
HAL Id: hal-04188949
https://hal.science/hal-04188949

Submitted on 4 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RoomZ: Spatial panning plugin for dynamic RIR
convolution auralisations

David Poirier-Quinot, Peter Stitt, Brian F. G. Katz

To cite this version:
David Poirier-Quinot, Peter Stitt, Brian F. G. Katz. RoomZ: Spatial panning plugin for dynamic
RIR convolution auralisations. AES 2023 International Conference on Spatial and Immersive Audio,
Audio Engineering Society, Aug 2023, Huddersfield, United Kingdom. �hal-04188949�

https://hal.science/hal-04188949
https://hal.archives-ouvertes.fr


Audio Engineering Society

Conference Paper 19
Presented at the International Conference on Spatial and 

Immersive Audio
2023 August 23–25, Huddersfield, UK

This conference paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This conference paper has been
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the
Audio Engineering Society.

RoomZ: Spatial panning plugin for dynamic auralisations
based on RIR convolution
David Poirier-Quinot, Peter Stitt, and Brian F.G. Katz

Sorbonne Université, CNRS, Institut Jean Le Rond ∂ ’Alembert, UMR 7190, Paris, France

Correspondence should be addressed to David Poirier-Quinot
(david.poirier-quinot@sorbonne-universite.fr)

ABSTRACT

RoomZ is a plugin designed to create dynamic auralisations. Given a spatial grid of room impulse responses, it
allows auditory source or receiver movement within that grid. The plugin supports fast multi-core partitioned
convolution, custom navigation scenario creation and multi-channel auralisation (monaural, binaural, Ambisonic,
etc.). Made available as a freeware for commercial and non-commercial uses, RoomZ is part of an ongoing
research effort to make accessible the fruits of acoustic research to audio engineers working with digital audio
workstations. This paper gives a general overview of how the plugin works as well as a detailed description of its
main components.

1 Introduction

Auralisation is a technique to create a realistic auditory
experience of a virtual environment. The technique has
been widely used in a variety of applications, including
architectural and environmental acoustics, noise con-
trol, and sound system design [1]. Auralisation can
be achieved by convolving an anechoic sound with a
Room Impulse Response (RIR). A RIR encodes the
acoustic signature of a room, capturing the way sound
waves travel from an acoustic source to a receiver mi-
crophone in a room.

Dynamic auralisations, in which the source or the re-
ceiver is moving, can be achieved by interpolating be-
tween RIRs during the rendering. Panning between two

RIRs measured in the same room, for the same receiver
position and two different source positions, can create
the illusion that the source is moving between those
positions [2]. Few tools exist to create such dynamic
auralisation, which is very useful to create realistic
virtual and augmented reality environments [3]. The
RoomZ plugin is a tool designed to assist researchers
and sound engineers alike in creating dynamic auralisa-
tion renderings.

RoomZ is released as a VST3 plugin, compatible with
most Digital Audio Workstations (DAW), in a manner
similar to the Anaglyph binaural rendering plugin de-
veloped by the same team [4]. Its primary function is
to create dynamic auralisations, performing real-time
convolution and interpolating between 1D or 2D grids



Poirier-Quinot, Stitt, and Katz The RoomZ plugin

Fig. 1: The graphical user interface of the RoomZ plu-
gin.

of RIRs to produce high-fidelity impressions of a mov-
ing source or receiver in a room. RoomZ is designed
as a bridge between research and audio production so
that the latter can easily exploit the RIRs acquired or
generated by the former, regardless of the RIR sim-
ulation or recording method used. The RoomZ plu-
gin is made available as freeware for commercial and
non-commercial uses and can be downloaded from the
project website1. The plugin’s graphical interface is
illustrated in Figure 1.

The paper is organized as follows: Section 2 presents
existing convolution plugins, Section 3 gives an
overview of the plugin, Section 4 further detail how its
constituents work, Section 5 discusses future develop-
ments and uses, and Section 6 concludes this paper.

2 State of the art

Several plugins exist for auralisation based on real-
time RIR convolution. Few of them are designed so
that users can import their own RIRs [5, 6], even fewer
support RIR panning for auralization of moving source
or receiver. At present, the only other plugin identified
that has been released that supports dynamic auralisa-
tion is the 6DoFconv plugin [7] part of the Sparta Suite
[6].

The 6DoFconv plugin allows users to create auralisa-
tions of moving receivers using RIRs loaded in a SOFA
file [8]. This plugin targets Ambisonic RIRs, including
an Ambisonic rotation module after convolution. It also
supports OSC messages to control receiver position and
orientation.

Compared to 6DoFconv, RoomZ has a more advanced
scenario definition, supporting moving receiver as well

1RoomZ website: roomz.dalembert.upmc.fr.

as multiple moving sources for complex scenes. Not
based on the SOFA format, creating a new scenario
only requires one to provide a set of WAV file RIRs and
edit an XML file using a common text editor. The plu-
gin’s Graphical User Interface (GUI) shows the scene
components (sources, receiver, etc.), drawn on top of a
picture of the room in which the scenario takes place
for improved readability. The plugin is not restricted to
Ambisonic convolution and can be adapted to any type
of channel layout. RoomZ also supports various nearest
neighbour search algorithms, multi-thread convolution,
and provides access to many adjustable parameters to
support custom research and audio production scenar-
ios better. Those features are described and illustrated
in the following sections.

3 Plugin overview

RoomZ is fundamentally a panning interface based on a
2D graphical mapping of source and receiver positions,
where the weights are applied based on those geomet-
rical distributions. Options for different panning laws
are available to best suit the type of distribution and
desired behaviour.

Using the plugin requires a RoomZ configuration XML
file, comprising principally a description of source and
receiver positions, with its accompanying set of WAV
RIRs associated with each source/receiver combina-
tion defined (see Section 3.1). A room image JPG file
is needed, providing the user with a visual reference,
though no actual information in the image is used by
the plugin. Once loaded, the RoomZ GUI shows the
reference image with an overlay of source and receiver
positions for the currently active scenario from the con-
figuration file (see Section 3.2). Users can then move
either sources or receivers depending on the selected
scenario (see Section 3.3). From there, the plugin con-
volves the input stream with the relevant subset RIRs
for dynamic auralisation.

3.1 Create a configuration

A RoomZ full configuration contains a picture, most
typically a plan view of the room, a set of RIRs, and
an XML configuration file providing information about
how to select and map those RIRs for auralisation in the
reference frame of the room image. The structure of the
“example-configuration” folder used in the remainder
of this paper is shown in Figure 2.

AES International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023 August 23–25
Page 2 of 7

http://roomz.dalembert.upmc.fr


Poirier-Quinot, Stitt, and Katz The RoomZ plugin

example-configuration
room.jpg

config.xml

rirs
1.wav

2.wav

...

16.wav

Fig. 2: Example configuration folder structure.

config.xml is a file which provides information
about the spatial relationship between source and re-
ceiver positions for different auralisation scenarios.
The file used in the example-configuration is shown
in the Appendix, where the “Source locked” scenario
is the one loaded in Figure 1. For a given scenario,
either the source or the receiver is marked as “locked”,
meaning its position is fixed. The other component
can freely be moved in the room, i.e. within the grid
of RIRs. The plugin supports multiple scenarios with
multiple locked sources (playing simultaneously from
different positions) within a scenario. Each will be
matched to one of the channels of the plugin input
provided by the DAW. For example, auralisation of a
receiver moving around a duet singing in a room can be
achieved by sending a stereo input to the plugin with
the scenario “Multi-sources locked” in Section 7.

RIRs are expected as WAV files. There is no limitation
on the number of channels of the RIRs, but for that
imposed by the user’s DAW. This allows the creation
of monaural, binaural, Ambisonic, etc. auralisations.
RIR sampling rate is expected to match the DAW’s as
the plugin does not perform re-sampling.

3.2 Load a configuration and a scenario

Loading a configuration can be achieved either via a
dialog box opened from the plugin GUI or by dragging
a configuration folder or file onto said GUI. The plugin
will then verify the configuration’s components, update
the room displayed, and show the various components
of the first scenario defined in the configuration file. As
seen in Figure 1, potential positions of the moving com-
ponent (receiver in this example), i.e. those positions
for which a source-to-receiver RIR has been defined
in the selected scenario, are depicted as empty circles.
The current source and receiver positions (i.e. active
RIRs) are indicated with filled circles.

Fig. 3: Illustration of the RoomZ plugin architecture.
The number of audio channels out of the convo-
lutions is defined by the number of channels
in the RIRs. The audio graph displayed is
that of the “post RIR interpolation mode” de-
scribed in Section 4.2. In the “pre RIR interpo-
lation mode”, the processing tracks associated
to Gain2 and Gain3 do not exist, the weighted
sum of the 3 RIRs happens before the convolu-
tion.

3.3 Moving source or receiver

Moving the non-locked element will trigger an update
of the RIRs used for the convolution. Which and how
many RIRs are used for the convolution depends on the
current node selection and interpolation method, further
detailed in Section 4. Those RIRs will be highlighted
on the GUI as illustrated in Figure 1, with a color
varying as a function of their contribution to the final
auralisation.

4 Detailed components

RoomZ is implemented in C++, using the JUCE frame-
work2 for cross-platform compilation, GUI design, au-
dio classes (buffers, filters, etc.), and standard VST
features (automations, presets, I/O management, etc.).
The architecture of the plugin’s internal workings is
illustrated in Figure 3.

2JUCE framework: juce.com.

AES International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023 August 23–25
Page 3 of 7

https://juce.com


Poirier-Quinot, Stitt, and Katz The RoomZ plugin

4.1 Neighbouring RIRs selection

The RoomZ plugin supports two types of panning
schemes to determine neighbouring RIRs and asso-
ciated weights.

K Nearest neighbours selection: The K Nearest
Neighbours (KNN) selection method consists in finding
the K RIRs nearest to that of the moving component.
The search can be limited to a circle around said com-
ponent of radius R. Both K and R can be adjusted via
the plugin GUI. The gain applied to each RIR selected
is calculated using the inverse of the distance between
the position of the moving component and the RIR’s
reference position. An exponent is applied to this gain
that can be adjusted via the plugin GUI. The sum of
the K gains is normalised to = 1 to avoid varying RIR
grid spacings having an influence on output level. The
method is illustrated in Figure 4(left). The KNN selec-
tion method is suitable for irregular, incomplete, and
1D grids (i.e. a linear arrangement). When K = 1,
this method acts as a simple RIR selector, without any
panning applied.

Delaunay triangle selection: The Delaunay selection
method consists in using the 3 RIRs that correspond
to the vertices of the Delaunay triangle in which the
moving component is currently located. When using
this method, the plugin will perform a spatial Delaunay
triangulation on the RIR grid positions of the current
scenario. If the triangulation cannot be performed (e.g.
for 1D grids), the plugin defaults to the KNN selection
method. The gain applied to each RIR is calculated us-
ing the barycentric coordinates of the current moving
component within the Delaunay triangle. The contribu-
tion of each RIR is determined with a gain proportional
to the area of the triangle formed between the two other
RIRs in the Delaunay triangle and the current mov-
ing component position. The sum of the 3 gains is
normalised to one. The method and how it behaves
when the non-locked component moves is illustrated in
Figure 4(right).

The main benefit of the Delaunay selection is that,
by construction, it will reduce the contribution of any
given RIR to zero before removing it from the auralisa-
tion. For most grids, this will reduce artefacts resulting
from RIR interpolation during navigation. The KNN
selection method, in addition to being intuitive to use,
serves as a fallback when the Delaunay selection cannot
apply.

Fig. 4: Illustration of the neighbouring RIRs selection
methods. (left) KNN: K = 3, the large grey
circle corresponds to the KNN selection radius.
(right) Delaunay: the grey triangle represents
the active Delaunay triangle. Shown gain val-
ues are figurative.

4.2 Pre vs. post-convolution interpolation

This parameter allows one to choose if the interpola-
tion between neighbouring RIRs is applied before or
after the convolution. If the pre-convolution mode is
selected, a new RIR will be generated from the selected
neighbouring RIRs and loaded into a single convolver
node. The benefit of this method is that it is less CPU
demanding, requiring a single N channel RIR convo-
lution as long as the moving component is static, or
2×N channel convolutions when it moves due to the
crossfade mechanism. The drawback of this mode is
that the interpolated RIR will have to be re-calculated
and re-loaded into the convolver each time the mov-
ing component changes position. This can slow down
the plugin and create zipper noise during the crossfade.
This mode is best suited to static auralisations where
neither source nor receiver is moving.

If the post-convolution mode is selected, the interpo-
lation will be applied after the convolution, i.e. on
the convolved audio streams resulting from each ac-
tive neighbouring RIR. The benefit of this mode is
that it only requires updating the RIRs loaded into the
convolver nodes when one or more of the active neigh-
bouring RIRs change. The drawback of this method
is that it requires as many simultaneous convolutions
as there are RIRs currently selected, multiplied by the
number of channels of these RIRs. At the expense
of CPU for audio fidelity, this mode is best suited to
dynamic auralisations with moving components.

AES International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023 August 23–25
Page 4 of 7



Poirier-Quinot, Stitt, and Katz The RoomZ plugin

4.3 Additional component descriptions

Convolver: The internal convolution module builds
upon the fast partitioned overlap-add convolution inte-
grated to the JUCE framework (version 6). Compared
to the original, it allows adjusting the cross-fade time
allotted to swap between two RIRs within a given con-
volution node. When crossfading, it also copies the
reverb tail of the current convolution engine to the new
one to ensure continuity of the signal3.

Crossfade time: Defines how long it takes to swap
between two RIRs loaded in a given convolver node. It
can be adjusted on the plugin GUI to balance respon-
siveness and rendering quality. Small values result in
fast RIR updates, accommodating fast-moving sources
and receivers. RIRs with longer decay times may re-
quire a larger cross-fade time to avoid zipper noises.

Number of inputs: This parameter defines the number
of audio channels sent to the plugin for convolution.
Available values range from 1 to the maximum number
of locked components defined in the current scenario.
Input channels can be independently muted via the
plugin GUI to examine each track / locked component
behaviour independently.

Number of outputs: Defines the number of audio
channels of the RIR used for convolution. Available
values range from 1 to the number of channels in the
RIR set of the present scenario. This allows the user
to adjust the CPU consumption of the auralisation, e.g.
working with fewer channels for a more responsive
workflow during preliminary test and setup.

Convolution threading: Allows the use of single or
multiple threads for convolution processing. For ma-
chines that support it, multi-threaded convolution will
run the processing for later RIR partitions on back-
ground threads. The first partitions are always rendered
on the real-time audio thread. This increases the maxi-
mum auralisation complexity (number of sources, chan-
nels, etc.) the plugin can handle before CPU saturation.

3This is not the case with the default JUCE convolution, which is
intended for use with IRs that are generally shorter than the cross-
fade, allowing time for the whole reverb tail to build up before
finishing the cross-fade to the new engine.

5 Future work

Future work will include improving the ease-of-use
and flexibility of RoomZ for both research and creative
work. The most obvious extension is to allow both
source and receiver to be moved simultaneously. This
requires significantly more data and quickly increases
the complexity of the user interface if the source and
receiver grids are not homogeneous.

A “preview” rendering mode is planned that will allow
the user to render a truncated version of the RIR when
mixing, reducing the CPU load. Truncated reverbera-
tion tails could be complemented with an algorithmic
reverberator (e.g. feedback delay network) matched to
the estimated reverberation time of the RIR. Upon final
export processing, the full RIR would be used.

The plugin export could also be improved to provide
maximum fidelity for off-line auralisations, without
CPU saturation limitations. The current rendering is
performed as a “live" render in real-time. A future
option could be given to the user to block the rendering
until all background tasks (RIR loading/interpolation)
is completed: an off-line rendering mode where latency
is not an issue.

To further improve ease of uptake, a web-based in-
terface for creating the configuration XML scripts is
planned. This will be complemented by the addition of
SOFA support to avoid data duplication. Furthermore,
it is intended to create a database of configurations that
can be downloaded by users spanning a large variety of
architectural and outdoor spaces. The intent is to allow
sound engineers to be able to find an acoustic space that
closely matches their needs without the necessity of
individually making large numbers of impulse response
recordings or high-definition simulations.

The loading of configurations is currently only possible
through the GUI. Future updates could allow for con-
figuration loading to be controlled via OSC, without
direct user action. This could be particularly useful for
scientists intending to run experiments or for virtual
reality auralisations.

At present, RoomZ is intended to give an accurate re-
production of “real” spaces through the use of their
measured/simulated RIRs. There may, however, be in-
stances where it may be creatively desirable to be able
to modify/alter the decay of the RIR dataset, to better

AES International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023 August 23–25
Page 5 of 7



Poirier-Quinot, Stitt, and Katz The RoomZ plugin

adapt to the artistic needs of the rendering, while main-
taining the fine temporal reflection structure details of
the room’s acoustic signature. A first approximation
for such manipulation would be a frequency-band re-
verberation slope adjustment [9], extending RoomZ to
be a more creative sound design tool.

6 Conclusion

The RoomZ plugin has been conceived to create re-
alistic dynamic auralisations of acoustic spaces. It is
freely available for research, creative, and commer-
cial creation. It uses existing sets of RIRs (either
recorded or simulated), presenting users with an in-
terface where they can move either source or receiver
positions dynamically and in real-time. It supports
the rendering of multiple sources in a single instance
of the plugin. The processing is based on partitioned
convolution interpolating between a subset of the RIR
set, selected by proximity, with a choice of render-
ing options to balance CPU load and audio fidelity.
The plugin is format agnostic, with format-specific el-
ements being implemented either upstream (i.e. RIR
generation/acquisition) or downstream (e.g. Ambisonic
rotation and decoding).

RoomZ can be used by both researchers and sound en-
gineers to create either rendered auralisations or live ex-
periences. It is presently being used to create a fictional
audio narrative around the soundscapes and acoustics
of Notre-Dame de Paris Cathedral across the centuries,
accompanying Victor Hugo while he writes his famous
novel4. It is intended that the plugin fosters discussion
between researchers and sound engineers in order to
provide insight into future developments of methods
for real-time auralisation.

7 Acknowledgments

RoomZ was developed within the European Union’s
Joint Programming Initiative on Cultural Heritage
project PHE (The Past Has Ears, Grant No. 20-JPIC-
0002-FS, phe.pasthasears.eu) and the French project
PHEND (The Past Has Ears at Notre-Dame, Grant
No. ANR-20-CE38-0014, phend.pasthasears.eu), in-
cluding participation by the Conservatoire National
Supérieur de Musique et de Danse de Paris (CNSMDP).

4Looking for Notre-Dame: lookingfornotredame.pasthasears.eu.

References

[1] Vorländer, M., Auralization: Fundamentals of
acoustics, modelling, simulation, algorithms
and acoustic virtual reality, Springer Nature,
2020.

[2] Savioja, L., Huopaniemi, J., Lokki, T., and Väänä-
nen, R., “Creating interactive virtual acoustic envi-
ronments,” J Audio Engineering Society, 47(9),
pp. 675–705, 1999.

[3] McKenzie, T., Schlecht, S. J., and Pulkki, V., “Au-
ralisation of the transition between coupled rooms,”
in Immersive and 3D Audio Conf., pp. 1–9, 2021.

[4] Poirier-Quinot, D. and Katz, B. F. G., “The
Anaglyph binaural audio engine,” in Audio En-
gineering Society Conf., pp. EB431:1–4, Milan,
2018.

[5] Kronlachner, M., “Plug-in suite for mastering the
production and playback in surround sound and
ambisonics,” Contributions to the AES Student
Design Competition, pp. 1–5, 2014.

[6] McCormack, L. and Politis, A., “SPARTA & COM-
PASS: Real-time implementations of linear and
parametric spatial audio reproduction and pro-
cessing methods,” in Audio Engineering Society
Conf., pp. 1–12, 2019.

[7] McKenzie, T., Meyer-Kahlen, N., Daugintis, R.,
McCormack, L., Schlecht, S. J., Pulkki, V., et al.,
“Perceptually informed interpolation and rendering
of spatial room impulse responses for room transi-
tions,” in Intl Congress on Acoustics, pp. 1–11,
2022.

[8] Majdak, P., Iwaya, Y., Carpentier, T., Nicol, R.,
Parmentier, M., Roginska, A., Suzuki, Y., Watan-
abe, K., Wierstorf, H., Ziegelwanger, H., et al.,
“Spatially oriented format for acoustics: A data ex-
change format representing head-related transfer
functions,” in Audio Engineering Society Conf.,
pp. 1–11, 2013.

[9] Cabrera, D., Lee, D., Yadav, M., and Martens,
W. L., “Decay envelope manipulation of room im-
pulse responses: Techniques for auralization and
sonification,” in Acoustics Conf., pp. 1–5, 2011.

AES International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023 August 23–25
Page 6 of 7

http://phe.pasthasears.eu
http://phend.pasthasears.eu
http://lookingfornotredame.pasthasears.eu


Poirier-Quinot, Stitt, and Katz The RoomZ plugin

Appendix: Example XML configuration file.
<root>

<!-- The data field is used to descirbe the configuration, displayed on the plugin UI. -->
<info data="Basilique Sainte-Anne-de-Beaupré"/>

<!-- The room image width value is used for pixel to scene unit conversion. origin_i indicates the
position relative to which element coordinates are defined. -->↪→

<room width="95" origin_x="0" origin_y="0" origin_z="0"/>

<!-- In this scenario, the source is locked and the receiver is free to move. -->
<scenario locked="source" name="Source locked">

<!-- Defining source position in the room. [src_x, src_y, src_z] corresponds to the Cartesian
coordinates of the source. [rot_x, rot_y, rot_z] corresponds to its orientation (Euler angles).
Orientation values are only displayed in the UI, not taken into account during DSP processing. -->

↪→
↪→
<source src_x="59.7" src_y="30.4" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>

<!-- Defining receiver's potential positions in the room, along with the associated source-to-receiver
RIRs to use for auralisation when the receiver is at that position. -->↪→

<receivers>
<receiver file_name="rirs/01.wav" rcv_x="28" rcv_y="20" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<receiver file_name="rirs/01.wav" rcv_x="50" rcv_y="20" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<receiver file_name="rirs/02.wav" rcv_x="70" rcv_y="20" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<receiver file_name="rirs/03.wav" rcv_x="28" rcv_y="41" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<receiver file_name="rirs/03.wav" rcv_x="50" rcv_y="41" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<receiver file_name="rirs/04.wav" rcv_x="70" rcv_y="41" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>

</receivers>

</scenario>

<!-- In this scenario, the receiver is locked and the source is free to move. -->
<scenario locked="receiver" name="Receiver locked">

<!-- Defining receiver position in the room -->
<receiver rcv_x="59.7" rcv_y="30.4" rcv_z="0" rot_x="0" rot_y="90" rot_z="0"/>

<!-- Defining source's potential positions in the room. -->
<sources>
<source file_name="rirs/05.wav" src_x="50" src_y="20" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<source file_name="rirs/06.wav" src_x="70" src_y="20" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<source file_name="rirs/07.wav" src_x="50" src_y="40" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>
<source file_name="rirs/08.wav" src_x="70" src_y="40" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>

</sources>

</scenario>

<!-- In this scenario, two locked sources are defined alongside one free to move receiver. The plugin
expects a 2 channels input, one for each source. -->↪→

<scenario locked="source" name="Multi-sources locked">

<!-- Defining source 1 position in the room. -->
<source_1 src_x="60" src_y="50" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>

<!-- Defining source 2 position in the room. -->
<source_2 src_x="60" src_y="12" src_z="0" rot_x="0" rot_y="90" rot_z="0"/>

<!-- Defining receiver's potential positions in the room. file_name_i corresponds to the
source_i-to-receiver RIR. -->↪→

<receivers>
<receiver file_name_1="rirs/09.wav" file_name_2="rirs/13.wav" rcv_x="50" rcv_y="20" rcv_z="0"

rot_x="0" rot_y="90" rot_z="0"/>↪→
<receiver file_name_1="rirs/10.wav" file_name_2="rirs/14.wav" rcv_x="70" rcv_y="20" rcv_z="0"

rot_x="0" rot_y="90" rot_z="0"/>↪→
<receiver file_name_1="rirs/11.wav" file_name_2="rirs/15.wav" rcv_x="50" rcv_y="40" rcv_z="0"

rot_x="0" rot_y="90" rot_z="0"/>↪→
<receiver file_name_1="rirs/12.wav" file_name_2="rirs/16.wav" rcv_x="70" rcv_y="40" rcv_z="0"

rot_x="0" rot_y="90" rot_z="0"/>↪→
</receivers>

</scenario>

</root>

AES International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023 August 23–25
Page 7 of 7


	Introduction
	State of the art
	Plugin overview
	Create a configuration
	Load a configuration and a scenario
	Moving source or receiver

	Detailed components
	Neighbouring RIRs selection
	Pre vs. post-convolution interpolation
	Additional component descriptions

	Future work
	Conclusion
	Acknowledgments

