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In this contribution, we introduce a versatile formalism to derive unified two-phase models
describing both the separated and disperse regimes. It relies on the stationary action principle
and interface geometric variables. The main ideas are introduced on a simplified case where
all the scales and phases have the same velocity and that does not take into account large-
scale capillary forces. The derivation tools yield a proper mathematical framework through
hyperbolicity and signed entropy evolution. The formalism encompasses a hierarchy of small-
scale reduced-ordermodels based on a statistical description at amesoscopic kinetic level and
is naturally able to include the description of a disperse phase with polydispersity in size. This
hierarchy includes both a cloud of spherical droplets and non-spherical droplets experiencing
a dynamical behaviour through incompressible oscillations. The associated small-scale
variables are moments of a number density function resulting from the Geometric Method
Of Moments (GeoMOM). This method selects moments as small-scale geometric variables
compatible with the structure and dynamics of the interface; they are defined independently
of the flow topology and, therefore, this model pursues the goal of unifying the modelling of
a fully-coupled two-scale flow. It is particularly showed that the resulting dynamics provides
closures for the interface area density equation obtained from the averaging approach. The
extension to mass transfer from one scale to the other including capillary phenomena, as well
as the extension to multiple velocities are possible and proposed in complementary works.
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1. Introduction
Two-phase flows encompass a wide range of physical phenomena, presenting dynamics
involving a large spectrum of scales (Scardovelli & Zaleski 1999; Tomar et al. 2010;
Shinjo & Umemura 2010; Dumouchel et al. 2015; Cordesse et al. 2020b; Sakano et al.
2022; Estivalezes et al. 2022). We particularly identify two different regimes based on the
topology/geometry of the fluid interfaces (Ishii & Hibiki 1975): separated-phases flows,
where the material interface is described at the bulk fluid scale (hereafter called large scale),
and disperse flows, characterized by the presence of disperse phases within a carrier fluid,
resulting in interfaces with significantly smaller scales (hereafter called small scale).
Simulating such flows is crucial for many industrial processes such as combustion

chambers where liquid fuel is injected at high velocity and pressure forming a cloud of
liquid droplets further away from the nozzle or nucleate boiling in nuclear reactors (Jamet
et al. 2010; Providakis et al. 2012; Fiorina et al. 2016). Unfortunately, Direct Numerical
Simulation (DNS) capturing the smallest interfacial variations is currently limited to
academic configurations and impractical in industrial contexts. We address these challenges
through the development of new modelling approaches. One such approach, known as sub-
scale modelling, consists in modelling the sub-scale phenomena directly at the bulk scale.
Various approaches have been proposed for both separated and disperse flow regimes, such as
two-fluid systems of equations Baer&Nunziato (1986); Raviart & Sainsaulieu (1995); Saurel
et al. (2017). But, they often offer limited information about the interfacial structures and are
only adapted to one of the two regimes. Several works aim at coupling both regimes (Devassy
et al. 2015; Le Touze et al. 2020) and sometimes include other modelling approaches such as
Lagrangian models (Lebas et al. 2009). In the mixed regime zone, when the separated regime
transitions to the disperse regime, the coupling processes involve very different descriptions,
variables as well as a series of coupling parameters. They have to be tuned depending on the
configuration of interest, which prevents the possibility of predictive simulations. The present
work aims at providing a unified formalism that naturally degenerates towards separated and
disperse flow models, and that can handle the mixed zone where both large and small scales
are present.
Our first contribution is to propose a versatile framework to derive unified two-scale two-

phase models based on Hamilton’s Stationary Action Principle (SAP) (Herivel 1955; Serrin
1959; Salmon 1983; Bedford 1985; Truskinovsky 1991; Gavrilyuk et al. 1998; Gouin &
Gavrilyuk 1999; Gavrilyuk & Saurel 2002; Berdichevsky 2009; Drui et al. 2019; Gouin
2020; Cordesse et al. 2020a) and the second principle of thermodynamics. The originality of
the approach relies on the models’ ability to account for the presence of both separated and
disperse regimes at the same time. This is made possible by considering an artificial mixture
in which small-scale and large-scale interfaces coexist within the same physical domain.
The length-scale threshold that separates the large-scale dynamics of the bulk phase from
the dynamics of the small-scale depends on the physics and is not discussed in this work.
By employing Hamilton’s SAP and an evolution equation for the mathematical entropy of
the model, we can obtain a dissipative system that captures the behaviour of this multiphase
medium and provides a good mathematical framework to analyse such models.
The second contribution of this work lies in the ability to plug into the framework

a hierarchy of small-scale models for the disperse flow regime. We notably extend the
GeometricMethodOfMoments (GeoMOM) of Essadki (Essadki et al. 2019) which connects
geometric description of the small-scale interfaces (Pope 1988; Drew 1990) with the statistics
of a spray of droplets (Massot et al. 1998; Laurent & Massot 2001; Fox & Marchisio 2007;
Massot 2007). We particularly propose a reduced-order moment model for the dynamics of
the small-scale inclusions that degenerates toward an existingmomentmodels for the disperse
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regime in the static minimal surface configuration of spherical polydisperse droplets (Kah
et al. 2015; Essadki et al. 2018), but can also handle the dynamic case of incompressible
oscillation of droplets at the kinetic level following O’Rourke & Amsden (1987) to model
deformed inclusions. The key ingredient is the proper choice of variables, which are moments
of this kinetic description, but can also be identified as surface-averaged geometric quantities
related to the interface dynamics independently of the flow topology. Thus, it paves the
way to the modelling of the mixed zone, where the shape of droplets and ligaments depart
significantly from a spherical form.
Lastly, we demonstrate the compatibility of the obtained small-scale models with several

existing models from the literature that describe the evolution of the interfacial area density
in the flow. It offers a new way on selecting the adequate variables for interface dynamics
description and reaches interesting closures, usually out of reach, for the interfacial area
density equation.
The definition of the two-scale mixture and the derivation of its dynamics with Hamilton’s

SAP is presented in Section 2. Then, the small-scale modelling of polydisperse sprays with
GeoMOM is proposed in Section 3. We pursue with an extension of the polydisperse model
of spherical droplets into a spray of oscillating droplets in Section 4. Finally, the dynamics
of interface area density of these models is discussed and compared with models of the
literature in Section 5.

2. Two-scale two-phase model for both separated and disperse regimes
Wemodel a mixture composed of large-scale liquid and gaseous phases in a separated regime
and a small-scale liquid phase. We particularly assume that

• the small-scale liquid phase occupies a small volume of the local mixture. (H0)

The regime of the small-scale phase is not prescribed here, but it is eventually described by a
disperse regime model. The main goal of this first modelling task is to propose a framework
to account for the presence of both large-scale and small-scale phases at the same location.

2.1. Two-scale modelling assumptions
We propose successive sets of assumptions. First, regarding the fluid dynamics:

• all phases have the same mean velocity; (H1a)
• the small-scale velocity variations are small; (H1b)
• the small-scale liquid phase is incompressible. (H1c)

Following hypotheses (H1a) and (H1b), we do account for velocities that naturally appear at
small scale (e.g. droplets’ drag in the disperse regime) for the sake of clarity of the exposition
of the new ideas of the paper. Potential extensions are discussed in the conclusion. The
incompressibility of the small-scale is discussed in appendix A to justify (H1c). It impacts
the physics at two levels. The first level pertains to sound propagation that is cancelled at the
small scale. It is especially relevant in the disperse regime where no sound can propagate
from one inclusion to another as underlined in Saurel et al. (2017). The second level is related
to the volume occupation of the disperse phase and the evolution of its volume fraction.
Second, the following hypotheses are formulated solely for the sake of simplicity, but are
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not limiting for the models developed in the present work:

• each phase is isothermal with barotropic equations of state; (H2a)
• large-scale capillarity effects are not modelled; (H2b)
• no mass exchanges between the phases are taken into account; (H2c)

Let us remark that (H1a) and (H2a) correspond to the thermal and kinematic equilibria
as studied in Chanteperdrix et al. (2002); Caro et al. (2005); Drui et al. (2019). The effects
neglected by (H2a), (H2b) and (H2c) have been studied for instance in Perigaud & Saurel
(2005); Gaillard (2015); Schmidmayer et al. (2017); Cordesse (2020) and Caro et al. (2005);
Pelanti (2022). The model can be extended to include these effects, but they are not necessary
for the two-scale modelling framework at stake in this work. The particular modelling of mass
transfers between the large scale and the small scale is also not considered but is eventually
discussed in the conclusion.
We denote with the subscript 𝑘 = 1 the liquid and 𝑘 = 2 the gaseous phase. An additional

superscript 𝑑 identifies the small-scale liquid phase, where the letter 𝑑 stands for “droplets”
or “disperse” liquid phase. Following (H2a), each large scale fluid 𝑘 = 1, 2 is equipped with
a barotropic equation of state of the form 𝜌𝑘 ↦→ 𝑒𝑘 (𝜌𝑘 ), where 𝜌𝑘 and 𝑒𝑘 are the density
and the barotropic potential of the phase 𝑘 = 1, 2. The pressure 𝑝𝑘 of the large scale phase
𝑘 = 1, 2 is then defined by 𝑝𝑘 = 𝜌2

𝑘
𝑒′
𝑘
(𝜌𝑘 ). We assume that 𝑝′𝑘 (𝜌𝑘 ) > 0 so that the sound

speed 𝑐𝑘 associated with the phase 𝑘 = 1, 2 is 𝑐𝑘 =
√︁
𝑝′
𝑘
(𝜌𝑘 ). With 𝛼𝑘 the volume fraction

of the phase 𝑘 = 1, 2, 1𝑑 , we consider a two-scale mixture such that it obeys the volume
constraint

𝛼1 + 𝛼2 + 𝛼𝑑
1 = 1, (2.1)

and its density 𝜌 is obtained from the effective phase densities 𝑚𝑘 := 𝛼𝑘 𝜌𝑘 ,

𝑚1 + 𝑚2 + 𝑚𝑑
1 = 𝜌. (2.2)

Remark that the large-scale volume fractions 𝛼1, 𝛼2 range between 0 and 1 while the small-
scale volume fraction 𝛼𝑑

1 is confined to small values 𝛼
𝑑
1 � 1 as assumed by (H0). We denote

𝑌𝑘 the mass fraction such that the specific barotropic potential 𝑒 of the two-phase material is
defined by

𝑒 = 𝑌1𝑒1(𝜌1) + 𝑌2𝑒2(𝜌2) + 𝑌 𝑑
1 𝑒1(𝜌

𝑑
1 ). (2.3)

Under assumptions (H1a) and (H1b), there is a unique velocity 𝒖 describing the mixture

𝒖 := 𝒖1 = 𝒖2 = 𝒖𝑑
1 . (2.4)

Then, (H2c) provides the mass conservation of each phase

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, for 𝑘 = 1, 2, 1𝑑 . (2.5)

Summing these equations provides the total mass conservation equation

𝜕𝑡 𝜌 + ∇𝒙 · (𝜌𝒖) = 0. (2.6)

Denoting 𝐷𝑡 (·) = 𝜕𝑡 (·) + 𝒖 · ∇(·) the material time derivative, the incompressibility of the
small-scale liquid phase (H1c) reads

𝐷𝑡 𝜌
𝑑
1 = 0. (2.7)

Then liquid volume fraction of the small-scale is conserved

𝜕𝑡𝛼
𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0. (2.8)

Focus on Fluids articles must not exceed this page length
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2.2. Hamilton’s Stationary Action Principle
We introduce a novel framework for two-scale modelling in the spirit of (Gavrilyuk & Gouin
1999; Drui et al. 2019) by using Hamilton’s SAP. We set the kinetic and potential energies
of the phase 𝑘 as

𝐸 𝑘𝑖𝑛
𝑘 :=

1
2
𝑚𝑘𝒖

2, 𝐸
𝑝𝑜𝑡

𝑘
:= 𝑚𝑘𝑒𝑘

(
𝑚𝑘

𝛼𝑘

)
, (2.9)

and the mixture kinetic and potential energies are
∑

𝑘 𝐸
𝑘𝑖𝑛
𝑘
and

∑
𝑘 𝐸

𝑝𝑜𝑡

𝑘
. This enables

the definition of the Lagrangian energy L𝑘 = 𝐸 𝑘𝑖𝑛
𝑘

− 𝐸 𝑝𝑜𝑡

𝑘
of the phase 𝑘 and a mixture

Lagrangian energy L =
∑

𝑘 L𝑘 . Capillarity energy is not taken into account as we lack
information about the small-scale interface area density. These effects will be considered
later in Section 3, where we refine the small-scale model. Thereby, the Lagrangian associated
with our system reads

L = L1 (𝛼1, 𝑚1, 𝒖) + L2 (𝛼2, 𝑚2, 𝒖) + L𝑑
1

(
𝑚𝑑
1 , 𝜌

𝑑
1 , 𝒖

)
. (2.10)

The dependency on 𝜌𝑑1 = 𝑚𝑑
1 /𝛼

𝑑
1 was added to take advantage of the constraint 𝐷𝑡 𝜌

𝑑
1 = 0 in

the derivation with Hamilton’s SAP. Then, the dependencies of the small-scale Lagrangian
are L𝑑

1 = 1
2𝑚

𝑑
1 𝒖
2 − 𝑚𝑑

1 𝑒1(𝜌
𝑑
1 ).

Hamilton’s SAP provides the momentum equation by minimizing the Lagrangian’s action,
i.e. the integral of the Lagrangian over a space domain Ω𝒙 and a time interval [0, 𝑇].
This minimization takes place under the mass conservation (2.5) and incompressibility
constraints (2.8). It leads to the following two equations (see appendix B for details){

𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ + L∗
2 + L𝑑∗

1 − 𝛼𝑑
1 𝜕𝛼2L2) = 0,

𝜕𝛼1L1 − 𝜕𝛼2L2 = 0,
(2.11)

where 𝑲 = 𝜕𝒖L, L∗
𝑘
= 𝑚𝑘 (𝜕𝑚𝑘

L𝑘 ) − L𝑘 and L∗ =
∑

𝑘 L∗
𝑘
. Remark that the divergence

of a matrix A is a vector denoted ∇ · A which here evaluates to ∇ · A = (𝜕𝑥 𝑗
𝐴𝑖 𝑗) with the

summation on repeated indexes. The choice of energies (2.9) yields

𝑲 = 𝜌𝒖, L∗
1 = −𝛼1𝑝1, 𝜕𝛼1L1 = 𝑝1,

L𝑑,∗
1 = 0, L∗

2 = −𝛼2𝑝2, 𝜕𝛼2L2 = 𝑝2.
(2.12)

Including the constraints (2.5-2.8) and evaluating the first equation of (2.11) leads to
𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

(2.13)

where I is the identity matrix, and 𝑝 is the equilibrium pressure obtained for the mixture
thermodynamic closure 𝑝 := 𝑝1 = 𝑝2 given by the second line of (2.11). This algebraic
equation gives 𝛼1 and 𝑝 respectively as the solution and the value of the equilibrium for
given values of 𝑚1, 𝑚2 and 𝛼𝑑

1 . System (2.13) also admits a supplementary conservation
equation

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = 0, (2.14)
where the total energy H = 𝜌‖𝒖‖2 − L is a mathematical entropy (Godlewski & Raviart
1991) for (2.13).†
† The mathematical entropy of the system is studied as the isothermal limit of the Euler-Fourier model

in Serre (2010). It is showed to be convex and linked to the physical entropy of the mixture 𝑠 with
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Remark that 𝛼1 is not a variable of the set of conservation laws (2.13), but its effective
dynamics for smooth solution can be explicitly written by applying the material time
derivative to the algebraic equation 𝑝1(𝑚1/𝛼1) = 𝑝2(𝑚2/(1 − 𝛼1 − 𝛼𝑑

1 )), and reads

𝐷𝑡𝛼1 = Λ∇ · 𝒖, with Λ = 𝛼1(1 − 𝛼1)
𝜌2𝑐

2
2−𝜌1𝑐

2
1

𝛼1𝜌2𝑐
2
2+(1−𝛼1)𝜌1𝑐

2
1
+ 𝛼𝑑

1
𝛼1𝜌2𝑐

2
2

𝛼1𝜌2𝑐
2
2+(1−𝛼1)𝜌1𝑐

2
1
. (2.15)

This extends the three-equation model proposed by Chanteperdrix et al. (2002), which is
recovered when 𝛼𝑑

1 → 0.

2.3. A dissipative two-pressure model
Now that we have set the conservative structure of the model with Hamilton’s SAP, we add
dissipative processes to the model. For demonstrative purpose, we propose here to model
solely a pressure disequilibrium between the two large-scale phases as it is characteristic
of two-phase flow models as in the Baer & Nunziato (1986) model. Such a disequilibrium
model can encompass several physical phenomena with different timescales (e.g. bubbly
flows Drui et al. (2019), stochastic thermodynamic relaxation Perrier & Gutiérrez (2021)).
Let us mention that the limit of instantaneous relaxation can also be used to build a numerical
scheme that solves the pressure equilibrium of (2.13) (Chanteperdrix et al. 2002).
In order to make this pressure relaxation a large-scale process that acts on each large-scale

phase symmetrically, we define the large-scale volume fractions

𝛼𝑘 :=
𝛼𝑘

1 − 𝛼𝑑
1
, for 𝑘 = 1, 2, (2.16)

such that for 𝛼𝑑
1 < 1,

𝛼1 + 𝛼2 + 𝛼𝑑
1 = 1 ⇐⇒ 𝛼1 + 𝛼2 = 1. (2.17)

Then, we relax the pressure equilibrium of (2.13) into

𝐷𝑡𝛼1 =
𝑝1 − 𝑝2
𝜖

, (2.18)

where 𝜖 > 0 has the dimension of a dynamic viscosity. Since the pressure is not unique any
more with this pressure relaxation, the momentum equation can be expressed as follows

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0, (2.19)

where 𝑝 is chosen to provide a signed dissipation ofH . Following appendix B
𝜍 :=𝜕𝑡H + ∇ · ((H + 𝑝)𝒖)

=(𝑝 − 𝛼1𝑝1 − (𝛼2 + 𝛼𝑑
1 )𝑝2)∇ · 𝒖 − (𝑝1 − 𝑝2) 𝐷𝑡𝛼1

=(𝑝 − 𝛼1𝑝1 − 𝛼2𝑝2)∇ · 𝒖 − 𝜖 (1 − 𝛼𝑑
1 ) (𝐷𝑡𝛼1)2.

(2.20)

Therefore, choosing 𝑝 := 𝛼1𝑝1+𝛼2𝑝2 gives a signedmathematical entropy production 𝜍 6 0
and the relaxed model reads

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, for 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,
𝐷𝑡𝛼1 = 𝜖

−1(𝑝1 − 𝑝2).

(2.21)

H = 𝜌(𝜀 −𝑇𝑠) + 12 𝜌‖𝒖‖
2 where 𝜀 = 𝑒 +𝑇𝑠, and 𝑇 are respectively the internal energy and the temperature

of the mixture.
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𝜆𝑘 : 𝒓𝑇
𝑘

𝑢 : (𝜌1 , −𝜌2 , 𝑢 (𝜌1 − 𝜌2 ) )

𝑢 + 𝑐𝑊 : (𝑚1 , 𝑚2 , 𝜌(𝑢 − 𝑐𝑊 ) )

𝑢 − 𝑐𝑊 : (𝑚1 , 𝑚2 , 𝜌(𝑢 + 𝑐𝑊 ) )

(a) 3-eq. model for (𝑚1, 𝑚2, 𝜌𝑢), i.e.
(2.13) in the separated flow limit 𝛼𝑑1 → 0

𝜆𝑘 : 𝒓𝑇
𝑘

𝑢 :


(0, 𝜌1 , −𝜌2 , 𝑢 (𝜌1 − 𝜌2 ) )

(−(1 − 𝛼𝑑
1 ) , 𝑚1 , 𝑚2 , 𝑢 (𝜌 − 𝜌𝑑1 ) )

𝑢 + 𝑐𝑑
𝑊
: (𝛼𝑑

1 , 𝑚1 , 𝑚2 , 𝜌(𝑢 − 𝑐𝑑
𝑊

) )

𝑢 − 𝑐𝑑
𝑊
: (𝛼𝑑

1 , 𝑚1 , 𝑚2 , 𝜌(𝑢 + 𝑐𝑑
𝑊

) )

(b) System (2.13) for (𝛼𝑑1 , 𝑚1, 𝑚2, 𝜌𝑢)

𝜆𝑘 : 𝒓𝑇
𝑘

𝑢 :


(1, − Δ𝑝

𝑐21
, − Δ𝑝

𝑐22
, 0)

(0, −𝛼2𝑐22 , 𝛼1𝑐
2
1 , 0)

𝑢 + 𝑐𝐹 : (0, 𝜌1 , 𝜌2 , 𝑐𝐹 )

𝑢 − 𝑐𝐹 : (0, 𝜌1 , 𝜌2 , −𝑐𝐹 )

(c) 4-eq. model for (𝛼1, 𝜌1, 𝜌2, 𝑢), i.e.
(2.21) in the separated flow limit 𝛼𝑑1 → 0

𝜆𝑘 : 𝒓𝑇
𝑘

𝑢 :



(0, 1, −(1 − 𝛼𝑑
1 ) Δ𝑝

𝑐21
, −(1 − 𝛼𝑑

1 ) Δ𝑝
𝑐22

, 0)

(0, 0, −𝛼2𝑐22 , 𝛼1𝑐
2
1 , 0)

(−Δ𝑝, 𝜌(𝑐𝑑
𝐹
)2 , 0, 0, 0)

𝑢 + 𝑐𝑑
𝐹
: (𝛼𝑑

1 , 0, (1 − 𝛼𝑑
1 )𝜌1 , (1 − 𝛼𝑑

1 )𝜌2 , 𝑐𝑑
𝐹
)

𝑢 − 𝑐𝑑
𝐹
: (𝛼𝑑

1 , 0, (1 − 𝛼𝑑
1 )𝜌1 , (1 − 𝛼𝑑

1 )𝜌2 , −𝑐𝑑𝐹 )

(d) System (2.21) for (𝛼𝑑1 , 𝛼1, 𝜌1, 𝜌2, 𝑢)

where (𝑐2
𝑊
)−1 = 𝜌

(
𝛼1

𝜌1𝑐
2
1
+ 𝛼2

𝜌2𝑐
2
2

)
, 𝑐2

𝐹
= 𝑌1𝑐

2
1 + 𝑌2𝑐

2
2, (𝑐𝑑

𝑊
)2 = 𝑐2

𝑊

(1−𝛼𝑑
1 )2

, (𝑐𝑑
𝐹
)2 = 𝑐2

𝐹

(1−𝛼𝑑
1 )2

.

Table 1: Eigenvalues 𝜆𝑘 and eigenvectors 𝒓𝑘 for separated and two-scale models.

The model (2.21) is obtained for the specific dissipative process (2.18) that gives a relaxed
model for (2.13). Remark that other dissipative processes could have been considered, but
are not modelled here, such as drag for two-velocity models (Saurel et al. 2017; Gavrilyuk
2020) or turbulent dissipation Saurel et al. (2003).

2.4. Discussion of the two-scale models
The systems (2.13) and (2.21) fulfil our first goal of proposing a model that describes
simultaneously separated and disperse regimes, and consequently allows a transition between
these two regimes. This mixture couples the different phases with a dissipative pressure
relaxation at the large scale while the large-scale phases are coupled with the small-scale one
through the constraint on its incompressible volume occupancy.
Let us discuss now the consequences of such a coupling on the mathematical and physical

properties of these systems, with a particular interest in their separated regime limit, when
𝛼𝑑
1 → 0, and disperse regime limit, when 𝛼1 → 0.
First, we study twomain mathematical properties for our systems: the signed mathematical

entropy production 𝜍 and the hyperbolicity. Both of these properties are usually considered
as requirements for the system not to be ill-posed (Mock 1980; Godlewski & Raviart 1991;
Métivier 2005). Amathematical entropy is identified alongwith its signed evolution in (2.20).
Hyperbolicity of a generic set of 𝑁 conservation laws on a state vector 𝒒 is assessed bywriting
it in its quasi-linear form

𝜕𝑡𝒒 + A(𝒒)𝜕𝑥𝒒 = 0, (2.22)
where A(𝒒) is the flux Jacobian. The hyperbolicity of the conservation laws consists in
requiring that the flux Jacobian 𝑨(𝒒) possesses only real eigenvalues with associated
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eigenvectors spanning R𝑁 . Denoting Δ𝑝 = 𝑝1 − 𝑝2, this information is gathered in table 1
and both models (2.13) and (2.21) are hyperbolic. They possess linearly degenerate fields
associated to the material wave of velocity 𝒖 and genuinely non-linear fields associated to
sound propagation. From table 1, one observes that the presence of the small-scale represented
by the incompressible volume fraction 𝛼𝑑

1 > 0 adds a linearly degenerate field associated
with the material wave.
Second, we focus on the physical impact of the incompressible small-scale volume

occupation on the global dynamics. The eigenvalues of the genuinely non-linear fields
detailed in table 1 show that the small scale increases the sound speed by a factor (1−𝛼𝑑

1 )
−1.

For a dilute disperse regime, Temkin (2005) showed a similar behaviour when 𝛼𝑑
1 � 𝜌2/𝜌𝑑1 .

For larger volume fraction, the results differ because of the incompressibility assumption
we took in (H1c). Third, we discuss the separated regime limit 𝛼𝑑

1 → 0 and the disperse
regime limit 𝛼1 → 0. The models (2.13) and (2.21) in the separated limit boil down to
those presented in Chanteperdrix et al. (2002); Caro et al. (2005). In the disperse limit, both
models reduce into 

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2I) = 0.

(2.23)

The presentminimal description of the small-scale is yet insufficient to preserve hyperbolicity
when the liquid large-scale disappears. Very similar phenomenological models for disperse
flows with an additional configuration pressure term have been proposed in Raviart &
Sainsaulieu (1995); McGrath et al. (2016) to recover hyperbolicity. It requires further
investigations to provide a systematic approach generalizing the modelling of such a
configuration pressure within Hamilton’s SAP.

3. Small-scale modelling consistent with polydisperse sprays of spherical droplets
Now we follow two parallel goals to enrich the small-scale models of the previous section:
1- describing polydisperse sprays in the disperse regime, where the droplets are spherical,
in their static minimal surface configuration, and 2- introducing geometric quantities which
describe the small-scale for any kind of interfaces in all flow regimes, thus proposing a limit
model of a general interface dynamics at small scale. This modelling strategy has first been
introduced for droplets in spherical shape in Essadki et al. (2016) and will be referred to in
the present contribution as GeoMOM. This strategy relies on a kinetic modelling of the small
scale as a population of droplets. The resultingmodel is consequently coherent in the disperse
regime where the kinetic approach is valid. In the mixed regime, the physics validity of the
kinetic-based model is limited, but it still remains interpretable since the chosen geometric
variables are showed to be defined with both a large-scale modelling of the interface and the
small-scale kinetic model.

3.1. Kinetic-based model in the disperse regime
We start the modelling of the spray by assuming that:

• the small-scale phase is composed of spherical droplets; (H3a)
• the droplets do not break nor coalesce. (H3b)

Indeed, (H1b) shows that only small velocity differences are locally allowed at the small
scale, and droplets are then very close to a spherical shape. The droplets are then described
by a static minimal surface, which remains spherical. The kinetic modelling of the disperse



9

small-scale relies on the Number Density Function (NDF) 𝑓 that counts the number of
droplets within a small volume of the phase space around a point of the space-time domain.
For generality purpose, we adopt a description for compressible inclusions whose sizes
can change in time under either mass exchange or compressibility processes. Therefore, we
consider the NDF 𝑓 (𝒙, 𝑡, 𝒗, 𝑚) to be a distribution of velocities 𝒗 and droplet masses 𝑚
instead of a size parameter such as radius or surface. We also denote 𝑓𝒗,𝑚 for compactness
to underline the phase-space dependencies only. Then, the equation of evolution of the NDF
expresses the conservation of the droplets in both the real and phase spaces (Williams 1958;
Marchisio & Fox 2013) and reads

𝜕𝑡 𝑓𝒗,𝑚 + ∇𝒙 · ( 𝑓𝒗,𝑚𝒗) + ∇𝒗 · (𝑭(𝒗, 𝑚) 𝑓𝒗,𝑚) + 𝜕�̂�(𝑅𝑚(𝒗, 𝑚) 𝑓𝒗,𝑚) = Γ, (3.1)

where 𝑭, and 𝑅𝑚 are unclosed rates of change of the velocity and the mass corresponding
to body forces and mass transfer, while Γ = Γ𝑏𝑢 + Γ𝑐𝑜𝑎𝑙 accounts for source terms such
as break-up and coalescence phenomena. (H3b) and (H2c) respectively imply Γ = 0, and
𝑅𝑚 = 0. Moreover, the distribution of velocities is out of the scope of this work as assumed
by (H1a) (see Vié et al. (2013) for an Eulerian model coupling the effects of size and velocity
distributions). Therefore, we discard the velocity dependency by considering 𝑛𝑚 =

∫
𝒗
𝑓𝒗,𝑚𝑑𝒗,

the mass-based NDF in the limit of a vanishing Stokes number 𝑆𝑡 → 0, i.e. when the inertial
timescale of inclusions is negligible compared to the timescale of the flow. Following the
works of Jabin (2002); Massot (2007), the dynamics of 𝑛𝑚 reads

𝜕𝑡𝑛𝑚 + ∇𝒙 · (𝑛𝑚𝒖) = 0, (3.2)

where 𝒖 is the unique velocity of every phase as defined by (2.4).

3.2. Geometric Method Of Moments : definition and application to the incompressible
spray

GeoMOMaims at enriching themodels (2.13)-(2.21) with quantities describing the geometry
of the interface at the small-scale. This method introduced in Essadki et al. (2016, 2018,
2019) is a reduced-order moment model for the polydisperse droplet distribution where
the chosen moments are geometric quantities that can be defined for any flow regime and
interface topology.
First, let us define those quantities. We consider a surface S defined by mapping a set

U ⊂ R2 onto S ⊂ R3 such that we denote 𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 the infinitesimal surface element
over S. Then, the surface area and a surface-average operator are defined on S by

𝑆 :=
∫
U
𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣, 〈 · 〉 := 1

𝑆

∫
U
(·) 𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣. (3.3)

Considering the surface of the droplets in the two-scale mixture as described in Section 2,
the sum of their areas defines the small-scale interface area density Σ. Thanks to (3.3), one
can also define surface-average Gauss and mean curvatures Σ 〈𝐺〉 and Σ 〈𝐻〉 as in Drew
(1983); Pope (1988). We use here these quantities to enhance the description of the disperse
small scale, but their definitions are a priori independent of the surface geometry (see an
application of these geometric quantities to the interface resulting from for the collision of
two spherical droplets in appendix C). This property is particularly convenient as it indicates
that the kinetic-based model can be interpreted as a limit case for the mixed regime, and we
discuss in conclusion how it allows coupling of the interface geometry between scales.
Second, we reduce the complexity of the spray dynamics, modelled by the distribution 𝑛𝑚
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given in (3.2), by introducing a finite set of moments indexed by I

𝑀𝑚
𝑖 :=

∫
�̂�

𝑚𝑖 𝑛𝑚 𝑑𝑚, 𝑖 ∈ I finite ⊂ N. (3.4)

These scalars retain statistical information about the NDF and their dynamics can be obtained
by integrating (3.2) against the corresponding monomials,

𝜕𝑡𝑀
𝑚
𝑖 + ∇ · (𝑀𝑚

𝑖 𝒖) = 0, 𝑖 ∈ I. (3.5)

The method of moments then gives a reduced-order model for the small-scale spray in
comparison with (3.2). In general, the equations are unclosed, and a reconstruction of the
NDF based on the selected moments must be provided. The selection of these moments is
not obvious and is usually motivated on the basis of mathematical properties of the resulting
moment model.
Finally, the specificity of GeoMOM consists in the selection of moments related to

geometric quantities defined with (3.3) to construct a model interpretable even out of
the disperse regime. For the spherical droplets described by 𝑛𝑚, the local Gauss and
mean curvatures on the sphere are constant and equal respectively to 𝑅−1 and 𝑅−2 where
𝑅 = (3𝑚/(4𝜋𝜌𝑑1 ))

1/3 is the radius of the sphere of density 𝜌𝑑1 and mass 𝑚. Therefore,
considering a population of spherical droplets, we express the geometric quantities Σ, Σ 〈𝐺〉
and Σ 〈𝐻〉 as moments of the distribution 𝑛𝑚

Σ 〈𝐺〉 =
∫
�̂�

4𝜋 𝑛𝑚 𝑑𝑚 = 4𝜋 𝑀𝑚
0 ,

Σ 〈𝐻〉 =
∫
�̂�

4𝜋
(
3
4𝜋𝜌1

)1/3
𝑚1/3 𝑛𝑚 𝑑𝑚 = 4𝜋

(
3
4𝜋𝜌𝑑1

)1/3
𝑀𝑚
1/3,

Σ =

∫
�̂�

4𝜋

(
3
4𝜋𝜌𝑑1

)2/3
𝑚2/3 𝑛𝑚 𝑑𝑚 = 4𝜋

(
3
4𝜋𝜌𝑑1

)2/3
𝑀𝑚
2/3.

(3.6)

Remark the special role of Σ 〈𝐺〉 proportional to the 0𝑡ℎ-order moment of 𝑛𝑚. This results
from the Gauss-Bonnet theorem Kreyszig (1991), which indicates a geometric invariant
𝑆𝐺 = 4𝜋 for continuous deformations of the sphere, where (̃·) denotes the surface average
as (3.3) applied to a unique droplet. It is also showed in Essadki et al. (2019) that such an
invariant enables to write the dynamics of geometric quantities Σ, Σ 〈 · 〉 independently of the
flow regime. Furthermore, the small-scale volume fraction is not surface-related in general,
but in the specific case of sperical droplets, it is also linked to a moment of 𝑛𝑚 with

𝛼𝑑
1 =

∫
�̂�

1
𝜌𝑑1
𝑚 𝑛𝑚 𝑑𝑚 =

1
𝜌𝑑1
𝑀𝑚
1 . (3.7)

From (3.6) and (3.7), we select I = {0, 1/3, 2/3, 1} in (3.5) to get the dynamics of the
geometric quantities 

𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 ((𝜌𝑑1 )

1/3Σ 〈𝐻〉) + ∇ · ((𝜌𝑑1 )
1/3Σ 〈𝐻〉 𝒖) = 0,

𝜕𝑡 ((𝜌𝑑1 )
2/3Σ) + ∇ · ((𝜌𝑑1 )

2/3Σ𝒖) = 0,
𝜕𝑡𝑚

𝑑
1 + ∇ · (𝑚𝑑

1 𝒖) = 0.

(3.8)

Up to here, the model has been derived for compressible spherical inclusions. We focus back
on the description of a spray of droplets by assuming the incompressibility of the small scale

Rapids articles must not exceed this page length
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thanks to the constraint 𝐷𝑡 𝜌
𝑑
1 = 0. Then, the geometric variables are governed by


𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉) + ∇ · (Σ 〈𝐻〉 𝒖) = 0,
𝜕𝑡Σ + ∇ · (Σ𝒖) = 0,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0.

(3.9)

System (3.9) corresponds to the system with surface-based moments of Essadki et al. (2018)
when no evaporation nor condensation is accounted for. Indeed, when the droplets are
incompressible, the mass-based NDF 𝑛𝑚 relates to the surface-based NDF 𝑛𝑆 defined by

𝑛𝑆 (𝒙, 𝑡, 𝑆) := 𝑛𝑚(𝒙, 𝑡, 𝑚)𝛿(𝑚 − 𝑚(𝑆)), 𝑚(𝑆) = 𝜌𝑑1
𝑆

3
√
4𝜋
. (3.10)

As 𝜌𝑑1 is a constant along the streamlines, there is no variation of surface area for the droplets
and the dynamics is then driven by

𝜕𝑡𝑛𝑆 + ∇𝒙 (𝑛𝑆𝒖) = 0. (3.11)

Again, when the droplets have the same density, the geometric quantities are also expressed
through the moments 𝑀𝑆

𝑖
of 𝑛𝑆 ,

Σ 〈𝐺〉 = 4𝜋𝑀𝑆
0 , Σ 〈𝐻〉 =

√
4𝜋𝑀𝑆

1/2, Σ = 𝑀𝑆
1 , 𝛼𝑑

1 =
1
3
√
4𝜋
𝑀𝑆
3/2. (3.12)

The change of variables (3.10) only modifies the dimensions and orders of the moments.
Consequently, the four initial half-integer moments can be recovered as in Essadki et al.
(2018). In the following, we will stick with the surface-based moments for better comparison
with the work of Essadki. In the end, the relations (3.12) between moments and geometric
quantities provide a reduced-order model of the small-scale disperse phase (see appendix
C for an illustration of the reduced-order modelling applied to droplets resulting from the
collision of two spherical droplets).

3.3. A two-scale model with a polydisperse small-scale model

The two-scale models derived in Section 2 thanks to Hamilton’s SAP can now be enhanced by
incorporating the new geometric quantities in the Lagrangian and specifying whether these
parameters are constrained by new conservation laws. We add then a small-scale capillarity
energy 𝜎Σ along with the conservation constraints given by (3.9). Let us introduce a new
variable 𝑧 = Σ/𝑚𝑑

1 , which is transported, that is 𝐷𝑡 𝑧 = 0. As the large-scale capillarity is
neglected (H2b), the energies associated with the large scales of the flow are left unchanged
whereas the small-scale Lagrangian L𝑑

1 becomes

L𝑑
1

(
𝑚𝑑
1 , 𝜌

𝑑
1 , 𝑧 := Σ/𝑚𝑑

1 , 𝒖
)
:=
1
2
𝑚𝑑
1 |𝒖 |

2 − 𝑚𝑑
1 𝑒1(𝜌

𝑑
1 ) − 𝜎𝑚

𝑑
1 𝑧. (3.13)
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Figure 1: Sphere deformed with the second axisymmetric spherical harmonic and
vibrational breakup modelled by a critical length for the smallest radius.

Eventually, the system resulting from Hamilton’s SAP (see details in appendix D) together
with the constraints (3.9) yields



𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡Σ + ∇ · (Σ𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉) + ∇ · (Σ 〈𝐻〉 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

(3.14)

with 𝑝 := 𝑝1 = 𝑝2. Let us remark that the new small-scale capillarity term in the Lagrangian
does not alter momentum flux in this formulation compared to (2.13). Similarly to the
previous models but with the updated definition of the Lagrangian L, this model also admits
a supplementary conservation equation

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = 0, H =
∑︁
𝑘

𝑚𝑘 ‖𝒖‖2 − L, (3.15)

and a pressure relaxation can be built as in (2.21). Both (3.14) and its relaxed version are
hyperbolic with similar structure of eigenvalues and eigenvectors as in table 1 with new fields
transported at velocity 𝒖 as the additional variables are associated with transport equation at
velocity 𝒖. If needed, interaction between scales can be accounted for by involving geometric
quantities in the pressure relaxation, and such an extension is discussed in the conclusion.

4. Polydisperse and vibrational spray small-scale model
In the previous model, no dynamics have been associated with the geometric variables as
they represent a spray of spherical droplets, that is a static minimal surface. Here, we propose
to enhance this model by associating a dynamics to the droplet geometry. In the context of
the small velocity differential given by (H1b), we add an oscillating motion to the droplets
around their spherical shapes. Such a model is sufficiently simple to identify the associated
energies while being a first step towards the modelling of break-up as proposed in O’Rourke
&Amsden (1987); Amsden et al. (1989) (see figure 1). Moreover, this model introduces with
GeoMOM non-trivial dynamics for geometric quantities such as interface area density.
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4.1. Kinetic-based model in the disperse regime
Let usmodel the spray of oscillating droplets by first discarding assumption (H3a) of spherical
shapes, and rather assume:

• the droplets’ internal flow is irrotational; (H4a)
• the amplitude of the interface deformation is small; (H4b)
• the deformed droplets are either randomly orientated or they all
orientate to the same privileged direction; (H4c)
• the droplets’ interface is deformed along the second
axisymmetric spherical harmonic. (H4d)

The dynamics of a droplet satisfying (H4a) and (H4b) has been studied thoroughly (John
W. Strutt (3rd Baron Rayleigh) 1879; Prosperetti 1977; Plümacher et al. 2020). The choice
of orientation (H4c) of the deformation depends on the physics, whether it is isotropic or
not, and it is not discussed here. Denote 𝒓 the position of the droplet interface in spherical
coordinates (𝑟, 𝜃, 𝜙) and (𝒆𝑟 , 𝒆𝜃 , 𝒆𝜙) the spherical orthonormalized basis. Following (H4d),
we denote 𝑌2(𝜃) =

√
5/(4

√
𝜋) (3 cos2 𝜃 − 1) the second axisymmetric spherical harmonic,

and 𝑅0 the radius of the non-deformed spherical droplet, such that the position writes

𝒓 = (𝑅0 + 𝑥2𝑌2)𝒆𝑟 , (4.1)

where 𝑥2 denotes the amplitude of the deformation. The dynamics of this motion follows the
harmonic oscillation

¥𝑥2 + 𝜔2𝑥2 = 0, 𝜔2 = 8
𝜎

𝜌𝑑1 𝑅
3
0
= �̃�2𝑆

−3/2
0 , (4.2)

where �̃�2 = (8(4𝜋)3/2𝜎/𝜌𝑑1 ) is a constant along the streamlines. The dynamics of the
droplets is then characterized by (𝑆0, 𝑥2, ¤𝑥2). For computational reasons, we introduce 𝜒 =

(2/𝑆0)1/2𝑥2 which satisfies the same dynamics (4.2) as 𝑥2. Assuming (H3b) and (H2c), the
balance equation for the NDF 𝑛𝜉 in the phase-space �̂� = (𝑆0, �̂�, ¤̂𝜒) yields

𝜕𝑡𝑛𝜉 + ∇𝒙 · (𝑛𝜉𝒖) + 𝜕𝜒 (𝑅𝜒𝑛𝜉 ) + 𝜕 ¤̂𝜒 (𝑅 ¤𝜒𝑛𝜉 ) = 0, (4.3)

where 𝑅𝜒 and 𝑅 ¤𝜒 are rates of change that remain to be closed. This model can be seen
as the particular case satisfying (H1a)-(H2c)-(H3b)-(H2a) of the kinetic model considered
by O’Rourke & Amsden (1987); Amsden et al. (1989). With the oscillator model (4.2), we
close (4.3) by fixing 𝑅𝜒 = ¤̂𝜒 and 𝑅 ¤̂𝜒 = −�̃�2𝑆−3/20 �̂�,

𝜕𝑡𝑛𝜉 + ∇𝒙 · (𝑛𝜉𝒖) + 𝜕𝜒 ( ¤̂𝜒𝑛𝜉 ) + 𝜕 ¤̂𝜒 (−�̃�
2𝑆

−3/2
0 �̂�𝑛𝜉 ) = 0. (4.4)

4.2. Modelling a spray of asynchronously oscillating droplets
With the new PBE (4.4), GeoMOM leads to a non-trivial closure problem and the geometric
quantities chosen in (3.6) and (3.7) cannot model an arbitrary distribution. With such a
choice, we propose in this section to approximate the distribution with

𝑛𝜉 (𝒙, 𝑡, 𝑆0, �̂�, ¤̂𝜒) = 𝑛𝑆0 (𝒙, 𝑡, 𝑆0)
1

|E(𝑆0) |
1E(𝑆0) ( �̂�, ¤̂𝜒), (4.5)

where the amplitudes and their rates of change ( �̂�, ¤̂𝜒) are uniformly distributed on a compact
space E ⊂ R2 of area |E(𝑆0) | that allows a maximal energy for a given droplet size 𝑆0. This
approximation of the NDF discards situations where droplets oscillate synchronously, and
consequently a macroscopic oscillation motion of the spray.
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4.2.1. GeoMOM based on the classical surface-average operator
We apply GeoMOM with the same surface-average operators 〈 · 〉 and (̃·) defined in Section
3.2, and geometric quantities Σ 〈𝐺〉, Σ 〈𝐻〉, Σ, 𝛼𝑑

1 . We establish then the relations between
these geometric quantities and moments of the NDF in the context of a disperse regime,

Σ 〈𝐺〉 =
∫̂
𝝃
𝑆𝐺𝑛𝜉 𝑑�̂�, Σ 〈𝐻〉 =

∫̂
𝝃
𝑆𝐻𝑛𝜉 𝑑�̂�, Σ =

∫̂
𝝃
𝑆𝑛𝜉 𝑑�̂�, 𝛼𝑑

1 =

∫̂
𝝃
𝑉𝑛𝜉 𝑑�̂� . (4.6)

When the oscillations are small, the integrands are functions of �̂� (see appendix E) and write

𝑆�̃� = 4𝜋, 𝑆�̃� − 𝑆0�̃�0 =
√
4𝜋𝑆1/20 𝜒2, 𝑉 =

1
3
√
4𝜋
𝑆
3/2
0 , 𝑆 − 𝑆0 = 𝑆0𝜒2, (4.7)

where �̃�0 =
√
4𝜋𝑆−1/20 is the surface averaged mean curvature when the droplet is a sphere

i.e. 𝜒 = 0. Remark that 𝑆�̃� and 𝛼𝑑
1 are constant despite the oscillation thanks to the Gauss-

Bonnet theorem Kreyszig (1991) and the incompressibility assumption. Finally, relations
between geometric quantities and moments 𝑀 𝜉

𝑖, 𝑗 ,𝑘
:=

∫̂
𝝃
𝑆𝑖 �̂� 𝑗 ¤̂𝜒𝑘 𝑛𝜉 𝑑�̂� of 𝑛𝜉 are obtained

Σ 〈𝐺〉 = 4𝜋𝑀 𝜉

0,0,0, Σ 〈𝐻〉 =
√
4𝜋(𝑀 𝜉

1/2,0,0 + 𝑀
𝜉

1/2,2,0),

Σ = 𝑀
𝜉

1,0,0 + 𝑀
𝜉

1,2,0, 𝛼𝑑
1 =

1
3
√
4𝜋
𝑀

𝜉

3/2,0,0.
(4.8)

These relations extend the ones of (3.12)withmoments dedicated to the oscillatory dynamics.
Such decomposition leads us to define and choose the following geometric quantities and
moments for our model

Σ 〈𝐻〉0 :=
√
4𝜋𝑀 𝜉

1/2,0,0, ΔΣ 〈𝐻〉 :=
√
4𝜋𝑀 𝜉

1/2,2,0,

Σ0 :=
√
4𝜋𝑀 𝜉

1,0,0, ΔΣ :=
√
4𝜋𝑀 𝜉

1,2,0,
(4.9)

instead of just Σ and Σ 〈𝐻〉 which can be reconstructed with (4.8). Integrating (4.4) against
(1, 𝑆1/20 , 𝑆0, 𝑆

3/2
0 , 𝑆

1/2
0 �̂�2, 𝑆0 �̂�

2) provides

𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0) + ∇ · (Σ 〈𝐻〉0 𝒖) = 0,
𝜕𝑡Σ0 + ∇ · (Σ0𝒖) = 0,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡 (ΔΣ 〈𝐻〉) + ∇ · (ΔΣ 〈𝐻〉 𝒖) = 2

√
4𝜋𝑀 𝜉

1/2,1,1,

𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = 2𝑀 𝜉

1,1,1,

(4.10)

We obtained that Σ 〈𝐺〉, Σ 〈𝐻〉0, Σ0 and 𝛼𝑑
1 are conserved similarly as (3.9) with two

additional equations for the oscillatory components ΔΣ 〈𝐻〉 and ΔΣ.

4.2.2. Energies of the spray
In the context of two-scale modelling with Hamilton’s SAP, we are specifically interested in
defining the energies of the spray with the geometric quantities. For the oscillatory motion
described by (4.2), the kinetic and potential energies of a droplet can be expressed as function
of 𝝃 (John W. Strutt (3rd Baron Rayleigh) 1879, appendix II)

𝐸 𝑘𝑖𝑛,1𝑑 =
1
2

𝜌𝑑1

4(4𝜋)3/2
𝑆
5/2
0 ¤𝜒2, 𝐸 𝑝𝑜𝑡,1𝑑 = 𝜎𝑆 = 𝜎𝑆0 + 𝜎𝑆0𝜒2. (4.11)
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It is then straightforward to obtain the energies of the spray 𝐸 𝑘𝑖𝑛,𝑑 and 𝐸 𝑝𝑜𝑡,𝑑 frommoments
of 𝑛𝜉 by integrating the expressions above,

𝐸 𝑘𝑖𝑛,𝑑 =
1
2

𝜌𝑑1

4(4𝜋)3/2
𝑀

𝜉

5/2,0,2, 𝐸 𝑝𝑜𝑡,𝑑 = 𝜎Σ = 𝜎𝑀
𝜉

1,0,0 + 𝜎𝑀
𝜉

1,2,0. (4.12)

Remark that the moment 𝑀 𝜉

5/2,0,2 is not linked to any of the selected geometric quantities
of the model. We can find a closure for this moment using the approximation of 𝑛𝜉 given
in (4.5). It requires to provide a definition for E which is chosen following the break-up
criterion of O’Rourke & Amsden (1987). Therefore, we authorize the droplets to oscillate
with an energy lower than a fraction 𝑐 ∈ [0, 1] of the maximal energy 𝐸𝑚𝑎𝑥 before break-up,

E(𝑆0) :=
{
( �̂�, ¤̂𝜒) ∈ R2 s.t. 𝐸 𝑘𝑖𝑛,1𝑑 (𝑆0, �̂�, ¤̂𝜒) + 𝐸 𝑝𝑜𝑡,1𝑑 (𝑆0, �̂�, ¤̂𝜒) 6 𝑐𝐸𝑚𝑎𝑥 (𝑆0)

}
. (4.13)

The break-up energy 𝐸𝑚𝑎𝑥 (𝑆0) corresponds to a deformation up to an equatorial radius
reaching half the value of the spherical radius

𝑅𝑒𝑞 := ‖𝒓 (𝜋/2)‖ = 𝑅0

2
. (4.14)

Then, the subset E boils down to E = {𝜒2 + ( ¤𝜒/𝜔)2 6 2𝑐/5} whose area is |E | = 2
5𝜋𝜔𝑐.

We can now close the expression of 𝐸 𝑘𝑖𝑛,𝑑 , 𝐸 𝑝𝑜𝑡,𝑑 in (4.12) and find the dynamics of the
parameter 𝑐 using (4.10) and the approximation of the NDF (4.5). It yields

𝐸 𝑘𝑖𝑛,𝑑 =
1
10
𝑐𝜎Σ0, 𝐸 𝑝𝑜𝑡,𝑑 = 𝜎Σ0 +

1
10
𝑐𝜎Σ0, 𝐷𝑡𝑐 = 0. (4.15)

Remark that, as (𝜒, ¤𝜒) are uniformly distributed in E, the mechanical energy is evenly
distributed between kinetic and potential energies. Regarding the dynamics of 𝑐, the energy
of the oscillation is advected along the streamline. Moreover, using the relation ΔΣ = 𝑀

𝜉

1,2,0,
one can replace 𝑐 by geometric quantities with 𝑐 = 10ΔΣ/Σ0.

4.2.3. Two-scale model with the small-scale spray model of asynchronous droplets
Energies related to the small-scale oscillation are negatively signed in Hamilton’s SAP as
the kinetic energy is not a quadratic form of any kind of velocity. Indeed, the energy of the
droplets is here considered as a whole energetic contribution without following their specific
dynamics. We keep then the expression of the Lagrangian defined in (2.10), where we only
modify the small-scale energies of L𝑑

1 following

L𝑑
1 :=

1
2
𝑚𝑑
1 ‖𝒖‖

2 − 𝑚𝑑
1 𝑒1(𝜌

𝑑
1 ) − 𝜎Σ0

(
1 + 𝑐
5

)
. (4.16)

The constraints are the same as in Section 3 with the additional advection constraint 𝐷𝑡𝑐 = 0.
The derivation of the two-scale mixture’s dynamics with Hamilton’s SAP is very similar to
the one of appendix D and yields

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡Σ0 + ∇ · (Σ0𝒖) = 0,
𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0) + ∇ · (Σ 〈𝐻〉0 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

(4.17)
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with 𝑝 := 𝑝1 = 𝑝2, and the additional equation on total energy as a mathematical entropy
for (4.17),

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = 0, H =
∑︁
𝑘

𝑚𝑘 ‖𝒖‖2 − L. (4.18)

Now considering dissipation processes, we could also add the pressure relaxation as in the
previous two-scale models. We propose here to focus on the dissipation associated to the
small-scale oscillatory dynamics. Indeed, the oscillation motion eventually decreases and
the associated energy dissipates into thermal energy or small-scale kinetic energy of the gas
phase. Each of these last two energies are not modelled here, so the system loses this energy,
and we only consider the following source term 𝑅𝑐 on the dynamics of 𝑐,

𝐷𝑡𝑐 = 𝑅𝑐 . (4.19)

The mathematical entropy production writes

𝜍 := 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = −(𝜕𝑐L)𝑅𝑐 . (4.20)

As 𝜕𝑐L = −𝜎Σ0/5, we choose 𝑅𝑐 = −𝑐/𝜏 to sign the mathematical entropy production
𝜍 6 0 and model the dissipation with an exponential decrease of characteristic time 𝜏 > 0.
The final system reads

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1 𝒖) = 0,
𝜕𝑡Σ0 + ∇ · (Σ0𝒖) = 0,
𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = −𝜏−1ΔΣ,
𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0) + ∇ · (Σ 〈𝐻〉0 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

(4.21)

with 𝑝 := 𝑝1 = 𝑝2. One can see that the component of the interface area density modelling
the droplets’ dynamics have now its own dynamics with an additional source term that makes
it dissipate over time.

4.3. Modelling a spray of synchronously oscillating droplets
With the choice of geometric quantities of the previous section, the moments are not suited
to obtain a macroscopic oscillation of the spray. Therefore, we introduce now new geometric
quantities with GeoMOM based on another surface-average operator, and the following NDF
approximation

𝑛𝜉 (𝑆0, �̂�, ¤̂𝜒) =
∑︁
𝑖

𝑛𝑖𝛿(𝑆0 − (𝑆0)𝑖)𝛿( �̂� − 𝜒𝑖)𝛿( ¤̂𝜒 − ¤𝜒𝑖). (4.22)

This corresponds to several populations of droplets which share the same size and oscillate
synchronously.

4.3.1. GeoMOM based on an oriented surface-average operator
Similarly to Section 3.2, we consider a surface S and its mappingU ⊂ R2 onto S ⊂ R3 such
that 𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 is the infinitesimal surface element over S. We decompose the surface
local area into two contributions, one related to a preferred direction 𝑵 given by the large-
scale dynamics as suggested by (H4c). In this sense, we decompose this infinitesimal surface
element 𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 using its definition using tangential vectors 𝒆𝑢 and 𝒆𝑣

𝐴 = ‖𝒆𝑢 × 𝒆𝑣 ‖, 𝐴‖ = | (𝒆𝑢 × 𝒆𝑣 ) · 𝑵 | , 𝐴⊥ = 𝐴 − 𝐴‖ . (4.23)
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From them, we decompose the surface into parallel and perpendicular components 𝑆 ‖ and
𝑆⊥ such that

𝑆 =

∫
U
𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 =

∫
U
𝐴‖ (𝑢, 𝑣) 𝑑𝑢𝑑𝑣 +

∫
U
𝐴⊥(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 = 𝑆 ‖ + 𝑆⊥. (4.24)

We also define new surface-average operators similarly to (3.3)

〈 · 〉 ‖ :=
1
𝑆 ‖

∫
U
(·) 𝐴‖ (𝑢, 𝑣) 𝑑𝑢𝑑𝑣, 〈 · 〉⊥ :=

1
𝑆⊥

∫
U
(·) 𝐴⊥(𝑢, 𝑣) 𝑑𝑢𝑑𝑣, (4.25)

and the surface-average operators (̃·) ‖ , (̃·)⊥ for one closed inclusion. Considering now the
oscillatory motion (4.2), we have the following dynamics for the geometric quantities of one
droplet (see details in appendix E)

𝑆 ‖ =
1
2
𝑆0 −

1
√
4𝜋

√︂
5𝜋
2
𝑆0𝜒, 𝑆 ‖𝐻

‖ =
1
2
√
4𝜋

√︁
𝑆0 −

1
2

√︂
5𝜋
2

√︁
𝑆0𝜒,

𝑆⊥ =
1
2
𝑆0 +

1
√
4𝜋

√︂
5𝜋
2
𝑆0𝜒, 𝑆⊥𝐻

⊥ =
1
2
√
4𝜋

√︁
𝑆0 +

1
2

√︂
5𝜋
2

√︁
𝑆0𝜒.

(4.26)

Defining the oriented interface area densities Σ⊥ and Σ‖ within the mixture, we remark that
Σ = Σ⊥ + Σ‖ and Σ 〈 · 〉 = Σ⊥ 〈 · 〉⊥ + Σ‖ 〈 · 〉 ‖ . Integrating (4.26) against 𝑛𝜉 provides

Σ‖ =
1
2
𝑀

𝜉

1,0,0 −
1

√
4𝜋

√︂
5𝜋
2
𝑀

𝜉

1,1,0, (Σ 〈𝐻〉) ‖ =
1
2
√
4𝜋𝑀 𝜉

1/2,0,0 −
1
2

√︂
5𝜋
2
𝑀

𝜉

1/2,1,0,

Σ⊥ =
1
2
𝑀

𝜉

1,0,0 +
1

√
4𝜋

√︂
5𝜋
2
𝑀

𝜉

1,1,0, (Σ 〈𝐻〉)⊥ =
1
2
√
4𝜋𝑀 𝜉

1/2,0,0 +
1
2

√︂
5𝜋
2
𝑀

𝜉

1/2,1,0.

(4.27)

Remark that both the parallel and perpendicular geometric variables represent the same
information for the spray as they are related to the same moments of the NDF. Consequently,
we here retain the perpendicular components only, and we extract the part dedicated to the
dynamics by defining

Σ⊥,0 := 1
2𝑀

𝜉

1,0,0, (ΔΣ⊥) :=
1

√
4𝜋

√︂
5𝜋
2
𝑀

𝜉

1,1,0,

(Σ 〈𝐻〉)⊥,0 := 1
2

√
4𝜋𝑀 𝜉

1/2,0,0, (ΔΣ 〈𝐻〉)⊥ :=
1
2

√︂
5𝜋
2
𝑀

𝜉

1/2,1,0.

(4.28)

We intentionally factored some indexes in the two last geometric quantities to lighten the
notations. This splitting allows us to retain more information on the NDF in our model by
including two moments rather than the sum of two moments. We know from (4.10) that Σ⊥,0
and (Σ 〈𝐻〉)⊥,0 are conserved, while we integrate (4.4) to obtain the dynamics of the two
other geometric quantities

𝜕𝑡 (ΔΣ⊥) + ∇ · ((ΔΣ⊥)𝒖) = 1√
4𝜋

√︃
5𝜋
2 𝑀

𝜉

1,0,1,

𝜕𝑡 (ΔΣ 〈𝐻〉)⊥ + ∇ · ((ΔΣ 〈𝐻〉)⊥𝒖) = 1
2

√︃
5𝜋
2 𝑀

𝜉

1/2,0,1.
(4.29)

With the moments considered up to now, we cannot model a macroscopic oscillatory spray
as we lack some information regarding the distribution of ¤̂𝜒 in our model. We propose then
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to add two new geometric quantities that correspond to the unclosed moments of (4.29)

(Δ𝑡Σ⊥) := Σ⊥

〈
𝜕𝑡𝐴⊥
𝐴⊥

〉
⊥

=
1

√
4𝜋

√︂
5𝜋
2
𝑀

𝜉

1,0,1,

(Δ𝑡Σ 〈𝐻〉)⊥ := Σ⊥

〈
𝜕𝑡𝐻 + 𝐻 𝜕𝑡𝐴⊥

𝐴⊥

〉
⊥

=
1
2

√︂
5𝜋
2
𝑀

𝜉

1/2,0,1.

(4.30)

The above definitions with the oriented surface-average operators show that these quantities
are also well-defined regardless of the flow regime. Finally, we consider the following eight
geometric quantities to describe the spray of oscillating droplets: 𝛼𝑑

1 , Σ⊥,0, (ΔΣ⊥), (Δ𝑡Σ⊥),
(Σ 〈𝐻〉)⊥,0, (ΔΣ 〈𝐻〉)⊥, (Δ𝑡Σ 〈𝐻〉)⊥, Σ 〈𝐺〉.

4.3.2. Amplitude-based closure
With the eight moments given by the eight corresponding geometric quantities, we propose
to look for a two-point quadrature which corresponds to two population of droplets as defined
in (4.22),

𝑛𝜉 (𝑆0, �̂�, ¤̂𝜒) =
∑︁
𝑖=1,2

𝑛𝑖𝛿(𝑆0 − (𝑆0)𝑖)𝛿( �̂� − 𝜒𝑖)𝛿( ¤̂𝜒 − ¤𝜒𝑖), (4.31)

where 𝑛𝑖 are the weights or numbers of droplets that share the same abscissas 𝜒𝑖 and ¤𝜒𝑖 . The
quadrature above admits a unique solution (excluding symmetry) under some realizability
conditions that ensure that Σ 〈𝐺〉, (Σ 〈𝐻〉)⊥,0, Σ⊥,0 and 𝛼𝑑

1 are positive with additional
geometric constraints (see appendix F). Remark that 𝑛𝑖 and (𝑆0)𝑖 depend only on Σ 〈𝐺〉,
(Σ 〈𝐻〉)⊥,0, Σ⊥,0, 𝛼𝑑

1 and, for (𝑖, 𝑗) ∈ {(1, 2), (2, 1)},

𝜒𝑖 =

√︂
2
5𝜋

√
4𝜋(ΔΣ⊥) − 2

√︁
(𝑆0) 𝑗 (ΔΣ 〈𝐻〉)⊥

𝑛𝑖

(
(𝑆0)𝑖 −

√︁
(𝑆0)𝑖 (𝑆0) 𝑗

) , ¤𝜒𝑖 =
√︂
2
5𝜋

(Δ𝑡Σ⊥) − 2
√︁
(𝑆0) 𝑗 (Δ𝑡Σ 〈𝐻〉)⊥

𝑛𝑖

(
(𝑆0)𝑖 −

√︁
(𝑆0)𝑖 (𝑆0) 𝑗

) .

(4.32)
We easily obtain that 𝛼𝑑

1 , Σ 〈𝐺〉, (Σ 〈𝐻〉)⊥,0 and Σ⊥,0 are conserved such that, together with
(4.29), it implies

𝜕𝑡𝑛𝑖 + ∇ · (𝑛𝑖𝒖) = 0, 𝐷𝑡 (𝑆0)𝑖 = 0, 𝐷𝑡 𝜒𝑖 = ¤𝜒𝑖 , 𝑖 = 1, 2. (4.33)

This dynamics is expected as the two population of oscillating droplets are advected by the
flow at velocity 𝒖.

4.3.3. Two-scale model with the small-scale spray model of synchronous droplets
Denote 𝜈 := 𝜌𝑑1 /(4(4𝜋)

3/2) and 𝛾 := 2𝜎 such the kinetic and potential energies of the spray
of oscillating droplets given in (4.12) write

𝐸 𝑘𝑖𝑛,𝑑 =
1
2
𝜈𝑀

𝜉

5/2,0,2, 𝐸 𝑝𝑜𝑡,𝑑 = 𝜎𝑀
𝜉

1,0,0 +
1
2
𝛾𝑀

𝜉

1,2,0, (4.34)

and �̃�2 = 𝛾/𝜈. The closure (4.31) then yields

𝐸 𝑘𝑖𝑛,𝑑 =
∑︁
𝑖=1,2

1
2
𝜈𝑛𝑖 (𝑆0)5/2𝑖

¤𝜒2𝑖 , 𝐸 𝑝𝑜𝑡,𝑑 =
∑︁
𝑖=1,2

𝜎𝑛𝑖 (𝑆0)𝑖 +
1
2
𝛾𝑛𝑖 (𝑆0)𝑖𝜒2𝑖 (4.35)

We extend the two-scale Lagrangian (2.10) by adding the energies above to account for the
small-scale oscillation

L =L1 (𝛼1, 𝑚1, 𝒖) + L2 (𝛼2, 𝑚2, 𝒖) + L𝑑
1

(
𝑚𝑑
1 , 𝜌

𝑑
1 , 𝒖

)
+ L𝑣𝑖𝑏

1 (𝑛1, (𝑆0)1, 𝜒1, ¤𝜒1) + L𝑣𝑖𝑏
2 (𝑛2, (𝑆0)2, 𝜒2, ¤𝜒1) ,

(4.36)
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where L𝑣𝑖𝑏
𝑖
is defined using vibrating energies of (4.35)

L𝑣𝑖𝑏
𝑖 =

1
2
𝜈𝑛𝑖 (𝑆0)5/2𝑖

¤𝜒2𝑖 − 𝜎𝑛𝑖 (𝑆0)𝑖 −
1
2
𝛾𝑛𝑖 (𝑆0)𝑖𝜒2𝑖 . (4.37)

Remark that the kinetic energy is here positively signed as it is a quadratic form of ¤𝜒1 and ¤𝜒2
with their associated momentum equations after Hamilton’s SAP. We provided an expression
using the quadrature’s abscissas rather than the geometric quantities for computational
convenience, but the dynamics of the geometric quantities is equivalently obtained using
the quadrature expression of appendix F. In addition to 𝛼1, the quantities 𝜒1 and 𝜒2 are also
free variables which results in the following systemwith two additional momentum equations
for each population of droplets of same size in the spray (see appendix G)

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝑛𝑖 +∇ · (𝑛𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 (𝑆0)𝑖) +∇ · (𝑛𝑖 (𝑆0)𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) +∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2

𝑖
𝑛𝑖𝜒𝑖 , 𝑖 = 1, 2,

𝜕𝑡 (𝑛𝑖𝜒𝑖) +∇ · (𝑛𝑖𝜒𝑖𝒖) = 𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝) = 0,

(4.38)

with 𝑝 := 𝑝1 = 𝑝2 and 𝜔2𝑖 = �̃�
2(𝑆0)−3/2𝑖

. Combining the equations at the fifth and sixth lines
of the system above, one can recognize the equations of harmonic oscillators advected along
the streamlines

𝐷𝑡 (𝐷𝑡 𝜒𝑖) + 𝜔2𝑖 𝜒𝑖 = 0, 𝑖 = 1, 2. (4.39)
Similarly to the previous models, this system admits an additional conservation equation on
the total energyH defined hereafter

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = 0, H =
∑︁

𝑘=1,2,1𝑑

1
2
𝑚𝑘 |𝒖 |2 +

∑︁
𝑖=1,2

1
2
𝜈𝑛𝑖 (𝑆0)5/2𝑖

¤𝜒2𝑖 − L. (4.40)

Once again, we could consider a pressure relaxation model, but we would like to focus again
on the dissipation associated to the oscillation process, and we introduce source terms 𝑅𝜒𝑖

in the new momentum equations

𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) + ∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2𝑖 𝑛𝑖𝜒𝑖 + 𝑅𝜒𝑖 𝑖 = 1, 2. (4.41)

This source term provides the following mathematical entropy production

𝜍 := 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) =
∑︁
𝑖=1,2

𝜈(𝑆0)5/2𝑖
𝑅𝜒𝑖𝐷𝑡 𝜒𝑖 . (4.42)

As the closure (4.31) groups droplets by size, we can nowmodel the first-order size-dependent
damping term of the viscous droplet in a light carrier phase (Prosperetti 1977; Plümacher
et al. 2020). Then, we expect each population of oscillators to be damped following

𝐷𝑡 (𝐷𝑡 (𝜒𝑖)) + 𝜔2𝑖 𝜒𝑖 = −𝛽𝑖𝐷𝑡 𝜒𝑖 ⇐⇒ 𝐷𝑡 ¤𝜒𝑖 + 𝜔2𝑖 𝜒𝑖 = −𝛽𝑖 ¤𝜒𝑖 , (4.43)

with 𝛽𝑖 = 4𝜋𝜈𝑣𝑖𝑠/(𝑆0)𝑖 > 0 with 𝜈𝑣𝑖𝑠 the liquid kinematic viscosity. One can then choose
𝑅𝜒𝑖 = −𝑛𝑖𝛽𝑖 ¤𝜒𝑖 and recover both the above dissipation process for both populations of droplets
and a signed production of mathematical entropy

𝜍 = −𝛽1𝑛1𝜈(𝑆0)5/21 ¤𝜒21 − 𝛽2𝑛2𝜈(𝑆0)
5/2
2 ¤𝜒22 6 0. (4.44)
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It leads to the following dissipative model

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝑛𝑖 +∇ · (𝑛𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 (𝑆0)𝑖) +∇ · (𝑛𝑖 (𝑆0)𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) +∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2

𝑖
𝑛𝑖𝜒𝑖 − 𝛽𝑖𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,

𝜕𝑡 (𝑛𝑖𝜒𝑖) +∇ · (𝑛𝑖𝜒𝑖𝒖) = 𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

(4.45)

with 𝑝 := 𝑝1 = 𝑝2. This model shows a macroscopic synchronous oscillation through the two
momentum equations on ¤𝜒1 and ¤𝜒2 and includes a physics-based dissipation rate. The system
is here written using the weights and abscissas, but it can also be written using the geometric
quantities of the model. The interface area density dynamics is specifically discussed in the
next section.

5. Dynamics of the small-scale interface area density
To perceive the importance of the choice of variables and modelling choices made in the
previous sections, in this last sectionwe investigate their impact on the closure of the evolution
equation for the interface area density. Such an equation is usually obtained from an averaging
process and, whereas several terms are classically identified, their closure is most of the time
out of reach except in very simplified configurations. We show how the proper choice of
variables for both the static minimal surface spherical case, but also the dynamical case,
allows a clear-cut strategy to close this important evolution equation and rethink the set of
variables we should use for a unified model.

5.1. Geometry of the disperse regime through the classical averaging approach
First, the time evolution of the geometry for a generic two-phase flow is derived with an
averaging process (Drew & Passman 1999; Lhuillier 2004; Morel 2015). This approach
relies on the kinematics of the interface where the phases 𝑘 = 1, 2 are located using a phase
indicator function 𝑿𝑘 and the interface is identified through its derivative ∇𝑿𝑘 in the sense
of generalized function. Denoting 𝒖𝐼 the interface velocity, the kinematics of the interface
reads

𝜕𝑡𝑿𝑘 + 𝒖𝐼 · ∇𝑿𝑘 = 0. (5.1)
The ensemble average operator 〈 · 〉𝐸 is introduced such that the volume fraction and the
interface area density are defined by 𝛼𝑘 = 〈𝑿〉𝐸 and Σ = 〈𝛿𝐼 〉𝐸 where 𝛿𝐼 = −𝒏∇𝑿𝑘 is the
interface generalized function. Then, the evolution of the interface area density is derived in
Lhuillier (2004) as the trace of the interface tensor 𝛿𝐼 𝒏 ⊗ 𝒏. It eventually yields{

𝜕𝑡𝛼 + 〈𝒖𝐼 · ∇𝑿〉𝐸 = 0,
𝜕𝑡Σ + ∇ · 〈𝛿𝐼𝒖𝐼 〉𝐸 = 〈I − 𝒏 ⊗ 𝒏 : ∇𝒖𝐼 𝛿𝐼 〉𝐸 .

(5.2)

Such an averaging approach is compatible with the kinetic-based small-scale models of this
work in the statistical sense. Similarly, the characteristics (size, oscillation amplitude, ...) are
following the probabilistic law given by theNDF. Focusing on the small-scale disperse regime
while assuming (H1a), we have 𝛼 = 𝛼𝑑

1 , and we decompose 𝒖𝐼 = 𝒖 + 𝑣𝑛𝒏. Moreover, the
symmetry of either spherical inclusions (H3a) or oscillation motion (H4d) gives 〈𝑣𝑛𝒏𝛿𝐼 〉𝐸 =
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0. The averaged equations then become{
𝐷𝑡𝛼

𝑑
1 = − 〈𝑣𝑛𝒏 · ∇𝑿〉𝐸 ,

𝜕𝑡Σ + ∇ · (Σ𝒖) = 2
3Σ∇ · 𝒖 − 〈q : ∇𝒖〉𝐸 + 23 〈∇ · (𝑣𝑛𝒏)𝛿𝐼 〉𝐸 − 〈q : ∇(𝑣𝑛𝒏)〉𝐸 ,

(5.3)

whereq = 〈(𝒏 ⊗ 𝒏 − I/3)𝛿𝐼 〉𝐸 is the anisotropic tensor. In this last equation, one can identify
the different contributions to the interface area density evolution: (from left to right of the
right-hand side) the large-scale isotropic and anisotropic terms, the small-scale isotropic and
anisotropic terms.

5.2. Comparison with the small-scale models
From the different small-scale models in this work, as well as proper choice of variables,
we show that the interface area density equation of evolution can be thoroughly closed.
We compare it to the unclosed kinematic set of equations (5.3) and identify the various
contributions. The question of the choice of fundamental variables to describe the dynamics
of the interface is eventually discussed.

5.2.1. Spray of compressible spherical inclusions
Before considering an incompressible small scale dedicated to the description of droplets,
we focus on the case of compressible inclusions such as bubbles, which has been partially
treated in Section 3. We recast the unclosed dynamics for Σ obtained in (3.8) into

𝜕𝑡Σ + ∇ · (Σ𝒖) = 2
3
Σ∇ · 𝒖 + 2

3
Σ
𝐷𝑡𝛼

𝑑
1

𝛼𝑑
1
. (5.4)

Even though the previous equation is unclosed as the dynamics of 𝛼𝑑
1 is not specified, one can

still identify the isotropic contribution of the large scale of (5.3). As we consider spherical
shapes, q = 0 and there are no anisotropic contributions. Therefore, the small-scale isotropic
term is

〈∇ · (𝑣𝑛𝒏)𝛿𝐼 〉𝐸 = Σ
𝐷𝑡𝛼

𝑑
1

𝛼𝑑
1
. (5.5)

A closed model is thus obtained with the dynamics of 𝛼𝑑
1 as in the next case dealing with

incompressible inclusions.

5.2.2. Spray of incompressible spherical droplets
The incompressible case has been treated in Section 3 after assuming 𝐷𝑡 𝜌

𝑑
1 = 0. We have

then the following conservation equations{
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1 𝒖)= 0,
𝜕𝑡Σ +∇ · (Σ𝒖) = 0.

(5.6)

The anisotropic tensor q is still nil and provides trivial anisotropic closures, while the
isotropic closures read

〈𝑣𝑛𝒏 · ∇𝑿〉𝐸 = 𝛼𝑑
1∇ · 𝒖, 〈∇ · (𝑣𝑛𝒏)𝛿𝐼 〉𝐸 = −Σ∇ · 𝒖. (5.7)

This shows that the small-scale isotropic contributions balance the large-scale ones to
maintain the incompressibility of the small-scale.
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5.2.3. Two-scale model with the small-scale spray model of asynchronous droplets
This case has been treated in Section 4.2, where the oscillatory dynamics of the incompress-
ible droplets is formulated in a decomposed form of the small-scale interface area density
following Σ = Σ0 + ΔΣ. This results in the following set of equations{

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1 𝒖)= 0,
𝜕𝑡Σ +∇ · (Σ𝒖) = −ΔΣ

𝜏
.

(5.8)

Following the assumption (H4c) made on the orientation of the oscillating droplets, one can
consider the right-hand side term as either isotropic or anisotropic

〈𝑣𝑛𝒏 · ∇𝑿〉𝐸=𝛼𝑑
1∇ · 𝒖,

〈q : ∇𝒖〉𝐸 =0,
2
3 〈∇ · (𝑣𝑛𝒏)𝛿𝐼 〉𝐸 − 〈q : ∇(𝑣𝑛𝒏)〉𝐸 = − 23Σ∇ · 𝒖 − ΔΣ

𝜏
.

(5.9)

The excess of interface area density ΔΣ is exponentially decreasing towards 0. One could
have make other dissipative choices such as 𝑅𝑐 ∝ −𝑐2 to get a decreasing rate similar to the
destruction source term as in Vallet & Borghi (1999); Anez et al. (2019) which is quadratic
in Σ. The creation terms present in these works result in an equilibrium value for ΔΣ. Such
terms cannot be recovered here as it would require a source term, for instance to model a
small-scale turbulent energy which is not here accounted for. This is the subject of a current
work in progress.

5.2.4. Two-scale model with the small-scale spray model of synchronous droplets
This case has been studied in Section 4.3, where incompressible droplets oscillate syn-
chronously for a given size. The dynamics has been derived respectively for each size of
droplets using the weights and abscissas rather than the geometric quantities. Without losing
the properties of the polydisperse case, we propose here to focus on the monodisperse case
detailed in appendix H. It allows a more compact equation of evolution for the small-scale
interfacial area density Σ = 𝑀

𝜉

1,0,0 + 𝑀
𝜉

1,2,0

𝜕𝑡Σ + ∇ · (Σ𝒖) = 16
5

(ΔΣ⊥) (Δ𝑡Σ⊥)
(𝑛𝑑1 )1/3(6

√
𝜋𝛼𝑑
1 )2/3

. (5.10)

Similarly to the previous cases, the incompressibility condition balances the isotropic terms
to conserve 𝛼𝑑

1 . Moreover, the right-hand side of (5.10) only accounts for the small-scale
anisotropic motion such that

〈𝑣𝑛𝒏 · ∇𝑿〉𝐸 = 𝛼𝑑
1∇ · 𝒖,

〈∇ · (𝑣𝑛𝒏)𝛿𝐼 〉𝐸 = −Σ∇ · 𝒖,

〈q : ∇𝒖〉𝐸 = 0,
〈q : ∇(𝑣𝑛𝒏)〉𝐸 = − 2

(3
√
4𝜋)2/3

(ΔΣ⊥) (Δ𝑡Σ⊥)
(𝑛𝑑
1 )1/3 (𝛼

𝑑
1 )2/3

.

(5.11)

This last identification of closures concludes our approach where the dynamics is first
assessed, and the geometry kinematics is obtained secondly. Our approach shows that for
this last case, the dynamics cannot be simply expressed relying on the usual quantities
𝛼𝑑
1 and Σ. The SAP modelling strategy allows to identify the proper set of variables and
conservation equations in the dynamical case, and to obtain a closed conservation equation
for the interface area density in particular, an important building block for further modelling
such as evaporation or heat transfer.
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6. Conclusion
In this work, we have proposed a novel framework to derive two-scale reduced-order models
based on Hamilton’s SAP as well as a set of geometric variables leading to the premises of a
unified model for both disperse and separated phases two-phase flows, potentially including
several dissipation phenomena. A hierarchy of small-scale models involving a variety of
physical phenomena can be described within the framework.
Themodel is compatible in the two limits with classical models of the literature for disperse

and separated two-phase flows and possesses essential properties for a proper mathematical
framework, that is hyperbolicity and signed mathematical entropy evolution.
To deal with interface dynamics at small scale, we rely on GeoMOM; geometric variables

are defined, which can be interpreted both as moments of a kinetic description at small
scale, or as surface averaged quantities, which are also defined in other regimes without any
assumption on the geometry of the interface. This makes the link with the mixed zone and
open new perspectives since we are able to tackle interface dynamics at small scale and reach
a closed surface area density evolution equation for all the proposed small-scale models. It
sheds some light on the fact that the natural variables to tackle the interface dynamics are
not necessarily the interface area density and volume fractions but more intrinsic geometric
quantities, the dynamics of which allow to recover the interface area density evolution.
Two issues have been left aside on purpose in the design of the paper for the sake of

clarity of the exposition: 1- the existence of multiple velocities for the large-scale phases
and for the disperse small-scale, 2- the transfer of mass from large-scale to small-scale.
The key issue is to include the related physics within the proposed framework. The first
part is currently under investigation and relates to another version of the SAP with multiple
velocities, while the second requires to include the capillarity at large scale and to interpret the
transfer of scales as a local dissipative phenomenon; it is also the subject of a complementary
piece of work (Loison et al. 2023). Eventually, numerical methods also have to be designed
in order to resolve properly the proposed models in the line of GeoMOM and preserve
realizability (Ait-Ameur et al. 2023). One last key issue is related to the treatment of small-
scale agitation/turbulence of the large-scale phase, as mentioned in Section 4, which would
couple this velocity fluctuations to the droplet oscillations and provide sources terms in the
kinetic equation. This is also the subject of our current investigation. This non-exhaustive
list of extensions tends to assess the versatility of the proposed framework for the design
of physically relevant and mathematically well-designed two-scale models for interfacial
two-phase flows.
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Appendix A. Condition of small-scale incompressibility in the disperse regime
We are interested in the compressibility caused by sound propagation at large scale. Consider
then the two-scalemixture defined in Section 2with two large-scale liquid and gaseous phases
and one small-scale liquid phase that share the samepressure𝑃. Denote 𝜅𝑘

𝑇
:= 𝜌−1

𝑘
(𝜕𝜌𝑘/𝜕𝑃)𝑇
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the isothermal compressibility, we measure the mixture compressibility using the mass
conservation of each phase with

∇ · 𝒖 =
∑︁

𝑘=1,2,1𝑑
𝛼𝑘∇ · 𝒖 = −

∑︁
𝑘=1,2,1𝑑

𝛼𝑘

𝐷𝑡 𝜌𝑘

𝜌𝑘
= −

∑︁
𝑘=1,2,1𝑑

𝛼𝑘𝜅
𝑘
𝑇 𝐷𝑡𝑃. (A 1)

The liquid phase is much less compressible than the gaseous ones 𝜅1
𝑇
, 𝜅
1,𝑑
𝑇

� 𝜅2
𝑇
. More-

over, the small-scale liquid phase only occupies a small amount of the mixture volume
𝛼𝑑
1 � 𝛼1, 𝛼2. Then, the contributions to the overall compressibility of the mixture are
ranked like

|𝛼2𝜅2𝑇 𝐷𝑡𝑃 | � |𝛼1𝜅1𝑇 𝐷𝑡𝑃 | � |𝛼𝑑
1 𝜅
1,𝑑
𝑇
𝐷𝑡𝑃 |. (A 2)

The small-scale liquid phase can then be assumed incompressible in comparison to both
large-scale phases.

Appendix B. Stationary Action Principle
B.1. Derivation of the conservative dynamics

Consider the Lagrangian defined in (2.10),

L = L1(𝛼1, 𝑚1, 𝒖) + L2(𝛼2, 𝑚2, 𝒖) + L𝑑
1 (𝑚

𝑑
1 , 𝜌

𝑑
1 , 𝒖). (B 1)

We minimize the action of the whole mixture defined by

A =

∫
Ω

L𝑑𝒙𝑑𝑡, (B 2)

where 𝒙 is the position in Eulerian coordinates andΩ := Ω𝒙×[0, 𝑇] is the Eulerian space-time
domain. This minimization is performed over a family of trajectories defined by Lagrangian
mappings 𝝓𝜆(𝑿, 𝑡, 𝜆) parametrized by 𝜆 which lies in the vicinity of 0 and 𝑿 = 𝝓−1(𝒙, 𝑡)
the Lagrangian coordinates. We similarly introduce families of Eulerian fields 𝛼𝜆1 (𝒙, 𝑡, 𝜆),
𝑏𝜆𝑐 (𝒙, 𝑡, 𝜆), 𝑏𝜆𝑎 (𝒙, 𝑡, 𝜆) for the volume fraction, the conserved variables and the advected
ones. We assume that these families of Lagrangian mappings and Eulerian fields satisfy the
following conditions.
• The mapping and Eulerian fields of the solution is included in the families for 𝜆 = 0 i.e.

for all (𝒙, 𝑡) ∈ Ω,

𝛼𝜆1 (𝒙, 𝑡, 𝜆 = 0) = 𝛼1(𝒙, 𝑡), 𝑏𝜆𝑐 (𝒙, 𝑡, 𝜆 = 0) = 𝑏𝑐 (𝒙, 𝑡), 𝑏𝜆𝑎 (𝒙, 𝑡, 𝜆 = 0) = 𝑏𝑎 (𝒙, 𝑡). (B 3)
• All the mappings and Eulerian fields preserve the constraints i.e. for all (𝒙, 𝑡) ∈ Ω,

𝜕𝑡𝑏
𝜆
𝑐 + ∇ · (𝑏𝜆𝑐𝒖) = 0, 𝜕𝑡𝑏

𝜆
𝑎 + 𝒖 · ∇𝑏𝜆𝑎 = 0. (B 4)

• All the mappings and Eulerian fields preserve the values at boundaries of the space-time
domain i.e. for all (𝒙, 𝑡) ∈ 𝜕Ω,

𝛼𝜆1 (𝒙, 𝑡, 𝜆) = 𝛼1(𝒙, 𝑡), 𝑏𝜆𝑐 (𝒙, 𝑡, 𝜆) = 𝑏𝑐 (𝒙, 𝑡), 𝑏𝜆𝑎 (𝒙, 𝑡, 𝜆) = 𝑏𝑎 (𝒙, 𝑡). (B 5)

We define the following variations,

𝜼(𝒙, 𝑡) :=
(
𝜕𝜆𝝓

𝜆
)
𝑿 ,𝑡

(𝝓−1(𝒙, 𝑡), 𝑡, 𝜆 = 0), 𝛿𝑏𝑒 (𝒙, 𝑡) :=
(
𝜕𝜆𝑏

𝜆
𝑒

)
𝒙,𝑡

(𝒙, 𝑡, 𝜆 = 0), (B 6)

where 𝜼 is an infinitesimal Eulerian displacement and 𝛿𝑏𝑒 the variation on any Eulerian field
𝑏𝑒. With this variational operator, Hamilton’s SAP simply writes

𝛿A = 0. (B 7)
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Following Truskinovsky (1991); Gavrilyuk et al. (1998); Gouin & Gavrilyuk (1999);
Gavrilyuk & Saurel (2002); Drui et al. (2019); Gouin (2020); Cordesse et al. (2020a),
the variations of 𝑏𝑐 , 𝑏𝑎 and 𝒖 are related to 𝜼 through relations

𝛿𝑏𝑐 = −∇ · (𝑏𝑐𝜼), 𝛿𝑏𝑎 = −(𝜼 · ∇)𝑏𝑎, 𝛿𝒖 = 𝐷𝑡𝜼 − (𝜼 · ∇)𝒖. (B 8)

For the Lagrangian under consideration, we have 𝑏𝑐 ∈ {𝑚1, 𝑚2, 𝑚𝑑
1 , 𝛼

𝑑
1 } and advected

quantities 𝑏𝑎 ∈ {𝜌𝑑1 }. The variation of 𝛼2 is linked to both 𝜼 and 𝛿𝛼1 through the volume
occupation relation 𝛼2 = 1−𝛼1−𝛼𝑑

1 . With the summation on repeated indexes, we define the
divergence A by ∇ ·A = (𝜕𝑥 𝑗

𝐴𝑖 𝑗) and the gradient of a vector ∇𝒃 = (𝜕𝑥𝑖𝑏 𝑗). We decompose
the action variation in Eulerian coordinates with respect to each dependency

𝛿A𝛼1 =

∫
Ω

𝜕𝛼1L1 𝛿𝛼1, (B 9)

𝛿A𝛼2 =

∫
Ω

𝜕𝛼2L2 𝛿𝛼2 = −
∫
Ω

𝛼𝑑
1∇(𝜕𝛼2L2) · 𝜼 −

∫
Ω

𝜕𝛼2L2 𝛿𝛼1, (B 10)

𝛿A𝑚𝑘
=

∫
Ω

𝜕𝑚𝑘
L𝑘 𝛿𝑚𝑘 =

∫
Ω

𝑚𝑘∇(𝜕𝑚𝑘
L𝑘 ) · 𝜼, (B 11)

𝛿A𝜌𝑑
1
=

∫
Ω

−𝜕𝜌𝑑
1
L𝑑
1 ∇𝜌

𝑑
1 · 𝜼, (B 12)

𝛿A𝒖 =

∫
Ω

− (𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖) · 𝜼, (B 13)

where 𝛿𝛼𝑑
1 follows (B 8), 𝛿𝛼2 = −𝛿𝛼1 − 𝛿𝛼𝑑

1 and 𝑲 = 𝜕𝒖L. Remark that we denoted here
the matrix-vector product of a matrix A with a vector 𝒃 by 𝒃 · A = (𝐴𝑖 𝑗𝑏 𝑗). Denoting
L∗

𝑘
= 𝑚𝑘 (𝜕𝑚𝑘

L𝑘 ) − L𝑘 and L∗ =
∑

𝑘 L∗
𝑘
, then 𝛿A can be expressed as a combination of

variations 𝜼 and 𝛿𝛼1,

𝛿A = −
∫
Ω

(
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖 + 𝛼𝑑

1∇(𝜕𝛼2L2) + 𝜕𝜌𝑑
1
L𝑑
1 ∇𝜌

𝑑
1

−𝑚1∇(𝜕𝑚1L1) − 𝑚2∇(𝜕𝑚2L2) − 𝑚𝑑
1∇(𝜕𝑚𝑑

1
L𝑑
1 )

)
· 𝜼

+
∫
Ω

(𝜕𝛼1L1 − 𝜕𝛼2L2) 𝛿𝛼1,

= −
∫
Ω

(𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑
1 𝜕𝛼2L2) − (𝜕𝛼1L1 − 𝜕𝛼2L2)∇𝛼1) · 𝜼

+
∫
Ω

(𝜕𝛼1L1 − 𝜕𝛼2L2) 𝛿𝛼1,

(B 14)

with 𝑲 = 𝜕𝒖L and L∗
𝑘
= 𝑚𝑘 (𝜕𝑚𝑘

L𝑘 ) − L𝑘 . The fundamental theorem of variations applied
to (B 14) gives

𝛿A = 0⇒
{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) = 0,
𝜕𝛼1L1 − 𝜕𝛼2L2 = 0.

(B 15)

Developing the expression of the derivatives yields (2.13).
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B.2. Additional conservation equation
Starting from (2.13), we now look for an additional conservation equation onH = 𝑲 ·𝒖−L.
We take the scalar product of the momentum equation with 𝒖 to get

0 = 𝜕𝑡 (𝑲 · 𝒖) − 𝑲𝜕𝑡𝒖 + ∇ · ((𝑲 · 𝒖)𝒖) − 𝑲 (𝒖 · ∇)𝒖 − ∇ · (𝑝𝒖) − 𝑝∇ · 𝒖

= 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) + 𝜕𝑡L − 𝑲𝐷𝑡𝒖 + ∇ · (L𝒖) − 𝑝∇ · 𝒖

= 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) + 𝐷𝑡L − 𝑲𝐷𝑡𝒖 + (L − 𝑝)∇ · 𝒖.

(B 16)

Wedevelop thematerial time derivative and isolate themass and incompressibility constraints
such that (B 16) becomes

0 = 𝜕𝑡H + ∇ · ((H − (L∗ − 𝛼𝑑
1 𝜕𝛼2L2))𝒖) + (L − 𝑝)∇ · 𝒖

+ 𝜕𝛼1L1 𝐷𝑡𝛼1 + 𝜕𝛼2L2 𝐷𝑡𝛼2 + 𝜕𝜌𝑑
1
L1𝐷𝑡 𝜌

𝑑
1

+ 𝜕𝑚1L1𝐷𝑡𝑚1 + 𝜕𝑚2L2𝐷𝑡𝑚2 + 𝜕𝑚𝑑
1
L𝑑
1 𝐷𝑡𝑚

𝑑
1

= 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) + (L − 𝑚1𝜕𝑚1L1 − 𝑚2𝜕𝑚2L2 − 𝑚𝑑
1 𝜕𝑚𝑑

1
L𝑑
1 − 𝑝)∇ · 𝒖

+ 𝜕𝛼1L1 𝐷𝑡𝛼1 + 𝜕𝛼2L2 𝐷𝑡𝛼2 + 𝜕𝜌𝑑
1
L1𝐷𝑡 𝜌

𝑑
1

+ 𝜕𝑚1L1(𝜕𝑡𝑚1 + ∇ · (𝑚1𝒖)) + 𝜕𝑚2L2(𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖))
+ 𝜕𝑚𝑑

1
L𝑑
1 (𝜕𝑡𝑚

𝑑
1 + ∇ · (𝑚𝑑

1 𝒖)).

(B 17)

The four last terms nullify thanks to the constraints while we develop 𝐷𝑡𝛼2 using the volume
occupation constraint 𝛼1 + 𝛼2 + 𝛼𝑑

1 = 1 and the conservation of 𝛼𝑑
1 . It yields

0 = 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) − (𝑝 + L∗)∇ · 𝒖 + (𝜕𝛼1L1 − 𝜕𝛼2L2) 𝐷𝑡𝛼1 − 𝜕𝛼2L2 𝐷𝑡𝛼
𝑑
1

= 𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) − (𝑝 + L∗ − 𝛼𝑑
1 𝜕𝛼2L2)∇ · 𝒖 + (𝜕𝛼1L1 − 𝜕𝛼2L2) 𝐷𝑡𝛼1.

(B 18)
Finally, the pressure equilibrium given by the second equation of (B 15) gives

L∗ + 𝛼𝑑
1 𝜕𝛼2L2 = −𝑝, (B 19)

and we obtain the desired conservation equation onH .

Appendix C. Large-scale and small-scale geometry description using GeoMOM
geometric quantities

We propose here to illustrate why the choice of small-scale variables, which are at the same
time moments of a kinetic modelling level as well as surface averaged geometric quantities
is fundamentally convenient for two-scale modelling. As their definitions are based on the
surface-average operator in Section 3, they can be computed for any flow topology beyond
any assumption on the geometry and dynamics of the interface.
We illustrate this point by comparing the evaluation of such quantities in a single realization

of the collision of two droplets at small-scale.
The simulation has been performed with the ARCHER code (Ménard et al. 2007) (see details

in Essadki et al. (2019)) with 256× 256× 512 cells in a volume 𝑉𝑡𝑜𝑡 of 1mm× 1mm× 2mm
and the geometric post-treatment of the obtained level-set is done with the open-source
library Mercur(v)e, which relies on a triangulation of the interface as well as geometric
properties preserving the topological invariants (Cordesse et al. 2020a). Before the collision,
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(a) Before the collision. (b) Beginning of the collision. (c) After the collision.

Figure 2: Local mean curvature for the collision of two droplets that scales between
𝐻𝑚𝑖𝑛 = 6.3 · 102 m−1 (blue) and 𝐻𝑚𝑎𝑥 = 2.4 · 104 m−1 (red).

the two droplets are spherical with diameters of 400𝜇m and 260𝜇m (see figure 2a). After the
collision, there are three deformed inclusions with different sizes (see figure 2c).
We usually consider a kinetic description at mesoscopic level based on a statistical

ensemble average of several realizations, but for the purpose of the present illustration
we stick to a single realization, since the kinetic description (3.2) is also valid in this case
of measure-valued number distribution functions. At the kinetic level of description, we
reconstruct the distribution using the two-point quadrature†

𝑛𝑆0 (𝑆0) = 𝑛1𝛿(𝑆0 − (𝑆0)1) + 𝑛2𝛿(𝑆0 − (𝑆0)2). (C 1)

We gather in tables 2a and 2b the values of each geometric variable before and after collision,
respectively from the analytical initial configuration and the geometric post-treatment, along
with the corresponding weights and abscissas of (C 1). Let us study the reconstruction of
the number density function is well-predicted through the chosen moments, showing how
to interpret the chosen geometric variables. Before the collision, (C 1) has the exact number
of parameters to represent well the two droplets. After the collision, droplets’ sizes are
sensitively changed with a droplet much smaller than the other two. With Mercur(v)e,
the geometric invariant associated surface-averaged Gauss curvature is well-preserved and
recovers well the total number of droplets. However, (C 1) has not enough parameters to
detect three different sizes, even less the deformations. However, deformations could be
better modelled if we switched to the eight-moment model. Nevertheless, even if it is a
reduced-order model, the retained key information about the geometry at small-scale allow
us to always have a representation, through quadrature, of a small-scale interface.
Let us conclude this illustration by underlining that the above results correspond to a

treatment of the interface geometry as small-scale. We could also have taken the point
of view of the large-scale, where all the geometry is not obtained through a geometric
post-treatment, but can be locally estimated relying on 𝛼1 only. For instance, the interface
area density and the mean curvature can be estimated using ‖∇𝛼1‖ and ∇ · (∇𝛼1/‖∇𝛼1‖)
(Goldman 2005), as long as the characteristic lengths stay at large-scale, that is above a given
threshold.

† We could also have used another reconstruction techniques such as the entropy maximization technique
Mead & Papanicolaou (1984); Levermore (1996); Essadki et al. (2018), which maximizes the concave
functional 𝑛 ↦→ −𝑛 log 𝑛, while constraining the values of some selected moments. Such techniques are
better-suited for statistical descriptions corresponding to many realizations / inclusions or when a smooth
NDF is required, such as when evaporation is taking place.
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𝛼𝑑1 Σ Σ 〈𝐻〉 Σ 〈𝐺〉

Before coll. 2.14 · 10−2 3.57 · 102 m−1 2.1 · 106 m−2 1.3 · 1010 m−3

After coll. 2.14 · 10−2 3.91 · 102 m−1 2.5 · 106 m−2 1.9 · 1010 m−3

(a) Geometric quantities before and after the collision.

𝑛1 ×𝑉𝑡𝑜𝑡 (𝑆0)1 𝑛2 ×𝑉𝑡𝑜𝑡 (𝑆0)2

Before coll. 1 2.12 · 10−7 m2 1 5.03 · 10−7 m2
After coll. 0.76 1.38 · 10−8 m2 2.24 3.4 · 10−7 m2

(b) Weights (nb. of droplets) in the domain of volume 𝑉𝑡𝑜𝑡 , and abscissas before and after the collision.

Appendix D. Derivation of the model for the polydisperse spray of incompressible
droplets

We consider here the two-scale model with capillarity at the small scale modelled by a
polydisperse spray of spherical and incompressible droplets. The Lagrangian of the mixture
is given by (2.10) with the modified small-scale Lagrangian given by (3.13) and reads

L = L1(𝛼1, 𝑚1, 𝒖) + L2(𝛼2, 𝑚2, 𝒖) + L𝑑
1 (𝑚

𝑑
1 , 𝜌

𝑑
1 , 𝑧, 𝒖), (D 1)

where 𝑧 = Σ/𝑚𝑑
1 has a similar role to the variable defined in appendix A as 𝐷𝑡 𝑧 = 0.

Moreover, 𝜌𝑑1 is constrained by 𝐷𝑡 𝜌
𝑑
1 = 0 and 𝛼𝑑

1 is conserved such that the action, as
defined in appendix B, is decomposed according to each dependency,

𝛿A𝛼1 =

∫
Ω

𝜕𝛼1L1 𝛿𝛼1, (D 2)

𝛿A𝛼2 =

∫
Ω

𝜕𝛼2L2 𝛿𝛼2 = −
∫
Ω

𝛼𝑑
1∇(𝜕𝛼2L2) · 𝜼 −

∫
Ω

𝜕𝛼2L2 𝛿𝛼1, (D 3)

𝛿A𝑚𝑘
=

∫
Ω

𝜕𝑚𝑘
L𝑘 𝛿𝑚𝑘 =

∫
Ω

𝑚𝑘∇(𝜕𝑚𝑘
L𝑘 ) · 𝜼, (D 4)

𝛿A𝜌𝑑
1
=

∫
Ω

−𝜕𝜌𝑑
1
L𝑑
1 ∇𝜌

𝑑
1 · 𝜼, (D 5)

𝛿A𝑧 =

∫
Ω

−𝜕𝑧L𝑑
1 ∇𝑧 · 𝜼, (D 6)

𝛿A𝒖 =

∫
Ω

− (𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖) · 𝜼, (D 7)
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The variation of the total action then writes

𝛿A = −
∫
Ω

(
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖 + 𝛼𝑑

1∇(𝜕𝛼2L2) + 𝜕𝑧L𝑑
1 ∇𝑧

−𝑚1∇(𝜕𝑚1L1) − 𝑚2∇(𝜕𝑚2L2) − 𝑚𝑑
1∇(𝜕𝑚𝑑

1
L𝑑
1 )

)
· 𝜼

+
∫
Ω

(𝜕𝛼1L1 − 𝜕𝛼2L2) 𝛿𝛼1,

= −
∫
Ω

(
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) − (𝜕𝛼1L1 − 𝜕𝛼2L2)∇𝛼1
)
· 𝜼

+
∫
Ω

(𝜕𝛼1L1 − 𝜕𝛼2L2) 𝛿𝛼1.

(D 8)

Nullifying the variations gives the following system{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) = 0,
𝜕𝛼1L1 − 𝜕𝛼2L2 = 0.

(D 9)

We replace then the derivatives of the Lagrangian by their expressions

𝜕𝒖L = 𝑲 = 𝜌𝒖, L∗ = −𝛼1𝑝1 − 𝛼2𝑝2, 𝜕𝛼2L2 = 𝑝2, 𝜕𝛼1L1 = 𝑝1. (D 10)

Then, (D 9) becomes {
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,
𝑝 := 𝑝1 = 𝑝2.

(D 11)

Appendix E. Results of differential geometry
We recall here some elements to derive the evolution in time of the geometry for closed
inclusions using the tools of differential geometry. The reader is referred to Kreyszig (1991)
for a general introduction to differential geometry and to Capovilla et al. (2003); Deserno
(2015) for a briefer introduction and the derivation of the formulas presented hereafter.

E.1. First- and second-order variations of a closed inclusion
Let us consider the deformation of a closed inclusion defined by its position vector mapped
byU

𝒓 (𝑢, 𝑣) = 𝒓0(𝑢, 𝑣) + 𝛿𝒓 (𝑢, 𝑣), (𝑢, 𝑣) ∈ U, (E 1)
where 𝒓0 is the position before the deformation and 𝛿𝒓 the deformation vector that we assume
to be small. From now on, we drop the dependencies on (𝑢, 𝑣) to lighten the formulas. For
convex and closed inclusions, we write the deformation in the direction of the non-deformed
surface normal,

𝒓 = 𝒓0 + 𝜓𝒏, (E 2)
where 𝒏 := (𝒆𝜃 × 𝒆𝜙)/‖𝒆𝜃 × 𝒆𝜙 ‖ is the local normal and 𝒆𝑎 := 𝜕𝑎 𝒓 the tangential vectors
and 𝜓 the local amplitude of the deformation. Then, we are interested in the first-order and
second-order variations of particular geometric quantities of the whole inclusion. With the
surface-weighted average operator (̃·) defined in (3.3) for one inclusion, we focus on the
volume 𝑉 , the surface area 𝑆 and the surface-weighted mean curvature 𝑆�̃�. There is no
variation associated with the surface-weighted Gauss curvature 𝑆�̃� as a result of the Gauss-
Bonnet theorem (Kreyszig 1991). The variations of these quantities up to second order in 𝜓
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are found in Capovilla et al. (2003) and written with Einstein summation rule for implicit
indexes 𝑎, 𝑏 ∈ {𝑢, 𝑣},

𝛿𝑉 =

∫
U
(𝜓 + 𝐻0𝜓2)𝐴0 + 𝑜(𝜓2),

𝛿𝑆 =

∫
U
(2𝐻0𝜓 + 𝐺0𝜓2 − 1

2𝜓Δ𝜓)𝐴0 + 𝑜(𝜓
2),

𝛿(𝑆�̃�) =
∫
U
(𝐺0𝜓 + 12𝜓 [(K

𝑎𝑏 − 2𝐻0g𝑎𝑏) : (∇𝑎 ⊗ ∇𝑏)𝜓 − G : K 𝑎𝑏𝜓])𝐴0 + 𝑜(𝜓2),
(E 3)

where𝐻0 and𝐺0 are the non-deformedmean andGauss curvature,Δ is the surface Laplacian,
K 𝑎𝑏 the extrinsic curvature tensor, g𝑎𝑏 the inverse of the metric tensor, ∇𝑎 is the vector of
covariant derivative with respect to 𝑎, and G the Einstein tensor.

E.2. Incompressible oscillation of the sphere
In Section 4, we are specifically interested in a sphere deformed by the axisymmetric second
spherical harmonic. We choose the spherical coordinates (𝑢, 𝑣) = (𝜃, 𝜙) on U = (0, 𝜋) ×
(0, 2𝜋), and we denote 𝒆𝑟 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃) such that

𝒓0 = 𝑅0𝒆𝑟 , 𝜓(𝜃, 𝜙) = 𝑥0𝑌0 + 𝑥2𝑌2(𝜃), (E 4)

where 𝑅0 is the constant radius of the non-deformed sphere, 𝑌0 is the zeroth spherical
harmonic that corresponds to the isotropic perturbation that ensures incompressibility, and
𝑌2 is the second spherical harmonic associated with the oscillatory motion. Then, we evaluate
the geometric quantities in (E 3),

𝒏 = 𝒆𝑟 , 𝐻0 = 𝑅
−1
0 , 𝐺0 = 𝑅

−2
0 , 𝐴0 = 𝑅

2
0𝐴S2 ,

K 𝑎𝑏 = 𝑅−1
0 g𝑎𝑏, g𝑎𝑏 : ∇𝑎 ⊗ ∇𝑏 = Δ, Δ = 𝑅−2

0 ΔS2 , G = 0,
(E 5)

where ΔS2 and 𝐴S2 are the surface Laplacian and the surface element on the unit sphere
S2. Furthermore, the orthonormal spherical harmonics 𝑌0 and 𝑌2 are eigenfunctions of the
spherical Laplacian ΔS2 such that

ΔS2𝑌𝑘 = −𝑘 (𝑘 + 1)𝑌𝑘 ,
∫
U
𝑌𝑘𝑌𝑘′𝐴S2 = 𝛿𝑘,𝑘′ . (E 6)

Evaluating the variations of 𝑉 , 𝑆 and 𝑆�̃� up to second order in 𝑥0 and 𝑥2 yields

𝛿𝑉 = 𝑅20𝑥0 + 𝑅0𝑥
2
0 + 𝑅0𝑥

2
2 + 𝑜(𝑥

2
0 + 𝑥

2
2),

𝛿𝑆 = 2𝑅0𝑥0 + 𝑥20 + 4𝑥
2
2 + 𝑜(𝑥

2
0 + 𝑥

2
2),

𝛿(𝑆�̃�) = 𝑥0 + 3𝑅−1
0 𝑥

2
2 + 𝑜(𝑥

2
0 + 𝑥

2
2).

(E 7)

As we consider incompressible oscillations 𝛿𝑉 = 0, this links the dynamics of 𝑥0 to the one
of 𝑥2

𝛿𝑉 = 0 ⇒ 𝑥0 = −𝑅−1
0 𝑥

2
2 + 𝑜(𝑥

2
2). (E 8)

The variations of the geometric quantities then simplify to

𝛿𝑉 = 0, 𝛿𝑆 = 2𝑥22 + 𝑜(𝑥
2
2), 𝛿(𝑆�̃�) = 2𝑅−1

0 𝑥
2
2 + 𝑜(𝑥

2
2). (E 9)

We then obtain equations (4.6) by introducing 𝑆0 = 4𝜋𝑅20 and 𝜒 = 𝑥2(2/𝑆0)1/2.
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E.3. Variations of the oriented geometric quantities
In Section 4.3, new geometric quantities 𝑆 ‖ , 𝑆⊥, 𝑆 ‖𝐻 ‖ and 𝑆⊥𝐻⊥ are defined to recover first
order variations in 𝑥2 using the decomposition of the local surface element into

𝐴 = ‖𝒆𝜃 × 𝒆𝜙 ‖ =
��(𝒆𝜃 × 𝒆𝜙) · 𝑵

�� + (
‖𝒆𝜃 × 𝒆𝜙 ‖ −

��(𝒆𝜃 × 𝒆𝜙) · 𝑵
��) =: 𝐴‖ + 𝐴⊥, (E 10)

where 𝒆𝑎 := 𝜕𝑎 𝒓 for 𝑎 = 𝜃, 𝜙, and 𝒆𝑣 := 𝜕𝑣 𝒓 (𝑢, 𝑣) are the tangential vectors and 𝑵 = (0, 0, 1)
is a constant vector chosen along the axisymmetric axis. Then for any local geometric quantity
𝑋 (𝑢, 𝑣), we split the variation of the surface-averaged geometric quantity into

𝛿(𝑆𝑋) = 𝛿(𝑆 ‖𝑋 ‖) + 𝛿(𝑆⊥𝑋⊥), (E 11)

such that we can focus on the variation 𝛿(𝑆 ‖𝑋 ‖), and 𝛿(𝑆⊥𝑋⊥) follows from (E 9). The
variation of 𝑆 ‖𝑋 ‖ reads

𝛿(𝑆 ‖𝑋 ‖) =
∫
U
𝛿(𝑋𝐴‖) =

∫
U
𝛿
(
𝑋

��(𝒆𝜃 × 𝒆𝜙) · 𝑵
��) , (E 12)

We get rid of the absolute value by remarking that the perturbations along harmonics 𝑌0 and
𝑌2 are symmetric with respect to the equatorial plane of the droplet. We split U into two
hemispheres using the half unit spheremapping 12U = (0, 𝜋/2)×(0, 2𝜋)where (𝒆𝜃×𝒆𝜙)·𝑵 >

0 and perform a change of variables leading to

𝛿(𝑆 ‖𝑋 ‖) =
∫
1
2U

𝛿(𝑋 (𝒆𝜃 × 𝒆𝜙) · 𝑵) −
∫
U\ 12U

𝛿(𝑋 (𝒆𝜃 × 𝒆𝜙) · 𝑵)

= 2
∫
1
2U

𝛿(𝑋 (𝒆𝜃 × 𝒆𝜙)) · 𝑵.
(E 13)

Then, the variation is decomposed following

𝛿(𝑆 ‖𝑋 ‖) = 2
∫
1
2U

𝛿(𝑋𝐴) (𝒏 · 𝑵) + 2
∫
1
2U

𝑋0𝐴0𝛿𝒏 · 𝑵, (E 14)

with 𝐴0𝛿𝒏 = 𝛿(𝒆𝜃 × 𝒆𝜙) − 𝒏𝛿𝐴. The first-order variation in 𝑥2 is non-trivial here, and we
retain only the first-order terms in 𝜓 for 𝛿(𝐻𝐴) and 𝛿𝐴 in (E 3). Only the first-order variation
of 𝛿(𝒆𝜃 × 𝒆𝜙) is still undetermined. For the first-order deformation 𝜓 = 𝑥2𝑌2+𝑜(𝑥2), it yields

𝛿(𝒆𝜃 × 𝒆𝜙) = 𝜕𝜃 𝒓 × 𝜕𝜙 𝒓 − 𝜕𝜃 𝒓0 × 𝜕𝜙 𝒓0
= 𝑥2𝑅0𝑌2(𝜕𝜃𝒏 × 𝜕𝜙𝒏) + 𝑥2𝑅0(𝜕𝜃𝑌2) (𝒏 × 𝜕𝜙𝒏) + 𝑅0𝑥2𝑌2(𝜕𝜃𝒏 × 𝜕𝜙𝒏) + 𝑜(𝑥22).

(E 15)
For the sphere, we recall that

𝜕𝜃𝒏 = 𝑅−1
0 𝒆𝜃 , 𝜕𝜙𝒏 = 𝑅−1

0 𝒆𝜙, 𝒆𝜃 × 𝒆𝜙 = 𝐴0𝒏,

𝐴0 = 𝑅
2
0 sin 𝜃, 𝑵 · 𝒏 = cos 𝜃, 𝑵 · 𝒆𝜃 = −𝑅0 sin 𝜃.

(E 16)

The first-order variation 𝛿(𝒆𝜃 × 𝒆𝜙) then reads

𝛿(𝒆𝜃 × 𝒆𝜙) = 𝑥2𝑅−1
0 𝑌2(𝒆𝜃 × 𝒆𝜙) + 𝑥2(𝜕𝜃𝑌2) (𝒏 × 𝒆𝜙) + 𝑅−1

0 𝑥2𝑌2(𝒆𝜃 × 𝒆𝜙) + 𝑜(𝑥22)
= 𝑥2𝑅

−1
0 𝑌2𝐴0𝒏 − 𝑥2(𝜕𝜃𝑌2)𝐴0𝑅−2

0 𝒆𝜃 + 𝑅−1
0 𝑥2𝑌2𝐴0𝒏 + 𝑜(𝑥22)

= 2𝑥2𝑅−1
0 𝑌2𝐴0𝒏 − 𝑥2(𝜕𝜃𝑌2)𝒆𝜃 + 𝑜(𝑥22).

(E 17)
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Now, taking 𝑋 = 1 in (E 14) gives

𝛿𝑆 ‖ = 2
∫
1
2U

𝛿(𝒆𝑢 × 𝒆𝑣 ) · 𝑵

= 2
∫
1
2U
2𝑥2𝑅−1

0 𝑌2𝐴0(𝒏 · 𝑵) − 𝑥2𝐴0𝑅−2
0 (𝜕𝜃𝑌2) (𝒆𝜃 · 𝑵) + 𝑜(𝑥22)

= 4𝑥2𝑅0
∫
1
2U

𝑌2 sin 𝜃 cos 𝜃 + 2𝑥2𝑅0
∫
1
2U

(𝜕𝜃𝑌2) sin2 𝜃 + 𝑜(𝑥22)

= 4𝑥2𝑅0

√
5𝜋
8

+ 2𝑥2𝑅0

(
−3

√
5𝜋
4

)
+ 𝑜(𝑥22)

= −𝑥2𝑅0
√
5𝜋 + 𝑜(𝑥22).

(E 18)

For 𝑋 = 𝐻, there is an extra term in the first-order variation 𝛿(𝐻𝐴) = (𝐺0 − 1
2Δ)𝜓𝐴0

Capovilla et al. (2003) which has been nullified in (E 3) as the inclusion is closed. Here, it is
taken into account as we integrate twice over a half inclusion. It yields

𝛿𝑆 ‖ �̃�
‖ = 2

∫
1
2U

𝛿(𝐻𝐴) (𝒏 · 𝑵) + 2
∫
1
2U

𝐻0(𝛿(𝒆𝜃 × 𝒆𝜙) − 𝒏𝛿𝐴) · 𝑵,

= 2
∫
1
2U

(𝐺0 − 2𝐻20)𝜓𝐴0(𝒏 · 𝑵) +
∫
1
2U

Δ𝜓𝐴0(𝒏 · 𝑵) + 2
∫
1
2U

𝐻0𝛿(𝒆𝜃 × 𝒆𝜙) · 𝑵,

= −2𝑥2
∫
1
2U

𝑌2 sin 𝜃 cos 𝜃 + −𝑥2
∫
1
2U

(ΔS2𝑌2) sin 𝜃 cos 𝜃 + 2𝑅−1
0

∫
1
2U

𝛿(𝒆𝜃 × 𝒆𝜙) · 𝑵,

= −𝑥2
1
2
√
5𝜋.

(E 19)
Replacing 𝑥2 with its expression in 𝜒 and 𝑆0 yields geometric relations (4.26).

Appendix F. Weights and quadrature points of the bi-disperse quadrature
The bi-disperse closure for 𝑛1, 𝑛2, (𝑆0)1, (𝑆0)2 in terms of the moment in size only 𝑀𝑘 =

𝑀
𝜉

𝑘,0,0 with 𝑘 = 0, 1/2, 1, 3/2 is obtained by solving the truncated moment problem with
Mathematica (Wolfram Research 2023) and reads

𝑛𝑖 =
1
2

(
𝑀0 + (−1)𝑖+1

3𝑀0𝑀1𝑀1/2 − 2𝑀31/2 − 𝑀
2
0𝑀3/2√

Δ

)
,

(𝑆0)𝑖 = (2(𝑀21/2 − 𝑀0𝑀1)
2)−1

(
𝑀20𝑀

2
3/2 − 𝑀

2
1𝑀

2
1/2 + 2(𝑀0𝑀

3
1 + 𝑀

3
1/2𝑀3/2)

−4𝑀0𝑀1/2𝑀1𝑀3/2 + (−1)𝑖+1(𝑀0𝑀3/2 − 𝑀1𝑀1/2)
√
Δ

)
,

with Δ = 4𝑀0𝑀31 − 3𝑀
2
1𝑀

2
1/2 − 6𝑀0𝑀1/2𝑀1𝑀3/2 + 4𝑀

3
1/2𝑀3/2 + 𝑀

2
0𝑀

2
3/2.

(F 1)

It can be written with the geometric variables using either relations (3.12), (4.8)-(4.9) or
(4.27)-(4.28). Mathematica also shows that these relations yield positive values of 𝑛𝑖 and
(𝑆0)𝑖 provided that the moments 𝑀𝑘 are positive and

𝑀1/2𝑀3/2 − 𝑀21 > 0, 𝑀0𝑀1 − 𝑀21/2 > 0. (F 2)



33

These last two conditions ensure the positivity of Hankel matrices involved in the realizability
conditions of the Hausdorff truncated moment problem (Schmüdgen 2017).

Appendix G. Hamilton’s SAP for the polydisperse spray of oscillating droplets
This model is built on the basis of the two-scale model of Section 2 where additional energies
are added to take into account capillarity at the small-scale along with the internal flow of
the droplets. We recall the Lagrangian given in (4.36) for the two-scale mixture

L = L1 (𝛼1, 𝑚1, 𝒖) + L2 (𝛼2, 𝑚2, 𝒖) + L𝑑
1

(
𝑚𝑑
1 , 𝜌

𝑑
1 , 𝒖

)
+L𝑣𝑖𝑏

1 (𝑛1, (𝑆0)1, 𝜒1, ¤𝜒1) + L𝑣𝑖𝑏
2 (𝑛2, (𝑆0)2, 𝜒2, ¤𝜒1) ,

(G 1)

where L𝑣𝑖𝑏
𝑖

= 1
2𝜈𝑛𝑖 (𝑆0)

5/2
𝑖
𝜒2
𝑖
−𝜎𝑛𝑖 (𝑆0)𝑖 − 12𝛾𝑛𝑖 (𝑆0)𝑖𝜒

2
𝑖
. We define the actionA associated

to the Lagrangian similarly to the one of appendix B. As same as previous models, 𝛼1 is
a free variable in the minimization process, while effective densities 𝑚𝑘 are conserved, 𝜌𝑑1
is advected. For the additional variables, the number densities of droplets 𝑛𝑖 are conserved,
the surfaces (𝑆0)𝑖 are advected, 𝜒𝑖 are free variables describing the oscillatory motion of
the droplets, and ¤𝜒𝑖 are linked to time derivatives of 𝜒𝑖 with 𝐷𝑡 𝜒𝑖 = ¤𝜒𝑖 . This last constraint
translates in terms of variations

𝛿( ¤𝜒𝑖) = 𝛿(𝐷𝑡 𝜒𝑖) = 𝜕𝑡 (𝛿𝜒𝑖) + 𝒖 · ∇(𝛿𝜒𝑖) + 𝛿𝒖 · ∇𝜒𝑖 . (G 2)

Denoting 𝐾 ¤𝜒𝑖 = 𝜕 ¤𝜒𝑖L𝑣𝑖𝑏
𝑖
and 𝒖 = 𝜕𝒖L, we decompose then the variation of the action

according to each dependency

𝛿A𝛼1 =

∫
Ω

𝜕𝛼1L1 𝛿𝛼1, (G 3)

𝛿A𝛼2 =

∫
Ω

𝜕𝛼2L2 𝛿𝛼2 = −
∫
Ω

𝛼𝑑
1∇(𝜕𝛼2L2) · 𝜼 −

∫
Ω

𝜕𝛼2L2 𝛿𝛼1, (G 4)

𝛿A𝑚𝑘
=

∫
Ω

𝜕𝑚𝑘
L𝑘 𝛿𝑚𝑘 =

∫
Ω

𝑚𝑘∇(𝜕𝑚𝑘
L𝑘 ) · 𝜼, (G 5)

𝛿A𝜌𝑑
1
=

∫
Ω

−𝜕𝜌𝑑
1
(L𝑑
1 + L𝑣𝑖𝑏

1 + L𝑣𝑖𝑏
2 ) ∇𝜌𝑑1 · 𝜼, (G 6)

𝛿A (𝑆0)𝑖 =

∫
Ω

−𝜕(𝑆0)𝑖L𝑣𝑖𝑏
𝑖 ∇(𝑆0)𝑖 · 𝜼, (G 7)

𝛿A𝑛𝑖 =

∫
Ω

𝜕𝑛𝑖L𝑣𝑖𝑏
𝑖 𝛿𝑛𝑖 =

∫
Ω

𝑛𝑖∇(𝜕𝑛𝑖L𝑣𝑖𝑏
𝑖 ) · 𝜼, (G 8)

𝛿A𝜒𝑖 =

∫
Ω

𝜕𝜒𝑖L𝑣𝑖𝑏
𝑖 𝛿𝜒𝑖 , (G 9)

𝛿A ¤𝜒𝑖 =

∫
Ω

𝐾 ¤𝜒𝑖 𝛿 ¤𝜒𝑖 =
∫
Ω

𝐾 ¤𝜒𝑖 (𝜕𝑡 (𝛿𝜒𝑖) + 𝒖 · ∇(𝛿𝜒𝑖) + 𝛿𝒖 · ∇𝜒𝑖), (G 10)

= −
∫
Ω

(𝜕𝑡𝐾 ¤𝜒𝑖 + ∇ · (𝐾 ¤𝜒𝑖𝒖))𝛿𝜒𝑖 (G 11)

−
∫
Ω

(𝜕𝑡 (𝐾 ¤𝜒𝑖∇𝜒𝑖) + ∇ · ((𝐾 ¤𝜒𝑖∇𝜒𝑖)𝒖) + 𝐾 ¤𝜒𝑖∇𝜒𝑖 · ∇𝒖) · 𝜼, (G 12)

𝛿A𝒖 =

∫
Ω

− (𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖) · 𝜼. (G 13)
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We denote L∗
𝑘
= 𝑚𝑘𝜕𝑚𝑘

L𝑘 − L𝑘 , L𝑣𝑖𝑏,∗
𝑖

= 𝑛𝑖𝜕𝑛𝑖L𝑣𝑖𝑏
𝑖

− L𝑣𝑖𝑏
𝑖
and L∗ = L∗

1 + L∗
2 + L𝑑,∗

1
such that the variation of the action related to the mixture lagrangian reads

𝛿A =

∫
𝑨𝜼 · 𝜼 + 𝑨𝛼1𝛿𝛼1 + 𝑨𝜒1𝛿𝜒1 + 𝑨𝜒2𝛿𝜒2, (G 14)

with
𝑨𝛼1 = 𝜕𝛼1L1 − 𝜕𝛼2L2,
𝑨𝜒𝑖 = 𝜕𝜒𝑖L𝑣𝑖𝑏

𝑘 − 𝜕𝑡𝐾 ¤𝜒𝑖 − ∇ · (𝐾 ¤𝜒𝑖𝒖),

𝑨𝜼 = −
(
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) − 𝑨𝛼1∇𝛼1 − 𝑨𝜒1∇𝜒1 − 𝑨𝜒2∇𝜒2

)
(G 15)

and L𝑣𝑖𝑏,∗
𝑖

:= 𝑛𝑖𝜕𝑛𝑖L𝑣𝑖𝑏
𝑖

− L𝑣𝑖𝑏
𝑖
. Nullifying the variations gives the following system

𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑
1 𝜕𝛼2L2) = 0,

𝜕𝜒1L𝑣𝑖𝑏
1 − 𝜕𝑡𝐾 ¤𝜒1 − ∇ · (𝐾 ¤𝜒1𝒖) = 0,

𝜕𝜒2L𝑣𝑖𝑏
2 − 𝜕𝑡𝐾 ¤𝜒2 − ∇ · (𝐾 ¤𝜒2𝒖) = 0,

𝜕𝛼1L1 − 𝜕𝛼2L2 = 0.

(G 16)

Evaluating the derivatives of the Lagrangian as defined in (4.37) yields

𝑲𝒖 = 𝜕𝒖L = 𝜌𝒖, L∗ = −𝛼1𝑝1 − 𝛼2𝑝2, 𝜕𝛼2L2 = 𝑝2, 𝜕𝛼1L1 = 𝑝1,
𝜕𝜒𝑖L𝑣𝑖𝑏

𝑖 = −𝛾𝑛𝑖 (𝑆0)𝑖𝜒𝑖 , 𝐾 ¤𝜒𝑖 = 𝜕 ¤𝜒𝑖L𝑣𝑖𝑏
𝑖 = 𝜈𝑛𝑖 (𝑆0)5/2𝑖

¤𝜒𝑖 ,
(G 17)

Finally, with the constraints and the relation 𝐷𝑡 𝜒𝑖 = ¤𝜒𝑖 , we write the final system in its
conservative form

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝑛𝑖 +∇ · (𝑛𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 (𝑆0)𝑖) +∇ · (𝑛𝑖 (𝑆0)𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) +∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2

𝑖
𝑛𝑖𝜒𝑖 , 𝑖 = 1, 2,

𝜕𝑡 (𝑛𝑖𝜒𝑖) +∇ · (𝑛𝑖𝜒𝑖𝒖) = 𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

(G 18)

where 𝑝 := 𝑝1 = 𝑝2 and 𝜔2𝑖 = 𝛾/𝜈(𝑆0)
−3/2
𝑖
.

Appendix H. The monodisperse case
Even though the polydispersion is a key feature of our model, we can also consider a
monodisperse model to get a minimal model. In this case, only four geometric quantities are
required, two related to statics and two related to dynamics. Compatibility with Section 2
leads us to consider (Σ 〈𝐺〉 , 𝛼𝑑

1 , (ΔΣ⊥), (Δ𝑡Σ⊥)) or equivalently (𝑛𝑑1 , 𝛼
𝑑
1 , (ΔΣ⊥), (Δ𝑡Σ⊥)).

We then obtain the following quadrature

𝑛(𝒙, 𝑡, 𝑆0, �̂�, ¤̂𝜒) = 𝑛𝑑1 𝛿(𝑆0 − 𝑆0)𝛿( �̂� − 𝜒)𝛿( ¤̂𝜒 − ¤𝜒),

𝑆0 =
(6
√
𝜋𝛼𝑑
1 )
2/3

(𝑛𝑑1 )2/3
, 𝜒 = 2

√︂
2
5

(ΔΣ⊥)
(𝑛𝑑1 )1/3(6

√
𝜋𝛼𝑑
1 )2/3

, ¤𝜒 = 2
√︂
2
5

(Δ𝑡Σ⊥)
(𝑛𝑑1 )1/3(6

√
𝜋𝛼𝑑
1 )2/3

.

(H 1)
All other geometric quantities can then be reconstructed through moments of 𝑛. The
minimization of the Lagrangian is similar to the polydisperse one, and, without adding
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dissipative source terms, we obtain the following set of equations

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝑛

𝑑
1 +∇ · (𝑛𝑑1 𝒖) = 0,

𝜕𝑡 (𝑛𝑑1 (𝑆0))+∇ · (𝑛𝑑1 (𝑆0)𝒖) = 0,
𝜕𝑡 (𝑛𝑑1 ¤𝜒) +∇ · (𝑛𝑑1 ¤𝜒𝒖) = −𝜔2𝑛𝑑1 𝜒,
𝜕𝑡 (𝑛𝑑1 𝜒) +∇ · (𝑛𝑑1 𝜒𝒖) = 𝑛𝑑1 ¤𝜒,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I)= 0,

(H 2)

with 𝑝 := 𝑝1 = 𝑝2 where 𝜔2 = �̃�2(𝑆0)−3/2, 𝛽 = 40𝜋𝜈𝑣𝑖𝑠/𝑆0. We can then provide the
dynamics of other geometric quantities such as the interface area density Σ = 𝑀

𝜉

1,0,0+𝑀
𝜉

1,2,0,

𝜕𝑡Σ + ∇ · (Σ𝒖) = 𝜕𝑡 (𝑛𝑑1 (𝑆0)𝜒
2) + ∇ · (𝑛𝑑1 (𝑆0)𝜒

2𝒖) = 𝑛𝑑1 (𝑆0)𝐷𝑡 (𝜒2) = 2𝑛𝑑1 (𝑆0)𝜒 ¤𝜒. (H 3)

Replacing with geometric variables leads to

𝜕𝑡Σ + ∇ · (Σ𝒖) = 16
5

(ΔΣ⊥) (Δ𝑡Σ⊥)
(𝑛𝑑1 )1/3(6

√
𝜋𝛼𝑑
1 )2/3

. (H 4)

Remark that we cannot get rid of the oriented surface area density terms in all terms of the
evolution equation of Σ. Moreover, no parameter of the physics is present.
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