the relationship between ud and u.
Then, the specification of the Actuate event is propagated via a glue
invariant invud. Such invariant informs other components on what
the Actuate event is produced.

Example. In the car example, the Actuate event models the transla-
tion from the discrete actuation command ud to the desired actuation
command u, where the glue invariant Ra(ud, u):

– ud = ACC ⇒ u = A
– ud = STOP ⇒ u = 0
– ud = BRAKE ⇒ u = −B

3.4 Plant Event

The Plant event corresponds to the Progression event from the
time-triggered design, which has the same inputs/outputs behavior
as the Progression event: it still receives the desired actuation com-
mand u and produces the true system state x. Therefore, there is

12 Zheng Cheng and Dominique Méry

no adaption required on the Progression event except to change
its mode control from s to ss to integrate into the new closed-loop
architecture.

3.5 Methodological Summary

The specifications of the Sense and Actuate events are explicitly
defined using two predicates Rs(xs, x) and Ra(ud, u). Making explicit
information on the sensing precision or on the actuating effectiveness
is related to the domain analysis and formalization [5,9]. The domain
experts may provide a list of properties or assumptions on those
predicates. One can consider that those properties are expressed in
frameworks as ontologies or knowledge domains.

The Control event emphasizes on concrete control logic devel-
opment based on the digitized data (i.e. the observed state xs, and
the discrete actuation command ud). The developed concrete con-
trol logic should refine the abstract control logic defined by the
Prediction event of the time-triggered design. To establish such re-
finement generically, a global mathematical theory should be defined
based on the explicit information from domain experts, which can
be developed via the theory mechanism of Event-B (supported by
the Theory plugin from Rodin [11]).

4 A Translational Approach for Code
Generation of System Events

By the proposed refinement in Section 3, we categorize system events
of a time-triggered design into the physical component (plant) and
the software-based components (sensor, controller, actuator). In this
section, we define a translational approach to the B language. Our
translational approach: 1) systematically modularize a specified Event-
B software operator from associated system events of each software-
based component (Section 4.1). 2) defines a verified translation to
obtain a semantically equivalent correspondent in the B language for
each modularized Event-B software operator (Section 4.2).

Title Suppressed Due to Excessive Length 13

4.1 Modularization of Software Operators

To capture the overall expected semantics of each software-based
component, we systematically modularize each software-based com-
ponent into a specified Event-B software operator in 3 steps.

Predicate Extraction For each software-based component, we ex-
tract a predicate from each of its associated Event-B system events,
which takes the form of Ge(x) ⇒ BAe(x, x

′) (where Ge(x) is the
guard of the associated system event e, and BAe(x, x

′) is the action
of e represented by a before-after predicate) 5.

We then refine the action of each associated event (i.e.BAe(x, x
′))

by the extracted predicate (i.e. Ge(x) ⇒ BAe(x, x
′)).

For example, by predicate extraction, each Control event of the
controller component shown in Listing 1.6 is refined into the snippet
shown in Listing 1.8.

Event Controli =̂
Refines Controli
Where
grd1 :CCi(xs)
grd2 : ss = CONTROL

Then
act1 :ud, tu :|(
CCi(xs)⇒

(u′
d = udi ∧ t′u = δ)

)
act2 : ss := ACTUATE

End

Listing 1.8. The refined
Control event of Listing 1.6
in Event-B

Operator fc =̂
Parameters xs

Returns ud, tu
Axioms

∧i

(
CCi(xs)⇒

(ud = udi ∧ tu = δ)
)

End

Listing 1.9. The template
for encapsulating a speci-
fied Event-B software oper-
ator for the controller com-
ponent

Event Control =̂
Refines Control1 ,

. . . , Controli
Where
grd1 :CC1(xs) ∨

. . . ∨ CCi(xs)
grd2 : ss = CONTROL

Then
act1 :ud , tu := fc(xs)
act2 : ss := ACTUATE

End

Listing 1.10. The merged
event for the controller
component in Event-B

Encapsulation of Software Operators For each software-based
component, we then encapsulate a specified Event-B software oper-
ator via the theory mechanism of Event-B (using the Theory plugin
from Rodin [11]). This encapsulation requires to provide: 1) the in-
puts of the operator, which are gathered from variables/constants

5 mode variable ss is excluded since it does not contribute to the implementation
logic.

14 Zheng Cheng and Dominique Méry

in the guards of associated events of a component. 2) the outputs
of the operator, which are gathered from variables in the actions of
associated events of a component. 3) the specifications of the opera-
tor, which are the logical conjunction of the extracted predicates in
the actions of associated events of a component.

The template for encapsulating a specified Event-B software op-
erator for the controller component is demonstrated in Listing 1.9.
We thus can instantiate the template to obtain Listing 1.2 for the
controller component of the car position tracking example. The other
two components are developed analogously.

Merging of System Events We then refine the action of each
associated system event by referring to the encapsulated operator.
This is to engineer all associated events of a software-based compo-
nent to: 1) take the same number/type of inputs, and 2) produce
the same number/type of outputs, and 3) perform the same form of
behaviors.

Then, we merge all associated events of each software-based com-
ponent into a single system event of Event-B. This is done by the
event merging mechanism of Event-B, where: 1) the actions of the
events to be merged must be identical, and become the actions of
the merged event. 2) the guards of the events to be merged form a
logical disjunction, which becomes the guard of the merged event.
We demonstrate the merging for the controller component in List-
ing 1.10.

4.2 Verified Translation to B

Next, we translate each specified Event-B software operator into a B
operation. The translated B operation is initially given by a precondi-
tioned substitution of B (Pre...Then...), where the type information
of translated inputs and outputs is given in the Pre section, and the
translated operator specification is given in the Then section (See
Listing 1.3 for an example).

If we incorrectly translate the specifications of Event-B software
operators, our development in B would start with the wrong spec-
ifications, and thus not able to obtain the implementation that we
want. Thus, in this section, we verify that the specification of the

Title Suppressed Due to Excessive Length 15

Event-B software operator and its translation in B are semantically
equivalent.

Syntax and Semantics for the Event-B and B Constructs
First, we formalize the syntax and semantics for a subset of the
Event-B and B languages in the Dafny language [28]. The subsets
consist of constructs for expressions and predicates, which we use
to express the operator specifications in both languages. We choose
Dafny because of its proof automation, but other languages with
equivalent expressiveness can be used for the same task (e.g. Coq [8],
Lean [34], Isabelle [35]).

We first inductively define the syntax of the Event-B and B ex-
pressions. For example, the following Dafny code defines the integer
expression for Event-B, which can be constructed from either a literal
expression, an identifier, an unary expression (negation), or a binary
expression (addition, subtraction, multiplication, and division):

datatype ebIntExpr =
| ebIntLitExpr (n: int)
| ebIntIdExpr (v: string)
| ebIntUnExpr (op: ebIntUnOp , e : ebIntExpr)
| ebIntBinExpr (op: ebIntBinOp , e1 : ebIntExpr , e2 : ebIntExpr)

We construct a similar inductive type in Dafny for defining the syn-
tax of the real expressions.

Based on the syntax of the Event-B and B expressions, we then
define the syntax for their predicates. For example, the following
Dafny code defines the predicate for Event-B, which consists of:
boolean literal predicate (true, false), unary predicate (not), binary
predicate (logical and, or, implication and equivalence), and rela-
tional predicate for integers and reals (arithmetic equality, and com-
parisons):

datatype ebPred =
| ebLitPred (v: ebLitPredVal)
| ebUnPred (op: ebUnPredOp , p: ebPred)
| ebBinPred (bop: ebBinPredOp , p1: ebPred , p2: ebPred)
| ebIntRelPred (op: ebIntRelOp , e1 : ebIntExpr , e2 : ebIntExpr)
| ebRealRelPred (op: ebRealRelOp , e1 : ebRealExpr , e2 : ebRealExpr)

Then, we model the semantics for expressions and predicates of
both languages in Dafny. For this task, we first define the evaluation
context as a simple mapping from the identifier string to its value
(either an integer or a real number):

16 Zheng Cheng and Dominique Méry

datatype value = v int (i : int) | v r e a l (r : real)
type Context = map<string , value>

We then define an evaluation function in Dafny to encode how
the Event-B and B expressions and predicates are interpreted given
an evaluation context. For example, we can look up the value of an
Event-B identifier expression in the given context by (which returns
0 if not found or not an integer identifier expression):

function method i n t e rp ebIntExpr (e : ebIntExpr , ctx : Context) : int
decreases e

{ match e { . . .
case ebIntIdExpr (v) ⇒
i f v in ctx . Keys then
i f ctx [v] . v in t ? then ctx [v] . i else 0

else 0
. . . }}

As we use an intermediate language to encode the semantics of
source and target languages, we need to pay attention to potential
semantic differences, and we rely on three language references to
reduce the potential errors in this process [2, 16, 23].

Translation and Verification The translation from the Event-
B expressions/predicates to the B expressions/predicates is defined
based on their corresponding syntax. It is a straightforward one-
to-one mapping between the constructs of the two languages. We
then verify that the specification of the Event-B software operator
and its translation in B are semantically equivalent. The semantic
equivalence is defined as:

function method compilePred (p: ebPred) : abPred
decreases p
ensures ∀ ctx : Context •

interp abPred (compilePred (p) , ctx)=interp ebPred (p , ctx)

That is by giving the same context, the interpretation of the compiled
B predicate yields the same result as the interpretation of the input
Event-B predicate. It can be verified by case analysis on the input
Event-B predicate, which is automatically proved in Dafny due to
its automated induction capability [29].

Title Suppressed Due to Excessive Length 17

5 Discussion

In addition to the car position tracking system, we also validate
our approach to the design of a smart heating system that is used
by [13]. The artifacts of this work are publicly available on [14].
While the example shows the feasibility of our proposal, we identify
the following points that are not yet addressed in our proposal for
modeling hybrid systems.

Currently, we assume that the actuation command is sent from
the control logic to the physical plant without disturbance. To en-
sure the system would behave correctly under actuation command
interference, one needs to model that the designed control logic could
produce a range of actuation commands (constrained by user-defined
predicates). Then, it needs to prove that under any of these com-
mands, the system should still be able to progress safely for the next
cycle. Such a model for handling actuation command interference
has a larger set of behaviors than the time-triggered design of [13],
which requires modifying the initial abstraction of [13] to include it
in the refinement.

When we design control logic in Event-B based on exact future
predictions, it is straightforward and accurate when system dynam-
ics have analytical solutions and initial conditions are known (like in
the car position example). However, systems in real life rarely meet
these criteria, which makes such an exact prediction more of an ap-
proximation. The problem is that when we use any approximation
method in place of exact mathematical procedures, the truncation
error occurs. Therefore, if we want to adapt control logic cases by
approximations, we need to consider truncation errors carefully. The
feasibility of bounding truncation error depends on various factors
such as the complexity of system dynamics, or the chosen approx-
imation method. Assuming that truncation errors are boundable,
we need to introduce new refinement to the Event-B model defined
in Section 3, which rewrites the designed control logic in terms of
bounded error and the approximation result.

Atelier-B defines a subset of B, called the B0 language. When
a B component is encoded in this subset, it can be automatically
translated to C programs using the Atelier-B code generator. One
of the main restrictions of B0 is that it requires its program to only

18 Zheng Cheng and Dominique Méry

use integers. We think that we could introduce data-type conver-
sion predicates in Event-B (e.g. real to integers), and bound the
conversion error. This allows us to rewrite control logic in a similar
way that deals with truncation errors. An alternative is to introduce
float-point arithmetic in Event-B, and rewrite control logic based on
that. Consequently, we can extend our verified translation to target
B0 for reusing its code generator.

To simplify our modeling, we assume that sensing/computation/ac-
tuation takes no time. However, most realistic systems take time for
these tasks, and the time taken might not be neglectable. Thanks
to the refinement introduced in Section 3, we could introduce delays
in the corresponding system events for modeling the time taken for
sensing/computation/actuation.

6 Related Work

Researchers have developed various techniques to concretize models
for hybrid system designs. One approach is to write verified trans-
lations to generate control software directly from safe hybrid mod-
els [10,42]. Its main difficulty is that the source and target languages
might have quite different semantics. In this work, we adopt refine-
ments to generate control software from safe hybrid models in two
steps: 1) control software specification from safe hybrid models, 2)
control software implementation from its specification. The first step
involves several refinement steps to reduce the semantic gap between
the source and target models, which simplifies the verification of their
translation.

Various works design hybrid systems using Event-B [4, 7, 18–22,
39, 40]. They are broadly under the framework of the continuous
action system developed by Back et al. [6]. Our current work is highly
influenced by these works. However, we do not aware of existing
works on extending them for implementing designed Event-B models
as we did in this work.

There are also several works on generating implementations from
Event-B models (e.g. [12, 15, 24, 31–33, 41]), focused on different as-
pects of generating implementations for discrete algorithms, such as
scheduling and arithmetic overflow. While we are investigating how
these aspects can be integrated into our proposal, we think that hy-

Title Suppressed Due to Excessive Length 19

brid programs offer at least 2 new properties to be considered in
the generation process: 1) not all the events participate in the pro-
cess. 2) events should be categorized and modularized for facilitating
implementations.

Our proposal is based on a translational approach to the B lan-
guage for its capabilities of refinement-based program construction
and analysis. Koenig and Leino introduce programming language
features for refinement in the Dafny language [26]. Sall et al. intro-
duce a formalized theory for stepwise refinement of imperative pro-
grams in the Coq proof assistant [38]. Thus, these works potentially
allow our translational approach to extend to more target languages.

7 Conclusion

In this work, we aim to extend [13] for implementing designed time-
triggered Event-B models. First, we propose to refine a given time-
triggered design with additional system events for sensing and ac-
tuation, which allow us to model the limitations of the real world
in the corresponding system events and to construct more robust
implementations. Then, we categorize all system events of a time-
triggered design into the physical component and the software-based
components. In addition, to soundly refine the software-based com-
ponents down to low-level software implementations, we define a
translational approach to the B language.

Our future works would focus on generating artifacts to vali-
date the implementation produced by our translational approach,
e.g., code for Frama-C [17] and Polyspace to check against certain
industry code standards (e.g. absence of runtime error), or simula-
tion models for Simulink and Stateflow to give a holistic view of the
developed hybrid system.

20 Zheng Cheng and Dominique Méry

References

1. Abrial, J.R.: The B book - Assigning Programs to Meanings. Cambridge university
press (1996)

2. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6), 447–466 (2010)

4. Afendi, M., Laleau, R., Mammar, A.: Modelling hybrid programs with Event-B. In:
7th International Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z. pp. 139–154. Springer (2020)

5. Ameur, Y.A., Méry, D.: Making explicit domain knowledge in formal system de-
velopment. Science of Computer Programming 121, 100–127 (2016)

6. Back, R.J., Petre, L., Porres, I.: Continuous action systems as a model for hybrid
systems. Nordic Journal of Computing 8(1), 2–21 (2001)

7. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Science of Computer Programming 105, 92–123 (2015)

8. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer (2013)

9. Bjørner, D.: Domain Science and Engineering - A Foundation for Software Devel-
opment. Springer (2021)

10. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: Veriphy: verified
controller executables from verified cyber-physical system models. In: 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp.
617–630. ACM (2018)

11. Butler, M., Maamria, I.: Mathematical extension in Event-B through the Rodin
theory component (2010)

12. Catano, N., Rivera, V.: Eventb2java: A code generator for event-b. In: NASA
Formal Methods Symposium. pp. 166–171. Springer (2016)

13. Cheng, Z., Méry, D.: A refinement strategy for hybrid system design with safety
constraints. In: 10th International Conference on Model and Data Engineering.
pp. 3–17. Springer (2021)

14. Cheng, Z., Méry, D.: From system events to software operations
for refinement-based modeling of hybrid systems(online) (2022),
https://doi.org/10.5281/zenodo.7740747

15. Cheng, Z., Méry, D., Monahan, R.: On two friends for getting correct programs -
automatically translating Event-B specifications to recursive algorithms in Rodin.
In: 7th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. pp. 821–838. Springer (2016)

16. ClearSy: B Language reference manual ver.1.8.10 (2022)
17. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:

Frama-C. In: 10th International conference on software engineering and formal
methods. pp. 233–247. Springer (2012)

18. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Hybrid systems and Event-B:
a formal approach to signalised left-turn assist. In: 8th International Conference
on Model and Data Engineering. pp. 153–158. Springer (2018)

19. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: 6th International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z. pp. 155–
170. Springer (2018)

Title Suppressed Due to Excessive Length 21

20. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Handling refinement of con-
tinuous behaviors: a proof based approach with Event-B. In: 13th International
Symposium on Theoretical Aspects of Software Engineering. pp. 9–16. IEEE (2019)

21. Dupont, G., Ait-Ameur, Y., Singh, N.K., Pantel, M.: Formally verified architec-
tural patterns of hybrid systems using proof and refinement with Event-B. Science
of Computer Programming 216 (2022)

22. Dupont, G., Ameur, Y.A., Pantel, M., Singh, N.K.: Handling refinement of con-
tinuous behaviors: A proof based approach with Event-B. In: 13th International
Symposium on Theoretical Aspects of Software Engineering. pp. 9–16. IEEE (2019)

23. Ford, R.L., Leino, K.R.M.: Dafny Reference Manual (2017)
24. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code genera-

tion for Event-B. In: International Conference on Integrated Formal Methods. pp.
323–338. Springer (2014)

25. J., H.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of
C.A.R. Hoare. pp. 171—-189. Prentice Hall (1994)

26. Koenig, J., Leino, R.: Programming language features for refinement. Tech. rep.,
arXiv preprint (2016)

27. Lecomte, T.: Atelier-B. Formal Methods Applied to Complex Systems: Implemen-
tation of the B Method pp. 35–46 (2014)

28. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: 17th International Conference on Logic for Programming Artificial Intelligence
and Reasoning. pp. 348–370. Springer (2010)

29. Leino, K.R.M.: Automating induction with an SMT solver. In: 13th International
Workshop on Verification, Model Checking, and Abstract Interpretation. pp. 315–
331. Springer (2012)

30. Mammar, A., Afendi, M., Laleau, R.: Modeling and proving hybrid programs with
Event-B: An approach by generalization and instantiation. Science of Computer
Programming p. 102856 (2022)

31. Méry, D.: Playing with state-based models for designing better algorithms. Future
Generation Computer Systems 68, 445–455 (2017)

32. Méry, D., Monahan, R.: Transforming event B models into verified C# implemen-
tations. In: 1st International Workshop on Verification and Program Transforma-
tion. EPiC Series in Computing (2013)

33. Méry, D., Singh, N.K.: Automatic code generation from event-b models. In: 2nd
symposium on information and communication technology. pp. 179–188 (2011)

34. Moura, L.d., Kong, S., Avigad, J., Doorn, F.v., Raumer, J.v.: The Lean theo-
rem prover (system description). In: 25th International Conference on Automated
Deduction. pp. 378–388. Springer (2015)

35. Paulson, L.C.: Isabelle: A generic theorem prover. Springer (1994)
36. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018)
37. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and

prove hybrid systems with KeYmaera: a tutorial on safety. International Journal
on Software Tools for Technology Transfer 18(1), 67–91 (2016)

38. Sall, B.D., Peschanski, F., Chailloux, E.: A mechanized theory of program re-
finement. In: 21st International Conference on Formal Engineering Methods. pp.
305–321. Springer (2019)

39. Stankaitis, P., Dupont, G., Singh, N.K., Ait-Ameur, Y., Iliasov, A., Romanovsky,
A.: Modelling hybrid train speed controller using proof and refinement. In: 24th
International conference on engineering of complex computer systems. pp. 107–113.
IEEE (2019)

22 Zheng Cheng and Dominique Méry

40. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Science of Computer Programming 94, 164–202 (2014)

41. Tounsi, M., Mosbah, M., Méry, D.: From Event-B specifications to programs for
distributed algorithms. In: 2013 Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises. pp. 104–109. IEEE (2013)

42. Yan, G., Jiao, L., Wang, S., Wang, L., Zhan, N.: Automatically generating SystemC
code from HCSP formal models. ACM Transactions on Software Engineering and
Methodology 29(1), 1–39 (2020)

Appendix A: Introduction to Event-B

Event-B [2] is an evolution of the B language [1], specialized in high-
level system modeling and analysis. When we model a reactive sys-
tem in Event-B, it usually consists of 2 parts: contexts and machines.
Each context (abstract syntax shown in Listing 1.11) gives static
properties of the system at a particular refinement level, in terms
of user-defined types (specified under Sets), static objects (specified
under Constants), presumed properties (specified under Axioms),
and derived properties (specified under Theorems). It can extends
other contexts for reuse (specified under Extends).

Context c1
Extends c2
Sets S
Constants C
Axioms Ac

Theorems Tc

End

Listing 1.11. Abstract syn-
tax of Event-B contexts

Machine m1

Refines m2

Sees c1
Variables V
Invariants I
Events E
End

Listing 1.12. Abstract syn-
tax of Event-B machines

Event e
Any P
Where G
Then A
End

Listing 1.13. Abstract syn-
tax of Event-B events

Each machine (abstract syntax shown in Listing 1.12) gives dy-
namic behaviors of the system at a particular refinement level, which
allows to access the contexts specified under Sees. A machine can be
refined by another one to make its specific part of dynamic behaviors
more concrete (specified under Refines), e.g. changing data struc-
ture (data refinement) or adding complexity (guard strengthening,
superposition refinement). Each machine describes the observation
of a reactive system modifying a finite list of state variables (speci-
fied under Variables) satisfying invariant properties (specified un-

Title Suppressed Due to Excessive Length 23

der Invariants). State variables are only modifiable through events
(specified under Events).

Each event (abstract syntax shown in Listing 1.13) can be parametrized
(specified under Any). It defines under which guards (specified un-
der Where) the state variables are changed by actions (specified un-
derThen). Each action can be either deterministic or non-deterministic.

– Deterministic actions take the form of general assignment, which
deterministically assigns values to state variables.

– Non-deterministic actions take the general form of a before-after
predicate x : |P (x, x′), i.e. the state variable named x is updated
such that the post-state x′ and its pre-state x have the relation
stated by the predicate P 6.

It is the user’s responsibility to ensure the feasibility of each action.
From a methodological point of view, classical refinements are

generally used to make abstract specifications implementable. There-
fore, in this setting, actions need to be gradually refined to make
them more suitable for implementation (e.g. non-deterministic ac-
tions being refined into deterministic ones). However, some state
variables can be model variables, i.e. their corresponding updates
facilitate proofs, but do not contribute to the final implementation.

The Rodin platform is an Eclipse-based IDE for Event-B. It pro-
vides effective supports for stepwise refinement and mathematical
proofs. The platform is open-source and can be extended by vari-
ous plugins. Among existing ones, the Theory plugin contributes to
Rodin by providing facilities to define mathematical extensions [11].
Its functionality is quite similar to contexts. However, unlike contexts
that are only visible within the developed Event-B system, the The-
ory plugin allows users to introduce ones that can be reused across
different systems modeled in Event-B. Moreover, it provides a mech-
anism to guide how the prover should use the defined mathematical
extensions.

A theory developed by the Theory plugin consists of a list of
interpreted and uninterpreted operators. The interpreted operators
must define their function body. The semantics of uninterpreted op-
erators are axiomatized, which takes the form shown in Listing 1.14.

6 The P predicate of an event can only refer to the constants and sets in the context
it allows to Sees, and the event parameters, and the variables in its machine.

24 Zheng Cheng and Dominique Méry

Operator op
Parameters ins
Returns outs
Axioms axioms
End

Listing 1.14. Abstract syntax of Event-B operators developed by the Theory plugin

Each operator needs to define its inputs and outputs (specified un-
der Parameters and Returns respectively). It can have a list of
axioms to define its semantics (specified under Axioms).

