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Abstract: We present a linear optical protocol for teleporting and correcting both temporal and
frequency errors in two time–frequency qubit states. The first state is the frequency (or time-of-
arrival) cat qubit, which is a single photon in a superposition of two frequencies (or time-of-arrival),
while the second is the time–frequency Gottesman–Kitaev–Preskill (GKP) state, which is a single
photon with a frequency comb structure. The proposed optical scheme could be valuable for reducing
the error rate in quantum communication protocols involving one of these qubits.

Keywords: quantum communications; time–frequency quantum information processing; quantum
error correction; photon pairs

1. Introduction

Quantum information harnesses the foundational principles of quantum mechanics,
such as superposition and entanglement, to manipulate and transmit data in fundamentally
novel ways. For instance, quantum entanglement establishes correlations between distant
particles, a phenomenon exploited in quantum communication for secure key distribu-
tion and teleportation protocols. The pertinence of single photons in encoding quantum
information emanates from their unique attributes, including minimal susceptibility to
environmental decoherence, and the fact that single photons travel at the speed of light.

Quantum information can be encoded in various degrees of freedom of single photons,
which can be described by either discrete or continuous variables (CV). Frequency (or
energy) and time of arrival are natural pairs of conjugate quantum continuous variables in
the single photon subspace, along with the transverse position and momentum degrees of
freedom [1–4]. Discretizing the frequency or time of arrival into temporal or frequency bins,
or performing the mode decomposition of the continuous variable distribution of the single
photon, can be experimentally motivated due to the finite resolution of detection devices
or specific requirements of a quantum protocol, such as in quantum metrology for super-
resolution [5]. We should stress that in any dimensional single-photon encoding, photon
losses do not correspond to a logical error. The second way of encoding information is
through particle number sensitive encoding, which can be used to define physical systems
with either discrete or continuous variables. In this encoding, CV corresponds to the
quadratures of the electromagnetic field, i.e., the amplitude and phase of the quantum field,
in a particular mode. With the particle-sensitive encoding, photon loss corresponds to a
logical error. Mathematically, the quadrature of an electromagnetic field in a given mode
can be treated as the continuous degree of freedom of a single photon [4], as long as an
auxiliary discrete mode is occupied by only one single photon.

Error correction code for continuous variables encoding is defined by discretizing
them. Three bosonic qubit codes have been studied, such as the cat code [6–8], Gottesman,
Kitaev, and Preskill (GKP) code [9–15] and the binomial code [16,17]. Cat and GKP codes are
candidates for achieving universal quantum computation; see [7,18–20]. GKP code could
be employed for building quantum repeaters [21], and for sensing applications [22,23].
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The mathematical analogy between time–frequency and quadrature CV allows defining
time–frequency qubit states, called the time–frequency cat state [2,24] and time–frequency
GKP state [1,2,25]. Both of these types of code are ways to discretize time–frequency
continuous variables at the single photon level to define a qubit. CV or time–frequency CV
codes possess an equivalent mathematical structure; they are common eigenvectors of non-
commuting displacements operators [1] and they are thus designed to be robust against a
small shift in one continuous variable (cat state) and the two canonically conjugated ones
(GKP state).

In this paper, we start by reminding the reader of the mathematical structure of the
time–frequency cat and GKP codes and discuss the temporal and frequency errors that they
were designed to be robust against. From the standard method for quantum error correction
for quadrature GKP states [26], we propose the analogous protocol to perform correcting
the time–frequency GKP state. In such a quantum error correction scheme, a temporally and
spectrally broadened (corresponding to errors in this encoding) time–frequency GKP state
is first entangled with a less noisy ancilla GKP, and finally temporal- or frequency-resolved
detection is performed on the ancilla state. The resulting time–frequency GKP state is
either corrected in the time (resp. frequency) if the frequency (resp. temporal) resolved
measurement has been performed. However, the creation of the frequency entanglement
structure for single photon encoding is difficult to realize experimentally with the current
technology, as it requires performing a frequency entanglement operation between two
single photons [27]. Therefore, inspired by the teleportation-based error correction protocol
for quadrature encoding [28,29], we develop a teleportation-based error correction protocol
for frequency qubit states that uses only linear optical elements and allows the simultaneous
correction of both time and frequency variables. In the teleportation-based error correction
protocol, the noisy frequency qubit state is entangled with a less noisy frequency entangled
state. One of the members of the entangled pair is combined into a balanced beam splitter
with the noisy single-photon state, and then Bell measurements are performed. The
error correction is performed naturally since the remaining frequency single-photon state
belongs to the entangled state that was less noisy in the time and frequency domains
compared to the initial state. Since the protocol requires the use of a Bell measurement,
we also describe how to experimentally implement such a measurement for the two types
of frequency qubits by using Mach–Zehnder interferometry. The proposed protocol is
intrinsically probabilistic and consists of the teleportation of non-orthogonal states [30],
instead of orthogonal ones [31,32]. The non-orthogonality of the state reduces the efficiency
of the teleportation-based error correction protocol. For that reason, we mention that
photon number-resolving detectors can help increase the probability of success of the
protocol by reducing the number of rejected measurement events. Finally, the advantage
of discretizing a grid state into a qubit state by combining the even and odd peaks, rather
than considering the state as a time–frequency qudit, is convenient because it simplifies the
optical implementation of grid state manipulations.

The paper is organized as follows. In Section 2, we provide a reminder of the definition
of the time–frequency cat and GKP states and the reason for the experimental difficulty
behind the natural error correction scheme of the time–frequency GKP states which re-
quires frequency entanglement gates. In Section 3, we explain the optical equivalent of the
polarizing beam splitter, a Mach–Zehnder interferometer, which allows separating spatially
the two logical states of the time–frequency cat and GKP qubits. Such an interferometer is
crucial for implementing Bell’s measurement in the time–frequency degree of freedom. In
Section 4, we present a teleportation-based error correction protocol for the time–frequency
GKP state, which makes use of Bell’s measurement. The protocol is intrinsically probabilis-
tic and can be achieved with the current experimental devices. Finally, in Section 5, we
summarize our results and present new perspectives.
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2. Time–Frequency Qubit States
2.1. Time–Frequency Cat State

We denote |Ω〉 as the vacuum state. A single-photon state at frequency ω in the spatial
port a is denoted as |ω〉a = â†(ω)|Ω〉. The frequency cat state as introduced in [24] is
defined as the superposition of a single photon into two different frequency Gaussian
distributions (see Figure 1a):

|ψ〉 = Nαβ(α|ω1〉a + β|ω2〉a) = Nαβ(α|0〉a + β|1〉a), (1)

where |ω1〉a = 1√
2πσ2

∫
dωexp(−(ω − ω1)

2/2σ2)|ω〉a, σ is the frequency width of the

spectral Gaussian distribution and the normalization of the state is given by 1 = N2
αβ(|α|2 +

|β|2 + 2Re(αβ∗)e−(ω1−ω2)
2/2σ2

). This is a non-orthogonal qubit state, as their overlap is
a〈0|1〉a = exp(−(ω1 −ω2)

2/2σ2). Experimental proposals for manipulating such a state
were proposed in [33,34] with pulse shapers, and electro-optic modulators were used in
the cascade. The results showed an operation fidelity close to 100%, but the successive
optical elements drastically decreased the probability of single photon detection. The wave
function of the time of the cat state is defined as

|ψt〉 = Nαβ(α|t1〉a + β|t2〉a). (2)

Note that for avoiding having a normalization constant depending on the coefficients
α, β, and writing the wave function on an orthogonal basis, we can employ the Gram–
Schmidt decomposition procedure. The normalized orthogonal basis |a〉 and |b〉 can be
written as

|a〉 = |0〉, |b〉 = N[|1〉 − 〈0|1〉|0〉], (3)

where N = 1/
√

1− r2 and r = |〈0|1〉|. The frequency Equation (1) (or time cat state
Equation (2)) can be written in the orthogonal basis as

|ψ〉 = (α + β〈0|1〉)|a〉+ β

N
|b〉, (4)

where we have now |(α + β〈0|1〉)|2 + | β
N |2 = 1.

The frequency entangled cat state, an EPR state, can be written as
∣∣φ±

〉
= NEPR(|ω1ω1〉ab ± |ω2ω2〉ab) (5)∣∣ψ±
〉
= NEPR(|ω1ω2〉ab ± |ω2ω1〉ab) (6)

where N2
EPR(2 + 2e−(ω1−ω2)

2/2σ2
) = 1. When ω1 −ω2 � σ, we recover the normalization

of an EPR state composed of orthogonal qubits NEPR = 1/
√

2. The frequency cat state
can be produced by an integrated optical wave guide [35] and bulk system [36]. The
wave function of a temporal entangled EPR state Equation (5) has the same mathematical
structure, and such a quantum state can be produced by quantum dots, for instance [37].
This type of quantum state has potential applications in quantum communications [38].
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Figure 1. Probability density distribution of the two time–frequency qubits. (a) Frequency cat state
σ is the half-width of the Gaussian peak, and ∆ is the spectral separation between the two logical
states. (b) Time–frequency GKP state. The width of each peak is σ, the envelope κ, and the periodicity
of the comb state is ω. In the temporal domain, the periodicity of the state is 2π/ω, the width of
the envelope and the peak are σ and κ, respectively. Frequency units are made dimensionless with
respect to the spatial separation of the state (left) and the periodicity of the state (right).

2.2. Time–Frequency GKP State

We define a frequency lattice of period ω. Centered on each of these intervals, we
define the ideal time–frequency GKP state as the following frequency comb at the single
photon level:

|µω〉a = ∑
n∈Z
|(2n + µ)ω〉a (7)

where µ = 0, 1 index the two logical states. Note that the equal weight superposition of the
zero and the one logical time–frequency GKP states in the frequency domain are the zero
and one in the temporal domain:

|+ω〉a =
1√
2
(
∣∣0ω

〉
a +

∣∣1ω

〉
a) =

∣∣0t
〉

a (8)

|−ω〉a =
1√
2
(
∣∣0ω

〉
a −

∣∣1ω

〉
a) =

∣∣1t
〉

a. (9)

The periodicity of the state in the temporal domain: ω = 2π/ω. Such a state is not
physical since the state is an infinite sum of monochromatic states and will require infinite
energy to prepare it. The physical time–frequency GKP state can be built upon this ideal
state by applying time and frequency noise, which are frequency- and time-displacement
operations multiplied by the Gaussian distribution, which is detailed in [1]. The wave
function of the two logical states can be written as follows:

|µω〉a = Nµ ∑
n∈Z

∫
dωGκ(ω)Gσ(ω− (2n + µ)ω)|ω〉a (10)

where G are Gaussian functions representing the envelope of the comb of width κ and the
peaks of the comb of width σ. The frequency probability distribution of the grid state is
represented in Figure 1. Alternatively, for large comb ω/σ� 1 [39], we can write

|µω〉a = Nµ ∑
n∈Z

c2n+µ

∫
dωGσ(ω− (2n + µ)ω)|ω〉a (11)

with the envelope coefficients cn = exp(−(nω/κ)2/2). Nµ is the normalization constant
found thanks to the relation 1 = |a〈µω |µω〉a|2 = N2

µ ∑n∈Z |c2n+µ|2
√

πσ2.
In general, the physical GKP state can be in a superposition of the two logical states:

|ψ〉 = Nαβ(α|0ω〉a + β|1ω〉a), (12)
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where Nαβ = (|α|2 + |β|2 + 2Re(α∗βa〈0ω |1ω〉a)))−1/2. The two logical states are not orthog-
onal when a Gaussian wave packet enters the frequency bin of its neighbor. The overlap
a〈0ω |1ω〉a is different from zero and is equal to

a〈0ω |1ω〉a = e−ω2/4σ2 ∑n c2nc∗2n+1

(
√

∑n |c2n|2 ∑n |c2n+1|2)
. (13)

The full state is thus described by five important parameters. The complex parameters
α and β where the quantum information is encoded, the frequency width σ, κ, and the
periodicity of the state ω. If the state is not too noisy, meaning that a〈0ω |1ω〉a ∼ 0, then
the normalization condition of Equation (12) is given by |α|2 + |β|2 = 1. Finally, in [1,4],
we define the time-of-arrival and frequency operators, which do not commute and verify
the Heisenberg algebra. This is mathematically equivalent to the non-commutativity of
time–frequency displacement operators. This property leads to consider the temporal and
frequency bandwidth as quantum noise at the single photon level.

The GKP states which are defined as the sum of squeezed states in a given mode [9,40]
are designed to be robust against small shifts in position and momentum, which can be
caused by a Gaussian quantum channel, but they are also robust against photon losses [40].
On the other hand, time–frequency GKP states are designed to be robust against small
shifts in time and frequency. The major difference between GKP states and time–frequency
GKP states is that photon losses do not result in errors for the latter. In general, temporal
errors are the dominant source of errors, while frequency is considered a robust degree of
freedom, as it is barely affected by linear physical processes. Additionally, GKP states can
be used for fault-tolerant universal quantum computation [20]. Due to their mathematical
similarity with time–frequency GKP states, it is expected that they will lead to the same
mathematical result. However, the generation of non-Gaussian states using the degree of
freedom of a single photon is relatively simple to implement experimentally. As a result, the
experimental implementation of a time–frequency GKP state is considered straightforward.
In contrast, creating entanglement gates between two single photons is a more challenging
task. For particle-number sensitive encoding, non-Gaussian operations involving the
quadrature degree of freedom can be difficult to implement, while two-mode Gaussian
operations, such as with a beam splitter, are easier to perform.

2.3. Sources of Time–Frequency Noise

In this section, we discuss the physical processes that lead to temporal–spectral broad-
ening or distortion. Coherent and incoherent errors will lead to either pure or mixed states,
respectively.

Temporal errors for both codes arise from the temporal spreading of each wave
packet composing the state due to the linear dispersion effect, described by a coherent
model (see, for instance, [41] for an example in the single photon regime). After such a
second-order dispersion effect, the temporal width of the Gaussian wave packet becomes

τ = τ0

√
1 + τ4

c /τ4
0 , where τ0 is the initial width of the pulse and τc =

√
β2L, L being

the length of the dispersive medium and β2 the dispersion coefficient. Such a dispersion
process is described by a unitary operation, and it can, in principle, be undone by a
reverse transformation. However, it requires knowledge of the full characterization of the
propagation channel. For the time–frequency GKP state, the dispersive effect not only
leads to a temporal spreading of each wave packet, but also leads to the formation of
replica temporal images, called the temporal Talbot effect (see, for instance, [42]). One has
to consider the specific length of the fiber or dispersive coefficient to recover the initial
state, which will be also temporally broadened. Polarizing mode dispersion is one of
incoherent temporal broadening [43–45]. Due to a coupling between the polarization and
frequency degree of freedom, if the polarization is not measured, the single-photon state
becomes mixed in frequency [46]. Thus, the error correction protocol that is presented in
Section 2.4 becomes particularly relevant because we cannot cancel the error simply by a
unitary operation.
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Frequency noise that causes spectral broadening while the spectral distribution re-
mains Gaussian is not typically dominant at the single-photon level. Spectral broadening
induced by the self-phase modulation effect [47] results from the accumulated phase
φNL(t) = 2π

λ n2 I(t)L, where n2 is the non-linear refractive index, and L is the length of the
medium and depends on the intensity I(t) of the field, leading to a non-Gaussian spectral
distribution. At the single-photon level, this non-linear process does not occur naturally.
In [1], we also argue that the frequency noise arises from frequency broadening caused by
the generation of photon pairs itself, and we describe one method to correct such noise.
There are numerous processes that can distort the spectral distribution of single photons,
such as distortions caused by frequency shifts induced by electro-optic modulators [48,49],
or the presence of a filter during single-photon heralding.

An error correction protocol is implemented to mitigate the effects of potential errors
from various sources. Its objective is to restore the Gaussian distribution of each frequency
peak. This is because Gaussian probability distributions are better understood for setting
confidence intervals and error thresholds as discussed in [50]. Both qubits are sensitive to
temporal and frequency broadening. While the time–frequency cat state is designed to be
robust against errors over one variable, the time–frequency GKP state can correct errors
along both orthogonal variables. It is not necessary to use the time–frequency GKP state if
the main error is in the temporal domain. We now develop two error correction methods,
one based on a direct frequency entanglement between the noisy state of interest and a less
noisy ancilla (Section 2.4), and the other method using only linear optics and also less noisy
ancilla (Section 4).

2.4. Time–Frequency Entangled GKP State and Error Correction Protocols

The error correction of continuous variables states can be performed with a Steane error
correction protocol for the quadrature degree of freedom [51] and for the time–frequency
one [1]. For the two encodings, the protocol consists of entangling the state of interest with
one less noisy ancilla (a |+〉 logical state in one variable, time or frequency) with a beam
splitter (resp. with frequency beam splitter that will be explicated below), and performing
one homodyne (resp. single-photon frequency measurement) detection at the spatial output
of the ancilla for correcting the error along one variable. The protocol is repeated to correct
errors in the orthogonally (or canonically) conjugated variable. To achieve this, one must
entangle the state of interest with a less noisy state using a |+〉 state in the canonically
conjugated variable compared to the first step. Then, perform the entangling operation,
project a measurement in the canonically conjugated variable (compared to step one), and
finally conduct a conditional displacement operation. An important tool for quantifying
the threshold of noise from which it is still possible to correct the GKP states, a Steane error
correction protocol was used in [50]. Figures of merit for quantifying the probability of
measuring the one logical state while this is zero were obtained in [26,50]. We will refer to
these figures of merit when we note one logical state is noisier (or less noisy) than the other.
From now on, we develop two entanglement structures of time–frequency GKP state that
can be generated in the laboratory, and the method for performing the error correction in
each case.

The first entanglement structure of the time–frequency GKP state that we can study is
the one obtained by using a spontaneous parametric downconversion process (SPDC) from
a non-linear crystal placed into an optical cavity [1,52]. The corresponding wave function
can be cast as

|ψ〉 =
∫∫

dωsdωi f+(ω+) f−(ω−) f (ωs) f (ωi)|ωs, ωi〉. (14)

The functions f± model, respectively, the energy conservation and the phase matching
of the SPDC process, and f models the cavity function. The joint spectrum intensity is
represented in Figure 2c. Instead of the traditional view, where the wave function of two
photons is written by applying a quadratic Hamiltonian on the vacuum state, it can also be
expressed with a quantum circuit representation as shown in Figure 2a. This starts with
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two ideal separable GKP states (fictitious), which undergo initial frequency broadening,
which can be interpreted as a frequency noise [1]. Then, the state is entangled through the
gate performed by the non-linear crystal:

Û|ωs, ωi〉 =
∣∣∣∣
ωs + ωi√

2
,

ωs −ωi√
2

〉
(15)

that we called a frequency beam splitter by analogy with the beam splitter, which acts
mathematically similarly in the quadrature position–momentum degree of freedom [4,53].
The state then undergoes a temporal broadening, which can be interpreted as a temporal
noise and a final frequency beam-splitter operation is performed. The mathematical reason
behind these four successive operations is that the envelope of the grid state is a function
of the collective variables ω±, while the cavity of the local variable is ωs,i. The form of
the frequency entanglement between the two single photon grid states generated by the
non-linear process (see Equation (15)) allows for the reduction in the temporal broadening
of one of the single photons by performing a temporally resolved measurement of the other.
The form of the pure wave function after the conditioned operation is written in [1].

∙ ∙ ∙
D̂(ω)

D̂(ω′ )

D̂(ω)

D̂(ω′ )

$̂(t)

$̂(t′ )

$̂(t)

$̂(t′ )

(a) (b)

|ψ⟩ |ψ′ ⟩

|⟨ωs, ωi |ψ⟩ |2
(c) (d)

|⟨ωs, ωi |ψ′ ⟩ |2

0.01

0.02

0.03

0.04

0.05

0.06

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 2. Different joint spectral intensity |〈ωs, ωi|ψ〉|2 of time–frequency entangled GKP states (c,d)
that can be generated experimentally and their quantum circuit representation (a,b). The situation
(a) corresponds to a photon pair produced by a SPDC process, while (b) corresponds to two single
photons with a frequency comb structure produced by two independent processes, which are then
frequency entangled. The position of frequency beam-splitter operations modifies the periodicity of
the grid state from a factor

√
2. D̂(ω) and D̂(t) are frequency and temporal displacement operations

defined in [1].

After correcting the single-photon state in the temporal domain, the next step is to
correct the state in the frequency domain. For that, we must first entangle the single
photon to correct with a less noisy ancilla single-photon state using the entanglement gate
Equation (15). Since now we have two separable single-photon states, we cannot directly
entangle them by using a non-linear crystal, which is inefficient. Nevertheless, such a
frequency entangled gate could be implemented with a quantum emitter embedded into a
wave guide, which assists in the interaction between the two single photons [27,54].

The second entanglement structure of the time–frequency GKP state that can be
considered is to start with two initially separable GKP states, with one being less noisy
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than the other. These states are then entangled using Equation (15). The resulting wave
function is ∣∣ψ′

〉
=
∫∫

dωsdωi f+(ω+) f−(ω−) f (ω+) f (ω−)|ωs, ωi〉. (16)

In this new spectral function (see Figure 2d, the cavity function is now dependent
on the collective variables, and thus, the periodicity of the grid state is not the same as in
Equation (14). The corresponding quantum circuit representation is pictured in Figure 2b.
The error correction protocol is followed by a temporally resolved measurement followed
by a conditional displacement operation to correct only the temporal noise in the state of
interest. A second entanglement operation is performed using a less noisy ancilla state,
followed by a resolved frequency measurement followed by a conditional displacement
operation to correct the frequency noise. The difference in the joint spectral amplitude
of the photon pairs results— Equations (14) and (16)—in a different wave function when
one of the photons undergoes a temporally resolved (and frequency) measurement and a
conditional displacement operation.

3. Spatial Separation of the Two Logical Time–Frequency Qubit States

In this section, we develop the equivalent of the polarizing beam-slitter operation
for the time–frequency cat and GKP state, which is the crucial optical component for the
teleportation-based error correction described in the next section. Such an optical element
is called the frequency qubit beam splitter (FQBS) in what follows.

3.1. Spatial Separation of the Two Logical Time–Frequency Cat States

In this section, we explicitly show how to separate spatially the two Gaussian wave
packets with linear optics, using a Mach–Zehnder interferometer. The frequency cat state
as described by Equation (1) is introduced into a balanced beam splitter and the associated
wave function is

|ψ〉 = 1
2
(|ω1〉a + |ω2〉a + |ω1〉b + |ω2〉b). (17)

We assume for simplicity that the two frequency states are well separated ω1−ω2 � σ.
Then, a pulse shaper is placed at the spatial port b, described by the following unitary
operation:

Û|ω1〉b = |ω1〉b, Û|ω2〉b = eiφ|ω2〉b. (18)

Such an operation can be implemented, for instance, by mapping the spectral to the
spatial degree of freedom with a grating, a spatial light modulator at the focal length of
two lenses, and then performing back the mapping from the spatial to the spectral degree
of freedom [2,55]. We assume that the frequency peaks are spaced enough so that the pulse
shaper acts on each logical state independently. The two spatial paths are then recombined
into another balanced beam splitter. The output state has the final form:

|ψ〉 = 1√
2
|ω1〉a|Ω〉b +

1
2
√

2
((1 + eiφ)|ω2〉a|Ω〉b + (1− eiφ)|Ω〉a|ω2〉b). (19)

If φ = π, the two logical states are spatially separated |ψ〉 = 1√
2
(|ω1〉a|Ω〉b + |Ω〉a|ω2〉b).

This optical interferometer is the equivalent of the polarizing beam splitter that separates
the vertical and horizontal polarization of optical fields into two distinct spatial paths.

3.2. Spatial Separation of the Two Logical Time–Frequency GKP States

In this part, we introduce how to separate spatially the odd and the even frequencies
with a Mach–Zehnder interferometer. Such a scheme was already proposed for manipulat-
ing large quadrature position–momentum continuous variables cluster states [56], and was
described in [2,25].

We start with a time–frequency GKP state with a finite envelop but with infinitely
narrow frequency width |+〉 = 1√

2
(|0〉a + |1〉a), and is introduced into a balanced beam

splitter. The spatial output port of the beam splitter is denoted as a and b. A time-shift
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operation is performed in spatial port b, and then the two spatial ports are recombined into
a balanced beam splitter (see Figure 3). The final wave function can be written as

|ψ〉 = 1
2 ∑

n∈Z
[cn(einωt − 1)|nω〉a|Ω〉b − (einωt + 1)|Ω〉a|nω〉b]. (20)

If we set t = π/ω, after the second beam splitter, the wave function is (see [2])

|ψ〉 = 1√
2
(−|1〉a|Ω〉b + |Ω〉a|0〉b). (21)

The odd and even frequency components are spatially separated, allowing for indi-
vidual manipulation, such as correcting the phase accumulation of the one logical state.
It is possible to achieve the same result in the temporal domain by shifting the frequency
instead of the time as shown in Figure 3.

Figure 3. Spatial separation of the odd and even peaks of the time–frequency GKP state with a
Mach–Zehnder interferometer in the frequency (left) and in the temporal (right) domain. BS stands
for balanced beam splitter. The spatial separation is imperfect when the states are no longer perfectly
monochromatic.

If each frequency peak is not infinitely narrow, then the output wave function after
the Mach–Zehnder interferometer can be written as

|ψ〉 = 1
2 ∑

n∈Z
cn[(

∫
dω(eiπω/ω − 1)Gσ(ω− nω)|ω〉a|Ω〉b − (

∫
dω(eiπω/ω + 1)Gσ(ω− nω)|Ω〉a|ω〉b. (22)

The corresponding probability frequency distributions at spatial port a and b are

Pa(ω) =
1
4
| ∑

n∈Z
cn(eiπω/ω − 1)Gσ(ω− nω)|2, (23)

Pb(ω) =
1
4
| ∑

n∈Z
cn(eiπω/ω + 1)Gσ(ω− nω)|2. (24)

We represent in Figures 4a and 5a the spectral probability density distribution of
two |+ω〉 states for σ = 0.1ω and σ = 0.2ω. The output probability density distribution
after the Mach–Zehnder interferometer if we start with the zero or one logical state is
represented in Figure 4b,c. We observe that when σ = 0.1ω, it is valid to consider the
zero and one logical states independently since they do not interfere due to their central
frequencies being too far apart to overlap. However, the spatial separation is imperfect;
the one logical state does not emerge from the correct spatial port. When σ = 0.2ω (see
Figure 5b,c), there is an interference term between the zero and one logical state because
they now overlap significantly. The resulting state is outside the GKP subspace; it can be
seen with the distortion because the probability at the center of the odd and even frequency
bins is zero. The addition of a periodic frequency filter can enhance the projection into the
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GKP subspace and the choice of a frequency width would be crucial for rejecting the logical
states emerging from the incorrect spatial port.

-15 -10 -5 0 5 10 15
0

0.5

1

-15 -10 -5 0 5 10 15
0

0.5

1

(a) (b) (c)

(d) (e)
Figure 4. (a) Spectral probability density distribution of the input state |+ω〉 of the Mach–Zehnder
interferometer for 0.1ω = σ and κ = 0.1. (b,c) Probability density distribution in the spatial port
b Pb(ω) (resp. spatial port a) if we start with either the zero (dark blue) or one (red) logical state.
(d,e) Probability density distribution in the spatial port b Pb(ω) (resp. spatial port a) if we start
with the equal superposition of the zero and one logical state (light blue). The overlap of the zero
and one logical state is not important enough to observe an interference effect (by comparison with
Figure 5d,e.

(a) (b)

(d) (e)
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(c)

Figure 5. (a) Spectral probability density distribution of the input state |+ω〉 of the Mach–Zehnder
interferometer for 0.2ω = σ and κ = 0.1. (b,c) Probability density distribution in the spatial port
b Pb(ω) (resp. spatial port a) if we start with either the zero (dark blue) or one (red) logical state.
(d,e) Probability density distribution in the spatial port b Pb(ω) (resp. spatial port a) if we start with
the equal superposition of the zero and one logical state (light blue). Their overlap is important
enough to observe an interference effect (by comparison with Figure 4d,e) that distorts the spectral
distribution of the single-photon state, which leaks to the wrong spatial port.

We represent in Figures 4d,e and 5d,e, the output probability distribution in the spatial
ports a and b when the initial state is |+ω〉. We observe a peculiar interference effect due
to the increasing of the overlap between the zero and one logical state. In practice, for
instance, we have to filter out the single-photon state that enters the wrong spatial port by
placing appropriate frequency filters.

In Appendix A, we also investigate the separation of the odd and even components
of the comb when the two-photon state is an input of the frequency qubit beam splitter.
This is relevant to the teleportation-based error correction protocol because the state to be
teleported is combined with a single photon from an EPR pair during the Bell measurement.
The spatial separation is, in that case, also completely effective when each Gaussian distri-
bution approaches a Dirac distribution, and not otherwise. Explicitly, for the two-photon
state, we obtain

∣∣01̃
〉

aa → |0G〉a
∣∣1̃G
〉

a′ + |0E〉a′
∣∣1̃E
〉

a, whose corresponding expressions are
given in Appendix A. The case to combine two different single-photon states also plays a
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role in quantum communication scenarios, where the second qubit is from an attacker who
tries to collect the information about the qubit carrying the information of interest.

4. Teleportation-Based Error Correction of Time–Frequency Qubit States

In this section, we propose a protocol for correcting and teleporting frequency qubit
states without relying on frequency-entangling operations. This protocol is similar to the
one used for teleporting polarization qubit states as described in [57], and is inspired by
the GKP analog [28,29]. Since the EPR state has a lower level of noise in both temporal and
frequency variables, the protocol includes an additional component for correcting errors in
the state being teleported.

The single-photon state |ψ〉 to be teleported and corrected is described by the wave
function |ψ〉 = Nαβ(α|0〉a + β|1〉a), where the two logical states are either the time–
frequency cat or GKP qubits (see Equation (12)). The wave function of the entangled
EPR time–frequency state in spatial ports b and c that assists with the teleportation and the
correction is ∣∣φ+

〉
bc = NEPR(

∣∣0̃1̃
〉

bc +
∣∣1̃0̃
〉

bc) (25)

composed of logical states which are less noisy, indicated with the tilde notation, than
the state to be teleported. Upon completion of the protocol, the single-photon state |ψ〉 is
localized to spatial port c, and the correction is automatically performed since the EPR state
is less noisy than the state of interest.

We now write the protocol for the error correction and teleportation of the time–
frequency cat state, considering that the Bell measurement perfectly separates the two
logical states. This protocol allows for correcting frequency errors affecting the frequency
qubit states. The protocol is shown in Figure 6, and we will now proceed to write the
evolution of the wave function at each step of the protocol. The initial wave function,
composed of the state to be corrected and teleported, and the EPR state, written in Bell’s
basis is

|ψ〉 =
NαβNEPR

2
(|ω1ω̃1〉+ |ω2ω̃2〉)(α|ω̃1〉c + β|ω̃2〉c)

+ (|ω1ω̃1〉 − |ω2ω̃2〉)(α|ω̃1〉c − β|ω̃2〉c)
+ (|ω1ω̃2〉+ |ω2ω̃1〉)(β|ω̃1〉c + α|ω̃2〉c)
+ (−|ω1ω̃2〉+ |ω2ω̃1〉)(β|ω̃1〉c − α|ω̃2〉c). (26)

The single-photon state and one member of the EPR pair are then combined into a
beam splitter, followed by two parity–frequency beam splitters placed in the spatial ports
a′ and b′. The first and second Bell states are transformed as

NEPR

2
[|ω1ω̃1〉a − |ω1〉a|ω̃1〉b + |ω1〉b|ω̃1〉a − |ω1ω̃1〉b

+ |ω2ω̃2〉a − |ω2〉a|ω̃2〉b + |ω2〉b|ω̃2〉a − |ω2ω̃2〉b]. (27)

The presence of a single photon in each port is a consequence of the distinguishability
of the photons. While if the photons are indistinguishable, only bunching events are
measured, as in the case of polarization encoding for two orthogonal logical states. In
order to suppress these coincidence events that lead to errors in the teleportation protocol,
the use of frequency filters with the same frequency width (envelope and peak) as the
EPR state is a possible solution. Explicitly, after the filtering operation, the state becomes
|ω̃1ω̃1〉a − |ω1ω̃1〉b + |ω̃2ω̃2〉a − |ω2ω̃2〉b, which leads only to two bunching events, which
are ignored when single photon detectors are used. The same analysis can be employed for
the second Bell state.
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Figure 6. Schematic of the teleportation-based error correction of frequency qubit states. The state to
be teleported and corrected is located at spatial port a. An EPR frequency qubit state which is less
noisy than the state of interest, is at spatial ports b and c. FQBS stands for the frequency qubit beam
splitter. F0,1 are frequency filters with a central frequency matching either the zero or one logical
state, and with a frequency width equal to that of the EPR state. Depending on which detectors have
measured coincidences, Pauli operations X̂, Ẑ must be performed to recover the state of interest. The
frequency qubit states before and after the teleportation are represented. The zero logical (resp. one)
state has a blue (resp. red) color.

For the third and fourth Bell states, they are transformed as
NEPR

2
[± |ω1ω̃2〉aa′ ∓ |ω1ω̃2〉ab′ ± |ω1ω̃2〉ba′ ∓ |ω1ω̃2〉bb′

+ |ω2ω̃1〉a′a − |ω2ω̃1〉a′b + |ω2ω̃1〉b′a − |ω2ω̃1〉b′b]. (28)

The use of frequency filters is again imperative since the measurement of coincidence
once filtered of a, a′ (or b, b′) permits to ensure that the quantum state Nαβ(β|ω̃1〉+ α|ω̃2〉)
is teleported. In the same way, the measurement of the coincidence of a, b′ (or b, a′) allows
teleporting the state Nαβ(β|ω̃1〉 − α|ω̃2〉). The receiver sends to spatial port c which detec-
tors have measured coincidences, and then a product of Pauli matrix gates must be applied
to recover the initial state of interest. The Pauli matrices for the time–frequency cat states
are frequency and temporal shifts operations [1], which can be implemented by either an
electro-optical modulator [48,49] and a delay line, respectively. The full optical scheme of
the teleportation-based error correction protocol is represented in Figure 6, along with an
illustration of the effect of the error correction for qubit cat states.

The corresponding probability of each event is P = 1
8(1+e−∆2/2σ2 )

, and the overall

probability success of the teleportation is

P =
1

2(1 + e−∆2/2σ2)
, (29)

which is then lower than 50% since only linear optics is used [57] and because the non-
orthogonality of the encoding further decreases the probability of success. Note that the
use of photon number-resolving (PNR) detectors will be able to not discard the bunching
events coming from the first and second Bell states. The single nanowire superconductivity
detector can also differentiate two and one single photons since the amplitude of the
resistance of the hotspot over time is higher for two photons. With the use of such a PNR
detector, the overall probability of success of the teleportation protocol is
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PPNR =
3

4(1 + e−∆2/2σ2)
(30)

and thus allows to increase the probability of success of the protocol despite the non-
orthogonality of the state. Experimentally, the choice of the PNR detector could be the
one described in [58]. Reaching a 3/4 probability of success was also found by using a
non-linear process or ancilla entangled states [59,60].

We can formulate the previous protocol for time–frequency GKP states. If we employ
an EPR state which is less noisy in the temporal and frequency domain, the teleported state
is corrected in both the temporal and frequency variables at once. It is in contrast with the
error correction protocol based on the frequency entanglement described in Section 2.4,
where we have to repeat twice the same protocol to correct both variables. In Appendix B,
we tackle the case of the teleportation error correction protocol when the spatial separation
of the non-orthogonal qubit state is imperfect, discussing the special case of time–frequency
GKP state and Bell measurement relying on the spatial separation of the two logical states
described in Section 3.2. The imperfect spatial separation affects both the efficiency and the
fidelity of the teleportation protocol. The fidelity is always equal to one when the logical
states are orthogonal, but this is not the case for non-orthogonal time–frequency qubit
states. The use of frequency filters can eliminate detection events caused by imperfect
spatial separation, but it comes at the cost of decreased brightness.

5. Conclusions

In this paper, we started to present two time–frequency qubit states, time–frequency cat
and GKP states, and the errors from which they are robust against. Then, we explained two
different optical scenarios that lead to different entanglement structures of time–frequency
GKP states and gave different periodicities for the joint spectral intensity of the photon
pair. This time–frequency GKP state entanglement structure leads naturally to a first error
correction method that requires non-linear processes [1] or quantum dot embedded into a
wave guide [27] to realize it. We then developed a method to perform the Bell measurement
for these two time–frequency qubits using Mach–Zehnder interferometry.

Since this error correction method is not scalable and difficult to implement experi-
mentally, we discussed the teleportation-based error correction protocol for the frequency
qubit state, and developed the case of the time–frequency GKP state in the appendix. The
teleportation-based error correction protocol is well suited for the single-photon encoding,
as it requires only linear optics. The single-photon state carrying the quantum informa-
tion of interest is first combined into a balanced beam splitter with one member of a less
noisy pair, and then the Bell measurement is performed. Therefore, if the initial state is
broadened in the temporal or frequency domain, because the remaining single-photon
state belongs to a less noisy entangled pair, such a state is less broadened in the temporal
(or frequency) domain and carries the information of interest (see Figure 6). By contrast
with the polarization degree of freedom, since the frequency qubit is defined from the
discretization of a continuous variable, the two logical states composing the qubit are
intrinsically non-orthogonal such that this fact leads to a decrease in the overall probability
of success of the teleportation protocol.

We can envision the scenario where the single-photon frequency is the carrier of the
quantum information and is moving through different nodes of a quantum network, and
the entangled states could be generated locally and allow healing the temporally and
frequency-broadened single-photon state carrying the quantum information of interest.
This teleportation-based error correction optical scheme has the same objective as a quan-
tum relay, that is, reducing the error rate of a quantum key distribution protocol by reducing
the overlap of the two logical states composing the qubit.

One perspective is to study the case where the logical qubit states are not infinitely
frequency-narrowed. The Bell measurement will lead to wrong detections because the
spatial separation of the two logical states into two spatial ports, realized with Mach–
Zehnder interferometry, is imperfect. This can be corrected by using frequency filters but at
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the cost of losing single photon detection events. To tackle this issue, the use of frequency-
resolved detection and the fault-tolerance threshold defined in [50] could be valuable for
avoiding the use of frequency filters. We showed that our protocol can correct the errors of
the qubit composed of two colors by reducing their spectral width. As a direct perspective,
a single photon qubit composed of two Gaussian centered on two temporal bins (see
Equation (2)) could be corrected from the temporal dispersion with the teleportation-based
error correction scheme by using a less temporally broadened entangled state, thereby
reducing the error rate of quantum communication protocols [61–63].
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Appendix A. Spatial Separation of a Two-Photon State

We show in this section that a two-photon state as input can also be separated into the
even and the odd components in two distinct spatial ports. We consider an initial separable
two-photon idea of the time–frequency GKP state as

∣∣00̃
〉

aa = ∑
n,m∈Z2

c2n c̃2m â†(2nω)â†(2mω)|Ω〉. (A1)

The tilde notation is here to indicate that the two states are not identical, as one
of them can be more noisy compared to the other. After the first beam splitter and the
time-displacement operator, the wave function of the two-photon state is

1
2 ∑

n,m∈Z2

c2n c̃2m(â†
τ(2nω)â†

τ(2mω) + b̂†(2nω)â†
τ(2mω)

+ â†
τ(2nω)b̂†(2mω) + b̂†(2mω)b̂†(2nω))|Ω〉. (A2)

where â†
τ(2nω) = ei2nωτ â†(2nω). The output wave function after the second beam splitter is

1
4 ∑

n,m∈Z2

c2n c̃2m(â†
τ(2nω) + b̂†

τ(2nω))(â†
τ(2mω) + b̂†

τ(2mω))

+ (â†
τ(2nω)− b̂†

τ(2nω))(â†
τ(2mω) + b̂†

τ(2mω))

+ (â†
τ(2nω) + b̂†

τ(2nω))(â†(2mω)− b̂†(2mω))

+ (â†(2nω)− b̂†(2nω))(â†(2mω)− b̂†(2mω))|Ω〉. (A3)
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We rearrange and post select only the coincidence terms:

1
4 ∑

n,m∈Z2

c2n c̃2m(â†
τ(2nω) + â†(2nω))b̂†

τ(2mω)

− (â†
τ(2nω) + â†(2nω))b̂†(2mω)

+ (â†
τ(2mω) + â†(2mω))b̂†

τ(2nω)

− (â†
τ(2mω) + â†(2mω))b̂†(2nω)|Ω〉. (A4)

Let us first consider the ideal case, where the spectral distribution is a Dirac one
G2n(ω) = δ(ω − 2nω). We point out that (â†

τ(2nω) + â†(2nω))|0〉 = (e2inωτ + 1)|2nω〉,
with τ = π/ω, we have (â†

τ(2nω) + â†(2nω))|0〉 = 2|2nω〉. We have also (b̂†
τ(2mω)− b̂†

(2mω)|2nω〉|0〉 = 0. We can verify that the other terms are zero. It means that there is no
coincidence event, which is the desired outcome.

We now rearrange and post select only the bunching terms:

1
4 ∑

n,m∈Z2

c2n c̃2m(â†
τ(2nω)â†

τ(2mω) + â†(2nω)â†
τ(2mω)

+ â†
τ(2nω)â†(2mω) + â†(2nω)â†(2mω)

+ b̂†
τ(2nω)b̂†

τ(2mω)− b̂†(2nω)b̂†
τ(2mω)

+ b̂†
τ(2nω)b̂†(2mω)− b̂†(2nω)b̂†(2mω))|Ω〉. (A5)

In the ideal case, the terms in the spatial port a remain, and the ones in the spatial port
b interfere destructively.

For a time–frequency GKP state with finite bandwidth, there is no longer a perfect
destructive (or constructive) interference effect that separates the even and odd components
of the comb perfectly. We analyze what happens to state

∣∣01̃
〉

aa. Post selecting on the
coincidence, we have ∣∣01̃

〉
aa → |0G〉a

∣∣1̃G
〉

a′ + |0E〉a′
∣∣1̃E
〉

a (A6)

where we define

|0G〉a =
Ne

2 ∑
n∈Z

c2n

∫
dω(eiωτ + 1)Gσ

2n(ω)|ω〉a (A7)

∣∣1̃G
〉

a′ =
No

2 ∑
n∈Z

c2n+1

∫
dω(eiωτ − 1)Gσ̃

2m+1(ω)|ω〉a′ (A8)

∣∣1̃E
〉

a =
No

2 ∑
n∈Z

c2n+1

∫
dω(eiωτ + 1)Gσ̃

2m+1(ω)|ω〉a (A9)

|0E〉a′ =
Ne

2 ∑
n∈Z

c2n

∫
dω(eiωτ − 1)Gσ

2n(ω)|ω〉a′ . (A10)

The post selection of the coincidence results in only those events, where both the even
and odd components are in the correct (designated by G) and incorrect (designated by E)
spatial ports. It should be noted that the output state is no longer in the GKP subspace
and results in detection errors. These errors can be corrected through the use of frequency
filters or by using frequency-resolved detection and setting a frequency threshold width to
accept only certain events [50]. Additionally, the imperfect spatial separation described in
Equation (A6) can also be interpreted as an attack to extract some information about the
quantum state of interest in a quantum communication protocol.
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Appendix B. Teleportation-Based Error Correction Protocol with Physical
Time–Frequency GKP State

In the following, we employ the GKP coherent picture [51]. The GKP qubit defined by
Equation (12) is composed of an envelope of width κ and each peak has a width of σ (resp.
κ1, σ1), while the frequency widths of the EPR state is noted as κ̃ and σ̃.

As noted, when the time–frequency GKP state has a limited bandwidth, the frequency
qubit beam splitter is not able to perfectly separate the odd and even components of the
comb. This results in some of the state leaking out of each spatial port and not conforming
to a GKP state. Furthermore, the state in the right port is also distorted. To address these
two challenges, it is necessary to employ frequency filters that enable projection back
into the GKP subspace and eliminate undesirable components. Given that the state being
teleported and the EPR state have different frequency widths, a frequency filter is placed
prior to detection, which establishes the frequency bin and aligns with the reference EPR
state. The projector modeling for the frequency-filtering process has the following form:

Π̂a = N2
e (σ, κ) ∑

n∈Z
c̃2n

∫
Gσ̃

2n(ω)|ω〉〈ω| (A11)

Π̂a′ = N2
o (σ, κ) ∑

n∈Z
c̃2n+1

∫
Gσ̃

2n+1(ω)|ω〉〈ω| (A12)

The normalization constant is found by using Π̂2 = I and Tr(Π̂2) = 1, N2
e (σ̃, κ̃) =√

2π/σ̃ ∑n |c̃2n|2. In the large comb approximation, we have Ne(σ̃, κ̃) = No(σ̃, κ̃).
The coincidence destructive measurement is described by the positive operator value

measurement:
Π̂a,a′ = Π̂aΠ̂a′ ⊗ |1〉〈1|. (A13)

By assuming that the state is pure, the probability of coincidence in the spatial port
a, a′, Paa′(0, 1) = Tr(Π̂a,a′ |ψ〉〈ψ|Π̂†

a,a′) is

Paa′(0, 1) =
∣∣∣∣

1
2
√

2

∣∣∣∣
2∣∣∣a01

σσ̃ + b01
σσ̃

∣∣∣
2
×

(∫
dω(|α|2|〈ω|0̃〉|2 + |β|2|〈ω|

∣∣1̃
〉
|2 + 2Re(α∗β〈ω|

∣∣0̃
〉
〈ω|1̃〉))

)
(A14)

where we used |a01
σσ̃ + b01

σσ̃| = |a10
σσ̃ + b10

σσ̃|, which is shown afterward. For an EPR with a
sufficiently narrow distribution, we assume that 〈0̃|1̃〉 = 0,

∫
dω|〈ω|0̃〉|2 =

∫
dω|〈ω|1̃〉|2= 1.

These two conditions are important since the probability then does not depend on α and β,

Paa′(0, 1) = | 1
2
√

2
|2|a01

σσ̃ + b01
σσ̃|2 (A15)

since otherwise, information about the quantum state could be extracted during the mea-
surement.

The wave function of the state after the detection is |ψ〉c = Π̂i,j|ψ〉/Tr(Π̂i,j|ψ〉〈ψ|Π̂†
i,j),

where i, j = a, b; a′, b′. When coincidences are detected at the spatial port a and a′, the
post-selected state is

|ψ〉c =
1

|a01
σσ̃ + b01

σσ̃|
(α(a1,σ̃

0,σ + b1,σ
0,σ̃)
∣∣0̃
〉

c + β(a1,σ
0,σ̃ + b1,σ̃

0,σ)
∣∣1̃
〉

c).
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The expression is similar for the other coincidence events in the other spatial ports,
and extra Pauli operations have to be performed. The coefficients a10

σ̃σ and b10
σσ̃ have

the expression

a10
σ̃σ =

1
4

Ne(σ, κ)No(σ̃, κ̃)Ne(σ̃, κ̃)No(σ̃, κ̃)

× ∑
n,m,k,k′

c2n c̃2m+1 c̃2k c̃2k′+1

∫
dω(eiωτ + 1)Gσ

2n(ω)Gσ̃
2k(ω)

×
∫

dω(eiωτ − 1)Gσ̃
2m+1(ω))Gσ̃

2k′+1(ω) (A16)

b10
σσ̃ =

1
4

Ne(σ̃, κ̃)No(σ, κ)Ne(σ̃, κ̃)No(σ̃, κ̃)

× ∑
n,m,k,k′

c̃2nc2m+1 c̃2k c̃2k′+1

∫
dω(eiωτ + 1)Gσ

2m+1(ω)Gσ̃
2k(ω)

×
∫

dω(eiωτ − 1)Gσ̃
2n(ω))Gσ̃

2k′+1(ω). (A17)

The b coefficient contains odd (resp. even) terms in a spatial port, where the frequency
filters are centered at even (resp. odd) frequencies. In the ideal case, namely, if both the
EPR and the teleported state are ideal time–frequency GKP states, we remind that a01

σσ̃ = 2
and b01

σσ̃ = 0. After evaluation of the integrals, and assuming that 2k = 2n, meaning that
the temporal spreading only reaches the next bin, we find that

a10
σ̃σ =

√
σ̃σ̃
√

σσ̃

4
√

σ̃2 + σ2
√

σ̃2 + σ̃2
(e−

π2α2

2ω2 + 1)

× (−e−
π2 α̃2

2ω2 − 1). (A18)

b10
σσ̃ =

√
σ̃σ̃
√

σσ̃

4
√

σ̃2 + σ2
√

σ̃2 + σ̃2

∑n,m c2m+1c2mc2nc2n+1

∑n,m |c2m+1|2|c2n|2

× (e−
π2α2

2ω2 e
− ω2

2(σ̃2+σ̃2) e
i πσ̃2

(σ2+σ̃2) + 1)

× (e−
π2α2

2ω2 e
− ω2

2(σ̃2+σ̃2) e
i πσ̃2

(σ2+σ̃2) − 1). (A19)

where we defined that α2 = σ2σ̃2/(σ2 + σ̃2). While a10
σ̃σ is real, b10

σσ̃ is a complex quantity.
From these expressions, we point out that a1,σ̃

0,σ = a0,σ̃
1,σ and b1,σ

0,σ̃ = b0,σ
1,σ̃ . When the width of

the frequency filter is σ̃ → 0, we have a01
σσ̃ = 2 and b01

σσ̃ = 0, which is the ideal case and
thus leads to a high fidelity of the state but at the cost of losing many photons. As the
imperfect spatial separation of the two logical states leads to a decrease in the fidelity, it is a
reminiscent fact that the state possesses continuous variables.
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