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Abstract

In this contribution, we develop a versatile formalism to derive unified two-phase models describing both the
separated and disperse regimes as introduced by (Loison et al., 2024). It relies on the stationary action principle
and interface geometric variables. This contribution provides a novel method to derive small-scale models for
the dynamics of the interface geometry. They are introduced here on a simplified case where all the scales and
phases have the same velocity and that does not take into account large-scale capillary forces. The derivation
tools yield a proper mathematical framework through hyperbolicity and signed entropy evolution. The formalism
encompasses a hierarchy of small-scale reduced-order models based on a statistical description at a mesoscopic
kinetic level and is naturally able to include the description of a disperse phase with polydispersity in size.
This hierarchy includes both a cloud of spherical droplets and non-spherical droplets experiencing a dynamical
behaviour through incompressible oscillations. The associated small-scale variables are moments of a number
density function resulting from the geometric method of moments (GeoMOM). This method selects moments as
small-scale geometric variables compatible with the structure and dynamics of the interface; they are defined
independently of the flow topology and, therefore, this model allows the coupling of the two-scale flow with an
inter-scale transfer. It is shown in particular that the resulting dynamics provides partial closures for the interface
area density equation obtained from the averaging approach.

1 Introduction

Two-phase flows encompass a wide range of physical phenomena, presenting dynamics involving a large spectrum
of scales (Scardovelli and Zaleski, 1999; Tomar et al., 2010; Shinjo and Umemura, 2010; Dumouchel et al., 2015;
Cordesse et al., 2020b; Sakano et al., 2022; Estivalezes et al., 2022). We identify in particular two different regimes
based on the topology/geometry of the fluid interfaces (Ishii and Hibiki, 1975): separated-phases flows, where the
material interface is described at the bulk fluid scale (hereafter called large scale), and disperse flows, characterised by
the presence of disperse phases within a carrier fluid, resulting in interfaces with significantly smaller scales (hereafter
called small scale).

Simulating such flows is crucial for many industrial processes such as combustion chambers where liquid fuel is
injected at high velocity and pressure forming a cloud of liquid droplets further away from the nozzle or nucleate
boiling in nuclear reactors (Jamet et al., 2010; Providakis et al., 2012; Fiorina et al., 2016). Unfortunately, direct
numerical simulation (DNS) capturing the smallest interfacial variations is currently limited to academic configura-
tions and impractical in industrial contexts. We address these challenges through the development of new modelling
approaches. One such approach, known as sub-scale modelling, consists of modelling the sub-scale phenomena di-
rectly at the bulk scale. Various approaches have been proposed for both separated and disperse flow regimes, such
as two-fluid systems of equations Baer and Nunziato (1986); Raviart and Sainsaulieu (1995); Saurel et al. (2017).
However, they often offer limited information about the interfacial structures and are only adapted to one of the two
regimes. Several works aim at coupling both regimes (Devassy et al., 2015; Le Touze et al., 2020) and sometimes
include other modelling approaches such as Lagrangian models (Lebas et al., 2009). In the mixed regime zone, when
the separated regime transitions to the disperse regime, the coupling processes involve very different descriptions,
variables as well as a series of coupling parameters. They have to be tuned depending on the configuration of interest,
which prevents the possibility of predictive simulations. The present work aims at providing a unified formalism that
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naturally degenerates towards separated and disperse flow models, and that can handle the mixed zone where both
large and small scales are present.

This contribution takes advantage of a new versatile framework to derive unified two-scale two-phase models
(Loison et al., 2024) based on Hamilton’s stationary action principle (SAP) (Herivel, 1955; Serrin, 1959; Salmon,
1983; Bedford, 1985; Truskinovsky, 1991; Gavrilyuk et al., 1998; Gouin and Gavrilyuk, 1999; Gavrilyuk and Saurel,
2002; Berdichevsky, 2009; Drui et al., 2019; Gouin, 2020; Cordesse et al., 2020a) and the second principle of thermo-
dynamics. The originality of the approach relies on the models’ ability to account for the presence of both separated
and disperse regimes at the same time. This is made possible by considering an artificial mixture in which small-
scale and large-scale interfaces coexist within the same physical domain. The length-scale threshold that separates
the large-scale dynamics of the bulk phase from the dynamics of the small-scale depends on the physics and is not
discussed in this work. By employing Hamilton’s SAP and an evolution equation for the mathematical entropy of
the model, we can obtain a dissipative system that captures the behaviour of this multiphase medium and provides
a good mathematical framework to analyse such models.

The main contribution of this work lies in the ability to plug into this two-scale framework a hierarchy of small-
scale models for the disperse flow regime coupled to the large scale via a liquid mass transfer. We notably extend the
geometric method of moments (GeoMOM) of Essadki et al. (2019) which connects geometric description of the small-
scale interfaces (Pope, 1988; Drew, 1990) with the statistics of a spray of droplets (Massot et al., 1998; Laurent and
Massot, 2001; Fox and Marchisio, 2007; Massot, 2007). We propose, in particular, a reduced-order moment model for
the dynamics of the small-scale inclusions that degenerates toward an existing moment models for the disperse regime
in the static minimal surface configuration of spherical polydisperse droplets (Kah et al., 2015; Essadki et al., 2018),
but can also handle the dynamic case of incompressible oscillation of droplets at the kinetic level following O’Rourke
and Amsden (1987) to model deformed inclusions. The key ingredient is the proper choice of variables, which are
moments of this kinetic description, but can also be identified as surface-averaged geometric quantities related to the
interface dynamics independently of the flow topology. By including an inter-scale transfer, this paves the way to the
modelling of the mixed zone, where the shape of droplets and ligaments depart significantly from a spherical form.

Lastly, we demonstrate the compatibility of the obtained small-scale models with several existing models from
the literature that describe the evolution of the interfacial area density in the flow. It offers a new way on selecting
the adequate variables for interface dynamics description and reaches interesting closures, usually out of reach, for
the interfacial area density equation.

The definition of the two-scale mixture and the derivation of its dynamics with Hamilton’s SAP is recalled in
Section 2 following (Loison et al., 2024). Then, the small-scale modelling of polydisperse sprays with GeoMOM is
proposed in Section 3. We pursue with an extension of the polydisperse model of spherical droplets into a spray of
oscillating droplets in Section 4. An inter-scale mass transfer coupling the resulting hierarchy of two-scale models is
then defined in Section 5. Finally, the dynamics of interface area density of these models is discussed and compared
with models of the literature in Section 6.

2 Two-scale two-phase model for both separated and disperse regimes

We model a mixture composed of large-scale liquid and gaseous phases in a separated regime and a small-scale liquid
phase, the dynamics of which is characterised by a length scale yet to be determined. The regime of the small-scale
phase is not prescribed here, but it is eventually described by a disperse regime model. This section recalls the
two-scale model obtained in Loison et al. (2024) which proposes a framework to account for the presence of both
large-scale and small-scale phases at the same location. The interested reader is referred to the discussions therein
for more details.

2.1 Two-scale modelling assumptions

We propose successive sets of assumptions. First, regarding the fluid dynamics:

� all phases have the same mean velocity; (H1a)

� the small-scale velocity fluctuations and capillarity forces

are modelled by a small-scale energy term; (H1b)

� the small-scale liquid phase is incompressible. (H1c)

Following hypotheses (H1a) and (H1b), we account for velocities that naturally appear at small scale (e.g.
droplets’ drag in the disperse regime) only through the advection of a local small-scale energy for the sake of

2



clarity of the exposition of the new ideas of the paper. Potential extensions are discussed in the conclusion. The
incompressibility of the small-scale is discussed in appendix A to justify (H1c). It affects the physics at two levels.
The first level pertains to sound propagation that is cancelled at the small scale. It is especially relevant in the
disperse regime where no sound can propagate from one inclusion to another as underlined in Saurel et al. (2017).
The second level is related to the volume occupation of the disperse phase and the evolution of its volume fraction.

Second, the following hypotheses are formulated solely for the sake of simplicity, but are not limiting for the
models developed in the present work:

� each phase is isothermal with barotropic equations of state; (H2a)

� large-scale capillarity effects are not modelled; (H2b)

� no mass exchanges between the phases are taken into account; (H2c)

� body forces are neglected; (H2d)

Let us remark that (H1a) and (H2a) correspond to the thermal and kinematic equilibria as studied in Chante-
perdrix et al. (2002); Caro et al. (2005) and Drui et al. (2019). The effects neglected by (H2a), (H2b) and (H2c)
have been studied, for instance, in Perigaud and Saurel (2005); Gaillard (2015); Schmidmayer et al. (2017); Cordesse
(2020); Loison et al. (2024); Caro et al. (2005) and Pelanti (2022). The model can be extended to include these effects,
but they are not necessary for the two-scale modelling framework at stake in this work. The particular modelling of
mass transfer between the large scale and the small scale is not considered in this section but accounted in Section 5.

We denote with the subscript k = 1 the liquid and k = 2 the gaseous phase. An additional superscript d identifies
the small-scale liquid phase, where the letter d stands for “droplets” or “disperse” liquid phase. Following (H2a),
each large-scale fluid k = 1, 2 is equipped with a barotropic equation of state of the form ρk 7→ ek(ρk), where ρk and
ek are the density and the barotropic potential of the phase k = 1, 2. Denoting (·) 7→ (·)′ the derivative with respect
to the density, the pressure pk of the large-scale phase k = 1, 2 is then defined by pk = ρ2ke

′
k(ρk). We assume that

p′k(ρk) > 0 so that the sound speed ck associated with the phase k = 1, 2 is ck =
√
p′k(ρk). With αk the volume

fraction of the phase k = 1, 2, 1d, we consider a two-scale mixture such that it obeys the volume constraint

α1 + α2 + αd
1 = 1, (1)

and its density ρ is obtained from the effective phase densities mk := αkρk,

m1 +m2 +md
1 = ρ. (2)

Following (Loison et al., 2024), we introduce the large-scale volume fractions defined by

αk :=
αk

1− αd
1

, for k = 1, 2, (3)

extending the usual definition at the large-scale perspective such that

α1 + α2 = 1. (4)

We denote by Yk the mass fraction such that the specific barotropic potential e of the two-phase material is defined
by

e = Y1e1(ρ1) + Y2e2(ρ2) + Y d
1 e1(ρ

d
1). (5)

Under assumptions (H1a) and (H1b), there is a unique velocity u describing the mixture

u := u1 = u2 = ud
1. (6)

Then, (H2c) provides the mass conservation of each phase

∂tmk +∇ · (mku) = 0, for k = 1, 2, 1d. (7)

Summing these equations provides the total mass conservation equation

∂tρ+∇x · (ρu) = 0. (8)

Denoting Dt(·) = ∂t(·) + u · ∇(·) the material time derivative, the incompressibility of the small-scale liquid phase
(H1c) reads

Dtρ
d
1 = 0. (9)
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Then liquid volume fraction of the small scale is conserved

∂tα
d
1 +∇ · (αd

1u) = 0. (10)

The small-scale energy density accounting for both capillarity energy and kinetic energy of velocity fluctuations is
advected at the mixture averaged velocity

Dtζ = 0. (11)

2.2 Conservative motion with Hamilton’s SAP

The equation of the two-scale fluid mixture’s motion is derived similarly as Gavrilyuk and Gouin (1999) and Drui
et al. (2019) by using Hamilton’s SAP. We set the kinetic and potential energies of the phase k as

Ekin
k :=

1

2
mku

2, Epot
k := mkek

(
mk

αk

)
, (12)

and the mixture kinetic and potential energies are
∑

k E
kin
k and

∑
k E

pot
k . This enables the definition of the La-

grangian energy Lk = Ekin
k − Epot

k of the phases k = 1, 2, Ld
1 = Ed,kin

1 − Ed,pot
1 −md

1ζ and a mixture Lagrangian
energy L =

∑
k Lk. Capillarity energy at large scale is purposely not modelled for simplifying purposes (see H2b)

and no particular flow regime is assumed for now at small scale . These effects are considered later in Section 3,
where we refine the small-scale model. Thereby, the Lagrangian associated with our system reads

L = L1 (α1,m1,u) + L2 (α2,m2,u) + Ld
1

(
md

1, ρ
d
1, ζ,u

)
. (13)

With mass conservation constraints, Hamilton’s SAP leads to the following set of equations (see appendix B for
details) 

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tα
d
1 +∇ · (αd

1u) = 0,

∂tζ + u · ∇ζ = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

(14)

where I is the identity matrix, and p is the equilibrium pressure obtained for the mixture thermodynamic closure
p := p1 = p2 given by the second line of (124). This algebraic equation gives α1 and p, respectively, as the solution
and the value of the equilibrium for given values of m1, m2 and αd

1. System (14) also admits a supplementary
conservation equation

∂tH+∇ · ((H+ p)u) = 0, (15)

where the total energy H = ρ∥u∥2 − L is a mathematical entropy (Godlewski and Raviart, 1991) for (14). The
mathematical entropy of the system is studied as the isothermal limit of the Euler—Fourier model in Serre (2010).
It is shown to be convex and linked to the physical entropy of the mixture s with H = ρ(ε − Ts) + 1

2ρ∥u∥
2 where

ε = e+ Ts and T are the internal energy and the temperature of the mixture, respectively.
Remark that α1 is not a variable of the set of conservation laws (14), but its effective dynamics for smooth

solution can be written explicitly by applying the material time derivative to the algebraic equation p1(m1/α1) =
p2(m2/(1− α1 − αd

1)), and reads

Dtα1 = Λ∇ · u, with Λ = α1(1− α1)
ρ2c

2
2−ρ1c

2
1

α1ρ2c22+(1−α1)ρ1c21
+ αd

1
α1ρ2c

2
2

α1ρ2c22+(1−α1)ρ1c21
. (16)

Moreover, system (14) is shown hyperbolic with a mixture’s velocity cdW := cW /(1 − αd
1) where cW is the Wood

sound velocity such that (c2W )−1 = ρ(α1/(ρ1c
2
1) + α2/(ρ2c

2
2)). This extends, in particular, the three-equation model

proposed by Chanteperdrix et al. (2002), which is recovered when αd
1 → 0.

Remark also that the small-scale specific energy ζ is chosen to be modelled here as a passively advected quantity.
Therefore, it does not affect the dynamics of the two-scale mixture in absence of inter-scale mass transfer which is
further modelled in Section 5. The modelling of the effect of small-scale velocity fluctuations on large-scale dynamics,
possibly via pressure contributions, is however out of the scope of this work. Because of this temporary passive role
and for clarity purposes, this small-scale energy is removed from the modelling up to Section 5.
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2.3 Dissipative dynamics

Now that we have set the conservative structure of the model with Hamilton’s SAP, we add dissipative processes
to the model. We propose here to model both a pressure disequilibrium between the two large-scale phases as it is
characteristic of two-phase flow models as in the model of Baer and Nunziato (1986) and fluid viscosity.

First, the pressure disequilibrium can encompass several physical phenomena with different timescales (e.g. bubbly
flows Drui et al. (2019) and stochastic thermodynamic relaxation Perrier and Gutiérrez (2021)). Let us mention that
the limit of instantaneous relaxation can also be used to build a numerical scheme that solves the pressure equilibrium
of (14) (Chanteperdrix et al., 2002).

In order to make this pressure relaxation a large-scale process that acts on each large-scale phase symmetrically,
we define the large-scale volume fractions

αk :=
αk

1− αd
1

, for k = 1, 2, (17)

such that for αd
1 < 1,

α1 + α2 + αd
1 = 1 ⇐⇒ α1 + α2 = 1. (18)

Then, we relax the pressure equilibrium of (14) into

Dtα1 =
p1 − p2

ϵ
, (19)

where ϵ > 0 has the dimension of a dynamic viscosity. Since the pressure is no longer unique with this pressure
relaxation, the momentum equation can be expressed as follows:

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0, (20)

where p is chosen to provide a signed dissipation of H. Following appendix B

ς :=∂tH+∇ · ((H+ p)u)

=(p− α1p1 − (α2 + αd
1)p2)∇ · u− (p1 − p2)Dtα1

=(p− α1p1 − α2p2)∇ · u− ϵ(1− αd
1)(Dtα1)

2.

(21)

Therefore, choosing p := α1p1 + α2p2 gives a signed mathematical entropy production ς ≤ 0 and the relaxed model
reads 

∂tmk +∇ · (mku) = 0, for k = 1, 2, 1d,

∂tα
d
1 +∇ · (αd

1u) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

Dtα1 = ϵ−1(p1 − p2).

(22)

The model (22) is obtained for the specific dissipative process (19) that gives a relaxed model for (14). It is also
shown hyperbolic with a mixture’s velocity cdF := cF /(1 − αd

1) where cF is the frozen sound velocity such that
c2F = Y1c

2
1 + Y2c

2
2. The reader is referred to Loison et al. (2024) for a more thorough discussion on the pair of

two-scale systems (14) and (22).
Second, the fluid viscosity in the context of a two-phase diffuse interface model with one velocity can be modelled

with a Stokes source term on the momentum equation

∂t(ρu) +∇ · (ρu⊗ u+ pI) = ∇ · T stokes, (23)

where T stokes := µ(∇u+(∇u)T )+λ(∇·u)I is the viscous stress, µ the dynamic viscosity and λ the second viscosity
with λ + 2

3µ ≥ 0. After some calculations, this additional term modifies the mathematical entropy production (21)
to yield

∂tH+∇ · ((H+ p)u− T stokes · u)

=− ϵ(1− αd
1)(Dtα1)

2 −

(
2µ

(
∇u+ (∇u)T

2
− 1

3
(∇ · u)

)2

+

(
λ+

2

3
µ

)
(∇ · u)2

)
.

(24)

The right-hand side is negatively signed and thus provides a dissipative term to the dynamics.
Including these two viscosity terms, a dimensionless analysis of the dissipative system is proposed in Appendix

C. In the remainder of this paper, such viscous terms are neglected for readability purposes, but their absence could
also correspond to regimes with high fluid velocities.

We remark that other dissipative processes could have been considered, but are not modelled here, such as drag
for two-velocity models (Saurel et al., 2017; Gavrilyuk, 2020) or turbulent dissipation (Saurel et al., 2003).
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3 Small-scale modelling consistent with polydisperse sprays of spherical
droplets

We now follow two parallel goals to enrich the small-scale models of the previous section: 1- describing polydisperse
sprays in the disperse regime, where the droplets are spherical, in their static minimal surface configuration; and
2- introducing geometric quantities which describe the small scale for any kind of interface in all flow regimes,
thus proposing a limit model of a general interface dynamics at small scale. This modelling strategy has first been
introduced for droplets in spherical shape in Essadki et al. (2016) and will be referred to in the present contribution
as GeoMOM. This strategy relies on a kinetic modelling of the small scale as a population of droplets. The resulting
model is consequently coherent in the disperse regime where the kinetic approach is valid. In the mixed regime, the
physics validity of the kinetic-based model is limited, but it still remains interpretable since the chosen geometric
variables are showed to be defined with both a large-scale modelling of the interface and the small-scale kinetic model.

3.1 Kinetic-based model in the disperse regime

We start the modelling of the spray by assuming that:

� the small-scale phase is composed of spherical droplets; (H3a)

� the droplets do not break nor coalesce. (H3b)

Indeed, (H1b) shows that only small velocity differences are locally allowed at the small scale, and droplets are
then very close to a spherical shape. The droplets are then described by a static minimal surface, which remains
spherical. The kinetic modelling of the disperse small scale relies on the number density function (NDF) f that
counts the number of droplets within a small volume of the phase space around a point of the space—time domain.
For generality purpose, we adopt a description for compressible inclusions whose sizes can change in time under
either mass exchange or compressibility processes. Therefore, we consider the NDF f(x, t,v, m̂) to be a distribution
of velocities v and droplet masses m̂ instead of a size parameter such as radius or surface. We also denote fv,m for
compactness to underline the phase-space dependencies only. Then, the equation of evolution of the NDF expresses
the conservation of the droplets in both the real and phase spaces (Williams, 1958; Marchisio and Fox, 2013) and
reads

∂tfv,m +∇x · (fv,mv) +∇v · (F (v, m̂)fv,m) + ∂m̂(Rm(v, m̂)fv,m) = Γ, (25)

where F and Rm are unclosed rates of change of the velocity and the mass corresponding to body forces and mass
transfer, while Γ = Γbu + Γcoal accounts for source terms such as break-up and coalescence phenomena. Hypotheses
(H3b) and (H2c) imply Γ = 0 and Rm = 0, respectively. Moreover, the distribution of velocities is out of the scope
of this work as assumed by (H1a) (see Vié et al. (2013) for an Eulerian model coupling the effects of size and velocity
distributions). Therefore, we discard the velocity dependency by considering nm =

∫
v
fv,mdv, the mass-based NDF

in the limit of a vanishing Stokes number St→ 0, i.e. when the inertial timescale of inclusions is negligible compared
to the timescale of the flow. Following the works of Jabin (2002) and Massot (2007), the dynamics of nm reads{

∂tnm +∇x · (nmu) = 0,

∂t(nmu) +∇x · (nmu⊗ u) = 0,
(26)

where u is the unique velocity of every phase as defined by (6).

3.2 GeoMOM : definition and application to the incompressible spray

GeoMOM aims at enriching the models (14)-(22) with quantities describing the geometry of the interface at the
small scale. This method introduced in Essadki et al. (2016, 2018, 2019) is a reduced-order moment model for the
polydisperse droplet distribution where the chosen moments are geometric quantities that can be defined for any flow
regime and interface topology.

First, let us define those quantities. We consider a surface S defined by mapping a set U ⊂ R2 onto S ⊂ R3 such
that we denote by A(u, v)dudv the infinitesimal surface element over S. Then, the surface area and a surface-average
operator are defined on S by

S :=

∫
U
A(u, v) dudv, ⟨ · ⟩ := 1

S

∫
U
(·)A(u, v) dudv. (27)
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Considering the surface of the droplets in the two-scale mixture as described in Section 2, the sum of their areas
defines the small-scale interface area density Σ. Thanks to (27), one can also define surface-average Gauss and
mean curvatures Σ ⟨G⟩ and Σ ⟨H⟩ as in Drew (1983) and Pope (1988). We use here these quantities to enhance the
description of the disperse small scale, but their definitions are a priori independent of the surface geometry (see an
application of these geometric quantities to the interface resulting from for the collision of two spherical droplets in
appendix D). This property is particularly convenient as it indicates that the kinetic-based model can be interpreted
as a limit case for the mixed regime, and we discuss in conclusion how it allows coupling of the interface geometry
between scales.

Second, we reduce the complexity of the spray dynamics, modelled by the distribution nm given in (26), by
introducing a finite set of moments indexed by I

Mm
i :=

∫
m̂

m̂i nm dm̂, i ∈ I finite ⊂ N. (28)

These scalars retain statistical information about the NDF and their dynamics can be obtained by integrating (26)
against the corresponding monomials,

∂tM
m
i +∇ · (Mm

i u) = 0, i ∈ I. (29)

The method of moments then gives a reduced-order model for the small-scale spray in comparison with (26). In
general, the equations are unclosed, and a reconstruction of the NDF based on the selected moments must be
provided. The selection of these moments is not obvious and is usually motivated on the basis of mathematical
properties of the resulting moment model.

Finally, the specificity of GeoMOM consists in the selection of moments related to geometric quantities defined
with (27) to construct a model interpretable even out of the disperse regime. For the spherical droplets described by
nm, the local Gauss and mean curvatures on the sphere are constant and equal to R−1 and R−2, respectively, where
R = (3m/(4πρd1))

1/3 is the radius of the sphere of density ρd1 and mass m. Therefore, considering a population of
spherical droplets, we express the geometric quantities Σ, Σ ⟨G⟩ and Σ ⟨H⟩ as moments of the distribution nm

Σ ⟨G⟩ =
∫
m̂

4π nm dm̂ = 4π Mm
0 ,

Σ ⟨H⟩ =
∫
m̂

4π

(
3

4πρ1

)1/3

m̂1/3 nm dm̂ = 4π

(
3

4πρd1

)1/3

Mm
1/3,

Σ =

∫
m̂

4π

(
3

4πρd1

)2/3

m̂2/3 nm dm̂ = 4π

(
3

4πρd1

)2/3

Mm
2/3.

(30)

Remark the special role of Σ ⟨G⟩ proportional to the zeroth-order moment of nm. This results from the Gauss—Bonnet

theorem (Kreyszig, 1991), which indicates a geometric invariant SG̃ = 4π for continuous deformations of the sphere,

where (̃·) denotes the surface average as (27) applied to a unique droplet. It is also shown in Essadki et al. (2019) that
such an invariant enables to write the dynamics of geometric quantities Σ, Σ ⟨ · ⟩ independently of the flow regime.
Furthermore, the small-scale volume fraction is not surface-related in general, but in the specific case of spherical
droplets, it is also linked to a moment of nm with

αd
1 =

∫
m̂

1

ρd1
m̂ nm dm̂ =

1

ρd1
Mm

1 . (31)

From (30) and (31), we select I = {0, 1/3, 2/3, 1} in (29) to obtain the dynamics of the geometric quantities
∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = 0,

∂t((ρ
d
1)

1/3Σ ⟨H⟩) +∇ · ((ρd1)1/3Σ ⟨H⟩u) = 0,

∂t((ρ
d
1)

2/3Σ) +∇ · ((ρd1)2/3Σu) = 0,

∂tm
d
1 +∇ · (md

1u) = 0.

(32)

Up to here, the model has been derived for compressible spherical inclusions. We focus back on the description of a
spray of droplets by assuming the incompressibility of the small scale thanks to the constraint Dtρ

d
1 = 0. Then, the
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geometric variables are governed by 
∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = 0,

∂t(Σ ⟨H⟩) +∇ · (Σ ⟨H⟩u) = 0,

∂tΣ +∇ · (Σu) = 0,

∂tα
d
1 +∇ · (αd

1u) = 0.

(33)

System (33) corresponds to the system with surface-based moments of Essadki et al. (2018) when no evaporation nor
condensation is accounted for. Indeed, when the droplets are incompressible, the mass-based NDF nm relates to the
surface-based NDF nS defined by

nS(x, t, Ŝ) := nm(x, t, m̂)δ(m̂−m(Ŝ)), m(Ŝ) = ρd1
Ŝ

3
√
4π
. (34)

As ρd1 is a constant along the streamlines, there is no variation of surface area for the droplets and the dynamics is
then driven by

∂tnS +∇x(nSu) = 0. (35)

Again, when the droplets have the same density, the geometric quantities are also expressed through the moments
MS

i of nS ,

Σ ⟨G⟩ = 4πMS
0 , Σ ⟨H⟩ =

√
4πMS

1/2, Σ =MS
1 , αd

1 =
1

3
√
4π
MS

3/2. (36)

The change of variables (34) only modifies the dimensions and orders of the moments. Consequently, the four initial
half-integer moments can be recovered as in Essadki et al. (2018). In the following, we stick with the surface-based
moments for better comparison with the work of Essadki et al. In the end, the relations (36) between moments
and geometric quantities provide a reduced-order model of the small-scale disperse phase (see appendix D for an
illustration of the reduced-order modelling applied to droplets resulting from the collision of two spherical droplets).

3.3 A two-scale model with a polydisperse small-scale model

The two-scale models derived in Section 2 thanks to Hamilton’s SAP can now be enhanced by incorporating the new
geometric quantities in the Lagrangian and specifying whether these parameters are constrained by new conservation
laws. We add then a small-scale capillarity energy σΣ along with the conservation constraints given by (33). Let us
introduce a new variable z = Σ/md

1, which is transported, that is, Dtz = 0. As the large-scale capillarity is neglected
(H2b), the energies associated with the large scales of the flow are left unchanged whereas the small-scale Lagrangian
Ld
1 becomes

Ld
1

(
md

1, ρ
d
1, z := Σ/md

1,u
)
:=

1

2
md

1|u|2 −md
1e1(ρ

d
1)− σmd

1z. (37)

Eventually, the system resulting from Hamilton’s SAP (see details in appendix E) together with the constraints (33)
yields 

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tα
d
1 +∇ · (αd

1u) = 0,

∂tΣ +∇ · (Σu) = 0,

∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = 0,

∂t(Σ ⟨H⟩) +∇ · (Σ ⟨H⟩u) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

(38)

with p := p1 = p2. Let us remark that the new small-scale capillarity term in the Lagrangian does not alter momentum
flux in this formulation compared to (14). Similarly to the previous models but with the updated definition of the
Lagrangian L, this model also admits a supplementary conservation equation

∂tH+∇ · ((H+ p)u) = 0, H =
∑
k

mk∥u∥2 − L, (39)

and a pressure relaxation can be built as in (22). Both (38) and its relaxed version are hyperbolic with similar
structure of eigenvalues and eigenvectors.
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Figure 1: Sphere deformed with the second axisymmetric spherical harmonic and vibrational breakup modelled by a
critical length for the smallest radius.

4 Polydisperse and vibrational spray small-scale model

In the previous model, no dynamics have been associated with the geometric variables as they represent a spray of
spherical droplets, that is a static minimal surface. Here, we propose to enhance this model by associating a dynamics
to the droplet geometry. In the context of the small velocity differential given by (H1b), we add an oscillating motion
to the droplets around their spherical shapes. Such a model is sufficiently simple to identify the associated energies
while being a first step towards the modelling of break-up as proposed in O’Rourke and Amsden (1987) and Amsden
et al. (1989) (see figure 1). Moreover, this model introduces with GeoMOM non-trivial dynamics for geometric
quantities such as interface area density.

4.1 Kinetic-based model in the disperse regime

Let us model the spray of oscillating droplets by first discarding assumption (H3a) of spherical shapes, and rather
assume:

� the droplets’ internal flow is irrotational; (H4a)

� the amplitude of the interface deformation is small; (H4b)

� the deformed droplets are either randomly orientated or they all

orientate to the same privileged direction; (H4c)

� the droplets’ interface is deformed along the second

axisymmetric spherical harmonic. (H4d)

The dynamics of a droplet satisfying (H4a) and (H4b) has been studied thoroughly (John W. Strutt (3rd Baron
Rayleigh), 1879; Prosperetti, 1977; Plümacher et al., 2020). The choice of orientation (H4c) of the deformation
depends on the physics, whether it is isotropic or not, and it is not discussed here. Denote by r the position of the
droplet interface in spherical coordinates (r, θ, ϕ) and (er, eθ, eϕ) the spherical orthonormalised basis. Following
(H4d), we denote by Y2(θ) =

√
5/(4

√
π)(3 cos2 θ−1) the second axisymmetric spherical harmonic, and R0 the radius

of the non-deformed spherical droplet, such that the position can be written as

r = (R0 + x2Y2)er, (40)

where x2 denotes the amplitude of the deformation. The dynamics of this motion follows the harmonic oscillation

ẍ2 + ω2x2 = 0, ω2 = 8
σ

ρd1R
3
0

= ω̃2S
−3/2
0 , (41)

where ω̃2 = (8(4π)3/2σ/ρd1) is a constant along the streamlines. The dynamics of the droplets is then characterised
by (S0, x2, ẋ2). For computational reasons, we introduce χ = (2/S0)

1/2x2 which satisfies the same dynamics (41) as

x2. Assuming (H3b) and (H2c), the balance equation for the NDF nξ in the phase space ξ̂ = (Ŝ0, χ̂, ̂̇χ) yields
∂tnξ +∇x · (nξu) + ∂χ̂(Rχnξ) + ∂̂̇χ(Rχ̇nξ) = 0, (42)

where Rχ and Rχ̇ are rates of change that remain to be closed. This model can be seen as the particular case
satisfying (H1a)—(H2c)—(H3b)—(H2a) of the kinetic model considered by O’Rourke and Amsden (1987); Amsden

et al. (1989). With the oscillator model (41), we close (42) by fixing Rχ = ̂̇χ and R̂̇χ = −ω̃2Ŝ
−3/2
0 χ̂,

∂tnξ +∇x · (nξu) + ∂χ̂(̂̇χnξ) + ∂̂̇χ(−ω̃2Ŝ
−3/2
0 χ̂nξ) = 0. (43)
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4.2 Modelling a spray of asynchronously oscillating droplets

With the new PBE (43), GeoMOM leads to a non-trivial closure problem and the geometric quantities chosen in (30)
and (31) cannot model an arbitrary distribution. With such a choice, we propose in this section to approximate the
distribution with

nξ(x, t, Ŝ0, χ̂, ̂̇χ) = nS0
(x, t, Ŝ0)

1

|E(Ŝ0)|
1E(Ŝ0)

(χ̂, ̂̇χ), (44)

where the amplitudes and their rates of change (χ̂, ̂̇χ) are uniformly distributed on a compact space E ⊂ R2 of area

|E(Ŝ0)| that allows a maximal energy for a given droplet size Ŝ0. This approximation of the NDF discards situations
where droplets oscillate synchronously, and consequently a macroscopic oscillation motion of the spray.

4.2.1 GeoMOM based on the classical surface-average operator

We apply GeoMOM with the same surface-average operators ⟨ · ⟩ and (̃·) defined in Section 3.2, and geometric
quantities Σ ⟨G⟩, Σ ⟨H⟩, Σ, αd

1. We establish then the relations between these geometric quantities and moments of
the NDF in the context of a disperse regime,

Σ ⟨G⟩ =
∫
ξ̂

SG̃ nξ dξ̂, Σ ⟨H⟩ =
∫
ξ̂

SH̃ nξ dξ̂, Σ =

∫
ξ̂

S nξ dξ̂, αd
1 =

∫
ξ̂

V nξ dξ̂. (45)

When the oscillations are small, the integrands are functions of ξ̂ (see appendix F) and write

SG̃ = 4π, SH̃ − S0H̃0 =
√
4πS

1/2
0 χ2, V =

1

3
√
4π
S
3/2
0 , S − S0 = S0χ

2, (46)

where H̃0 =
√
4πS

−1/2
0 is the surface-averaged mean curvature when the droplet is a sphere i.e. χ = 0. We remark

that SG̃ and αd
1 are constant despite the oscillation thanks to the Gauss—Bonnet theorem Kreyszig (1991) and the

incompressibility assumption. Finally, relations between geometric quantities and momentsMξ
i,j,k :=

∫
ξ̂
Ŝiχ̂j ̂̇χk

nξ dξ̂
of nξ are obtained

Σ ⟨G⟩ = 4πMξ
0,0,0, Σ ⟨H⟩ =

√
4π(Mξ

1/2,0,0 +Mξ
1/2,2,0),

Σ =Mξ
1,0,0 +Mξ

1,2,0, αd
1 =

1

3
√
4π
Mξ

3/2,0,0.
(47)

These relations extend those of (36) with moments dedicated to the oscillatory dynamics. Such decomposition leads
us to define and choose the following geometric quantities and moments for our model

Σ ⟨H⟩0 :=
√
4πMξ

1/2,0,0, ∆Σ ⟨H⟩ :=
√
4πMξ

1/2,2,0,

Σ0 :=Mξ
1,0,0, ∆Σ :=Mξ

1,2,0,
(48)

instead of just Σ and Σ ⟨H⟩ which can be reconstructed with (47). Integrating (43) against (1, Ŝ
1/2
0 , Ŝ0, Ŝ

3/2
0 , Ŝ

1/2
0 χ̂2, Ŝ0χ̂

2)
provides 

∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = 0,

∂t(Σ ⟨H⟩0) +∇ · (Σ ⟨H⟩0 u) = 0,

∂tΣ0 +∇ · (Σ0u) = 0,

∂tα
d
1 +∇ · (αd

1u) = 0,

∂t(∆Σ ⟨H⟩) +∇ · (∆Σ ⟨H⟩u) = 2
√
4πMξ

1/2,1,1,

∂t(∆Σ) +∇ · (∆Σu) = 2Mξ
1,1,1,

(49)

We obtained that Σ ⟨G⟩, Σ ⟨H⟩0, Σ0 and αd
1 are conserved similarly as (33) with two additional equations for the

oscillatory components ∆Σ ⟨H⟩ and ∆Σ.

4.2.2 Energies of the spray

In the context of two-scale modelling with Hamilton’s SAP, we are specifically interested in defining the energies
of the spray with the geometric quantities. For the oscillatory motion described by (41), the kinetic and potential
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energies of a droplet can be expressed as function of ξ (John W. Strutt (3rd Baron Rayleigh), 1879, appendix II)

Ekin,1d =
1

2

ρd1
4(4π)3/2

S
5/2
0 χ̇2, Epot,1d = σS = σS0 + σS0χ

2. (50)

It is then straightforward to obtain the energies of the spray Ekin,d and Epot,d from moments of nξ by integrating
the expressions above,

Ekin,d =
1

2

ρd1
4(4π)3/2

Mξ
5/2,0,2, Epot,d = σΣ = σMξ

1,0,0 + σMξ
1,2,0. (51)

We remark that the moment Mξ
5/2,0,2 is not linked to any of the selected geometric quantities of the model. We

can find a closure for this moment using the approximation of nξ given in (44). It requires to provide a definition
for E which is chosen following the break-up criterion of O’Rourke and Amsden (1987). Therefore, we authorise the
droplets to oscillate with an energy lower than a fraction c ∈ [0, 1] of the maximal energy Emax before break-up,

E(Ŝ0) :=
{
(χ̂, ̂̇χ) ∈ R

2 s.t. Ekin,1d(Ŝ0, χ̂, ̂̇χ) + Epot,1d(Ŝ0, χ̂, ̂̇χ) ≤ cEmax(Ŝ0)
}
. (52)

The break-up energy Emax(S0) corresponds to a deformation up to an equatorial radius reaching half the value of
the spherical radius

Req := ∥r(π/2)∥ =
R0

2
. (53)

Then, the subset E boils down to E = {χ2 + (χ̇/ω)2 ≤ 2c/5} whose area is |E| = 2
5πωc. We can now close the

expression of Ekin,d, Epot,d in (51) and find the dynamics of the parameter c using (49) and the approximation of
the NDF (44). It yields

Ekin,d =
1

10
cσΣ0, Epot,d = σΣ0 +

1

10
cσΣ0, Dtc = 0. (54)

Remark that, as (χ, χ̇) are uniformly distributed in E , the mechanical energy is evenly distributed between kinetic
and potential energies. Regarding the dynamics of c, the energy of the oscillation is advected along the streamline.
Moreover, using the relation ∆Σ =Mξ

1,2,0, one can replace c by geometric quantities with c = 10∆Σ/Σ0.

4.2.3 Two-scale model with the small-scale spray model of asynchronous droplets

Energies related to the small-scale oscillation are negatively signed in Hamilton’s SAP as the kinetic energy is not
a quadratic form of any kind of velocity. Indeed, the energy of the droplets is here considered as a whole energetic
contribution without following their specific dynamics. Remark that the specific oscillatory energies for the small-
scale are advected by the flow and then partly accounts for the velocity fluctuations introduced in Section 2. While
not being accounted here, the fluctuation energy term would be defined as the energy contribution of the velocity
fluctuations which is not associated with droplets oscillations. We keep then the expression of the Lagrangian
defined in (13), where we only modify the small-scale energies of Ld

1 following

Ld
1 :=

1

2
md

1∥u∥2 −md
1e1(ρ

d
1)− σΣ0

(
1 +

c

5

)
. (55)

The constraints are the same as in Section 3 with the additional advection constraint Dtc = 0. The derivation of the
two-scale mixture’s dynamics with Hamilton’s SAP is very similar to that of appendix E and yields

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tα
d
1 +∇ · (αd

1u) = 0,

∂tΣ0 +∇ · (Σ0u) = 0,

∂t(∆Σ) +∇ · (∆Σu) = 0,

∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = 0,

∂t(Σ ⟨H⟩0) +∇ · (Σ ⟨H⟩0 u) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

(56)

with p := p1 = p2, and the additional equation on total energy as a mathematical entropy for (56),

∂tH+∇ · ((H+ p)u) = 0, H =
∑
k

mk∥u∥2 − L. (57)
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Now considering dissipation processes, we could also add the pressure relaxation as in the previous two-scale models.
We propose here to focus on the dissipation associated to the small-scale oscillatory dynamics. Indeed, the oscillation
motion eventually decreases and the associated energy dissipates into thermal energy or small-scale kinetic energy of
the gas phase. Each of these last two energies are not modelled here, so the system loses this energy, and we only
consider the following source term Rc on the dynamics of c,

Dtc = Rc. (58)

The mathematical entropy production may be written as

ς := ∂tH+∇ · ((H+ p)u) = −(∂cL)Rc. (59)

As ∂cL = −σΣ0/5, we choose Rc = −c/τ to sign the mathematical entropy production ς ≤ 0 and model the
dissipation with an exponential decrease of characteristic time τ > 0. The final system reads

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tα
d
1 +∇ · (αd

1u) = 0,

∂tΣ0 +∇ · (Σ0u) = 0,

∂t(∆Σ) +∇ · (∆Σu) = −τ−1∆Σ,

∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = 0,

∂t(Σ ⟨H⟩0) +∇ · (Σ ⟨H⟩0 u) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

(60)

with p := p1 = p2. One can see that the component of the interface area density modelling the droplets’ dynamics
have now its own dynamics with an additional source term that makes it dissipate over time.

4.3 Modelling a spray of synchronously oscillating droplets

With the choice of geometric quantities of the previous section, the moments are not suited to obtain a macroscopic
oscillation of the spray. Therefore, we introduce now new geometric quantities with GeoMOM based on another
surface-average operator, and the following NDF approximation

nξ(Ŝ0, χ̂, ̂̇χ) =∑
i

niδ(Ŝ0 − (S0)i)δ(χ̂− χi)δ(̂̇χ− χ̇i). (61)

This corresponds to several populations of droplets which share the same size and oscillate synchronously.

4.3.1 GeoMOM based on an oriented surface-average operator

Similarly to Section 3.2, we consider a surface S and its mapping U ⊂ R2 onto S ⊂ R3 such that A(u, v) dudv is
the infinitesimal surface element over S. We decompose the surface local area into two contributions, one related to
a preferred direction N given by the large-scale dynamics as suggested by (H4c). In this sense, we decompose this
infinitesimal surface element A(u, v) dudv using its definition using tangential vectors eu and ev

A = ∥eu × ev∥, A∥ = |(eu × ev) ·N | , A⊥ = A−A∥. (62)

From them, we decompose the surface into parallel and perpendicular components S∥ and S⊥ such that

S =

∫
U
A(u, v) dudv =

∫
U
A∥(u, v) dudv +

∫
U
A⊥(u, v) dudv = S∥ + S⊥. (63)

We also define new surface-average operators similarly to (27)

⟨ · ⟩∥ :=
1

S∥

∫
U
(·)A∥(u, v) dudv, ⟨ · ⟩⊥ :=

1

S⊥

∫
U
(·)A⊥(u, v) dudv, (64)
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and the surface-average operators (̃·)
∥
, (̃·)

⊥
for one closed inclusion. Considering now the oscillatory motion (41), we

have the following dynamics for the geometric quantities of one droplet (see details in appendix F)

S∥ =
1

2
S0 −

1√
4π

√
5π

2
S0χ, S∥H̃

∥ =
1

2

√
4π
√
S0 −

1

2

√
5π

2

√
S0χ,

S⊥ =
1

2
S0 +

1√
4π

√
5π

2
S0χ, S⊥H̃

⊥ =
1

2

√
4π
√
S0 +

1

2

√
5π

2

√
S0χ.

(65)

Defining the oriented interface area densities Σ⊥ and Σ∥ within the mixture, we remark that Σ = Σ⊥ + Σ∥ and
Σ ⟨ · ⟩ = Σ⊥ ⟨ · ⟩⊥ +Σ∥ ⟨ · ⟩∥. Integrating (65) against nξ provides

Σ∥ =
1

2
Mξ

1,0,0 −
1√
4π

√
5π

2
Mξ

1,1,0, (Σ ⟨H⟩)∥ =
1

2

√
4πMξ

1/2,0,0 −
1

2

√
5π

2
Mξ

1/2,1,0,

Σ⊥ =
1

2
Mξ

1,0,0 +
1√
4π

√
5π

2
Mξ

1,1,0, (Σ ⟨H⟩)⊥ =
1

2

√
4πMξ

1/2,0,0 +
1

2

√
5π

2
Mξ

1/2,1,0.

(66)

Remark that both the parallel and perpendicular geometric variables represent the same information for the spray
as they are related to the same moments of the NDF. Consequently, we here retain the perpendicular components
only, and we extract the part dedicated to the dynamics by defining

Σ⊥,0 := 1
2M

ξ
1,0,0, (∆Σ⊥) :=

1√
4π

√
5π

2
Mξ

1,1,0,

(Σ ⟨H⟩)⊥,0 := 1
2

√
4πMξ

1/2,0,0, (∆Σ ⟨H⟩)⊥ :=
1

2

√
5π

2
Mξ

1/2,1,0.

(67)

We intentionally factored some indexes in the two last geometric quantities to lighten the notations. This splitting
allows us to retain more information on the NDF in our model by including two moments rather than the sum of
two moments. We know from (49) that Σ⊥,0 and (Σ ⟨H⟩)⊥,0 are conserved, while we integrate (43) to obtain the
dynamics of the two other geometric quantities∂t(∆Σ⊥) +∇ · ((∆Σ⊥)u) = 1√

4π

√
5π
2 M

ξ
1,0,1,

∂t(∆Σ ⟨H⟩)⊥ +∇ · ((∆Σ ⟨H⟩)⊥u) = 1
2

√
5π
2 M

ξ
1/2,0,1.

(68)

With the moments considered up to now, we cannot model a macroscopic oscillatory spray as we lack some information
regarding the distribution of ̂̇χ in our model. We propose then to add two new geometric quantities that correspond
to the unclosed moments of (68)

(∆tΣ⊥) := Σ⊥

〈
∂tA⊥

A⊥

〉
⊥

=
1√
4π

√
5π

2
Mξ

1,0,1,

(∆tΣ ⟨H⟩)⊥ := Σ⊥

〈
∂tH +H

∂tA⊥

A⊥

〉
⊥

=
1

2

√
5π

2
Mξ

1/2,0,1.

(69)

The above definitions with the oriented surface-average operators show that these quantities are also well-defined
regardless of the flow regime. Finally, we consider the following eight geometric quantities to describe the spray of
oscillating droplets: αd

1, Σ⊥,0, (∆Σ⊥), (∆tΣ⊥), (Σ ⟨H⟩)⊥,0, (∆Σ ⟨H⟩)⊥, (∆tΣ ⟨H⟩)⊥ and Σ ⟨G⟩.

4.3.2 Amplitude-based closure

With the eight moments given by the eight corresponding geometric quantities, we propose to look for a two-point
quadrature which corresponds to two populations of droplets as defined in (61),

nξ(Ŝ0, χ̂, ̂̇χ) = ∑
i=1,2

niδ(Ŝ0 − (S0)i)δ(χ̂− χi)δ(̂̇χ− χ̇i), (70)

where ni are the weights or numbers of droplets that share the same abscissas χi and χ̇i. The quadrature above admits
a unique solution (excluding symmetry) under some realisability conditions that ensure that Σ ⟨G⟩, (Σ ⟨H⟩)⊥,0, Σ⊥,0
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and αd
1 are positive with additional geometric constraints (see appendix G). Remark that ni and (S0)i depend only

on Σ ⟨G⟩, (Σ ⟨H⟩)⊥,0, Σ⊥,0, α
d
1 and, for (i, j) ∈ {(1, 2), (2, 1)},

χi =

√
2

5π

√
4π(∆Σ⊥)− 2

√
(S0)j(∆Σ ⟨H⟩)⊥

ni

(
(S0)i −

√
(S0)i(S0)j

) , χ̇i =

√
2

5π

√
4π(∆tΣ⊥)− 2

√
(S0)j(∆tΣ ⟨H⟩)⊥

ni

(
(S0)i −

√
(S0)i(S0)j

) . (71)

We easily obtain that αd
1, Σ ⟨G⟩, (Σ ⟨H⟩)⊥,0 and Σ⊥,0 are conserved such that, together with (68), it implies

∂tni +∇ · (niu) = 0, Dt(S0)i = 0, Dtχi = χ̇i, i = 1, 2. (72)

This dynamics is expected as the two populations of oscillating droplets are advected by the flow at velocity u.

4.3.3 Two-scale model with the small-scale spray model of synchronous droplets

Denote ν := ρd1/(4(4π)
3/2) and γ := 2σ such the kinetic and potential energies of the spray of oscillating droplets

given in (51) can be written

Ekin,d =
1

2
νMξ

5/2,0,2, Epot,d = σMξ
1,0,0 +

1

2
γMξ

1,2,0, (73)

and ω̃2 = γ/ν. The closure (70) then yields

Ekin,d =
∑
i=1,2

1

2
νni(S0)

5/2
i χ̇2

i , Epot,d =
∑
i=1,2

σni(S0)i +
1

2
γni(S0)iχ

2
i (74)

We extend the two-scale Lagrangian (13) by adding the energies above to account for the small-scale oscillation

L =L1 (α1,m1,u) + L2 (α2,m2,u) + Ld
1

(
md

1, ρ
d
1,u

)
+ Lvib

1 (n1, (S0)1, χ1, χ̇1) + Lvib
2 (n2, (S0)2, χ2, χ̇1) ,

(75)

where Lvib
i is defined using vibrating energies of (74)

Lvib
i =

1

2
νni(S0)

5/2
i χ̇2

i − σni(S0)i −
1

2
γni(S0)iχ

2
i . (76)

Recall that the kinetic energy is here positively signed as it is a quadratic form of χ̇1 and χ̇2 with their associated
momentum equations after Hamilton’s SAP. We also remark also that similarly to the asynchronous case, a similar
remark as that stated in Section 4.2.3 holds regarding the modelling of small-scale energy fluctuations. We provided
an expression using the quadrature’s abscissas rather than the geometric quantities for computational convenience,
but the dynamics of the geometric quantities is equivalently obtained using the quadrature expression of appendix
G. In addition to α1, the quantities χ1 and χ2 are also free variables which results in the following system with two
additional momentum equations for each population of droplets of same size in the spray (see appendix H):

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tni +∇ · (niu) = 0, i = 1, 2,

∂t(ni(S0)i) +∇ · (ni(S0)iu) = 0, i = 1, 2,

∂t(niχ̇i) +∇ · (niχ̇iu) = −ω2
i niχi, i = 1, 2,

∂t(niχi) +∇ · (niχiu) = niχ̇i, i = 1, 2,

∂t(ρu) +∇ · (ρu⊗ u+ p) = 0,

(77)

with p := p1 = p2 and ω2
i = ω̃2(S0)

−3/2
i . Combining the equations at the fifth and sixth lines of the system above,

one can recognise the equations of harmonic oscillators advected along the streamlines

Dt(Dtχi) + ω2
i χi = 0, i = 1, 2. (78)

Similarly to the previous models, this system admits an additional conservation equation on the total energy H
defined hereafter

∂tH+∇ · ((H+ p)u) = 0, H =
∑

k=1,2,1d

1

2
mk|u|2 +

∑
i=1,2

1

2
νni(S0)

5/2
i χ̇2

i − L. (79)
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Once again, we could consider a pressure relaxation model, but we would like to focus again on the dissipation
associated to the oscillation process, and we introduce source terms Rχi

in the new momentum equations

∂t(niχ̇i) +∇ · (niχ̇iu) = −ω2
i niχi +Rχi

i = 1, 2. (80)

This source term provides the following mathematical entropy production

ς := ∂tH+∇ · ((H+ p)u) =
∑
i=1,2

ν(S0)
5/2
i Rχi

Dtχi. (81)

As the closure (70) groups droplets by size, we can now model the first-order size-dependent damping term of the
viscous droplet in a light carrier phase (Prosperetti, 1977; Plümacher et al., 2020). Then, we expect each population
of oscillators to be damped following

Dt(Dt(χi)) + ω2
i χi = −βiDtχi ⇐⇒ Dtχ̇i + ω2

i χi = −βiχ̇i, (82)

with βi = 4πνvis/(S0)i > 0 with νvis the liquid kinematic viscosity. One can then choose Rχi = −niβiχ̇i and recover
both the above dissipation process for both populations of droplets and a signed production of mathematical entropy

ς = −β1n1ν(S0)
5/2
1 χ̇2

1 − β2n2ν(S0)
5/2
2 χ̇2

2 ≤ 0. (83)

This leads to the following dissipative model:

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tni +∇ · (niu) = 0, i = 1, 2,

∂t(ni(S0)i) +∇ · (ni(S0)iu) = 0, i = 1, 2,

∂t(niχ̇i) +∇ · (niχ̇iu) = −ω2
i niχi − βiniχ̇i, i = 1, 2,

∂t(niχi) +∇ · (niχiu) = niχ̇i, i = 1, 2,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

(84)

with p := p1 = p2. This model shows a macroscopic synchronous oscillation through the two momentum equations on
χ̇1 and χ̇2 and includes a physics-based dissipation rate. The system is here written using the weights and abscissas,
but it can also be written using the geometric quantities of the model.

5 Inter-scale coupling transfer for the two-scale model with asynchronously
oscillating droplets

In this section, we provide an example of inter-scale transfer that takes advantage of the enhanced description of
the small scale with more geometric quantities and demonstrates the modelling capabilities of the primary break-up.
We consider the two-scale model (56) where the small-scale droplets are oscillating asynchronously. Considering a
process that mimics a liquid atomisation, we would like to add now an inter-scale transfer from large-scale liquid
phase to the small-scale phase via source terms. Such a transfer requires a small amount of energy as the interface
area density increases when droplets are created. Thus, we introduce back the small-scale energy ζ defined in Section
2, which now only contains the small-scale energy of velocity fluctuations not related to the oscillatory motion of the
droplets. Let us then modify (56) to obtain

∂tm1 +∇ · (m1u) = Rm1
,

∂tm
d
1 +∇ · (md

1u) = Rmd
1
,

∂tm2 +∇ · (m2u) = 0,

∂tα
d
1 +∇ · (αd

1u) = Rαd
1
,

∂tΣ0 +∇ · (Σ0u) = RΣ0
,

∂t(∆Σ) +∇ · (∆Σu) = R∆Σ0
,

∂t(Σ ⟨G⟩) +∇ · (Σ ⟨G⟩u) = RΣ⟨G⟩,

∂t(Σ ⟨H⟩0) +∇ · (Σ ⟨H⟩0 u) = RΣ⟨H⟩0 ,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

∂tα1 +u · ∇α1 = Rα1
,

∂tζ +u · ∇ζ = Rζ ,

(85)
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where RX are the source terms of the equation on quantities X ∈ {m1,m
d
1, α

d
1,Σ0,∆Σ,Σ ⟨G⟩ , Σ ⟨H⟩0 , α1, ζ}. Re-

mark that the choice of source terms differs from Loison et al. (2024) as no source term is set here on the momentum
equations. In both cases, the goal is to give access to another source of energy. The source terms chosen keeps
the Galilean invariance on the model, even though the numerical effect of a non-Galilean invariant source term was
limited.

Moreover, we also introduce a source term in the underlying PBE (43) that now reads

∂tnξ +∇x · (nξu) + ∂χ̂(̂̇χnξ) + ∂̂̇χ(−ω̃2Ŝ
−3/2
0 χ̂nξ) = Rξ(Ŝ0, χ̂, ̂̇χ). (86)

Note that the additional source term is not a collisional operator for coalescence or break-up but a coupling term
with the large-scale model.

We can now identify constraints between source terms, first with the conservation of the liquid mass and the
incompressibility which immediately gives

Rmd
1
= −Rm1

, Rαd
1
= −Rm1

ρd1
. (87)

The source terms for geometric quantities related to the surface S0 are derived according to the relations between
moments and geometric quantities (47) and (48), it yields

RΣ0 = −S0,avg

mavg
Rm1 , RΣ⟨H⟩0 = − (SH̃)0,avg

mavg
Rm1 ,

RΣ⟨G⟩ = − 4π

mavg
Rm1 , Rαd

1
= −Rm1

ρd1
,

(88)

where S0,avg, (SH̃)0,avg and mavg are unclosed parameters. The source term R∆Σ can be decomposed in two
contributions: a creation term arising from the mass transfer R∆Σ,m and a viscous damping R∆Σ,v as in system (60).
As ∆Σ = 4πM1,2,0, the creation source term then reads

R∆Σ,m =

∫
ξ

S̃0χ̃
2Rξ(Ŝ0, χ̂, ̂̇χ). (89)

Let us then assume that

� the droplets are created at a fraction q of their maximal amplitude. (H5)

Given the definitions of Section 4, that χmax(S0) = 2/
√
5, such that the assumption translates as

R∆Σ,m =
4

5
q2RΣ0 = −4

5
q2
S0,avg

mavg
Rm1 . (90)

The source terms Rα1
R∆Σ,v Rm1

and Ru are left unconstrained for now. Now, the mathematical entropy dissipation
rate ς associated with the energy H defined in (57) gives

ς =− (1− αd
1)(p1 − p2)Rα1 + 2σR∆Σ,v

−
(
e1(ρ

d
1) +

p

ρd1
−
(
e1(ρ1) +

p1
ρ1

)
+ σ(1 +

8

5
q2)

(
Savg

mavg

))
Rm1

+Rζ .
(91)

We sign the two first terms, the pressure relaxation and the viscous damping of the oscillation, respectively, with

Rα1
= − 1

µ
(p1 − p2), R∆Σ,v = −τ−1∆Σ, (92)

and µ, τ > 0 a dynamic viscosity and a damping timescale. The non-positivity of ς is then enforced by choosing

Rm1
= Rm1,1

(1− 1C1∩C2
) +Rm1,2

1C1∩C2
,

Rζ = Rm1,2

(
ed1 +

p

ρd1
+ σ(1 +

8

5
q2)

Savg

mavg
− e1 −

p1
ρ1

)
,

(93)
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with unclosed parameters Rm1,1
< 0 and Rm1,2

< 0 and both a thermodynamic disequilibrium condition and a
small-scale energy availability condition

C1 :

(
ed1 +

p

ρd1
+ σ(1 +

8

5
q2)

Savg

mavg
> e1 +

p1
ρ1

)
, (94)

C2 : ζ > 0. (95)

Because of the incompressibility of the small scale and its oscillatory motion, a small contribution of the small-scale
energy density is sometimes needed to bridge the small thermodynamic disequilibrium (94) between the two liquid
phases. In these conditions, for such inter-scale transfer to happen, one needs some small-scale energy density
available (95) i.e. kinetic energy due to velocity fluctuations.

With its handful of unclosed parameters S0,avg, (SH̃)0,avg, mavg, q, τ , Rm1,1
and Rm1,2

, this model allows a
further modelling of the mechanism of the primary breakup. Such parameters can then be related to dimensionless
number via heuristics to mimic experimental observation as can be found in Pilch and Erdman (1987). For instance,
one can either create static inclusions by setting q = 0 or deformed inclusion on the verge of breaking up a second
time by choosing q = 1. This initial deformation influences the dynamics of the inclusions right after the break-up.
Depending on the oscillation pulsation, the damping timescale and additional source terms such as velocity drag, the
initial deformation can either lead to a secondary break-up or not. Furthermore, the choice of parameters S0,avg,

(SH̃)0,avg and mavg influences the distribution in sizes of the resulting small-scale droplets. The determination of
such relation is not, however, proposed in this work and is left for further study.

We remark that all the previous models provide peculiar interface area density dynamics which are specifically
discussed in the next section.

6 Dynamics of the small-scale interface area density

To perceive the importance of the choice of variables and modelling choices made in the previous sections, in this
last section we investigate their effect on the closure of the evolution equation for the interface area density. Such
an equation is usually obtained from an averaging process and, whereas several terms are classically identified, their
closure is most of the time out of reach except in very simplified configurations. We show how the proper choice of
variables for both the static minimal surface spherical case, but also the dynamical case, allows a clear-cut strategy
to close this important evolution equation and rethink the set of variables we should use for a unified model.

6.1 Geometry of the disperse regime through the classical averaging approach

First, the time evolution of the geometry for a generic two-phase flow is derived with an averaging process (Drew
and Passman, 1999; Lhuillier, 2004; Morel, 2015). This approach relies on the kinematics of the interface where the
phases k = 1, 2 are located using a phase indicator function Xk and the interface is identified through its derivative
∇Xk in the sense of generalised function. Denoting by uI the interface velocity, the kinematics of the interface reads

∂tXk + uI · ∇Xk = 0. (96)

The ensemble-average operator ⟨ · ⟩E is introduced such that the volume fraction and the interface area density are
defined by αk = ⟨X⟩E and Σ = ⟨δI⟩E where δI = −n∇Xk is the interface generalised function. Then, the evolution
of the interface area density is derived in Lhuillier (2004) as the trace of the interface tensor δIn⊗ n. It eventually
yields {

∂tα+ ⟨uI · ∇X⟩E = 0,

∂tΣ+∇ · ⟨δIuI⟩E = ⟨I − n⊗ n : ∇uIδI⟩E .
(97)

Such an averaging approach is compatible with the kinetic-based small-scale models of this work in the statistical
sense. Similarly, the characteristics (size, oscillation amplitude, etc.) are following the probabilistic law given by
the NDF. Focusing on the small-scale disperse regime while assuming (H1a), we have α = αd

1, and we decompose
uI = u + vnn. Moreover, the symmetry of either spherical inclusions (H3a) or oscillation motion (H4d) gives
⟨vnnδI⟩E = 0. The averaged equations then become{

Dtα
d
1 = −⟨vnn · ∇X⟩E ,

∂tΣ+∇ · (Σu) = 2
3Σ∇ · u− ⟨q : ∇u⟩E + 2

3 ⟨∇ · (vnn)δI⟩E − ⟨q : ∇(vnn)⟩E ,
(98)
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where q = ⟨(n⊗ n− I/3)δI⟩E is the anisotropic tensor. In this last equation, one can identify the different contri-
butions to the interface area density evolution (from left to right of the right-hand side): the large-scale isotropic
and anisotropic terms, the small-scale isotropic and anisotropic terms.

6.2 Comparison with the small-scale models

From the different small-scale models in this work, as well as proper choice of variables, we show that the interface
area density equation of evolution can be thoroughly closed. We compare it with the unclosed kinematic set of
equations (98) and identify the various contributions. The question of the choice of fundamental variables to describe
the dynamics of the interface is eventually discussed.

6.2.1 Spray of compressible spherical inclusions

Before considering an incompressible small scale dedicated to the description of droplets, we focus on the case of
compressible inclusions such as bubbles, which has been partially treated in Section 3. We recast the unclosed
dynamics for Σ obtained in (32) into

∂tΣ+∇ · (Σu) = 2

3
Σ∇ · u+

2

3
Σ
Dtα

d
1

αd
1

. (99)

Even though the previous equation is unclosed as the dynamics of αd
1 is not specified, one can still identify the

isotropic contribution of the large scale of (98). As we consider spherical shapes, q = 0 and there are no anisotropic
contributions. Therefore, the small-scale isotropic term is

⟨∇ · (vnn)δI⟩E = Σ
Dtα

d
1

αd
1

. (100)

A closed model is thus obtained with the dynamics of αd
1 as in the next case dealing with incompressible inclusions.

6.2.2 Spray of incompressible spherical droplets

The incompressible case has been treated in Section 3 after assuming Dtρ
d
1 = 0. We have then the following

conservation equations: {
∂tα

d
1+∇ · (αd

1u)= 0,

∂tΣ +∇ · (Σu) = 0.
(101)

The anisotropic tensor q is still nil and provides trivial anisotropic closures, while the isotropic closures read

⟨vnn · ∇X⟩E = αd
1∇ · u, ⟨∇ · (vnn)δI⟩E = −Σ∇ · u. (102)

This shows that the small-scale isotropic contributions balance the large-scale ones to maintain the incompressibility
of the small scale.

6.2.3 Two-scale model with the small-scale spray model of asynchronous droplets

This case has been treated in Sections 4.2 and 5, where the oscillatory dynamics of the incompressible droplets is
formulated in a decomposed form of the small-scale interface area density following Σ = Σ0 +∆Σ. Considering the
case with inter-scale mass-transfer, this results in the following set of equations:{

∂tα
d
1+∇ · (αd

1u)= 0,

∂tΣ +∇ · (Σu) = −∆Σ
τ −

(
S0,avg

mavg
+ 4

5q
2 S0,avg

mavg

)
Rm1

(103)

Following the assumption (H4c) made on the orientation of the oscillating droplets, one can consider the right-hand
side term as either isotropic or anisotropic

⟨vnn · ∇X⟩E=αd
1∇ · u,

⟨q : ∇u⟩E =0,
2
3 ⟨∇ · (vnn)δI⟩E − ⟨q : ∇(vnn)⟩E = − 2

3Σ∇ · u− ∆Σ
τ −

(
S0,avg

mavg
+ 4

5q
2 S0,avg

mavg

)
Rm1

.

(104)
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The excess of interface area density ∆Σ results from the balance between the inter-scale creation term and the
exponentially dissipative decreasing. It proposes an additional perspective to the balance between coalescence and
break-up as can be found in Vallet and Borghi (1999) and Anez et al. (2019). This last phenomenon cannot be
recovered here as we have not introduced any turbulence model for the small scale. This is the subject of a current
work in progress.

6.2.4 Two-scale model with the small-scale spray model of synchronous droplets

This case has been studied in Section 4.3, where incompressible droplets oscillate synchronously for a given size.
The dynamics has been derived respectively for each size of droplets using the weights and abscissas rather than
the geometric quantities. Without losing the properties of the polydisperse case, we propose here to focus on the
monodisperse case detailed in appendix I. It allows a more compact equation of evolution for the small-scale interfacial
area density Σ =Mξ

1,0,0 +Mξ
1,2,0

∂tΣ+∇ · (Σu) = 16

5

(∆Σ⊥)(∆tΣ⊥)

(nd1)
1/3(6

√
παd

1)
2/3

. (105)

Similarly to the previous cases, the incompressibility condition balances the isotropic terms to conserve αd
1. Moreover,

the right-hand side of (105) only accounts for the small-scale anisotropic motion such that
⟨vnn · ∇X⟩E = αd

1∇ · u,
⟨∇ · (vnn)δI⟩E = −Σ∇ · u,
⟨q : ∇u⟩E = 0,

⟨q : ∇(vnn)⟩E = − 2
(3

√
4π)2/3

(∆Σ⊥)(∆tΣ⊥)

(nd
1)

1/3(αd
1)

2/3 .

(106)

This last identification of closures concludes our approach where the dynamics is first assessed, and the geometry
kinematics is obtained secondly. Our approach shows that for this last case, the dynamics cannot be simply expressed
relying on the usual quantities αd

1 and Σ. The SAP modelling strategy allows the proper set of variables and
conservation equations to be identified in the dynamical case, and a closed conservation equation to be obtained for
the interface area density in particular, an important building block for further modelling such as evaporation or
heat transfer.

7 Conclusion

In this work, we have proposed a novel framework to derive two-scale reduced-order models based on Hamilton’s SAP
as well as a set of geometric variables leading to the premises of a unified model for both disperse and separated phases
two-phase flows, potentially including several dissipation phenomena. A hierarchy of small-scale models involving a
variety of physical phenomena can be described within the framework.

The model is compatible in the two limits with classical models of the literature for disperse and separated two-
phase flows and possesses essential properties for a proper mathematical framework, that is hyperbolicity and signed
mathematical entropy evolution.

To deal with interface dynamics at small scale, we rely on GeoMOM: geometric variables are defined, which can
be interpreted both as moments of a kinetic description at small scale, or as surface-averaged quantities, which are
also defined in other regimes without any assumption on the geometry of the interface. This makes the link with
the mixed zone and open new perspectives since we are able to tackle interface dynamics at small scale and reach a
closed surface area density evolution equation for all the proposed small-scale models. It sheds some light on the fact
that the natural variables to tackle the interface dynamics are not necessarily the interface area density and volume
fractions but more intrinsic geometric quantities, the dynamics of which allow the interface area density evolution to
be recovered.

Two issues have been left aside on purpose in the design of the paper for the sake of clarity of the exposition:
1- the existence of multiple velocities for the large-scale phases and for the disperse small scale as well as possible
phase coupling through small-scale fluctuating velocities; and 2- the transfer of mass from large scale to small scale
when capillarity is accounted for at all scales. The key issue is to include the related physics within the proposed
framework. The first part is currently under investigation and relates to another version of the SAP with multiple
velocities, while the second requires to include the capillarity at large scale and to interpret the transfer of scales
as a local dissipative phenomenon; it is also the subject of a complementary piece of work (Loison et al., 2024).
In the context of this latter contribution, special care must be given to the initialisation of the small-scale energy
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density to keep a global and consistent modelling of capillarity forces. Such effort is subject to ongoing investigations
by the authors. Eventually, numerical methods also have to be designed in order to resolve properly the proposed
models in the line of GeoMOM and preserve realisability. One last key issue is related to the treatment of small-scale
agitation/turbulence of the large-scale phase, as mentioned in Section 4, which would couple this velocity fluctuations
to the droplet oscillations and provide sources terms in the kinetic equation. This is also the subject of our current
investigation. This non-exhaustive list of extensions tends to assess the versatility of the proposed framework for the
design of physically relevant and mathematically well-designed two-scale models for interfacial two-phase flows.
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A Condition of small-scale incompressibility in the disperse regime

We are interested in the compressibility caused by sound propagation at large scale. Consider then the two-scale
mixture defined in Section 2 with two large-scale liquid and gaseous phases and one small-scale liquid phase that
share the same pressure P . Using κkT := ρ−1

k (∂ρk/∂P )T to denote the isothermal compressibility, we measure the
mixture compressibility using the mass conservation of each phase with

∇ · u =
∑

k=1,2,1d

αk∇ · u = −
∑

k=1,2,1d

αk
Dtρk
ρk

= −
∑

k=1,2,1d

αkκ
k
TDtP. (107)

The liquid phase is much less compressible than the gaseous phases κ1T , κ
1,d
T ≪ κ2T . Moreover, the small-scale liquid

phase only occupies a small amount of the mixture volume αd
1 ≪ α1, α2. Then, the contributions to the overall

compressibility of the mixture are ranked like

|α2κ
2
TDtP | ≫ |α1κ

1
TDtP | ≫ |αd

1κ
1,d
T DtP |. (108)

The small-scale liquid phase can then be assumed incompressible in comparison to both large-scale phases.

B Stationary Action Principle

B.1 Derivation of the conservative dynamics

Consider the Lagrangian defined in (13),

L = L1(α1,m1,u) + L2(α2,m2,u) + Ld
1(m

d
1, ρ

d
1, ζ,u). (109)

The dependency on ρd1 = md
1/α

d
1 was added to take advantage of the constraint Dtρ

d
1 = 0 in the derivation with

Hamilton’s SAP. Then, the dependencies of the small-scale Lagrangian are Ld
1 = 1

2m
d
1u

2 −md
1e1(ρ

d
1)−md

1ζ, .
Hamilton’s SAP provides the momentum equation by minimising the Lagrangian’s action, i.e. the integral of

the Lagrangian over a space domain Ωx and a time interval [0, T ]. This minimisation takes place under the mass
conservation (7) and incompressibility constraints (10). We minimise the action of the whole mixture defined by

A =

∫
Ω

Ldxdt, (110)

where x is the position in Eulerian coordinates and Ω := Ωx × [0, T ] is the Eulerian space—time domain. This
minimisation is performed over a family of trajectories defined by Lagrangian mappings ϕλ(X, t, λ) parametrised by
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λ which lies in the vicinity of 0 and X = ϕ−1(x, t) the Lagrangian coordinates. We similarly introduce families of
Eulerian fields αλ

1 (x, t, λ), b
λ
c (x, t, λ), b

λ
a(x, t, λ) for the volume fraction, the conserved variables and the advected

ones. We assume that these families of Lagrangian mappings and Eulerian fields satisfy the following conditions.

� The mapping and Eulerian fields of the solution is included in the families for λ = 0, i.e. for all (x, t) ∈ Ω,

αλ
1 (x, t, λ = 0) = α1(x, t), bλc (x, t, λ = 0) = bc(x, t), bλa(x, t, λ = 0) = ba(x, t). (111)

� All the mappings and Eulerian fields preserve the constraints, i.e. for all (x, t) ∈ Ω,

∂tb
λ
c +∇ · (bλcu) = 0, ∂tb

λ
a + u · ∇bλa = 0. (112)

� All the mappings and Eulerian fields preserve the values at boundaries of the space-time domain, i.e. for all
(x, t) ∈ ∂Ω,

αλ
1 (x, t, λ) = α1(x, t), bλc (x, t, λ) = bc(x, t), bλa(x, t, λ) = ba(x, t). (113)

We define the following variations,

η(x, t) :=
(
∂λϕ

λ
)
X,t

(ϕ−1(x, t), t, λ = 0), δbe(x, t) :=
(
∂λb

λ
e

)
x,t

(x, t, λ = 0), (114)

where η is an infinitesimal Eulerian displacement and δbe the variation on any Eulerian field be. With this variational
operator, Hamilton’s SAP can be simply written as

δA = 0. (115)

Following Truskinovsky (1991); Gavrilyuk et al. (1998); Gouin and Gavrilyuk (1999); Gavrilyuk and Saurel (2002);
Drui et al. (2019); Gouin (2020) and Cordesse et al. (2020a), the variations of bc, ba and u are related to η through
relations

δbc = −∇ · (bcη), δba = −(η · ∇)ba, δu = Dtη − (η · ∇)u. (116)

For the Lagrangian under consideration, we have bc ∈ {m1,m2,m
d
1, α

d
1} and advected quantities ba ∈ {ρd1}. The

variation of α2 is linked to both η and δα1 through the volume occupation relation α2 = 1 − α1 − αd
1. With the

summation on repeated indexes, we define the divergence of A by ∇ · A = (∂xjAij) and the gradient of a vector
∇b = (∂xibj). We decompose the action variation in Eulerian coordinates with respect to each dependency

δAα1
=

∫
Ω

∂α1
L1 δα1, (117)

δAα2
=

∫
Ω

∂α2
L2 δα2 = −

∫
Ω

αd
1∇(∂α2

L2) · η −
∫
Ω

∂α2
L2 δα1, (118)

δAmk
=

∫
Ω

∂mk
Lk δmk =

∫
Ω

mk∇(∂mk
Lk) · η, (119)

δAρd
1
=

∫
Ω

−∂ρd
1
Ld
1 ∇ρd1 · η, (120)

δAζ =

∫
Ω

−∂ζLd
1 ∇ζ · η, (121)

δAu =

∫
Ω

− (∂tK +∇ · (K ⊗ u) +K · ∇u) · η, (122)

where δαd
1 follows (116), δα2 = −δα1−δαd

1 and K = ∂uL. Remark that we denoted here the matrix—vector product
of a matrix A with a vector b by b ·A = (Aijbj). Denoting L∗

k = mk(∂mk
Lk) − Lk and L∗ =

∑
k L∗

k, then δA can
be expressed as a combination of variations η and δα1,

δA =−
∫
Ω

(
∂tK +∇ · (K ⊗ u) +K · ∇u+ αd

1∇(∂α2
L2) + ∂ρd

1
Ld
1 ∇ρd1 + ∂ζLd

1 ∇ζ

−m1∇(∂m1L1)−m2∇(∂m2L2)−md
1∇(∂md

1
Ld
1)
)
· η

+

∫
Ω

(∂α1
L1 − ∂α2

L2) δα1,

=−
∫
Ω

(∂tK +∇ · (K ⊗ u)−∇(L∗ − αd
1∂α2L2)− (∂α1L1 − ∂α2L2)∇α1) · η

+

∫
Ω

(∂α1
L1 − ∂α2

L2) δα1,

(123)
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with K = ∂uL and L∗
k = mk(∂mk

Lk)− Lk. The fundamental theorem of variations applied to (123) gives

δA = 0 ⇒

{
∂tK +∇ · (K ⊗ u)−∇(L∗ − αd

1∂α2L2) = 0,

∂α1L1 − ∂α2L2 = 0.
(124)

Developing the expression of the derivatives yields (14).

B.2 Additional conservation equation

Starting from (14), we now look for an additional conservation equation on H = K · u − L. We take the scalar
product of the momentum equation with u to get

0 = ∂t(K · u)−K∂tu+∇ · ((K · u)u)−K(u · ∇)u−∇ · (pu)− p∇ · u

= ∂tH+∇ · ((H+ p)u) + ∂tL −KDtu+∇ · (Lu)− p∇ · u

= ∂tH+∇ · ((H+ p)u) +DtL −KDtu+ (L − p)∇ · u.

(125)

We develop the material time derivative and isolate the mass and incompressibility constraints such that (125)
becomes

0 = ∂tH+∇ · ((H− (L∗ − αd
1∂α2L2))u) + (L − p)∇ · u

+ ∂α1
L1 Dtα1 + ∂α2

L2 Dtα2 + ∂ρd
1
Ld
1Dtρ

d
1 + ∂ζLd

1Dtζ

+ ∂m1
L1Dtm1 + ∂m2

L2Dtm2 + ∂md
1
Ld
1Dtm

d
1

= ∂tH+∇ · ((H+ p)u) + (L −m1∂m1L1 −m2∂m2L2 −md
1∂md

1
Ld
1 − p)∇ · u

+ ∂α1
L1 Dtα1 + ∂α2

L2 Dtα2 + ∂ρd
1
Ld
1Dtρ

d
1 + ∂ζLd

1Dtζ

+ ∂m1
L1(∂tm1 +∇ · (m1u)) + ∂m2

L2(∂tm2 +∇ · (m2u))

+ ∂md
1
Ld
1(∂tm

d
1 +∇ · (md

1u)).

(126)

The four last terms nullify thanks to the constraints while we develop Dtα2 using the volume occupation constraint
α1 + α2 + αd

1 = 1 and the conservation of αd
1. It yields

0 = ∂tH+∇ · ((H+ p)u)− (p+ L∗)∇ · u+ (∂α1
L1 − ∂α2

L2)Dtα1 − ∂α2
L2 Dtα

d
1

= ∂tH+∇ · ((H+ p)u)− (p+ L∗ − αd
1∂α2

L2)∇ · u+ (∂α1
L1 − ∂α2

L2)Dtα1.
(127)

Finally, the pressure equilibrium given by the second equation of (124) gives

L∗ + αd
1∂α2L2 = −p, (128)

and we obtain the desired conservation equation on H.

C Dimensionless analysis of the dissipative two-scale model

We consider here the two-scale model with dissipative pressure relaxation (22) together with the Stokes viscosity
term (23). We introduce the following dimensionless variables

∇∗ = Lref∇, u∗ =
u

uref
, t∗ = t

uref
Lref

, ρ∗ =
ρ

ρref
,

p∗ =
p

ρref (cdF )
2
, for p = p, p1, p2.

(129)

Then, it yields the following dimensionless set of equations

∂t∗mk +∇∗ · (mku
∗) = 0, for k = 1, 2, 1d,

∂t∗α
d
1 +∇∗ · (αd

1u
∗) = 0,

∂t∗(ρ
∗u∗) +∇∗ · (ρ∗u∗ ⊗ u∗) =

− 1

Ma2∇∗p∗ + 1

Reµ
∇∗ ·

(
(∇∗u∗ + (∇∗u∗)T )

)
+ 1

Reλ
∇∗ · ((∇∗ · u∗)I) ,

Dt∗α1 = Ma2Reϵ(p
∗
1 − p∗2),

(130)
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(a) Before the collision. (b) Beginning of the collision. (c) After the collision.

Figure 2: Local mean curvature for the collision of two droplets that scales between Hmin = 6.3 · 102 m−1 (blue) and
Hmax = 2.4 · 104 m−1 (red).

with the Mach number Ma = uref/c
d
F and the Reynolds number ReX = ρrefLrefuref/X for a given dynamic

viscosity X. In the context of two-phase flow atomisation, one can typically encounter regimes with high velocities
Ma ≈ 1 and high Reynolds numbers Reµ,Reλ,Reϵ ≪ 1. Large-scale capillarity is here not modelled but corresponds
also to high Weber number. Such context is here retained in the remainder of the paper as it also lightens the
calculations.

D Large-scale and small-scale geometry description using GeoMOM
geometric quantities

We propose here to illustrate why the choice of small-scale variables, which are at the same time moments of a
kinetic modelling level as well as surface-averaged geometric quantities is fundamentally convenient for two-scale
modelling. As their definitions are based on the surface-average operator in Section 3, they can be computed for any
flow topology beyond any assumption on the geometry and dynamics of the interface.

We illustrate this point by comparing the evaluation of such quantities in a single realisation of the collision of
two droplets at small scale.

The simulation has been performed with the ARCHER code (Ménard et al., 2007) (see details in Essadki et al.
(2019)) with 256× 256× 512 cells in a volume Vtot of 1mm× 1mm× 2mm and the geometric post-treatment of the
obtained level set is done with the open-source library Mercur(v)e, which relies on a triangulation of the interface as
well as geometric properties preserving the topological invariants (Cordesse et al., 2020a). Before the collision, the
two droplets are spherical with diameters of 400µm and 260µm (see figure 2a). After the collision, there are three
deformed inclusions with different sizes (see figure 2c).

We usually consider a kinetic description at mesoscopic level based on a statistical ensemble average of several
realisations, but for the purpose of the present illustration we stick to a single realisation, since the kinetic description
(26) is also valid in this case of measure-valued number distribution functions. At the kinetic level of description, we
reconstruct the distribution using the two-point quadrature

nS0(Ŝ0) = n1δ(Ŝ0 − (S0)1) + n2δ(Ŝ0 − (S0)2). (131)

We could also have used another reconstruction techniques such as the entropy maximization technique Mead and
Papanicolaou (1984); Levermore (1996); Essadki et al. (2018), which maximises the concave functional n 7→ −n log n,
while constraining the values of some selected moments. Such techniques are better suited for statistical descriptions
corresponding to many realisations / inclusions or when a smooth NDF is required, such as when evaporation
is taking place. We gather in tables 1a and 1b the values of each geometric variable before and after collision,
from the analytical initial configuration and the geometric post-treatment,respectively, along with the corresponding
weights and abscissas of (131). Let us study the reconstruction of the NDF is well-predicted through the chosen
moments, showing how to interpret the chosen geometric variables. Before the collision, (131) has the exact number
of parameters to represent well the two droplets. After the collision, droplets’ sizes are sensitively changed with a
droplet much smaller than the other two. With Mercur(v)e, the geometric invariant associated surface-averaged
Gauss curvature is well-preserved and recovers well the total number of droplets. However, (131) has not enough
parameters to detect three different sizes, even less the deformations. However, deformations could be better modelled
if we switched to the eight-moment model. Nevertheless, even if it is a reduced-order model, the retained key
information about the geometry at small scale allow us to always have a representation, through quadrature, of a
small-scale interface.
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αd
1 Σ Σ ⟨H⟩ Σ ⟨G⟩

Before coll. 2.14 · 10−2 3.57 · 102 m−1 2.1 · 106 m−2 1.3 · 1010 m−3

After coll. 2.14 · 10−2 3.91 · 102 m−1 2.5 · 106 m−2 1.9 · 1010 m−3

(a) Geometric quantities before and after the collision.

n1 × Vtot (S0)1 n2 × Vtot (S0)2
Before coll. 1 2.12 · 10−7 m2 1 5.03 · 10−7 m2

After coll. 0.76 1.38 · 10−8 m2 2.24 3.4 · 10−7 m2

(b) Weights (nb. of droplets) in the domain of volume Vtot, and abscissas before and after the collision.

Let us conclude this illustration by underlining that the above results correspond to a treatment of the interface
geometry as small scale. We could also have taken the point of view of the large scale, where all the geometry is
not obtained through a geometric post-treatment, but can be locally estimated relying on α1 only. For instance,
the interface area density and the mean curvature can be estimated using ∥∇α1∥ and ∇· (∇α1/∥∇α1∥) (Goldman,
2005), as long as the characteristic lengths stay at large-scale, that is above a given threshold.

E Derivation of the model for the polydisperse spray of incompressible
droplets

We consider here the two-scale model with capillarity at the small scale modelled by a polydisperse spray of spherical
and incompressible droplets. The Lagrangian of the mixture is given by (13) with the modified small-scale Lagrangian
given by (37) and reads

L = L1(α1,m1,u) + L2(α2,m2,u) + Ld
1(m

d
1, ρ

d
1, z,u), (132)

where z = Σ/md
1 has a similar role to the variable defined in appendix A as Dtz = 0. Moreover, ρd1 is constrained

by Dtρ
d
1 = 0 and αd

1 is conserved such that the action, as defined in appendix B, is decomposed according to each
dependency,

δAα1
=

∫
Ω

∂α1
L1 δα1, (133)

δAα2 =

∫
Ω

∂α2L2 δα2 = −
∫
Ω

αd
1∇(∂α2L2) · η −

∫
Ω

∂α2L2 δα1, (134)

δAmk
=

∫
Ω

∂mk
Lk δmk =

∫
Ω

mk∇(∂mk
Lk) · η, (135)

δAρd
1
=

∫
Ω

−∂ρd
1
Ld
1 ∇ρd1 · η, (136)

δAz =

∫
Ω

−∂zLd
1 ∇z · η, (137)

δAu =

∫
Ω

− (∂tK +∇ · (K ⊗ u) +K · ∇u) · η, (138)

The variation of the total action can then be written as

δA =−
∫
Ω

(
∂tK +∇ · (K ⊗ u) +K · ∇u+ αd

1∇(∂α2
L2) + ∂zLd

1 ∇z

−m1∇(∂m1
L1)−m2∇(∂m2

L2)−md
1∇(∂md

1
Ld
1)
)
· η

+

∫
Ω

(∂α1L1 − ∂α2L2) δα1,

=−
∫
Ω

(
∂tK +∇ · (K ⊗ u)−∇(L∗ − αd

1∂α2
L2)− (∂α1

L1 − ∂α2
L2)∇α1

)
· η

+

∫
Ω

(∂α1
L1 − ∂α2

L2) δα1.

(139)
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Nullifying the variations gives the following system{
∂tK +∇ · (K ⊗ u)−∇(L∗ − αd

1∂α2L2) = 0,

∂α1
L1 − ∂α2

L2 = 0.
(140)

We replace then the derivatives of the Lagrangian by their expressions

∂uL = K = ρu, L∗ = −α1p1 − α2p2, ∂α2L2 = p2, ∂α1L1 = p1. (141)

Then, (140) becomes {
∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

p := p1 = p2.
(142)

F Results of differential geometry

We recall here some elements to derive the evolution in time of the geometry for closed inclusions using the tools of
differential geometry. The reader is referred to Kreyszig (1991) for a general introduction to differential geometry and
to Capovilla et al. (2003) and Deserno (2015) for a briefer introduction and the derivation of the formulae presented
hereafter.

F.1 First- and second-order variations of a closed inclusion

Let us consider the deformation of a closed inclusion defined by its position vector mapped by U

r(u, v) = r0(u, v) + δr(u, v), (u, v) ∈ U , (143)

where r0 is the position before the deformation and δr the deformation vector that we assume to be small. From
now on, we drop the dependencies on (u, v) to lighten the formulae. For convex and closed inclusions, we write the
deformation in the direction of the non-deformed surface normal,

r = r0 + ψn, (144)

where n := (eθ × eϕ)/∥eθ × eϕ∥ is the local normal and ea := ∂ar the tangential vectors and ψ the local amplitude
of the deformation. Then, we are interested in the first-order and second-order variations of particular geometric

quantities of the whole inclusion. With the surface-weighted average operator (̃·) defined in (27) for one inclusion,
we focus on the volume V , the surface area S and the surface-weighted mean curvature SH̃. There is no variation
associated with the surface-weighted Gauss curvature SG̃ as a result of the Gauss—Bonnet theorem (Kreyszig, 1991).
The variations of these quantities up to second order in ψ are found in Capovilla et al. (2003) and written with the
Einstein summation rule for implicit indexes a, b ∈ {u, v},

δV =

∫
U
(ψ +H0ψ

2)A0 + o(ψ2),

δS =

∫
U
(2H0ψ +G0ψ

2 − 1
2ψ∆ψ)A0 + o(ψ2),

δ(SH̃) =

∫
U
(G0ψ + 1

2ψ[(K
ab − 2H0g

ab) : (∇a ⊗∇b)ψ −G : Kabψ])A0 + o(ψ2),

(145)

where H0 and G0 are the non-deformed mean and Gauss curvature, ∆ is the surface Laplacian, Kab the extrinsic
curvature tensor, gab the inverse of the metric tensor, ∇a is the vector of covariant derivative with respect to a and
G the Einstein tensor.

F.2 Incompressible oscillation of the sphere

In Section 4, we are specifically interested in a sphere deformed by the axisymmetric second spherical harmonic. We
choose the spherical coordinates (u, v) = (θ, ϕ) on U = (0, π)×(0, 2π), and we denote er = (sin θ cosϕ, sin θ sinϕ, cos θ)
such that

r0 = R0er, ψ(θ, ϕ) = x0Y0 + x2Y2(θ), (146)
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where R0 is the constant radius of the non-deformed sphere, Y0 is the zeroth spherical harmonic that corresponds
to the isotropic perturbation that ensures incompressibility and Y2 is the second spherical harmonic associated with
the oscillatory motion. Then, we evaluate the geometric quantities in (145),

n = er, H0 = R−1
0 , G0 = R−2

0 , A0 = R2
0AS2 ,

Kab = R−1
0 gab, gab : ∇a ⊗∇b = ∆, ∆ = R−2

0 ∆S2 , G = 0,
(147)

where ∆S2 and AS2 are the surface Laplacian and the surface element on the unit sphere S2. Furthermore, the
orthonormal spherical harmonics Y0 and Y2 are eigenfunctions of the spherical Laplacian ∆S2 such that

∆S2Yk = −k(k + 1)Yk,

∫
U
YkYk′AS2 = δk,k′ . (148)

Evaluating the variations of V , S and SH̃ up to second order in x0 and x2 yields

δV = R2
0x0 +R0x

2
0 +R0x

2
2 + o(x20 + x22),

δS = 2R0x0 + x20 + 4x22 + o(x20 + x22),

δ(SH̃) = x0 + 3R−1
0 x22 + o(x20 + x22).

(149)

As we consider incompressible oscillations δV = 0, this links the dynamics of x0 to that of x2

δV = 0 ⇒ x0 = −R−1
0 x22 + o(x22). (150)

The variations of the geometric quantities then simplify to

δV = 0, δS = 2x22 + o(x22), δ(SH̃) = 2R−1
0 x22 + o(x22). (151)

We then obtain (45) by introducing S0 = 4πR2
0 and χ = x2(2/S0)

1/2.

F.3 Variations of the oriented geometric quantities

In Section 4.3, new geometric quantities S∥, S⊥, S∥H̃
∥ and S⊥H̃

⊥ are defined to recover first-order variations in x2
using the decomposition of the local surface element into

A = ∥eθ × eϕ∥ = |(eθ × eϕ) ·N |+ (∥eθ × eϕ∥ − |(eθ × eϕ) ·N |) =: A∥ +A⊥, (152)

where ea := ∂ar for a = θ, ϕ, and ev := ∂vr(u, v) are the tangential vectors and N = (0, 0, 1) is a constant vector
chosen along the axisymmetric axis. Then for any local geometric quantity X(u, v), we split the variation of the
surface-averaged geometric quantity into

δ(SX̃) = δ(S∥X̃
∥) + δ(S⊥X̃

⊥), (153)

such that we can focus on the variation δ(S∥X̃
∥), and δ(S⊥X̃

⊥) follows from (151). The variation of S∥X̃
∥ reads

δ(S∥X̃
∥) =

∫
U
δ(XA∥) =

∫
U
δ (X |(eθ × eϕ) ·N |) , (154)

We get rid of the absolute value by remarking that the perturbations along harmonics Y0 and Y2 are symmetric with
respect to the equatorial plane of the droplet. We split U into two hemispheres using the half-unit sphere mapping
1
2U = (0, π/2)× (0, 2π) where (eθ × eϕ) ·N > 0 and perform a change of variables leading to

δ(S∥X̃
∥) =

∫
1
2U

δ(X(eθ × eϕ) ·N)−
∫
U\ 1

2U
δ(X(eθ × eϕ) ·N)

= 2

∫
1
2U

δ(X(eθ × eϕ)) ·N .

(155)

Then, the variation is decomposed following

δ(S∥X̃
∥) = 2

∫
1
2U

δ(XA)(n ·N) + 2

∫
1
2U

X0A0δn ·N , (156)
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with A0δn = δ(eθ × eϕ)−nδA. The first-order variation in x2 is non-trivial here, and we retain only the first-order
terms in ψ for δ(HA) and δA in (145). Only the first-order variation of δ(eθ × eϕ) is still undetermined. For the
first-order deformation ψ = x2Y2 + o(x2), it yields

δ(eθ × eϕ) = ∂θr × ∂ϕr − ∂θr0 × ∂ϕr0

= x2R0Y2(∂θn× ∂ϕn) + x2R0(∂θY2)(n× ∂ϕn) +R0x2Y2(∂θn× ∂ϕn) + o(x22).
(157)

For the sphere, we recall that

∂θn = R−1
0 eθ, ∂ϕn = R−1

0 eϕ, eθ × eϕ = A0n,

A0 = R2
0 sin θ, N · n = cos θ, N · eθ = −R0 sin θ.

(158)

The first-order variation δ(eθ × eϕ) then reads

δ(eθ × eϕ) = x2R
−1
0 Y2(eθ × eϕ) + x2(∂θY2)(n× eϕ) +R−1

0 x2Y2(eθ × eϕ) + o(x22)

= x2R
−1
0 Y2A0n− x2(∂θY2)A0R

−2
0 eθ +R−1

0 x2Y2A0n+ o(x22)

= 2x2R
−1
0 Y2A0n− x2(∂θY2)eθ + o(x22).

(159)

Now, taking X = 1 in (156) gives

δS∥ = 2

∫
1
2U

δ(eu × ev) ·N

= 2

∫
1
2U

2x2R
−1
0 Y2A0(n ·N)− x2A0R

−2
0 (∂θY2)(eθ ·N) + o(x22)

= 4x2R0

∫
1
2U

Y2 sin θ cos θ + 2x2R0

∫
1
2U

(∂θY2) sin
2 θ + o(x22)

= 4x2R0

√
5π

8
+ 2x2R0

(
−3

√
5π

4

)
+ o(x22)

= −x2R0

√
5π + o(x22).

(160)

For X = H, there is an extra term in the first-order variation δ(HA) = (G0 − 1
2∆)ψA0 Capovilla et al. (2003) which

has been nullified in (145) as the inclusion is closed. Here, it is taken into account as we integrate twice over a
half-inclusion. It yields

δS∥H̃
∥ = 2

∫
1
2U

δ(HA)(n ·N) + 2

∫
1
2U

H0(δ(eθ × eϕ)− nδA) ·N ,

= 2

∫
1
2U

(G0 − 2H2
0 )ψA0(n ·N) +

∫
1
2U

∆ψA0(n ·N) + 2

∫
1
2U

H0δ(eθ × eϕ) ·N ,

= −2x2

∫
1
2U

Y2 sin θ cos θ +−x2
∫
1
2U

(∆S2Y2) sin θ cos θ + 2R−1
0

∫
1
2U

δ(eθ × eϕ) ·N ,

= −x2
1

2

√
5π.

(161)

Replacing x2 with its expression in χ and S0 yields geometric relations (65).
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G Weights and quadrature points of the bi-disperse quadrature

The bi-disperse closure for n1, n2, (S0)1, (S0)2 in terms of the moment in size onlyMk =Mξ
k,0,0 with k = 0, 1/2, 1, 3/2

is obtained by solving the truncated moment problem with Mathematica (Wolfram Research, 2023) and reads

ni =
1

2

(
M0 + (−1)i+1

3M0M1M1/2 − 2M3
1/2 −M2

0M3/2√
∆

)
,

(S0)i = (2(M2
1/2 −M0M1)

2)−1
(
M2

0M
2
3/2 −M2

1M
2
1/2 + 2(M0M

3
1 +M3

1/2M3/2)

−4M0M1/2M1M3/2 + (−1)i+1(M0M3/2 −M1M1/2)
√
∆
)
,

with ∆ = 4M0M
3
1 − 3M2

1M
2
1/2 − 6M0M1/2M1M3/2 + 4M3

1/2M3/2 +M2
0M

2
3/2.

(162)

It can be written with the geometric variables using either relations (36), (47)-(48) or (66)-(67). Mathematica also
shows that these relations yield positive values of ni and (S0)i provided that the moments Mk are positive and

M1/2M3/2 −M2
1 > 0, M0M1 −M2

1/2 > 0. (163)

These last two conditions ensure the positivity of Hankel matrices involved in the realisability conditions of the
Hausdorff truncated moment problem (Schmüdgen, 2017).

H Hamilton’s SAP for the polydisperse spray of oscillating droplets

This model is built on the basis of the two-scale model of Section 2 where additional energies are added to take into
account capillarity at the small scale along with the internal flow of the droplets. We recall the Lagrangian given in
(75) for the two-scale mixture

L = L1 (α1,m1,u) + L2 (α2,m2,u) + Ld
1

(
md

1, ρ
d
1,u

)
+Lvib

1 (n1, (S0)1, χ1, χ̇1) + Lvib
2 (n2, (S0)2, χ2, χ̇1) ,

(164)

where Lvib
i = 1

2νni(S0)
5/2
i χ2

i −σni(S0)i− 1
2γni(S0)iχ

2
i . We define the action A associated to the Lagrangian similarly

to that of appendix B. In the same way as previous models, α1 is a free variable in the minimisation process, while
effective densities mk are conserved, ρd1 is advected. For the additional variables, the number densities of droplets ni
are conserved, the surfaces (S0)i are advected, χi are free variables describing the oscillatory motion of the droplets
and χ̇i are linked to time derivatives of χi with Dtχi = χ̇i. This last constraint translates in terms of variations

δ(χ̇i) = δ(Dtχi) = ∂t(δχi) + u · ∇(δχi) + δu · ∇χi. (165)
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Denoting Kχ̇i
= ∂χ̇i

Lvib
i and u = ∂uL, we decompose then the variation of the action according to each dependency

δAα1
=

∫
Ω

∂α1
L1 δα1, (166)

δAα2 =

∫
Ω

∂α2L2 δα2 = −
∫
Ω

αd
1∇(∂α2L2) · η −

∫
Ω

∂α2L2 δα1, (167)

δAmk
=

∫
Ω

∂mk
Lk δmk =

∫
Ω

mk∇(∂mk
Lk) · η, (168)

δAρd
1
=

∫
Ω

−∂ρd
1
(Ld

1 + Lvib
1 + Lvib

2 )∇ρd1 · η, (169)

δA(S0)i =

∫
Ω

−∂(S0)iL
vib
i ∇(S0)i · η, (170)

δAni
=

∫
Ω

∂ni
Lvib
i δni =

∫
Ω

ni∇(∂ni
Lvib
i ) · η, (171)

δAχi
=

∫
Ω

∂χi
Lvib
i δχi, (172)

δAχ̇i =

∫
Ω

Kχ̇i δχ̇i =

∫
Ω

Kχ̇i(∂t(δχi) + u · ∇(δχi) + δu · ∇χi), (173)

= −
∫
Ω

(∂tKχ̇i
+∇ · (Kχ̇i

u))δχi (174)

−
∫
Ω

(∂t(Kχ̇i
∇χi) +∇ · ((Kχ̇i

∇χi)u) +Kχ̇i
∇χi · ∇u) · η, (175)

δAu =

∫
Ω

− (∂tK +∇ · (K ⊗ u) +K · ∇u) · η. (176)

We denote L∗
k = mk∂mk

Lk − Lk, Lvib,∗
i = ni∂ni

Lvib
i − Lvib

i and L∗ = L∗
1 + L∗

2 + Ld,∗
1 such that the variation of the

action related to the mixture Lagrangian reads

δA =

∫
Aη · η +Aα1δα1 +Aχ1δχ1 +Aχ2δχ2, (177)

with
Aα1

= ∂α1
L1 − ∂α2

L2,

Aχi
= ∂χi

Lvib
k − ∂tKχ̇i

−∇ · (Kχ̇i
u),

Aη = −
(
∂tK +∇ · (K ⊗ u)−∇(L∗ − αd

1∂α2
L2)−Aα1

∇α1 −Aχ1
∇χ1 −Aχ2

∇χ2

) (178)

and Lvib,∗
i := ni∂ni

Lvib
i − Lvib

i . Nullifying the variations gives the following system
∂tK +∇ · (K ⊗ u)−∇(L∗ − αd

1∂α2
L2) = 0,

∂χ1Lvib
1 − ∂tKχ̇1 −∇ · (Kχ̇1u) = 0,

∂χ2Lvib
2 − ∂tKχ̇2 −∇ · (Kχ̇2u) = 0,

∂α1
L1 − ∂α2

L2 = 0.

(179)

Evaluating the derivatives of the Lagrangian as defined in (76) yields

Ku = ∂uL = ρu, L∗ = −α1p1 − α2p2, ∂α2L2 = p2, ∂α1L1 = p1,

∂χi
Lvib
i = −γni(S0)iχi, Kχ̇i

= ∂χ̇i
Lvib
i = νni(S0)

5/2
i χ̇i,

(180)

Finally, with the constraints and the relation Dtχi = χ̇i, we write the final system in its conservative form

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tni +∇ · (niu) = 0, i = 1, 2,

∂t(ni(S0)i) +∇ · (ni(S0)iu) = 0, i = 1, 2,

∂t(niχ̇i) +∇ · (niχ̇iu) = −ω2
i niχi, i = 1, 2,

∂t(niχi) +∇ · (niχiu) = niχ̇i, i = 1, 2,

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

(181)
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where p := p1 = p2 and ω2
i = γ/ν(S0)

−3/2
i .

I The monodisperse case

Even though the polydispersion is a key feature of our model, we can also consider a monodisperse model to ob-
tain a minimal model. In this case, only four geometric quantities are required, two related to statics and two
related to dynamics. Compatibility with Section 2 leads us to consider (Σ ⟨G⟩ , αd

1, (∆Σ⊥), (∆tΣ⊥)) or, equivalently,
(nd1, α

d
1, (∆Σ⊥), (∆tΣ⊥)). We then obtain the following quadrature:

n(x, t, Ŝ0, χ̂, ̂̇χ) = nd1δ(Ŝ0 − S0)δ(χ̂− χ)δ(̂̇χ− χ̇),

S0 =
(6
√
παd

1)
2/3

(nd1)
2/3

, χ = 2

√
2

5

(∆Σ⊥)

(nd1)
1/3(6

√
παd

1)
2/3

, χ̇ = 2

√
2

5

(∆tΣ⊥)

(nd1)
1/3(6

√
παd

1)
2/3

.
(182)

All other geometric quantities can then be reconstructed through moments of n. The minimisation of the Lagrangian
is similar to the polydisperse one, and, without adding dissipative source terms, we obtain the following set of
equations 

∂tmk +∇ · (mku) = 0, k = 1, 2, 1d,

∂tn
d
1 +∇ · (nd1u) = 0,

∂t(n
d
1(S0))+∇ · (nd1(S0)u) = 0,

∂t(n
d
1χ̇) +∇ · (nd1χ̇u) = −ω2nd1χ,

∂t(n
d
1χ) +∇ · (nd1χu) = nd1χ̇,

∂t(ρu) +∇ · (ρu⊗ u+ pI)= 0,

(183)

with p := p1 = p2 where ω2 = ω̃2(S0)
−3/2 and β = 40πνvis/S0. We can then provide the dynamics of other geometric

quantities such as the interface area density Σ =Mξ
1,0,0 +Mξ

1,2,0,

∂tΣ+∇ · (Σu) = ∂t(n
d
1(S0)χ

2) +∇ · (nd1(S0)χ
2u) = nd1(S0)Dt(χ

2) = 2nd1(S0)χχ̇. (184)

Replacing with geometric variables leads to

∂tΣ+∇ · (Σu) = 16

5

(∆Σ⊥)(∆tΣ⊥)

(nd1)
1/3(6

√
παd

1)
2/3

. (185)

We remark that we cannot get rid of the oriented surface area density terms in all terms of the evolution equation of
Σ. Moreover, no parameter of the physics is present.
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