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VALUATIONS ON THE CHARACTER VARIETY:

NEWTON POLYTOPES AND RESIDUAL POISSON BRACKET

JULIEN MARCHÉ AND CHRISTOPHER-LLOYD SIMON

Abstract. We study the space of measured laminations ML on a closed surface from the valua-

tive point of view. We introduce and study a notion of Newton polytope for an algebraic function

on the character variety. We prove, for instance, that trace functions have unit coefficients at
the extremal points of their Newton polytope. Then we provide a definition of tangent space

at a valuation and show how the Goldman Poisson bracket on the character variety induces a

symplectic structure on this valuative model for ML. Finally we identify this symplectic space
with previous constructions due to Thurston and Bonahon.

Keywords. Character variety, surface group, valuation, Newton polytope, measured lamination,

real tree, Goldman Poisson bracket, symplectic structure, skein algebra.

Introduction

The algebra of functions on the character variety. Let S be a closed oriented surface of genus
g ≥ 2. Its character variety X is the quotient of the space Hom(π1(S),SL2(C)) by the equivalence
relation identifying ρ1 and ρ2 if and only if tr ρ1(γ) = tr ρ2(γ) for all γ ∈ π1(S). By construction, it
is an affine variety whose ring of functions C[X] is generated by the trace functions tγ : ρ 7→ tr ρ(γ)
for γ ∈ π1(S). The function tγ only depends on the conjugacy class of γ up to inversion, that is on
the free homotopy class of the corresponding unoriented loop.

These trace functions are not algebraically independent: the famous identity tr(AB)+tr(AB−1) =
tr(A) tr(B) for A,B ∈ SL2(C) implies, for instance, that if α and β represent simple loops inter-
secting once, then

tαtβ = tγ + tδ

where γ and δ are elements in π1(S) representing the simple curves obtained by smoothing the
intersection between α and β in the two possible ways.

This phenomenon generalizes as follows. Given a multiloop α, that is a multiset {α1, . . . , αn}
of non-trivial loops αi ∈ π1(S), the function tα = tα1tα2 · · · tαn can be uniquely decomposed as a
linear combination

(1) tα =
∑

mµtµ

where each µ is a multicurve, that is a (possibly empty) multiloop represented by pairwise disjoint,
simple, non-trivial loops. This means that the set MC of multicurves indexes a linear basis for the
algebra of characters C[X] which is privileged from the topological viewpoint; it is also invariant
under the (algebraic) automorphism group of C[X], as we proved in [MS21].

It is an old problem to understand the algebraic structure of C[X], whose study has been initiated
by Fricke and Vogt in the late 19th century, and revisited in the seventies by the work of Procesi,
Horowitz and Magnus among others (see [Mag81] for a review). One approach is to investigate the
coefficients mµ of the functions tα.
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In this article, we define the Newton set ∆(tα) ⊂ MC of tα, in analogy with the extremal points
of the ordinary Newton polytope of a polynomial, as follows.

Definition (Newton Set). For f =
∑
mµtµ decomposed in the basis of multicurves, we define its

support as Supp(f) = {µ ∈ MC,mµ 6= 0}.
We say that µ ∈ Supp(f) is extremal in f if there exists a multicurve ξ such that i(ξ, µ) > i(ξ, ν)

for all ν ∈ Supp(f) distinct from µ.
The Newton set ∆(f) is the set of extremal multicurves in f .

In this definition, i(·, ·) denotes the geometric intersection number, and standard properties of
measured laminations imply that ξ can be replaced by a simple curve or a measured lamination.
Our first result is the following.

Theorem A (Trace functions are unitarity). For every multiloop α = {α1, . . . , αn}, the function
tα is unitary in the sense that mµ = ±1 for all µ ∈ ∆(tα).

To introduce our next result, recall that the algebra of functions C[X] carries a natural Pois-
son bracket stemming from the Atiyah-Bott-Weil-Petersson-Goldman symplectic structure on X.
Following Goldman [Gol84], for α, β ∈ π1(S) it is given by the formula

(2) {tα, tβ} =
∑
p∈α∩β

εp

(
tαpβp − tαpβ−1

p

)
where the sum ranges over all intersection points p between transverse representatives for α∪β and
εp is the sign of such an intersection, while αp, βp denote the homotopy classes of α, β based at p.

Our second result interprets the coefficients of {f, g} at the extremal multicurves of fg in terms
of Thurston’s PL-symplectic structure on the space ML of measured laminations on S.

Theorem B (Extremal structure constants for the Poisson Bracket). Let µ and ν be two multic-
urves. For ξ ∈ ∆(tµtν) we set Eξ = {λ ∈ ML | i(ξ, λ) = i(µ, λ) + i(ν, λ)}. These closed subsets of
ML form a piecewise linear partition of ML with disjoint interiors.

For Thurston’s symplectic structure, the Poisson bracket {iµ, iν} of the length functions defined
by iµ(λ) = i(µ, λ) is equal to the coefficient of tξ in {tµ, tν} almost everywhere in Eξ.

Let us illustrate the theorem with the following example. The curves shown in Figure 1 satisfy
tαtβ = tc1tc3 +tc2tc4−tγ−tδ and {tα, tβ} = 2tδ−2tγ , so we find that ∆(tαtβ) = {c1∪c3, c2∪c4, γ, δ},
whereas ∆({tα, tβ}) = {γ, δ}.

The Newton set of tαtβ decomposes ML into 4 domains where i(α ∪ β, λ) is equal to the inter-
section of λ with c1 ∪ c3 or c2 ∪ c4 or γ or δ respectively. In the interior of these domains {tα, tβ}
takes the values 0, 0,−2, 2 respectively.

c1 c2

c3c4

α

β
γ δ

Figure 1. Product and Poisson bracket in a sphere with four punctures.
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Strong relations between the symplectic structures on X and ML had already been observed, for
instance in [PP91] or [SB01]. Theorem B can be related to a formula for {iµ, iν} obtained in [Bon92,
Proposition 6] by degenerating Wolpert’s “cosine formula”. However, our approach is algebraic in
the sense that it uses valuations instead of Teichmüller theory.

Beyond these two results, the purpose of this article is to investigate the space of measured
laminations from the valuative viewpoint, in particular its symplectic structure. This study was
motivated by a new characterisation of valuations associated to measured laminations that we
obtained in [MS21]. We devote the remaining part of this introduction to an overview of our
motivations, as well as the intermediate results that we obtained while revisiting the theory of
measured laminations from the valuative viewpoint since we believe they are of independent interest.
We take this as an opportunity to recall general ideas for the benefit of a wide audience.

The Newton polytope. A leading analogy in this article is to think of the collection (tµ) as a
monomial basis in a polynomial algebra; keeping in mind that it is not stable under multiplication.

Consider the degree degd defined for d ∈ Rn on the algebra C[t1, . . . , tn] by

degd

(∑
µ

mµt
µ

)
= max{〈µ, d〉,mµ 6= 0}

where tµ = tµ1

1 · · · tµnn , and 〈·, ·〉 stands for the usual scalar product. This degree is (the opposite
of) a monomial valuation. For P ∈ C[t1, . . . , tn], a monomial tµ is an extremal point of its usual
Newton polytope ∆(P ) if mµ 6= 0 and for some d ∈ Rn the maximum defining degd is attained
uniquely at tµ.

Our starting point is to replace the degree degd by the valuation associated to a measured
lamination λ in S. For us a valuation will be a map v : C[X] → {−∞} ∪ R satisfying v(fg) =
v(f) +v(g) and v(f +g) ≤ max{v(f), v(g)} for all f, g ∈ C[X]. We choose this convention, which is
opposite to the usual one, to avoid crowding too many signs. In the general language of valuations
(see for instance [Vaq00]), our valuations are centered at infinity on the affine variety X and take
non-negative values on the ring C[X] of characters.

In a groundbreaking series of articles starting with [MS84], Morgan-Shalen showed that the
character variety X can be compactified using valuations, in the spirit of the Riemann-Zariski
compactification. In particular the space of measured laminations, viewed as Thurston’s compact-
ification of Teichmüller space, can be embedded in the space of valuations on C[X] with values in
an archimedian group. However, this embedding used a degeneration process and is not completely
explicit: if v is the valuation associated to a lamination λ, we clearly have v(tµ) = i(λ, µ), but it
was not clear what should be v(f) for a general element f ∈ C[X].

In our previous article [MS21], we showed that the space of measured laminations ML can be
identified with the space of simple valuations v : C[X] → {−∞} ∪ R≥0. The word simple means
monomial with respect to the multicurve basis in the sense that the following holds:

(3) v
(∑

mµtµ

)
= max{v(tµ),mµ 6= 0}.

This justifies our definition for the Newton set of f =
∑
mµtµ as the set of µ ∈ Supp(f) such that

the maximum in (3) is attained uniquely at tµ for some v ∈ ML.
For a concrete example, consider the particular case of a multiloop α contained in an incom-

pressible pair of pants P ⊂ S. The subsurface P contains only three simple curves, its boundary
components, and they do not intersect each other. Denoting by t1, t2, t3 the trace functions along
these components, we have tα ∈ Z[t1, t2, t3]. This polynomial is often called the Fricke polynomial
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and has been much studied, see [Mag81, Section 2.2]. Now any valuation associated to a measured
lamination on S restricts to a monomial valuation on C[t1, t2, t3], and we find that our Newton set
corresponds to the extremal points of the usual Newton polytope. Even for such α ⊂ P , it is not
easy to determine ∆(tα) from the αi ∈ π1(S), and the unitarity property is not an obvious one.

It is worth noticing that we only talk about the Newton set and not about the Newton polytope,
as we do not know any reasonable notion of convexity in ML. However, we can define the dual
Newton polytope of a function f ∈ C[X] as ∆∗(f) = {v ∈ ML | v(f) ≤ 1}. Moreover we could
define the poset of faces of ∆(f) using the order structure. Its combinatorics may be a promising
land of investigation, but we did not go further in that direction.

Symplectic and combinatorial volumes of dual polytopes. This paragraph only serves mo-
tivational purposes and does not claim new results, it may be skipped harmlessly.

Thurston’s symplectic form on ML provides a notion of volume, thus we may ask for the topo-
logical meaning of the volume Vol ∆∗(tα) when α is a multiloop.

When α is a filling multiloop, a celebrated theorem of M. Mirzakhani [Mir16] extended by Rafi
and Souto [RS17], estimates the number of elements in its orbit under the modular group Mod(S)
as a bound on their complexity tends to infinity. More precisely, fix another filling multiloop β, and
denote mg > 0 the volume of the moduli space of hyperbolic metrics on S for the Weil-Petersson
form. The theorem claims the following:

lim
r→∞

Card{ϕ ∈ Mod(S) | i(β, ϕ(α)) ≤ r}
r6g−6

=
Vol ∆∗(tβ) Vol ∆∗(tα)

mg

The identification between measured laminations and simple valuations implies, using Equation
(3), that the Newton dual polytope ∆∗(f) of f ∈ C[X] equals the intersection of ∆∗(tµ) for
µ ∈ ∆(f). These “elementary cones” ∆∗(tµ) = {v ∈ ML | v(tµ) < 1} are described by explicit sets
of linear inequalities in any PL chart of ML, and the volume of their intersection is computable.
This yields a constructive procedure to compute Mirzakhani’s constant Vol ∆∗(tα), and shows that
it depends only on ∆(tα). It also shows that these volumes are rational.

A different motivation is that this Newton set, as the usual one, could have applications to
the problem of counting solutions of algebraic equations in X. We wonder for instance if it helps
estimating the number of solutions to a system of 6g − 6 equations tγi = xi where γ1, . . . , γ6g−6 ∈
π1(S) and x1, . . . , x6g−6 ∈ C. This could have interesting applications to 3-dimensional topology,
for instance to evaluate the number of characters of representations of π1(M) of a 3-manifold M
from a Heegaard decomposition.

Measured laminations as valuations. In this article we study measured laminations using the
tools of valuation theory. There are two well-known invariants for an archimedean valuation v: its
rational rank defined as the dimension of the Q-vector space generated by the group Λv of its values
(that is differences of lengths for the corresponding measured lamination), and the transcendence
degree of its residue field kv. These invariants are related by the celebrated Abhyankar inequality
rat. rk(v) + tr.deg(kv) ≤ 6g − 6. Here we will show the following.

Proposition A (Characterising strict valuations). For a valuation v associated to a measured
lamination λ, the following properties are equivalent.

(1) Distinct multicurves µ and ν have distinct lengths: i(λ, µ) 6= i(λ, ν).
(2) The residue field of C(X) at v has transcendence degree 1, or kv = C.
(3) The Q-vector space generated by the set of lengths i(λ, µ) for µ ∈ MC has dimension 6g−6.
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The first property implies that v defines a total order on the set of multicurves, so the max in
Equation 3 will always be strict, which is why they deserve to be called strict valuations. They played
a prominent role in our previous article, where we showed that almost all valuations are strict in
the measure theoretical sense. They will be equally important in this paper, as the second property
enables to define the residual value at v of a function f ∈ C(X) satisfying v(f) ≤ 0. Combined with
the last property, it shows that strict valuations are Abhyankar in the sense that his inequality is
an equality: we wonder whether any measured lamination gives rise to an Abhyankar valuation.

We have not come across strict valuations in the literature. Instead we encounter maximal mea-
sured lamination, which are those whose support cannot be enlarged. In this article, we characterize
the valuations associated to maximal laminations as being acute: for any α, β ∈ π1(S) \ {1} we
never have v(tαtβ) = v(tαβ) = v(tαβ−1) so that these quantities are the lengths for the edges of an
acute isosceles triangle. We will show that a valuation is acute if and only if any time we smooth
a self-intersection of a multiloop which is taut (minimally intersecting in its homotopy class), the
two resulting multiloops have distinct λ-lengths. This property plays a crucial role in the proof of
the unitarity theorem. We also show that any strict valuation is acute and wonder if the reciprocal
statement is true.

Tangent spaces and Thurston’s symplectic structure. The space of measured laminations
is a PL-manifold but does not carry any sensible smooth structure (for which intersection numbers
have smooth variations), so there is no symplectic structure in the usual sense. However, Thurston
showed that most points (maximal laminations) have a well-defined tangent space endowed with a
non-degenerate skew-symmetric form (see [PH92, Chapter 3]).

In this article we propose a straightforward notion for the tangent space TvML at a valuation, and
show that when v is strict, it coincides with the space Hom(Λv,R) which has dimension rat. rk(v) =
6g − 6. Then we show how the Goldman Poisson bracket induces a “residual Poisson bracket”
at any strict valuation v, thus endowing TvML with a symplectic structure. For future reference
we shall name this model after Goldman. This uses the crucial fact that given f, g ∈ C[X], we
have v({f, g}) ≤ v(fg) for all v ∈ ML. This property amounts to the inverse inclusion of the dual
polytopes ∆∗({f, g}) ⊃ ∆∗(fg).

Finally, we provide precise identifications between this symplectic vector space and two other
existing models in the literature, which we now pass under review. In the work of Morgan-Shalen,
the key notion allowing to relate measured laminations and valuations is the action of π1(S) on
real trees. We may represent this dynamical point of view as lying between the two others in the
following schematic table, which the reader may use as a dictionary.

Topological/Geometrical Dynamical Functional
measured foliation action of π1(S) simple

measured geodesic laminations on a real tree valuation
length function translation length trace function

filling/aperiodic lamination free action positive valuation
maximal lamination trivalent tree acute valuation

? ? strict valuation

For future reference, we name the symplectic vector spaces appearing naturally from each of
those approaches after Thurston, Bonahon and Goldman respectively.

Goldmans’s model: it is given by the residual Poisson bracket on TvML which we introduced
briefly, it will be described with more detail in the body of the paper.
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Thurston’s model: viewing λ as a maximal measured lamination, one can associate a ramified
2-fold covering S′ → S known as the orientation cover of the lamination. The group H1(S′,R)
splits into a symmetric and antisymmetric part with respect to involution of the covering S′ → S.
The space H1(S′,R)− with the cup-product form is the geometrical model for TλML.

Bonahon’s model: if we consider a trivalent real tree T with a free and minimal action of π1(S),
we can consider the space of functions c : V (T )2 → R on the set of pairs of trivalent vertices of T
which satisfy:

(1) c(x, y) = c(y, x).
(2) c(x, y) = c(x, z) + c(z, y) if z belongs to the geodesic joining x to y.
(3) c(αx, αy) = c(x, y) for all α ∈ π1(S).

Again, this space has a natural antisymmetric form related to the cyclic orientation of T at every
trivalent vertex. It is equivalent to the space of transverse cocycles introduced by Bonahon (see
[Bon96, p.240]). The identification between Thurston’s and Bonahon’s model is well-known but
all proofs we encountered use auxiliary structures like train tracks. At the end of the article, we
provide “invariant” proofs for the following result.

Theorem C (Symplectomorphisms). There are natural isomorphisms of symplectic vector spaces
between the models of Thurston, Bonahon and Goldman.

In particular we provide a new construction of independent interest reminiscent of Milnor’s join
construction, which starting from a trivalent real tree, gives a space homotopically equivalent to
the covering S′. We may wonder which of these three symplectic identifications persist for more
general actions of Fuchsian groups on real trees.
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1. Background

1.1. Algebra of functions on the character variety. Let S be a closed connected and oriented
surface of genus g ≥ 1. We denote by X the character variety of S, which is the algebraic quotient
of its representation variety Hom(π1(S),SL2(C)) by the conjugacy action of SL2(C), defined as the
spectrum of the algebra of invariant functions:

C[X] = C[Hom(π1(S),SL2(C))]SL2(C).
6



A celebrated result of Procesi gives generators and relations for this algebra (which holds for any
finitely generated group). It appears in the form presented here in [BH95, Proposition 9.1]. For
α ∈ π1(S), we note tα ∈ C[X] the trace function given by tα([ρ]) = tr ρ(α).

Theorem 1. (Procesi) The algebra C[X] is generated by the tα for α ∈ π1(S). The ideal of relations
is generated by t1 − 2 and tαtβ − tαβ − tαβ−1 for all α, β ∈ π1(S).

Definition 1. A multiloop on S is a class of continuous maps f : Γ → S from compact 1-
dimensional manifolds Γ to S which is not homotopic to a constant on any component. We con-
sider it modulo the relation declaring f equivalent to f ′ : Γ′ → S when there is a homeomorphism
ϕ : Γ→ Γ′ such that f ′ ◦ φ is homotopic to f . We allow the empty multiloop (Γ = ∅).

A multicurve is a multiloop which is represented by an embedding. We denote by MC the set of
multicurves.

A multiloop amounts to a finite multiset {α1, . . . , αn} of non-trivial conjugacy classes in π1(S)
considered up to inversion: we define tα =

∏n
i=1 tαi , in particular t∅ = 1. The components of a

multicurve must be non contractible, simple and pairwise disjoint.
Applying the trace relation recursively to reduce the number of self intersections in multiloops,

one may deduce part of the following theorem [PS00]. The linear independance requires more work.

Theorem 2. The family (tµ)µ∈MC forms a linear basis of the algebra C[X].

1.2. Deriving the Poisson algebra from the Kauffman algebra. The multiplication and the
Poisson bracket on C[X] appear naturally as by-products of the Kauffman algebra K(S,R) over
some ring R containing an invertible element A. Recall that a banded link in an oriented 3-manifold
is the image by a tame embedding of a finite union of oriented annuli.

As an R-module, the Kauffman algebra is the quotient of the free module over isotopy classes of
banded links L in S × [0, 1], by the sub-module generated by Kauffman’s local skein relations

[©∪ L] = (−A2 −A−2)[L] and [L×] = A[L+] +A−1[L−]

where L×, L+, L− are banded links differing in a ball as shown in Figure 2.

L× L+ L−

Figure 2. Local skein relation.

The product is given by stacking two banded links one above the other. Precisely,

[L0][L1] = [Φ0(L0) ∪ Φ1(L1)] where Φi(x, t) = (x, (t+ i)/2).

Any multicurve µ on S can be seen as a banded link [µ] in S × [0, 1] by considering a tubular
neighborhood S × {1/2} often called its blackboard framing.

We sum up what we need to know about skein algebras in the following theorem.

Theorem 3. Using the previous notations:

(1) The module K(S,R) is a free R-module generated by multicurves.
7



(2) The algebra K(S,C) with A = −1 is commutative, and the map sending the blackboard
framing [µ] to (−1)|µ|tµ defines an isomorphism K(S,C) → C[X] where |µ| denotes the
number of components of µ.

(3) The map sending a multicurve to its blackboard framing yields an isomorphism of C[A±1]-
modules K(S,C)⊗ C[A±1] ' K(S,C[A±1]). In this setting, we have:

{f, g} =
1

2

d

dA

[
fg − gf

]
A=−1

.

These algebras were introduced independtly by Przytycki and Turaev. The assertions in Part
(1), in Part (2) and the isomorphism of Part (3) are [PS00, Fact 4.1, Fact 2.7 and Theorem 2.8].
Part (2) is also proved in [Bul97]. Finally, the last formula appears in [BFKB99].

Let us explain more precisely Theorem 3 (1). Given a diagram D for a banded link L ⊂ S× [0, 1],
we denote by C its set of crossings. For any map σ : C → {±1}, set wσ =

∑
c σ(c) and consider the

diagram Dσ obtained after smoothing each crossing c ∈ C according to the sign σ(c), and removing
the nσ trivial components which appear in the result. The following formula holds in K(S,R):

(4) [L] =
∑

σ : C→{±1}

(−A2 −A−2)nσAwσ [Dσ]

which, after grouping terms corresponding to a same diagram [Dσ], yields the decomposition of
[L] in the basis of multicurves. We use this formula in order to understand the product of two
multicurves µ, ν: intuitively, the product is obtained by taking the union µ ∪ ν and summing over
all possible smoothings.

By Theorem 3 (2), we deduce that the algebra C[X] has a linear basis indexed by trace functions
of multicurves. At A = −1, the class of [L] does not change if we change a crossing. Hence, we can
replace the notion of banded link with the simpler notion of multiloop that we defined previously.

The Kauffman algebra is not completely necessary for our purposes. However, we find it concep-
tually useful for the following reasons. It transforms the trace relation into a local relation whose
sign is more convenient (for instance while performing successive diagrammatic computations), and
a better understanding of the product in terms of smoothings. It also provides a simple reason
to why the Goldman bracket actually satisfies the Jacobi relation: this comes from Theorem 3 (3)
and the obvious associativity of multiplication in the Kauffman algebra. Finally, in the context of
this article, it provides an alternative formula for the Poisson bracket which enlightens Theorem
B. Indeed, a smoothing σ which is extremal for [α][β] in K(S,R) is also extremal for the Poisson
bracket {tα, tβ} in C[X]. Its coefficient in the former is ±1 by Theorem A and we will interpret its
coefficient ±wσ in the latter as a residual Poisson bracket.

2. Measured laminations and simple valuations

2.1. Simple valuations. It is well-known that a measured lamination λ on S is characterized
by the length i(λ, γ) it assigns to every simple curve γ. This “functional” point of view can be
extended to define a map vλ : C[X]→ {−∞} ∪ R≥0 satisfying v(0) = −∞ and for all f =

∑
mµtµ

decomposed in the multicurve basis:

(5) vλ(f) = max{i(λ, µ) | mµ 6= 0}

where i(λ, µ) = i(λ, µ1) + · · ·+ i(λ, µn) for a multicurve µ with components µ1, . . . , µn. By [MS21,
Proposition 1.2], Equation (5) is coherent with the fact that for any α ∈ π1(S), not necessarily
simple, we actually have vλ(tα) = i(λ, α). Let us recall [MS21, Definition 1.1].

8



Definition 2. A simple valuation on C[X] is a map v : C[X]→ {−∞} ∪ R≥0 satisfying:

(1) v(f) = −∞ if and only if f = 0.
(2) v(fg) = v(f) + v(g) for all f, g ∈ C[X].
(3) If f =

∑
mµtµ then v(f) = max{v(tµ) | mµ 6= 0}.

The following characterization was of fundamental importance in [MS21]: it yields an homeo-
morphism between the space of simple valuations and ML, both topologies being defined by simple
convergence for the evaluations of multicurves.

Theorem 4 (M-S). The simple valuations on C[X] are precisely the vλ for λ ∈ ML.

In this paper we only consider simple valuations, so we write v ∈ ML and λ ∈ ML interchangeably.
The maximality condition of Definition 2 implies that for any f, g ∈ C[X], we have v(f + g) ≤

max{v(f), v(g)}, with equality if v(f) 6= v(g). Given a multiloop α with a self-intersection p, the
two smoothings at p give multiloops α+ and α− and the trace relation reads tα = ±tα+ ± tα− .
Hence any valuation v satisfies v(tα) ≤ max{v(tα+), v(tα−)}. The following lemma was proven by
Dylan Thurston in [Thu09], and removes the condition v(tα+

) 6= v(tα−) for the equality to hold.
We provide an independent proof in Section 5 which relies on the geometry of real trees.

Lemma 1 (Smoothing Lemma). Let α be a taut multiloop, having a self intersection p with smooth-
ings α+ and α−. For any v ∈ ML we have v(tα) = max{v(tα+

), v(tα−)}.

Still, it will prove useful to consider valuations v for which we always have v(tα+
) 6= v(tα−). This

holds over subsets of full measure in ML, as we now explain.

2.2. Acute valuations. We say that a simple valuation v = vλ ∈ ML is positive if v(f) > 0 for all
non-constant f ∈ C[X]. It is equivalent to say that i(λ, α) > 0 for all α ∈ π1(S), or i(λ, µ) > 0 for
all simple curves µ. Such measured laminations are called filling or aperiodic in the literature.

We now introduce the notion of acute valuation, which will happen to be equivalent to the notion
of maximal measured geodesic lamination, as we will show in Proposition 6.

Definition 3. A simple valuation v ∈ ML is called acute if it is positive and for any non-trivial
α, β ∈ π1(S) we do not have v(tαβ) = v(tαtβ) = v(tαβ−1).

Lemma 2 (Unique smoothing). A positive simple valuation vλ ∈ ML is acute if and only if for
every taut multiloop α, and smoothings α± at a self-intersection, we have:

i(λ, α+) 6= i(λ, α−).

This justifies the terminology: v ∈ ML is acute when for every such a multiloop α, we have either
v(α) = v(α+) > v(α−) or v(α) = v(α−) > v(α+), so the values v(α), v(α+), v(α−) are the lengths
of an acute isosceles triangle with one shortest edge corresponding to either v(α−) or v(α+).

Proof. Suppose v ∈ ML is acute. By decomposing α into connected components, we observe that
the smoothing concerns at most two of them, and the proof reduces to the following cases.

(1) Either α is a single loop self-intersecting at p. Denote by γ, δ ∈ π1(S, p) the elements such
that α is homotopic to γδ. The tautness assumption implies that γ and δ are non-trivial.
Depending on the combinatorics of the intersection, one smoothing is homotopic to γδ−1

and the other to the union γ ∪ δ. If v(tγδ−1) = v(tγtδ) then, from the acute property v(tγδ)
differs from them, which contradicts the Smoothing Lemma 1.
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(2) Otherwise the multiloop α has two components intersecting at p. We denote by γ, δ ∈
π1(S, p) the (non-trivial) homotopy classes of the two components. Again, α+ and α− are
homotopic to γδ and γδ−1: the reasoning is the same.

Conversely, suppose α, β ∈ π1(S) are non trivial. If they are powers of a same element, say
α = γn and β = γm, then v(tαβ) = |n + m|v(tγ) and v(tαβ−1) = |n −m|v(tγ). As v(tγ) > 0, the
equality v(tαβ) = v(tαtβ) = v(tαβ−1) implies mn = 0 which is impossible.

Consider a hyperbolic structure on S, so that α and β act on S̃ ' H2 by hyperbolic translations
along distinct axes Aα and Aβ respectively.

(1) If Aα∩Aβ = {p}, then p projects to a point on α∩β. The smoothings at p are αβ and αβ−1.
The assumption i(λ, αβ) 6= i(λ, αβ−1) says that v satisfies the condition v(tαtβ) 6= v(tαβ−1)
ensuring that of Definition 3.

(2) If Aα ∩ Aβ = ∅, then up to replacing β with β−1, we may assume the axes point in the
same direction. Now, the axes of αβ and βα intersect in a point p. This point projects to
a self-intersection of αβ which, after smoothing, gives alternatively α ∪ β and αβ−1. The
assumption i(λ, α ∪ β) 6= i(λ, αβ−1) says that v satisfies the condition v(tαtβ) 6= v(tαβ−1)
ensuring that of Definition 3.

�

2.3. Strict valuations. A simple valuation v can be extended to C(X) by v(f/g) = v(f)− v(g).
We define its valuation ring Ov = {f ∈ C(X) | v(f) ≤ 0} which has a unique maximal ideal
Mv = {f ∈ C(X) | v(f) < 0} and residue field kv = Ov/Mv.

Lemma 3. A simple valuation v = vλ satisfies kv = C if and only if for all distinct multicurves
µ, ν we have i(λ, µ) 6= i(λ, ν).

Following [MS21], we will refer to them as strict valuations. We showed in [MS21, Lemma 3.4]
that the set of non-strict valuations has zero measure in ML.

Proof. Suppose that kv = C and consider two distinct multicurves µ and ν. If v(tµ) = v(tν) then
tµ/tν ∈ Ov \Mv so there exists λ ∈ C∗ such that tµ/tν − λ ∈Mv thus v(tµ/tν − λ) < 0. But this
implies v(tµ − λtν) < v(tν), which contradicts the third condition in Definition 2.

Conversely, suppose that v takes distinct values on distinct multicurves and pick f = P/Q ∈
Ov \Mv. Then v(P ) = v(Q), so the decompositions of P and Q in the basis of multicurves must
be of the form P = atµ + P ′ and Q = btµ +Q′ with a, b ∈ C∗ and v(P ′), v(Q′) < v(tµ). This gives

f =
atµ + P ′

btµ +Q′
=
a+ P ′/tµ
b+Q′/tµ

=
a

b
mod Mv.

�

For a simple valuation v = vλ, the set of values Λ+
v = v(C[X] \ {0}) coincides with Λ+

v =
{i(λ, µ) | µ ∈ MC} by Condition 3 in Definition 2, and has the structure of an abelian semi-group
by Condition 2 in Definition 2. Its associated group is Λv = v(C(X)∗) and consists in differences
of λ-lengths.

When v is strict, the map µ 7→ i(λ, µ) is a bijection between MC and Λ+
v . It is enlightening to

think about the semi-group structure on multicurves obtained by pulling back the addition in Λ+
v in

the following way. Let µ and ν be two multicurves, viewed as elements of K(S,C). All smoothings
of µ∪ ν are multicurves ξ with i(λ, ξ) ≤ i(λ, µ) + i(λ, ν) and equality holds for exactly one of them
corresponding to the “sum of µ and ν with respect to v”.
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We define the rational rank of v to be rat. rk(v) = dimQ Λv ⊗ Q. It satisfies the following
Abhyankar inequality (see [Ota15] and references therein):

rat. rk(v) + tr.deg(kv) ≤ dimX

from which we deduce that if a simple valuation has maximal rational rank, that is rat. rk(v) =
dimX, then it is strict.

Proof of Proposition A. By Lemma 3, we know that the first two properties of the proposition are
equivalent. The Abhyankar inequality gives the implication rat. rk(v) = 6g−6 =⇒ tr.deg(kv) = 0.
The reverse implication will follow from the results of the remaining sections. Precisely, given a
strict valuation v, we will define a tangent space TvML whose dimension is rat. rk(v). Then, we
will show successively that this tangent space is isomorphic to the Bonahon and Thurston models.
It is well-known that the latter has dimension 6g − 6, proving the last step of the proposition. �

3. Newton polytopes of trace functions

This section relies on the following lemma whose proof is postponed to Section 5.

Lemma 4. The set of acute simple valuations has full measure in ML.

Definition 4. Let v ∈ ML be any simple valuation and f ∈ C[X] any function decomposed as∑
mµtµ in the multicurve basis.

- The multicurve µ ∈ Supp(f) is v-extremal in f if v(tν) < v(tµ) for every other ν ∈ Supp(f).
- The multicurve µ is extremal in f if it is v-extremal in f for some v.
- The function f is unitary if mµ = ±1 for any extremal multicurve in f .
- The Newton set of f is the subset ∆(f) ⊂ MC of extremal curves in f .

We observe that if v is strict, then µ is v-extremal in f if and only if v(f) = v(tµ). Moreover, as
strict valuations are dense in ML, a multicurve is extremal in f if and only if it is v-extremal in f
for some strict v.

3.1. Trace functions are unitary.

Theorem 5 (Unitarity). If α is a multiloop in S, then tα is unitary.

Proof. Let v be a strict acute valuation and µ be the unique multicurve such that v(tα) = v(tµ). We
must prove that mµ = ±1. We proceed by induction on the number of intersections of α. If there
are none, then the result is obvious. Otherwize, put α in taut position and consider its smoothings
at an intersection. The Lemma 1 and the assumption that v is acute imply that v(tα+) 6= v(tα−).
One can suppose that v(tα) = v(tα+

) > v(tα−). The coefficient of tµ in tα is the same as in ±tα+
,

so the induction hypothesis yields the result. �

Remark 1. If we represent a taut multiloop as the projection of a banded link L in S × [0, 1], we
may decompose it in the basis of multicurves µ ∈ K(S,Z[A±]) with blackboard framing. Then, the

coefficient of µ in L is equal to An
+−n− where n± count the number of ±-resolutions performed

while transforming L into µ. At A = −1, we find the sign (−1)s for the extremal coefficient, where s
is the number of self-intersections of α. The proof is the same, using inductively the skein relation.

Remark 2. We know from [Thu14] that MC indexes another basis (t′µ) of C[X] for which the
multiplicative structure constants are positive. The change of basis from (tµ) to (t′µ) is triangular,
in the sense that if µ = {µ1, . . . , µk} as a multiset, then t′µ is a polynomial in the tµj with leading
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monomial ±tµ1 . . . tµk . In this basis, the analog notion of Newton set will be the same (that is
indexed by the same multicurves), and its extremal coefficients will be 1.

Corollary 1. Any strict valuation is acute.

Proof. Let v be a strict valuation and consider a taut multiloop α. Suppose v(tα+
) = v(tα−).

Then tα+ and tα− must have the same v-extremal multicurve µ. This defines an open condition on
v ∈ ML, namely that v(tµ) > v(tν) for all ν ∈ ∆(tα−tα+) \ {µ}. But simple acute valuations are
dense in ML so the same will hold for some acute valuation, contradicting Lemma 2. The conclusion
follows from the converse part of that Lemma. �

3.2. Extremal multicurves of tµtν and {tµ, tν}. Let µ and ν be multicurves in S and consider
a taut immersion µ ∪ ν for their union. Note that such an immersion is unique up to isotopy and
permutations of parallel strands. This follows from the methods and results of [HS94], specifically
Theorem 2.1 and the discussion ensuing Example 2.4.

We define the embedding Lµ(ν) obtained by smoothing all intersections of µ∪ ν with a left turn
as we travel along a segment of µ and meet a segment of ν. Smoothing all intersections with a right
turn would yield Lν(µ).

This is the product considered by Luo in [Luo10], in particular his Lemma 8.1 shows that Lµ(ν)
is a multicurve (it has no trivial components) and his Theorem 2.1 describes several of its properties.

Proposition 1. Let µ, ν be multicurves. The multicurves Lµ(ν) and Lν(µ) are extremal for the
product tµtν , and if i(µ, ν) > 0 then they are distinct.

Proof. If i(µ, ν) = 0 then Lµ(ν) = µ ∪ ν = Lν(µ) and the statement follows.
Now suppose i(µ, ν) > 0. We first observe that among all smoothings of the union µ ∪ ν, those

which maximise vµ are precisely Lµ(ν) and Lν(µ). Indeed, we know from [Luo10, Theorem 2.1 (iii)]
that i(µ,Lµ(ν)) = i(µ, ν) = i(µ,Lν(µ)), but any other smoothing ξ is made of segments of µ and ν
which somewhere alternate between a left turn and right turn, thus forming a bigon with µ so that
i(µ, ξ) < i(µ, ν). The fact that Lµ(ν) 6= Lν(µ) can be obtained from [Luo10, Corollary 8.2] which
proves i(Lµ(ν), Lν(µ)) = 2i(µ, ν).

We deduce from the preceding discussion and the multiplication formula (4) that the distinct
multicurves Lµ(ν) and Lν(µ) both appear in the decomposition of tµtν , and are the only two
maximizers of vµ. The condition vλ(Lµ(ν)) = vλ(Lν(µ)) defines on λ ∈ ML a codimension-1 PL-
subset (see [MS21, Lemma 1.6] for a proof). Hence a slight perturbation of the valuation vµ off
that subset in one direction or the other shows that Lµ(ν) and Lν(µ) are indeed extremal terms in
the product. �

Corollary 2. Let µ and ν be multicurves such that i(µ, ν) > 0. Then Lµ(ν) and Lν(µ) are extremal
terms for the Poisson bracket {tµ, tν} whose coefficients in the basis of multicurves equals ±i(µ, ν).

Proof. We may deduce this using Theorem 3 which derives the Poisson bracket from the commutator
in the skein algebra, but let us detail the computation without referring to the skein product.

For this, apply the Goldman formula (2) to the multiloops α, β and decompose for each p ∈ α∩β,
the terms tαpβp and tαpβ−1

p
in the basis of multicurves ξ ∈ MC, to find

{tα, tβ} =
∑
ξ

wξtξ =
∑
ξ

∑
σξ

∏
p

σξ(p)

 tξ
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where wξ =
∑
σξ

∏
p σξ(p) is the sum over the smoothings σξ : α ∩ β → {±1} of α ∪ β yielding the

multiloop ξ.
Now suppose that α = µ and β = ν are multicurves with i(µ, ν) > 0 and consider the multicurves

ξ indexing the sum obtained by smoothing all intersections of µ ∪ ν. Reasoning as in the proof
of Proposition 1, we find that Lµ(ν) and Lν(µ) both index a term for corresponding to a unique
smoothing map σξ which is constant, equal to 1 or −1. �

Remark 3. In the next section, we will prove that extremal coefficients of {tµ, tν} which are also
extremal for tµtν are values of the Thurston Poisson bracket {iµ, iν}λ for λ ∈ ML, as announced
in Theorem B. Our approach consists in reinterpreting the Thurston Poisson bracket {iµ, iν}λ as a
residual value {tµ, tν}v of the Goldman Poisson bracket at v = vλ.

The previous corollary shows that the (residual) Poisson bracket of multicurves determines their
intersection number by the formula:

i(µ, ν) = max{{iµ, iν}λ | λ ∈ ML}.

4. Residual Poisson structure on ML

4.1. Tangent space. Recall that ML embeds in the space of real functions on C[X]∗ = C[X]\{0}.
We thus define its tangent space at v as the set of maps φ = d

ds

∣∣
s=0

vs : C[X]∗ → R, where vs is a

family of simple valuations depending on a parameter s ∈ [0, ε[ starting at v0 = v, such that the
map s 7→ vs(tγ) is differentiable for every curve γ.

Observe that the pair (v, φ) : C[X]∗ → [0,+∞) × R satisfies all the axioms in Definition 2 of
simple valuations provided the maximum is taken with respect the lexicographic ordering. When v
is a strict valuation, the lexicographic ordering depends only on the first coordinate and everything
becomes much easier. As we only deal with the strict case, we consider straight away the following
as a definition.

Definition 5. Let v ∈ ML be a strict valuation. We define TvML to be the set of group homo-
morphisms φ : C(X)∗ → R satisfying for any function f ∈ C[X] decomposed as f =

∑
mµtµ in the

linear basis of multicurves:

(6) φ(f) = φ(tν) where ν is v-extremal in f.

We will refer to this definition of the tangent space as the Goldman model. In this section,
we define a symplectic structure on it, and will relate it to the models of Thurston and Bonahon
introduced later on.

Proposition 2. For any strict valuation we have a sequence of natural isomorphisms:

TvML = Hom(Λ+
v ,R) = Hom(Λv,R) = Hom(Λv ⊗Q,R) = Hom(C(X)∗/O×v ,R)

where Hom is understood first as the space of semi-group homomorphisms and then as the space of
group homomorphisms. In particular, TvML has dimension rat. rk(v) (which is ≤ dimX).

Proof. Recall that the map µ 7→ v(tµ) is a bijection between the set of multicurves and Λ+
v . We

have v(tµ) + v(tν) = v(tξ) where ξ is the v-extremal multicurve in tµtν . Given φ ∈ TvML, the map
v(tµ) 7→ φ(tµ) gives by construction a homomorphism of semi-groups Λ+

v → R and this construction
can easily be reversed, giving the isomorphism TvML = Hom(Λ+

v ,R). The remaining isomorphisms
are purely formal, noticing that O×v is the kernel of the group homomorphism v : C(X)∗ → R. �
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Definition 6. For f ∈ C(X), we define the differential of the map v 7→ v(f) at v by

dv log f : TvML→ R, dv log f(φ) = φ(f).

We introduced the log to make the formula dv log(fg) = dv log f + dv log g look more natural.

By Proposition 2, the elements dv log f span T ∗vML. More precisely, we obtain a basis by letting
f range over a family of multicurves whose v-lengths form a basis of Λv ⊗Q.

4.2. Residual Poisson structure.

Proposition 3. For all f, g ∈ C[X] and v ∈ ML we have: v({f, g}) ≤ v(f) + v(g).

Proof. By linearity of the Poisson bracket, it is sufficient to prove the inequality for f = tµ and
g = tν where µ and ν are multicurves. Then, by the Leibnitz formula, it is sufficient to prove it
for curves µ and ν. Suppose that µ and ν are in taut position and apply Goldman’s formula (2).
It is sufficient to prove that for any p ∈ µ ∩ ν we have v(tµpνp − tµpν−1

p
) ≤ v(tµtν), but this is a

consequence of the Smoothing Lemma 1. �

Given a strict valuation v ∈ ML, the preceding proposition allows us to define the residual
Poisson bracket at v in the following way.

Definition 7. For f, g ∈ C[X] and v ∈ ML strict, we define {f, g}v ∈ kv = C by

{f, g}v =
{f, g}
fg

mod Mv.

Proposition 4. There is an element πv ∈ Λ2TvML representing this Poisson structure in the sense
that for any f, g ∈ C[X] we have

{f, g}v = 〈πv, dv log(f) ∧ dv log(g)〉.

Proof. Let us fix f and consider the map F : C[X]→ C defined by F (g) = {f, g}v. By the Leibnitz
identity, this map satisfies F (g1g2) = F (g1) +F (g2) thus extends to an element of Hom(C(X)∗,C),
and we must first show that it vanishes on O×v . Any g ∈ O×v can be written g = α+ h with α ∈ C∗
and v(h) < 0. We compute

F (g) =
{f, α+ h}
f(α+ h)

=
{f, h}
f(α+ h)

.

Since v(h) < 0 we have v(f(α+h)) = v(f)+v(α+h) = v(f) and with Proposition 3, v({f, h}) < v(f)
thus F (g) ∈Mv and the claim is proved. What we have shown implies that there exists an element
φf ∈ TvML such that F (g) = 〈φf , dv log g〉. As the Poisson bracket is antisymmetric, the same is
true with the variables interchanged, and the conclusion follows. �

5. Actions of π1(S) on real trees

A real tree is a metric space T such that any two points x, y ∈ T are joined by a unique injective
segment. Recall that S is a closed oriented surface of genus g ≥ 2. We consider real trees with an
action of π1(S) which is minimal, in the sense that the only subtrees T ′ ⊂ T satisfying γT ′ ⊂ T ′

for all γ ∈ π1(S) are ∅ and T .
The action of an element α ∈ π1(S) on T either fixes a point and is called elliptic; otherwise it

is a hyperbolic translation along an axis Aα with positive translation length l(α) = min{d(x, αx) |
x ∈ T}, and d(x, αx) = l(α) if and only if x ∈ Aα.

We face the following alternative. If all elements of π1(S) act elliptically, then it has a global
fixed point; the minimality assumption implies that T is reduced to a point. If at least one element
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of π1(S) acts hyperbolically, then the union of all translation axes forms an invariant subtree (see
[Pau89]), which equals T by the minimality assumption.

An action of π1(S) is free when only the trivial element of π1(S) has a fixed point, or equivalently
when l(α) > 0 for all non-trivial α ∈ π1(S). It is small when the stabilizer of any non-trivial segment
in T is cyclic. This condition appears naturally in the following important results.

Theorem 6 (Culler-Morgan). If T1, T2 are two real trees with a small and minimal action of π1(S),
then there is an equivariant isometry Φ: T1 → T2 if and only if l1(α) = l2(α) for all α ∈ π1(S).

Theorem 7 (Thurston, Skora). To any measured lamination λ ∈ ML one can associate a “dual
tree” Tλ together with a small minimal action of π1(S) on Tλ such that l(α) = 2i(λ, α) for all
α ∈ π1(S). Conversely, any tree with a small and minimal action of π1(S) is produced in this way.

Let us briefly outline the construction of the dual tree to a measured lamination, in the case
where λ is filling (or equivalently when the simple valuation vλ is positive).

First represent the filling measured lamination λ on S by a measured geodesic lamination for some
fixed hyperbolic metric, and lift it in S̃ to obtain a π1(S)-invariant measured geodesic lamination

λ̃. Following [Ota01, Section 2.3], the tree Tλ is the quotient of S̃ by the equivalence relation whose

classes are given either by the closure of a connected component of S̃ \ λ̃ or else by a leaf of λ̃ which

is not contained in the previous classes. The quotient map f : S̃ → Tλ is clearly π1(S)-equivariant.
To describe the complement of a point x ∈ Tλ, consider its preimage f−1({x}). If it consists

of a geodesic leaf of λ̃, then Tλ \ {x} has 2 connected components. Otherwise it is isometric to
the closure of an ideal hyperbolic polygon with k-sides, so Tλ \ {x} has k > 2 components, and
x is called a branch point of T . In any case the connected components of Tλ \ {x} have a cyclic
orientation which is π1(S)-invariant. These local cyclic orientations match together to give a global
cyclic orientation on the Gromov boundary of Tλ. See [Wol11] for more details.

The map f : S̃ → Tλ is not proper so does not extend to the Gromov boundary. A non-trivial
element α ∈ π1(S) acts on S̃ ' H2 by hyperbolic translation along an axis which is transverse
to λ and thus crosses every leaf at most once. Hence the projection f maps it bijectively to a
geodesic in T which, by equivariance, coincides with the axis Aα. Hence we can associate to the
attractive and repulsive points of α in ∂H2 = ∂π1(S) the corresponding endpoints of Aα in ∂T .
This partially defined map between the Gromov boundaries of π1(S) and T is π1(S)-equivariant,
orientation preserving and independent of the initial hyperbolic metric.

We recall the following proposition from [CP20] that we will use repeatedly.

Proposition 5. Let γ, δ be two hyperbolic isometries acting on a real tree T with axes Aγ and Aδ.
Then one of the following holds.

(1) If Aγ ∩Aδ = ∅ then l(γδ) = l(γ) + l(δ) + 2D where D is the distance between Aγ and Aδ.
(2) If Aγ ∩Aδ 6= ∅, we denote by D ∈ [0,+∞] the length of the intersection.

(i) If D > 0 and the translation directions of γ and δ on Aγ ∩ Aδ coincide, or if D = 0
then l(γδ) = l(γ) + l(δ).

(ii) If D > 0 and the translation directions of γ and δ on Aγ ∩ Aδ are opposite, then
l(γδ) < l(γ) + l(δ).

Corollary 3. Let γ, δ be two hyperbolic isometries acting on a real tree T with axes Aγ and Aδ.
When the segment Aγ ∩Aδ has positive length, we may compare the translation directions of γ and
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δ: let cosign(γ, δ) = ±1 be +1 if they coincide and −1 if they differ. One of the following holds.

l(γ) + l(δ) < l(γδ) = l(γδ−1) if Aγ ∩Aδ = ∅(γ ∪ δ)
l(γδ) = l(γ) + l(δ) = l(γδ−1) if Aγ ∩Aδ is reduced to a point(equil)

l(γδ−1) < l(γ) + l(δ) = l(γδ) if l(Aγ ∩Aδ) > 0 and cosign(γ, δ) = 1.(γδ−1)

l(γδ) < l(γ) + l(δ) = l(γδ−1) if l(Aγ ∩Aδ) > 0 and cosign(γ, δ) = −1.(γδ)

To illustrate how we will apply this corollary, let us propose a new proof of the smoothing lemma,
independently from the equivalence between measured laminations and simple valuations (which
we showed in [MS21] using the smoothing lemma).

Notice that the equivalence between measured laminations λ and simple valuations v recovers the
smoothing lemma, because for a taut multiloop α we have for obvious geometric reasons i(λ, α) ≥
max{i(λ, α+), i(λ, α−)}, and as tα = ±tα+

± tα− we have vλ(tα) ≤ max{vλ(tα+
), vλ(tα−)}.

Proof of the Smoothing Lemma 1. Let us represent our measured lamination λ by an action of
π1(S) on a tree T . Fix a hyperbolic metric on S to identify S̃ ' H2.

Consider a taut multiloop α with a self-intersection point p, which may either be a self-intersection
of a single component or an intersection between two components. We wish to prove that i(λ, α) =
max{i(λ, α+), i(λ, α−)}.

Suppose first that p is the intersection point between two components which we may write
as γ, δ ∈ π1(S, p). Lift γ, δ in S̃ ' H2 starting from p̃ to obtain geodesics γ̃, δ̃ which intersect
transversely at p̃ and only at p. Consequently, their end-points are linked in ∂H2 with respect to
the cyclic orientation. As the same holds for the end-points of Aγ and Aδ in ∂T , we must have
Aγ ∩Aδ 6= ∅, so we are not in case (γ ∪ δ) of Corollary 3 whence l(γ) + l(δ) = max{l(γδ), l(γδ−1)}.

Suppose now that p is the self-intersection point of a single component of α which we may
decompose as γδ for γ, δ ∈ π1(S, p). Lift γ, δ in H2 starting from p̃ to obtain quasi-geodesics γ̃, δ̃.
They intersect only at p̃ because, using the monodromy homomorphism associated to the developing
map, another intersection point would imply an equality of the form γm = δn for some m,n > 0,
which is impossible. The projection map S̃ → S is a local diffeomorphism, so the germs of arcs
(γ̃ ∪ δ̃, p̃) and (γ ∪ δ, p) are topologically equivalent. Hence, up to inversion and exchange of γ

and δ, the endpoints of γ̃ and δ̃ in ∂H2 have cyclic order (γ+, γ−, δ+, δ−) as shown in Figure 3.
Consequently we are not in case (γδ) of Corollary 3, whence l(γδ) = max{l(γ)+ l(δ), l(γδ−1)}. �

γδ

p p̃

γ̃
δ̃

Figure 3. Configuration of axes at a self-crossing
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5.1. Trivalent real trees. Recall that a point x in a real tree is a branch point if T \ {x} has at
least three connected components. We will denote by V (T ) the set of branch points of T . A real
tree is trivalent if any branch point disconnects it in three connected components.

A measured geodesic lamination λ is called maximal if there is no measured geodesic lamination
whose support is strictly bigger; or equivalently if the regions in its complement S \λ are isometric
to the interiors of ideal hyperbolic triangles.

Proposition 6. Let T be a real tree with a free minimal action of π1(S), associated to a filling
measured lamination λ, and denote by v the associated positive valuation.

The following are equivalent:

(1) v is acute
(2) T is trivalent
(3) λ is maximal

Proof. (1) ⇐⇒ (2). Suppose T is trivalent. Let α, β be non-trivial elements in π1(S) and
consider their translation axes Aα, Aβ ⊂ T . From Proposition 3, we find that l(αβ) = l(αβ−1) =
l(α) + l(β) holds only when Aα and Aβ meet in exactly one point, which is forbidden by the
trivalence assumption. Thus v is acute.

Conversely, suppose T is not trivalent. Consider a branch point x ∈ T with valency k > 3. We
denote by C1, . . . , Ck the components of T \ {x}. They decompose the Gromov boundary of T into
disjoint open subsets ∂C1, . . . , ∂Ck. It is known that the set of pairs of ends of axes Aγ for γ ∈ π1(S)
form a dense subset of ∂T × ∂T . One proof consists in considering the sequence of fixed points for
the elements αβn: the attractive points converge to the image by α of the attractive point of β and
the repulsive points to the repulsive point of β. By minimality, the set of repulsive points of all β’s
is dense in ∂T , and again by minimality the images of a given attractive point by all α’s is dense in
∂T . Thus we can find two axes Aα, Aβ whose ends are respectively in ∂C1 × ∂C3 and ∂C2 × ∂C4.
These two axes meet exactly in x, and Proposition 3 implies that l(αβ) = l(αβ−1) = l(α) + l(β),
showing that v is not acute.

(3) ⇐⇒ (2). Recall from the construction of the dual tree T to a filling measured geodesic
lamination λ ⊂ S that the valency of a branch point in T is equal to the number of sides to the
corresponding hyperbolic ideal polytope in S̃\λ̃. Hence T is trivalent if and only if λ is maximal. �

It is well-known that the set of maximal laminations has a full measure in ML, see [LM08, Lemma
2.3]. Hence Proposition 6 implies the following corollary.

Corollary 4. The set of acute simple valuations has a full measure in ML.

5.2. Bonahon cycles. Let T be a trivalent real tree with a free and minimal action of π = π1(S).
To define its tangent space in the “moduli space” of such objects, imagine the combinatorial struc-
ture as being fixed while the distance function undergoes an infinitesimal deformation. Restricting
attention to the variation of the distance between branch points, we obtain a symmetric map
c : V (T )2 → R which is π1(S)-invariant and satisfies c(x, y) = c(x, z) + c(z, y) whenever z belongs
to the geodesic joining x to y. We will refer to these maps as Bonahon cocycles and introduce them
formally using a dual approach.

Definition 8. We define the space B(T ) as the real vector space generated by pairs (x, y) of elements
in V (T ) subject to the relations:

(1) (x, y) = (y, x) for all x, y ∈ V (T )
(2) (x, y) = (x, z) + (z, y) if z belongs to the geodesic joining x to y.
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The group π = π1(S) acts linearly on B(T ) by g(x, y) = (gx, gy) and Bonahon cocycles are the
elements of Homπ(B(T ),R) = Hom(B(T )π,R) where B(T )π is the space of coinvariants.

Proposition 7. There is a unique alternating bilinear form · on B(T ) such that for all pairs
(x, y), (z, t) ∈ V (T )2 we have:

(1) (x, y) · (z, t) = 0 if the geodesics from x to y and from z to t are disjoint.
(2) (x, z) · (z, y) = ε

2 if z belongs to the geodesic from x to y, where ε = ±1 is the cyclic order
of the components (hx, h, hy) of T \ {z} such that x ∈ hx, y ∈ hy.

Proof. The intersection of (x, y) and (z, t) is either empty or has the form (a, b). Decomposing
(x, y) and (z, t) into segments involving a and b as in Figure 4, we are reduced by bilinearity and
antisymmetry, to cases 1 or 2. This proves both uniqueness and existence. �

x

y

z

t

a
b

x

y

z

t

a
b

x

y

z

t

a
b

+1 0 −1

Figure 4.

It is an amusing exercise to show that this pairing is non-degenerate. Instead we will deduce it
from Poincaré duality in Thuston’s model in Section 6. Indeed, we are interested in the space B(T )π
endowed with the following pairing obtained by averaging the previous one, whose non-degeneracy
will thus follow from standard arguments in cohomology.

Proposition 8. The following sum is finite, and it defines an alternating bilinear pairing on B(T )π:

(x, y) ·π (z, t) =
∑

g∈π1(S)

(x, y) · g(z, t).

Proof. We only have to prove finiteness of the sum. For that, we view T as the dual tree to a maximal
measured lamination λ on S. The vertices x, y, z, t correspond to ideal triangles in S̃ ' H2: choose
x0, y0, z0, t0 in each one of them. Since π1(S) acts properly on H2, the geodesics [x0, y0] and g[z0, t0]
are disjoint for all but a finite number of g ∈ π1(S). When they are disjoint, their projections in
the tree are disjoint or meet as in the middle case of Figure 4, so their intersection vanishes. �

We shall prove in Section 6 that B(T )π is the antisymmetric part of H1(S̃,R) where S̃ is the
orientation covering of the measured lamination λ, thus recovering Thurston’s original point of view
on the tangent space TλML.

5.3. The symplectomorphism theorem. Fix a strict valuation v ∈ ML, and recall it identifies
the set of multicurves with Λ+

v . Let T be a real tree with a free and minimal action of π1(S)
representing v, so that l(α) = 2v(tα) for all α ∈ π1(S).

Lemma 5. The distance between two branch points in T belongs to Λv.
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Proof. This lemma can be deduced from repeated applications of Proposition 5. For instance, the
distance between two disjoint axes Aγ , Aδ can be written D = 1

2 (l(γδ) − l(γ) − l(δ)) and hence
belongs to Λv. Instead, we may prove it as a direct consequence of a more conceptual construction
for Tv using Bass-Serre theory: we refer to Formula (3) in [Ota15, Section 4.1]. �

Given φ ∈ TvML = Hom(Λv,R), we define a corresponding cφ ∈ Homπ(B(T ),R) by setting
cφ(x, y) = 1

2φ(d(x, y)) where d is the distance in T . As d is π1(S)-invariant, c is also, and the
identity c(x, z) = c(x, y)+c(y, z) for y between x and z follows from the triangular equality satisfied
by d. In other words, there is a well-defined map

(7) Ψ:

{
TvML −→ Homπ(B(T ),R)

φ 7−→ cφ

Proposition 9. The map Ψ induces an isomorphism TvML ' Homπ(B(T ),R).

Proof. The linearity of Ψ is obvious. We first prove injectivity: suppose cφ = 0. For any non-
trivial α ∈ π1(S), choose a branch point x on its axis Aα so that the translation length satisfies
l(α) = 2v(tα) = d(x, αx). As cφ(x, αx) = 1

2φ(d(x, αx)) we get φ(v(tα)) = 0, but Λv is generated by
the v(tα) for α ∈ π1(S) so φ = 0.

This suggest the construction of the inverse, but this time we think of φ as a map φ : C(X)∗/O×v →
R. Given c ∈ Homπ(B(T ),R), we define φ(tα) = c(x, αx) for any simple curve α, where x is any
branch point in Aα (by additivity of c, this does not depend on the branch point). We extend
φ to any multicurve by linearity. Finally for any f ∈ C[X]∗ we set φ(f) = φ(tµ) where µ is the
v-extremal multicurve in f . The point is to show that φ indeed belongs to TvML: as it satisfies
Equation (6) by construction, it remains to prove that it is multiplicative.

We first show that the defining property φ(tγ) = c(x, γx) extends to all loops γ ∈ π1(S) by
induction on the number of self intersections. Suppose γ has n > 0 intersections. Let p be one of
them and denote by α, β the two elements of π1(S, p) such that γ = αβ. Since v is acute, we have
either v(tαβ−1) < v(tα) + v(tβ) = v(tαβ) or v(tα) + v(tβ) < v(tαβ−1) = v(tαβ), and we apply either
case (2, i) or case (1) of [Pau89, Proposition 1.6] (which are unmodified in [CP20]).

In the first case, the axes Aα and Aβ intersect along a segment xy such that both isometries
push x in the direction of y, and we have x ∈ Aαβ . If l(β) ≥ d(x, y) then l(αβ) = d(x, αβx) =
d(x, y)+d(y, αy)+d(αy, αβx) whence c(x, αβx) = c(x, y)+c(y, αy)+c(y, βx) = c(y, αy)+c(x, βx),
with x ∈ Aβ and y ∈ Aα. If l(β) ≤ d(x, y) then d(x, αβx) = d(x, βx) + d(βx, αβx) whence
c(x, αβx) = c(x, βx) + c(z, αz) with z = βx ∈ Aα. Each time, the induction hypothesis applies,
showing that both definitions of φ(tγ) coincide.

In the second case, the axes Aα and Aβ are disjoint: let xy be the geodesic joining them, and
note that x also belongs to the axes of αβ and αβ−1. By the induction hypothesis, φ(tαβ−1)
is equal to c(x, αβ−1x). Then d(x, αβ−1x) = d(x, αβx), whence c(x, αβ−1x) = c(x, αβx) and
2φ(tαβ) = c(x, αβx) as claimed.

To finish the proof, we must consider f, g ∈ C[X] and show that v(fg) = v(f) + v(g). If µ and
ν are the v-extremal multicurves of f and g, then the v-extremal multicurve of fg is that of tµtν ,
denoted by ξ. We must show that φ(tµtν) = φ(tξ) = φ(tµ) + φ(tν). Let us prove more generally
that if α = α1 ∪ · · · ∪ αn is a multiloop then φ(tα) = φ(tα1

) + · · ·+ φ(tαn), reasoning by induction
on the self-intersection number of α.

If the components αj are disjoint, we may replace each one of them by its v-extremal smoothing,
which remain disjoint, and the result follows from the definition of φ. Hence suppose that α1 and α2

intersect at p. Up to changing the orientation of α2, we can suppose that v(tα1α2) = v(tα1)+v(tα2).
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The computation in the first case at the beginning of the proof shows that φ(tα1α2) = φ(tα1)+φ(tα2).
We also have φ(tα1α2tα3 · · · tαn) = φ(tα1α2) +φ(tα3) + · · ·+φ(tαn) by the induction hypothesis. �

Theorem 8. The isomorphism Ψ∗ : B(T )π → T ∗vML preserves the symplectic form.

Explicitly, Ψ∗(x, αx) = dv log tα for all α ∈ π1(S) and any branch point x ∈ Aα. Indeed for all
φ ∈ TvML, equation (7) and Definition 6 yield:

Ψ(φ)(x, αx) =
1

2
φ(d(x, αx)) = φ(tα) = dv log(tα)(φ).

Proof. Let α, β ∈ π1(S) represent two simple curves in S. We must prove that {tα, tβ}v =
〈πv, dv log tα ∧ dv log tβ〉 equals (x, αx) ·π (y, βy) for x ∈ Aα and y ∈ Aβ . If i(α, β) = 0 then
both quantities are null. Otherwise, put α ∪ β in taut position.

We first compute the sum defining {tα, tβ}v, in which every intersection p ∈ α ∩ β contributes

to a term εp(tαpβp − tαpβ−1
p

)t−1α t−1β modMv. The set α∩β is in bijection with pairs of intersecting

lifts (α̃, β̃) ⊂ S̃ × S̃ modulo the diagonal action of π1(S). These lifts correspond bijectively to

axes of the form (Aα̃, Aβ̃) in T through the equivariant map f : S̃ → T which preserves the cyclic

orientations on the boundaries. Fixing representatives α, β ∈ π1(S), every such pair is represented
by some (Aα, gAβ) for a unique g ∈ 〈α〉\π/〈β〉. Using again Proposition 5, we can rewrite

(8) {tα, tβ}v =
∑

g∈〈α〉\π/〈β〉

ε(Aα, gAβ) =
∑

g∈〈α〉\π/〈β〉

ε(Aα, Agβg−1)

where ε(Aα, Aβ) = ±1 if Aα and Aβ are like in Figure 5 and ε(Aα, Aβ) = 0 in any other configura-
tion. Notice that this formula does not depend on the orientations of the axes, but on their cyclic
orders at the branch points of the tree.

ε = −1
AαAβ

AβAα

ε = 1
AβAα

AαAβ

Figure 5. Sign rule for the axes.

To end the proof, we fix x ∈ Aα and y ∈ Aβ to compare Formula (8) with
∑
g∈π(x, αx)·(gy, gβy).

Grouping them depending on the class of g in 〈α〉\π/〈β〉, we are reduced to the following equality,
which is easily checked:

ε(Aα, Aβ) =
∑
m,n∈Z

(αnx, αn+1x) · (βmy, βm+1y).

�
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6. Identifying the symplectic tangent models

Following [PH92, Section 3.2], we recall Thurston’s description for the tangent space to ML at
a maximal measured lamination λ. We start with an orientation covering p : S′ → S, which is a
ramified covering of degree 2 with one ramification point in each triangle of the complement S \ λ,
and such that the preimage p−1(λ) is naturally co-oriented (meaning that its normal bundle is
oriented). By the Gauss-Bonnet theorem, the set R of ramification points has 4g − 4 elements
and the monodromy of the covering is a homomorphism ρ : π1(S \R)→ {±1} which is non-trivial
around each ramification point. For later purposes, it will be useful to consider the orbifold So

where ramification points are thought as conical points of order 2.
Let H1(S′,R)± be the symmetric and antisymmetric part of H1(S′,R) with respect to the in-

volution of the covering: they are orthogonal for the intersection form. Hence (half) the intersec-
tion form restricted to H1(S′,R)− is non-degenerate. We shall refer to this symplectic space as
Thurston’s model for T ∗λML. We can avoid introducing the covering by considering instead the
homology group H1(So,R−) with coefficients in the π1(So)-module R together the action given
by γ.x = ρ(γ)x. The twisted intersection product H1(So,R−) × H1(So,R−) → H0(So,R) = R
coincides with the previous definition for Thurston’s model. We will stick to this point of view in
the sequel.

Let T be a trivalent real tree endowed with a free minimal action of π1(S), which is dual to
a measured geodesic lamination λ. In the next section we first recover a model for So which
depends only on T : our space will be an infinite dimensional CW-complex homotopic to So. As a
consequence, its fundamental group is canonically attached to T and its homology will be easy to
compute from T . We will use it extensively to prove that the Bonahon model B(T )π and Thurson
model H1(So,R−) are naturally isomorphic symplectic vector spaces.

6.1. A homotopical construction of the orbifold tree.

6.1.1. Idea of the construction. We first construct a space corresponding to the tree T with an
orbifold singularity of order 2 at every branch point. As the topology of T induced by the metric
is not given by a cell structure, our first task is to build a cellular model of T .

To motivate our construction, let us begin with the following analogy: suppose we wish to
replace the real line R, with its usual topology, by a CW-complex whose 0-cells consist of the set
Q of rationals with the discrete topology. We may first add a 1-cell between every pair of distinct
0-cells to make the space connected. This creates a 1-cycle for every triple of distinct rational
points, so we attach a 2-cell to each of those in order to make the space simply connected. Now
every 4-tuple of rationals form the vertices of a 2-cycle, to which we attach a 3-cell, and so on. In
the limit, we obtain Milnor’s join construction EQ, which is a space homotopic to R endowed with
a free and proper action of Q.

We shall play a similar game, replacing R by the real tree T , and Q by its set of branch points
V (T ). We first attach a 1-cell to every pair of distinct branch points. However, we close the triangle
(x, y, z) only if x, y, z ∈ V (T ) belong to a same geodesic in T . Then we go on similarly in higher
dimensions, so that our space will resemble EQ in restriction to any geodesic of T . At this stage,
we have a space on which π1(S) acts freely and properly. As it is contractible, its quotient by π1(S)
is homotopic to S. Next comes the orbifold singularity: in homotopy theory, this is represented by
a K(Z/2, 1)-space, that is RP∞. It remains to blow up the preceding construction at every branch
point and insert an infinite dimensional projective space. This construction may look complicated
but we shall do it in one shot and few lines below.
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6.1.2. Formal construction. A half-edge of T is a pair (x, h) consisting in a branch point x of T and
a connected component h of T \{x}; we sometimes just write h as it determines x. Let us construct
a CW-complex T o whose 0-skeleton is the set of half-edges of T . First, we attach a 1-cell denoted
(h, k) between every pair of half-edges incident to the same branch point x ∈ V (T ). Now at every
branch point x, the incident half-edges h1, h2, h3 form a triangle homeomorphic to RP1 through
which we attach a copy of RP∞. For the moment, T o is a disjoint union of infinite projective spaces
indexed by the set of branched points V (T ), we call it the orbifold part.

Now, we add a connecting part, as suggested in Figure 6. Fix ε > 0 small enough, say 1/3.
Consider a finite set W of branch points {x0, . . . , xn} aligned on a geodesic of T , and denote
hi, ki the half-edges incident to xi containing (a non-empty) part of that geodesic. The n-cell
∆W = {(rx)x∈W ∈ [0, 1 − ε]W ,

∑
x∈W rx = 1} is a truncated simplex, and there is an obvious

inclusion ∆W ′ ⊂ ∆W when W ′ ⊂ W . The face of ∆W truncated at xi corresponds to the set ∆xi
W

of families (rx) satisfying rxi = 1 − ε. We attach ∆xi
W to the orbifold part of T o through the map

W \ {xi} → {hi, ki} sending the branch point xj to the half-edge based at xi which contains xj , as
in Figure 6. The 1-cells ∆{x,y} will be called edges and denoted (x, y).

Figure 6. Attaching a 3-cell in T o

As promised, the action of π1(S) on T o is now proper so that we may form the quotient Σo =
T o/π1(S). The following lemma shows that Σo and So are homotopic. Interestingly, the proof

consists in constructing an equivariant map F : T o → S̃o, which plays the role of a (non-existing)

retraction for the map f : S̃ → T .

Lemma 6. Let S̃o be the covering of the orbifold So corresponding to the kernel of the natural map
π1(So) → π1(S). There exists a π1(S)-equivariant map F : T o → S̃o which induces a homotopy
equivalence between Σo and So.

Proof. To define F , represent T as the dual tree to a measured geodesic lamination λ and consider
the collection of circles inscribed in each triangle of the complement S \ λ: they lift to a collection

of circles Cx in S̃ ' H2 indexed by x ∈ V (T ). Moreover, the half-edges incident to x correspond
bijectively to the three intersection points of Cx with the leaves of the lamination, see Figure 7.

The covering S̃o is obtained from H2 by drilling out the interior of Cx and gluing back a copy
of RP∞ along RP1 ' Cx for every x ∈ V (T ). By construction, the orbifold So is homotopic to the

quotient S̃o/π1(S).

We now proceed to the construction of an equivariant map F : T o → S̃o. There is already an
identification between the orbifold parts of both spaces, so that we are left to define the map F on
the connecting part.

22



Figure 7. Lifting a geodesic to H2 (done with Geogebra)

For every pair (x, y) ∈ V (T )2, we must define a path F (x, y) in S̃o connecting the points of Cx
and Cy identified to the endpoints hx, hy of (x, y) in T o. A first guess would be to consider the
geodesic path γ between the points hx and hy. This path actually projects to the geodesic joining x
to y in T . However it may intersect a forbidden circle Cz, in which case it enters its circumscribed
ideal triangle ∆z by one side and leaves it by another. Call pz the ideal vertex at the intersection
of these two sides. We can homotope γ inside ∆z to a path avoiding Cz which stays on the side
containing pz, see Figure 7.

Moreover, we can choose those paths in such a way that F is π1(S)-equivariant. Let us now
consider a triple of points x, z, y lying on a geodesic of T in that order. We have defined F (x, z),
F (z, y) and F (x, y): it is not hard to see that the region enclosed by the three arcs and the boundary
of Cz does not contain any other circle, hence it can be filled by a triangle: this extends F to the
2-skeleton of T o. This procedure can be continued to define an equivariant map F : T o → S̃o, which
induces a map F : Σo → So.

We would like to show that F is a homotopy equivalence. The space S̃o is Eilenberg-MacLane and
Lemma 7 below shows that so is T o, hence it is sufficient to prove that F induces an isomorphism
between fundamental groups. Behold the following commutative diagram, and observe that the five
lemma reduces the statement to showing that F∗ is an isomorphism.

0 // π1(T o)

F∗
��

// π1(Σo) //

F∗
��

π1(S)

=

��

// 0

0 // π1(S̃o) // π1(So) // π1(S) // 0

This last statement is clear from the fact that π1(T o) and π1(S̃o) are both isomorphic to a free
product of copies of Z/2Z indexed by V (T ) (see again Lemma 7). �

6.2. Homology of T o. The homology of T o can be computed from its finite sub-complexes, which
are easy to understand thanks to the following lemma. For a finite set W ⊂ V (T ), let T o(W ) to be

the union of cells involving W only: a cell belongs to T o(W ) when all its 0-faces are of the form (x, h)

for x ∈ W . We define T oW to be the sub-complex of T o(W ) whose connecting part reduces to the

1-cells (x, y) for x, y ∈ W such that there is no other element in W on the geodesic joining them.
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In more intuitive terms, T oW is a collection of RP∞ indexed by W , connected in a tree-like fashion
given by the embedding of W in T .

Lemma 7. For all finite W ⊂ V (T ), the cell-complex T o(W ) retracts by deformation on T oW .

Proof. We define the retraction by induction on the maximal dimension of the truncated simplices
∆U ⊂ T o(W ). Let U = {x0, . . . , xn} correspond to one of them, it is the intersection of W with a

geodesic in T . We retract ∆U by deformation onto the union of ∆U ′ for U ′ ⊂ U ranging over all
subsets which do not contain both x0 and xn. This procedure stops when U = {x, y} and x, y are
closest neighbours in W . �

We define a 1-cochain ρ ∈ C1(T o, {±1}) sending every 1-cell of T o to −1. It is a cocycle because
the 2-cells of T o, being either hexagons (orbifold part) or squares (contained in some ∆W for W
of cardinal 3), have an even number of 1-faces. The geometric idea underlying this definition is

that any half-edge stands for a local coorientation of the lamination λ̃, say pointing to the closest
singular point. Following an edge e in T o (transverse to λ̃), we arrive at the other end with the
opposite co-orientation, giving ρ(e) = −1.

This cocycle defines a homomorphism ρ : π1(T o)→ R and we denote by R− the vector space R
with the action γ.x = ρ(γ)x. Our first task is to compute the homology of T o with coefficients in
R and R−.

Lemma 8. We have Hk(T o,R) = 0 if k 6= 0, Hk(T o,R−) = 0 if k 6= 1 and

H1(T o,R−) ' B(T ).

Proof. Observe that T o = lim−→T o(W ) as W exhausts the finite subsets of the countable set of

branch points V (T ) and by Lemma 7, T o(W ) retracts by deformation on T oW , thus H∗(T
o,R±) =

lim−→H∗(T
o
W ,R±).

We may forget about the cocycle ρ while computing the untwisted real homology, and fur-
ther retract the space T oW on a wedge of infinite projective spaces. Thus H0(T oW ,R) = R and
Hk(T oW ,R) = 0 for k > 0 so the same goes for T o.

We now return to the twisted homology of T oW . For this we consider the double cover T ′W → T oW
corresponding to ρ and compute the untwisted homology of the total space: it splits into the
±1-eigenspaces of the involution which coincide with H∗(T

o
W ,R±) respectively. The space T ′W

is homotopy equivalent to a graph with vertex set W , and two edges above each edge e of T oW
connecting its endpoints with opposite orientations, as shown below.

•

((

•

��
x 66

��

hh

y
vv

HH

•
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It follows that H0(T ′W ,R) = R and Hk(T ′W ,R) = 0 if k > 1. Moreover H1(T ′W ,R) has a basis
formed by the cycles c(x, y) ∈ H1(T ′W ,R) indexed by the edges (x, y) of T ′W , which consist in
making a round trip from x to y, following the arrows. The Galois involution of T ′W exchanges
the orientation of c(x, y), so H1(T oW ,R−) is freely generated by pairs (x, y) where x, y are closest
neighbours in W .
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Taking the limit as W converges to V (T ), we obtain Hk(T o,R−) = 0 for k = 0 and k > 1. If an
edge (x, y) gets subdivided into (x, z) and (z, y) as W increases, we have c(x, y) = c(x, z) + c(z, y)
which is compatible with the equality (x, y) = (x, z) + (z, y), and provides the desired isomorphism
for the inductive limit of H1(T oW ,R−). �

6.3. Homology of the quotient Σo = T o/π. Let us write π = π1(S) for short. The cocycle ρ
on T o is π-invariant, so it induces a homomorphism π1(Σo)→ {±1} that we also denote ρ. The π-
equivariant homotopy equivalence between Σo and So thus yields a homomorphism π1(So)→ {±1}.
By the remark following Lemma 7, this homomorphism is the co-orientation monodromy of λ, so
its kernel corresponds to the covering S′ → So. Consequently, we may deduce the homology of So

with coefficients in R± from that of Σo with the same coefficients.
The 2-fold covering S′ of So ramified over R satisfies χ(S′) = 2χ(S) − (4g − 4) = 8 − 8g by

the Riemann-Hurwitz formula. As H∗(S
o,R±) = H∗(S

′,R)± we get that H∗(S
o,R) = H∗(S,R)

whereas Hk(So,R−) = 0 if k 6= 1 and dimH1(So,R−) = 6g − 6.
On the other hand, we can compute H∗(T

o/π,R±) from H∗(T
o,R±) using the Cartan-Leray

spectral sequence. Its second page is E2
p,q = Hp(π,Hq(T

o,R±)) and converges to Hp+q(Σ
o,R±).

Lemma 8 implies that, with both coefficients, the second page has only one line, whence the
isomorphisms:

H∗(Σ
o,R) = H∗(π,R) = H∗(S,R), H∗(Σ

o,R−) = H∗−1(π,B(T )).

This yields the proposition that we are after.

Proposition 10. Given a maximal measured lamination λ with associated covering S′ → S and
corresponding tree T , there is a natural isomorphism

H1(S′,R)− = H1(Σo,R−) = H0(π,B(T )) = B(T )π.

We also have Hk(π,B(T )) = 0 for k = 1, 2. Observe that from Poincaré duality we get
H2(π,B(T )) = H0(π,B(T )) = B(T )π = 0. It is not surprising that B(T ) has no invariant cycles as
π acts freely on V (T ). We do not have a similar explanation for the vanishing of H1(π,B(T )).

6.4. Intersection form. In the commutative diagram below, the first colon is a Galois covering of
surfaces with group π. We have the identifications H1(S̃′,R)− = H1(S̃o,R−) = H1(T o,R−) = B(T )
and H1(S′,R)− = H1(So,R−) = B(T )π.

S̃′
p̃ //

π

��

S̃o

π

��
S′

p // So

Proposition 11. The isomorphisms H1(S̃′,R)− = B(T ) and H1(S′,R)− = B(T )π preserve the
symplectic forms.

Proof. Let us begin with the first isomorphism. Recall that we defined an equivariant map F : T o →
S̃o: it sends the cell (x, y) to a path F (x, y) joining the orbifold points corresponding to x and y
and avoiding all other orbifold points. As the homology of the orbifold part of T o with coefficients
R− vanishes identically, these paths actually define cycles in H1(S̃o,R−), which in H1(S̃′,R) are

represented geometrically by c(x, y) = p̃−1(F (x, y)) ⊂ S̃′. Notice that these cycles have a natural

orientation (given by the co-orientation of the lifted lamination λ̃′).
25



Recalling the definition of the pairing in B(T ) given in Proposition 7, it suffices to compute
c(x, y) · c(z, t) in the case where (x, y) and (z, t) are disjoint or consecutive.

In the first case, the cycles c(x, y) and c(z, t) are also disjoint so their intersection vanishes. In
the second case, the cycles c(x, z) and c(z, y) only intersect in a neighborhood of z which looks
like in the right hand side of Figure 8. The lifted cycles c(x, z) and c(z, y) go straight through
the intersection point, oriented as shown. Analyzing the two possible cases, we find that the signs
coincide.

Figure 8. Double covering over a branching point

Let us now consider the quotient. We showed in Section 6.3 that H1(S′,R) = H1(S̃′,R)π. The
result follows from the fact that the intersection form on H1(S′,R) coincides with the averaged
intersection form on H1(S′,R). �
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