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Abstract
This paper presents a distributed optimization methods for energy communities having dis-

tributed renewable generation and storage units. We explain how the resulting optimization problem
can be cast as a bi-level optimization problem where the followers solve mixed-integer linear programs.
Given the difficulty of these problems for the dimensions at hand, we develop a heuristic iterative
algorithm where incentives are sent to the followers. Specifically, to maximize the collective-self con-
sumption rate, we exploit the notion of allocation key traditionally used a posteriori for economic gain
sharing to build an a priori incentive to Demand response. The proposed distributed management
method returns a solution within 5% cost of the optimal centralized realistic benchmark’s solution
of an instance built over a month with accurate historical data from our demonstrator located in the
south of France.

Keywords— Distributed management, Demand response, Collective self-consumption, Bilevel
optimization.

1 Introduction
Global economic and demographic growth is driving a significant increase in energy demand. Against this
backdrop, governments and communities strive to increase the production and consumption of renewable
energies. States are developing regulations to promote access to production and storage tools on the one
hand [3, 4], and surplus trading on the other [10, 24, 11]. In this context, collective self-consumption
appeared in France in 2015, enabling renewable energy generators to exchange their surpluses with
specific individuals. The French Energy Code defines collective self-consumption as an operation linking
one or more producers to one or more consumers using the public electricity distribution network for
their energy exchanges. In addition to the social benefits, the advantages of collective self-consumption
include participating in the energy transition, saving money on energy bills, reducing fuel poverty, and
minimizing energy generation surpluses. These energy and economic challenges require optimization
tools to maximize local consumption of locally-produced energy.

We consider a set of |N | individuals involved in a collective self-consumption project, each having
different asset possession characteristics as schematized in Figure 1 i.e., each member can own or not
some local tool. An energy community in this work refers to individuals connected to the same distri-
bution network that produce, consume, and exchange energy. We specifically consider renewable energy
communities as defined by [3]. A community coordinator (CC) ensures the community’s good function-
ing: in terms of collective self-consumption; for example, an aggregator collects the energy surpluses.
In such a community, producers can store (if they own a storage system) or exchange their surpluses
with other members or the aggregator. No additional links exist between members apart from the green
energy exchange ones, i.e., they do not exchange their private information and preferences. CC is the
intermediary between members. It collects specific information and shares incentives to ensure the whole
community’s good management. Each member remains directly connected to the primary grid and col-
lects energy when needed. In this context, CC maximizes collective self-consumption by optimizing the
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Figure 1: Community.

periodic day-ahead incentives while considering the aggregator’s periodic buying prices and the main
grid’s selling prices. CC must build incentives to Demand response (DR) since the members do not
directly communicate. DR is a load profile modulation granted by an individual in return for a certain
amount of consideration. Thus, CC receives each member’s hourly energy demand and prosumers’ energy
availability to compute the incentives. These incentives aim to limit the periodic energy exchanges with
the aggregator and the main grid, which is equivalent to maximizing collective self-consumption. They
also incentivize prosumers having batteries to store and inject when needed during planning horizon to
serve the community or the primary grid. Notice the more green energy is exchanged in the community,
the more the coordinator realizes the economic gain as they are correlated; this allows CC to help such
a community unleash its potential [7] fully.

As shown in Figure 1, a member can be a traditional consumer, a prosumer with a battery storage
system (BSS), or a consumer owing BSS. Following [33], we assume each member has the required control
and exchange equipment for this study. Each member must perform certain tasks that we classify into
three classes according to their characteristics. The first class contains tasks that allow modulation of
certain environments’ temperatures (house room, water heater). We call this type A class. Each member
must decide the periodic power consumption to reach the desired temperature at the desired time. We
use function θj to evaluate the temperature in member i’s room where task j ∈ JiA is performed.

• The temperature variation function derived from the Newton cooling law [1] θ1 is:

θ1(ph) = θ1(ph−1) + ∆
Cr

(ph − U(θ1(ph−1)− T out
h )),

for house rooms. Where Cr is heat capacity (J/K), parameter U designates the heat loss coefficient
of a room in (W/K), and ∆ is the heating time in second. T out

h is the external temperature at
period h.

• For a water heater, using the method from [30], the temperature variation function θ2 is given by

θ2(ph) = ∆h

Mcp
(−S

R
[θ2(ph−1)− T room

h ] + υph − 1000Mwcp[θ2(ph−1)− Tin]) + θ2(ph−1),

where cp is the isobaric specific heat capacity of water (kcal/kg·°C), υ is the efficiency of the
electricity-to-heat transformation, M is the weight of the water (kg). The data S designates the
exchange surface of the water container with the external area, R is the thermal resistance of the
tank insulation in m2·°C/W and Mw is the average hot water demand rate during the time interval,
which we assume to be equal to zero since we don’t have that information. Parameter Tin is the
supply domestic cold water temperature, and T room is the temperature of the ambient environment.
Finally, ∆h heating time in seconds.

The schedules start at period 1. We have the initial period h = 0 where no decision is required, i.e.,
p0 = 0. In addition, each task j ∈ JiA that is performed in room k of member i has a power p̄ijk > 0,
expressed in kW. In this work, we discretize [0, p̄ijk] by considering only the integer values in [1, p̄ijk] (0
is not considered as in that case, the device is turned off). Our numerical experiments consider devices
with p̄ijk = 2.
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The second class, called type B, contains the tasks that must be performed during defined periods
under some energy consumption level constraint (charging the electric vehicle or washer). For example,
each member i must decide a schedule in a set of feasible schedules Sij to perform task j. The last
class, called type C class, contains uncontrollable tasks. Type C tasks’ periodic energy consumption is
estimated for each member during the planning horizon. The question we address in this paper is: how
to efficiently perform the tasks in a community to maximize the collective self-consumption rate?

Optimization is crucial at all levels of energy system planning. Long-term planning is addressed
by [27, 22]. The authors of [27] study a model for extending a power system. The goal is to determine the
investment to expand a multi-commodity power system. To do so, the authors consider Demand Response
as a capacity reserve. The resulting problem is intrinsically uncertain since DR remains uncertain even
over short-term planning. Planning in energy systems is subject to many uncertainties making robust
models untenable given the systems’ size. In this context, [22] presents a robust optimization framework
considering all uncertain parameters. In medium-term planning, [34] presents a bilevel problem of a
single leader and several followers. The leader interacts with each follower via a contract detailing the
parties’ exchange prices. The leader’s problem is choosing the contract to propose to each follower to
maximize his profit, given that the members may or may not accept them. If a follower refuses the
leader’s contract, she can exchange with one of the leader’s competitors. Each follower’s objective is to
choose the least expensive contract. Finally, [32] and our work are in short-term planning. The authors
of [32] deal with the decentralized coordination of flexible loads and uncertain renewable generation.
The authors rely on demand-side incentives to attract low-cost flexibility in a decentralized and uncertain
context to balance supply and demand in each period.

Two optimization approaches exist in the literature on energy system planning: centralized and
distributed optimization. Centralized optimization methods, which consist of a central manager collecting
information and preferences from all members, solving an optimization problem then sending signals to
each individual, are widely used in the literature [5, 33] as well as the aforementioned [27, 34]. While
they can return optimal solutions, they have some drawbacks:

• The large computational capacity requirement.

• The information bottlenecks which lead to long transfer times.

• The question of social acceptance, since people may be reluctant to accept instructions from a third
party regarding the use of their devices [29].

In our context, distributed optimization refers to each member locally determining their loads. Therefore,
distributed optimization is a relevant alternative for large electrical systems. Indeed, the computational
effort is not borne by an individual, but each member locally solves an optimization problem. The
local optimization problems are often some linear program (LP). Some of the most used distributed
optimization methods are the alternating direction method of multipliers ADMM [6, 18, 19, 20, 31], dual
decomposition [21] and consensus + innovations [13, 15].

Regarding ADMM, [19] proposes a method for day-ahead scheduling and compares the central-
ized and distributed approaches. Reference [18] presents a distributed model for multi-microgrids that
cooperate to reduce the aggregated operational cost. The authors of [31] present a community that
cannot inject the surplus in the distribution network and an ADMM-based method to maximize the
community’s utility. The authors use game theory to model members’ preferences. Each member solves
an optimization problem to maximize the local utility. Thus, global problems are solved under global
constraints, such as the battery storage system (BSS) management constraints. On a ring network com-
posed of several agents, the next agent i starts to calculate and update only after receiving information
from the previous agent, which can be problematic for more complex problems. The authors of [6] then
present a parallel and distributed method for energy management to increase ADMM’s convergence rate.

Turning to Consensus + innovation, [13] presents an approach to coordinate the loads, energy
generation, and storage for a set of auto-sufficient agents that compose a microgrid. Each agent interacts
with a defined neighborhood to find a consensus on the power supply price while ensuring the total
generation and load are equal. The authors of [15] provide a relaxed consensus + innovation-based
management to coordinate the power exchanges and prices among the microgrid and the smart grid and
study the uncertainty impact on such system’s performance.

Finally, the ADMM works in a cascade, making it ineffective for large systems. The authors of [35]
present a distributed Lagrangian dual method that rapidly converges based on Nesterov accelerated
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gradient and dynamic set-sizes. The author of [17] generalizes the Lagrangians to a wider class of
functions that satisfies the strong duality between primal and dual problems then, derives the generalized
Karush–Kuhn–Tucker conditions for this generalized Lagrange multiplier method which is helpful to
provide consensus protocols.

In this paper, we introduce a bilevel formulation to manage the community:

x∗
L = min

xL∈XL

fL(xL, xF ) (1a)

s.t. xF ∈ arg max
xF ∈XF

gF (xL, xF ), (1b)

where xL and xF are, respectively, the leader’s and followers’ decision variables, fL is the leader’s
objective function which in our case is the energy coming from the primary grid. Each follower’s objective
function is the gain which is negative if the member’s global need is greater than the energy availability;
it is positive otherwise. This bilevel formulation is hardly solvable due to integer variables and the
problem’s size. Thus, we introduce a heuristic where CC provides the surplus allocation rule called:
allocation key as an incentive. The notion of allocation key is a well-known concept used (a posterior)
to share the economic gain between the members who share their generation surplus [25]. In this paper,
we use the concept of allocation key to share the energy injected by prosumers in the community for
day-ahead scheduling. Thus, we define the allocation key as an algorithm that returns the maximum
amount of energy a given member can collect from the community at each period. After receiving the
incentive, each member determines her load, need, withdraws, and/or storage and injection schedules.
Then, she sends her energy need and availability information to CC, which updates its incentives. Since
there are no direct information links between each pair of members, prosumer i does not know which
part of the injection is consumed in the community. If the total periodic injection exceeds the total
needed, the remaining energy is injected into the aggregator; otherwise, the remaining required energy
is collected from the primary grid. The main aim is to consume local generation as much as possible
locally. As the BSS deteriorate with use, the coordinator must provide some selling prices which cover
the marginal degradation cost if it wants them to provide flexibility.

The rest of the paperis structured as follows Section 2 details the formulation of each level of
formulation (1). Section 3 presents an iterative heuristic, returning the efficient solution. Section 4
presents the experimental results. The paper concludes with a conclusion in Section 5.

2 Mathematical formulation
In this section, we detail the bilevel formulation (1). CC is the leader and each member in the community
is a follower. Let us first detail the input data and followers’ variables, provided in Tables 1 and 2.
In addition leader’s variables are the maximum amount of energy a given member can take from the
community. We detail next the two main ingredient of problem (1).

2.1 Leader’s problem
CC determines the periodic day-ahead the incentive to maximize the collective self-consumption rate.
This incentive that we note F RCom

ih is the maximum amount of energy member i can draw from the
community at period h. The leader shares the energy between members via F RCom and the remaining
energy at period h is denoted Ih which is injected into the main grid. Recall fL is the leader’s objective
function, which designates the total amount of energy collected from the main grid. Minimizing fL is
equivalent to maximizing the collective self-consumption rate. The leader’s problem is:

x∗
L = min

xL∈XL

fL(xL, xF ), (2)

where xF represent followers’ response to leader’s decision, and xL = (F RCom, I). More explicitly, the
leader’s problem is:

min
∑
i∈N

∑
h∈H

Cih (3a)
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Sets
N set of community’s members
JiA set of member i’s type A tasks
JiB set of member i’s type B tasks
H set of the planning horizon’s periods
KA

ij set of rooms of member i where task j ∈ JiA can be performed
Sij set of schedules given by i ∈ N for task j ∈ JiB

P A
ijk set of the power levels available to perform task j ∈ JiA in room k ∈ KA

ij of i ∈ N

Parameters
∆h length of period h (hour)
πi member i’s subscribed power level
Γi member’s i’s BSS’s capacity
ξi initial amount of electricity in member i’s BSS i ∈ N
ηi member i’s BSS’s automatic discharge rate of battery i ∈ N
ϕi member i’s BSS’s maximum cycles during horizon H i ∈ N
β maximum spending degradation threshold allowed (%)
Ωi equal to 1 if member i is allowed to exchange electricity, 0 otherwise
di, ci discharge and charging efficiencies of i’s BSS i ∈ N (%)
νijk equal 1 if task j ∈ JiA is executed by member i in room k ∈ KA

ij , 0 otherwise
θj(p) temperature variation function when performing task j ∈ JiA according to power p
[tlow

ijk , t
up
ijk] temperature targeted by member i when performing task j ∈ JiA in room k (°C)

[hlow
ijk , h

up
ijk] time where member i’s confort zone must be reached when performing task j ∈ JiA

T̄ room
i1k initial temperature of room k ∈ KA

i1 where member i wants to perform task j = 1
T̄ water

i2k initial water’s temperature in heater k ∈ KA
i2 where member i wants to perform task j = 2

T̄ all
ijk T̄ all

ijk = T̄ room
i1k if j = 1, T̄ all

ijk = T̄ water
i2k if j = 2

T out
h outside temperature at time period h ∈ H (°C)

T room
kh ambient temperature in the room where is placed water heater k ∈ KA

i2 at period h (°C)
P Gen

ih energy production of member i at period h (kW)
P B

ijhs consumption of task j ∈ JiB of member i at period h in the schedule s ∈ Sij (kW)
P Gen

ih energy production of member i at period h (kW)
P B

ijhs consumption of task j ∈ JiB of member i at period h in the schedule s ∈ Sij (kW)
P in

i , P out
i charging and discharging power of member i’s BSS (kW)

pC
ih cumulative power consumption of type C tasks at time period h ∈ H

Gi gain of member i ∈ N when operating outside a community (€)
vMG

h unit purchase price of electricity from the primary grid at period h ∈ H (€/kWh)
ṽMG

h unit sale price of electricity to the primary grid during period h ∈ H (€/kWh)
vCom

h unit purchase price of electricity in the community during period h ∈ H (€/kWh)
ṽCom

h unit sale price in the community during period h ∈ H (€/kWh)
vGES

h unit purchase price to the green energy supplier at period h ∈ H (€/kWh)
ṽGES

h unit sale price to the aggregator at period h ∈ H (€/kWh)

Table 1: Data.

s.t.
∑
i∈N

F RCom
ih + Ih =

∑
i∈N

F out
ih h ∈ H (3b)

F RCom
ih , Iih ≥ 0 i ∈ N, h ∈ H (3c)

The leader shares the injection between members and sends the remaining energy I to the aggregator in
constraint (3b).

2.2 The followers
Each follower i’s objective is to determine her consumption, injection, and storage schedules to maximize
her gain gF . Let XF be the feasible region of the lower level’s decision variable xF . Thus:

x∗
F = max

xF ∈XF

gF (xL, xF ) (4)
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xA
ijkhp ∈ {0, 1} is equal to 1 if and only if task j ∈ JiA is at progress at period h in member i’s

room k ∈ KA
ij and the device is on power level p,

xs
ij ∈ {0, 1} is equal to 1 if and only if schedule s ∈ Sij is chosen for member i’s task j ∈ JiB ,

zih ∈ {0, 1} is equal to 1 if and only if i’s BSS is charging in time period h,
wih ∈ {0, 1} is equal to 1 if and only if i’s BSS’s state changes from discharging or inactive to

charging at period h,
Tijkh ≥ 0 the temperature in room k of i where task j ∈ JiA is performed at period h,

qih ∈ R is the amount of energy injected into/out i’s BSS at period h, with qbih ≤ 0 if b
discharges, qbih ≥ 0 if b charges, and qbih = 0 if b is inactive,

Ebih ≥ 0 the amount of electricity available in battery b ∈ Bi of i at the end of period h,
F out

ih ≥ 0 is the amount of energy injected by member i at period h,
F in

ih ≥ 0 is the amount of energy drawn from the community by member i at period h,
Cih ≥ 0 is the amount of energy withdrawn from the grid by member i ∈ N at period h,
G̃i ∈ R is the gain of member i when operating in the community.

Table 2: Each member’s variables.

The detailed lower level problem is presented in what follows. Each follower i has individual constraints
related to the tasks to perform. These are listed below and commented subsequently.∑

s∈Sij

xs
ij = 1 j ∈ JiB (5a)

∀j ∈ JiA, k ∈ KA
ij ,∑

p∈P A
ijk

xA
ijkhp ≤ 1 h ∈ H (5b)

Tijkh = θj(
∑

p∈P A
ijk

p · xA
ijkhp) h ∈ H (5c)

if νijk = 1
tlow
ijk ≤ Tijkh ≤ tup

ijk h ∈ [hlow
ijk , hup

ijk] (5d)
Tijk0 = T̄ all

ijk (5e)

Recall a type A task is performed to regulate the temperature in certain rooms (room or water heating),
and the type B task must be performed under time window and consumption level constraints. Con-
straint (5a) refers to type B tasks. Indeed, for each type B task, exactly one schedule must be selected.
Constraints (5b)–(5e) are related to type A tasks. At each period, for each type A task, at most, one
power level is selected (5b). Constraint (5c) ensures the temperature calculation at each period. Con-
straint (5d) imposes the temperature to be in the desired comfort zone, and (5e) sets the initial rooms’
temperature.

Another individual ∀i ∈ N constraints concern the BSS management constraint:

∆hdiP
out
i (zih − 1) ≤ qih h ∈ H (6a)

qih ≤ ∆hciP
in
i zih h ∈ H (6b)

zih − zi(h−1) ≤ wi(h−1) h ∈ 2, . . . , |H| (6c)
Eih − qi(h−1)

Ei(h−1)
= ηi h ∈ 1, . . . , |H| (6d)∑

h∈H

wih ≤ ϕi (6e)

Eih ≤ Γi h ∈ H (6f)
Ei0 = ξi (6g)

Constraints (6a) and (6b) avoid the simultaneous BSS’s charge and discharge. Variable qih is the amount
injected if positive. Otherwise, it is the amount discharged from BSS. (6d) updates the BSS’s state at
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each period, and (6e) limits the number of cycles during the planning horizon. Constraint (6f) enforces
the amount of energy in the BSS to be less than its capacity and (6g) sets the BSS’s initial state.

Each member i maximizes her gain G̃i. Constraint (7a) calculates member i’s gain that must not
be deteriorated by more than β% of i’s state when she does not exchange energy (7b). Prosumers gain
also depends on the amount injected in the aggregator, we denote τih as a parameter that designate
member i’s contribution to this amount at period h.

G̃i =
∑
h∈H

[
vCom

h F out
ih − ṽCom

h F in
ih + τihvGES

h Ih − ṽMG
h Cih

]
∆h (7a)

G̃i −Gi

|Gi|
≥ β. (7b)

In addition, each member i has some global operational constraints at each period h ∈ H which are:∑
j∈JiA

∑
k∈KA

ij

∑
p∈P A

ijk

p · xA
ijkhp +

∑
j∈JiB

∑
s∈Sij

P B
ijhsxs

ij + pC
ih + qih

∆h
= P Gen

ih + Cih + F in
ih − F out

ih (8a)

F out
ih ≤ P Gen

ih + Eih

∆h
Ωi (8b)

F in
ih + Cih ≤ πi (8c)

F in
ih ≤ F RCom

ih (8d)
F out

ih ≤ πi (8e)

Constraint (8a) ensures energy conservation. A member can inject if she is a prosumer or a prosumer
owning BSS (8b). Parameter Ωi equals one if member i can inject energy, i.e., if i is a prosumer or holds
a BSS, 0 otherwise. Constraints (8c), and (8e) enforce each member’s energy flows to the less than her
subscribed power. Constraint (8d) imposes F RCom

ih as the upper bound on F in
ih for i ∈ N, h ∈ H

Finally, we have the variables domains defined as follows: ∀i ∈ N, j ∈ JiA, h ∈ H, p ∈ P A
ijk, k ∈

KA
ij , j′ ∈ JiB , s ∈ Sij ,

xA
ijkhp ∈ {0, 1} (9a)

xs
ij′ ∈ {0, 1} i ∈ N (9b)

zih, wih ∈ {0, 1} (9c)
F out

ih , F in
ih , Cih, Eih ≥ 0, qih ∈ R (9d)

Overall, the lower level problem is:

max G̃i (10a)
s.t. (5), (6), (7), (8), (9).

2.3 The full bilevel problem
The bilevel problem’s generic form is:

x∗
L = min

xL∈XL

fL(xL, xF ) (11a)

s.t. xF ∈ arg max
xF ∈XF

gF (xL, xF ), (11b)

which contains some integer variables in the lower level. Therefore, classical approaches like KKT
reformulation cannot be used. Despite the recent progresses for solving mixed-integer bilevel linear
program [8, 16], some based on intersection cuts [9], these problems remain extremely difficult to solve
exactly and hardly capable of addressing the large problems we encounter in this work. Therefore, we
propose a greedy algorithm where each member operates independently of the others, and the coordinator
coordinates the demand response.

7



3 Iterative heuristic
Since the bilevel program (11) can hardly be solved exactly for the large instances, we introduce a heuristic
algorithm. Each member determines local schedules and sends information about power requirements and
availability to CC, the intermediary between members. Before presenting our distributed framework, we
present the local scheduling model solved by each member. The local scheduling model for each member
i ∈ N is the following:

max G̃ (12a)
s.t.(5), (6), (7a), (8), (9).

Model (12) does not contain constraint (7b) since the prosumer’s gain depends on the ability to exchange
energy. The members do not have information on the community’s state in the distributed scheme. As
a result, consumers do not know when to consume, and who sends the received energy. Thus, at each
iteration, CC will provide the information F RCom to incentivize the members to shift their consumption
to period h ∈ H where F RCom

ih exceeds zero.

3.1 Allocation keys
Allocation keys are traditionally used as an after-the-fact means of distributing financial gains among
members who inject their surplus during one month. Used a posteriori, allocation key is not an incentive
since members cannot decide at this point. In this paper, we use allocation keys for day-ahead scheduling.
We use this notion to incentivize members to modulate their consumption during their local day-ahead
planning. Therefore, in this paper, the allocation key is an algorithm that returns values that indicates
to each member the maximum amount of energy she can collect from the community.

Definition 1. An allocation key is an algorithm K that, given Cih and F out, computes F RCom
ih for i ∈

N, h ∈ H.

The key allows CC to indicate the energy availability state to each member without sharing private
information with the members. Several a posteriori key exist in the literature [25], some currently used
in the French electrical power system. Among the keys in the literature, we have the allocation in prorate
to consumption, production, investment etc. The a posteriori key used in Smart Lou Quila [23] inspires
K1. We further introduce a second key, denoted K2, that fits well with day-ahead scheduling.

• Fair repartition (K1). Presented in Algorithm 3 for l = 1, this key shares the energy according
members’ demand. Lines 7–10 in Algorithm 3 address the case where the total injection

∑
i∈N F out

ih

exceeds the demand
∑

i∈N Cih for h ∈ H. In this case, each member i receives the amount Cih

at period h. In lines 14–31, we consider case where each member can receive the minimum energy
required in the community Cmin at a given period h, i.e., if |N | · Cmin ≤ residual. In that case,
we allocate Cmin to members. We remove the satisfied members and share the residual energy
among the remaining members. In lines 29–31 the residual is insufficient to serve each member,
i.e., u · Cmin ≥ residual, where u is the number of unsatisfied members so, we share the residual
uniformly among the remaining members. In lines 34–35, we handle the case where the energy
available is insufficient to satisfy the total need and not sufficient to allocate Cmin to each member,
so we share the energy available uniformly between members. Finally, in lines 38–40, value F RCom

ih

equals zero for each member i if the total injection equals zero at period h.

• Peer need (K2). This key consists in determining the candidates for the energy reception and
then sharing (uniformly) the power between these members. Member i is a candidate at period
h if she does not inject energy, i.e., if F out

ih = 0. After receiving all members’ information, CC
determines at each period who are the individuals likely to receive energy and shares the energy
available uniformly among these members as detailed in Algorithm 1 where σih is equal to 1 if
member i ∈ N is a candidate to receive energy from other members at period h ∈ H, in other
words, if F out

ih = 0. Value σTot
h is the number of candidates to receive energy from the community

at period h ∈ H.

We set F in
h =

∑
i∈N F in

ih and F out
h =

∑
i∈N F out

ih for h ∈ H for simplicity in Algorithm 2.
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Algorithm 1: Key K2 (per need).
Input : F out

Output: initial F RCom

σTot
h = |N |; σih ← 1 for i ∈ N, h ∈ H

for h ∈ H do
for i ∈ N do

if F out
ih > 0 then
σih ← 0
σTot

h ← σTot
h − 1

for i ∈ N do
F RCom

ih ← σih

∑
i′∈N

F out
i′h /σTot

h

Algorithm 2: Update K2.
Input : F in, F out and F RCom

Output: updated F RCom

σTot
h = |N |; σih ← 1 for i ∈ N, h ∈ H

for h ∈ H do
for i ∈ N do

if F RCom
ih − F in

ih > 0 then
σih ← 0; F RCom

ih ← F in
ih

σTot
h ← σTot

h − 1

for i ∈ N do
F RCom

ih ←
F RCom

ih + σih(F out
h − F in

h )/σTot
h

• Fair repartition (K3). Key K1 allocates energy even to members who inject energy since it
is based on consumption, and there is no test on prosumers’ injections. Thus, a prosumer can
simultaneously receive and inject energy at certain periods. To avoid simultaneous injection and
extraction, we combine keys K1 and K2 in a key called K3. Key K3 is presented in Algorithm 3
for input l = 3. We add some lines into K1 that allow determining the candidates as defined
previously. Thus, K3 allocates energy according to consumption to members who need energy.

• In prorate to consumption (K4). This key consist in sharing the surplus in prorate to con-
sumption between members in need. Thus,

F RCom
ih = σihCih∑

i′∈N :σi′h>0 Ci′h

∑
i′∈N

F out
i′h ,

where σih equals one if member i is candidate to receive energy as defined in K2.

• In prorate to investment (K5). This key consist in sharing the surplus between the members
who need energy in prorate to their investment in storage and generation tools. Thus, let us note
Σi as member i’s total investment to aquire some tools,

F RCom
ih = σihΣi∑

i′∈N :σi′h>0 Σi′

∑
i′∈N

F out
i′h .

Notice that keys K1 and K3 are fair in the sens of [14], i.e., the member who consumes the less is favored
to the one who consumes the most while sharing the surplus. Key K1 does not encourage members to
modulate their consumption in the previous setting, as shown in the results section. In contrast, key
K2 may encourage consumption modulation. Note that by using the key K2, some members needing
energy might receive more than required at certain times since the surplus is allocated uniformly, hence
the need to update values F RCom

ih at each iteration to ensure more efficient management. Let us denote
F out

h =
∑

i∈N F out
ih h ∈ H and F in

h =
∑

i∈N F in
ih h ∈ H for each period h ∈ H. Thus, F rest

h = F out
h −F in

h ,
is the amount of remaining energy after each iteration using key K2. Since the members determine their
schedules after receiving F RCom, these values should be dynamic to avoid giving energy to members that
do not need it. Indeed, CC must reallocate F rest

h . We update key K2 as presented in Algorithm 2.
Member i will not receive more energy then F in

ih at period h if F RCom
ih − F in

ih > 0.

3.2 The overall algorithm
Each member initially solves the load scheduling MILP with no energy exchanges between the members,
i.e., F RCom

ih = 0 for i ∈ N, h ∈ H. That allows members to determine their initial periodic energy needs and
availability. The members then send their injection and need information to CC, who shares the energy
available using the allocation key, sends values F RCom

i to each member who updates the local schedules,

9



Algorithm 3: key K1 and K3 (fair repartition).
Input : C, F out and l ∈ {1, 3}
Output : F RCom

1 if l = 3 then σTot
h = |N | for h ∈ H; σih = 1 for i ∈ N, h ∈ H

2 for h ∈ H do
3 if

∑
i∈N F out

ih > 0 then
4 for i ∈ N do
5 if F out

ih > 0 and l = 3 then
6 σih ← 0; σTot

h ← σTot
h − 1; Cih ← +∞

7 if
∑

i∈N F out
ih ≥

∑
i∈N Cih then

8 for i ∈ N do
9 if l=1 then

10 F RCom
ih ← Cit

11 else
12 F RCom

ih ← Cit · σih

13 else
14 Cmin ← mini∈N (Cih)
15 if l = 1 then u← |N | else u← σTot

h

16 if u · Cmin ≤
∑

i∈N F out
ih then

17 for i ∈ N do
18 if l = 1 then idxi ← i else idxi ← i · σih

19 residual←
∑

i∈N F out
ih

20 while u · Cmin ≤ residual do
21 m← 0
22 for i ∈ N do
23 if idxi ̸= 0 then
24 F RCom

ih ← F RCom
ih + Cmin

25 if Cih = Cmin then
26 m← m + 1; idxi ← 0; Cih ← +∞

27 residual← residual − u · Cmin

28 u← u−m; Cmin ← mini∈N (Cih)
29 for i ∈ N do
30 if idxi ̸= 0 then
31 F RCom

ih ← F RCom
ih + (residual/u)

32 else
33 for i ∈ N do
34 if l = 1 then
35 F RCom

ih ← (
∑
i∈N

F out
ih /u)

36 else
37 F RCom

ih ← (
∑
i∈N

F out
ih /u) · σih

38 else
39 for i ∈ N do
40 F RCom

ih ← 0

10



Algorithm 4: Distributed management model.
Input : K ∈ {K1,K2,K3}
Output: F RCom and the local best schedules
Step 0: F RCom

ih ← 0 for i ∈ N, h ∈ H, iter ← 1
Each member i solves (12) (in parallel) and sends (F out

i , C) to CC; F rest
h ← F out

h

Step 1: CC determines F RCom using key K and sends F RCom
i to member i who solves (12) for

i ∈ N , iter ← iter + 1
if K = K2 then

while iter ≤ maxIter do
CC updates F RCom using Algorithm 2 and sends F RCom

i to member i ∈ N
Each member i solves (12) and sends (F out

i , F in) to CC, iter ← iter + 1

Step 2: Manage F rest which corresponds to variable I, determine τ for gain sharing.

and so on until the community reaches an acceptable level for the day’s operations. Algorithm 4 presents
the distributed management framework.

At the end of the second step, if there exists a period h where F rest
h ̸= 0, the amount F rest

h is
injected into the aggregator, and the economic gain associated to F rest is shared between the prosumers
inject their surplus, Step 2 refers to that in Algorithm 4. We do not treat this gain-sharing aspect
in this paper. Observe that, for K = K2, the members’ local solutions do not change after at most
maxIter = |N |+1 if each local problem is optimally solved at each iteration. Indeed, at each iteration, a
group of l ∈ {1, · · · , |N |} members is satisfied and removed from the set of candidates to receive energy
all over the horizon. These members will not receive more energy over the horizon: their solutions stay
the same, and F rest

h is allocated to the candidates h ∈ H who optimally solve their problem. The worst
case occurs if l = 1 at each iteration; hence maxIter = |N |+ 1 iterations with the initial iteration.

3.3 The remaining energy and storage
The members that own BSS should be encouraged to store energy at certain periods of the planning
horizon. Indeed, since CC maximizes the consumption of locally produced energy and the member
the local profit, the prosumers can inject more energy than required to satisfy the global energy need.
If

∑
i∈N F out

ih is greater than the energy requirement at period h, a portion of it can be consumed
in the community, and the other is injected into the main grid (MG) or stored. Being decentralized,
prosumers and CC cannot foresee what portion is consumed locally. Therefore, CC can only provide
storage incentives when needed. Thus, members owning a BSS are encouraged to store if the need is less
than the energy available or if CC wants the community to provide energy to the main network. The
storage incentive must prioritize local consumption, hence, the interest in setting limits to the maximum
a member who owns a battery can store. Let us introduce ρih as the value which limits member i ∈ N
injection at period h ∈ H. We assume that ρih is proportional to quantity depending on member i ∈ N ’s
physical characteristic in terms of asset owing plus a variable a quantity depending on the member i’s
participation in the global production, which multiplies the global need.

ρih = δi + P Gen
ih∑

i′∈N P Gen
i′h

Ch h ∈ H. (13)

We set ρih for each i ∈ N, h ∈ H such that it is proportional to the energy need, and inversely proportional
to the community’s generation as presented in constraint (13), where δi is an ad-hoc constant determined
by trial and error. This makes sense since we assume that the self-discharge rate of the batteries is low.
We add constraints (14) to the members’ model (12).

F out
h ≤ ρihζi + πi(1− ζi) h ∈ H, (14)

where ζi is equal to 1 if member i ∈ N owns a storage unit, 0 otherwise and δi a physical parameter
related to member i’s generation and storage systems’ size. Figure 6 presents the periodic F rest and
Need before and after adding constraints (14).
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4 Numerical experiments
We use a realistic instance based on Smart Lou Quila’s seven-member demonstrator [23]. The planning
horizon consists of a day sliced into 24 equal-length periods. The first six members’ real asset-owing
characteristics are presented in Table 3. The last member does not have any assets. Members subscribed
power are respectively π = [36, 9, 6, 9, 9, 6, 9] kVa.

Member 1 Member 2
Photovoltaic (PV) Yes PV Yes
PV Capacity 6.12kWp PV Capacity 3.2kWp
Battery Yes Battery Yes
Number 1 unit Number 1 unit
Capacity 9.8kWh Capacity 9.8kWh
Initial state of charge 4.5kWh Initial state of charge 4.5kWh
Efficiency 97.5% Efficiency 97.5%
Power 5kW Power 3.7kW
Periodic discharge rate 1% Periodic discharge rate 1%

Member 3 Member 4
PV No PV Yes
PV Capacity 0kWp PV Capacity 3.2kWp
Battery yes Battery No
Number 1 unit Number 0 unit
Capacity 9.8kWh Capacity 0kWh
Initial state of charge 4.5kWh Initial state of charge 0kWh
Efficiency 97.5% Efficiency 0%
Power 3.7kW Power 0kW
Periodic discharge rate 1% Periodic discharge rate 0%

Member 5 Member 6
PV Yes PV Yes
PV Capacity 3.2kWp PV Capacity 3.2kWp
Battery No Battery No

Table 3: Production and storage assets description in the community.

We use the energy generation data collected on July 23th 2022. Figure 2 presents prosumers’
individual production and the community’s total periodic production. The members’ loads are artificially
generated. In other words, we generate some loads of the different types namely type A, B, and C. The
following array ν shows the requested type A tasks by each member. We consider two different type A
tasks i.e. |JiA| = 2 ∀i ∈ N ; ∀j ∈ JiA, j = 1 means the corresponding task is room heating and j = 2
means that the requested task is water heating. Finally, νijk is equal to 1 if task j ∈ JiA is executed by
member i in room k, 0 otherwise. We refer to [26] for more details:
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Figure 2: Generation on July 23th 2022.
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ν1 =



1 1
0 1
1 1
1 1
1 1
0 1
1 1


ν2 =



1 0
0 0
1 0
0 0
0 0
1 0
1 0


ν3 =



0 0
1 0
1 0
0 0
0 0
1 0
1 0


.

Table 4 presents members 2 to 7 houseroom characteristics. For simplicity we assume that each room k

Member room Surface Cr U

Member 2

room 1 9m2 297 12
room 2 15m2 495 20
room 3 18m2 594 24

Member 3

room 1 18m2 594 24
room 2 9m2 297 12
room 3 9m2 297 12

Member 4

room 1 12m2 396 16
room 2 20m2 660 26.6
room 3 12m2 396 16

Member 5

room 1 25m2 825 33.3
room 2 10m2 330 13.3
room 3 12m2 396 16

Member 6

room 1 18.5m2 610.5 24.6
room 2 9m2 297 12
room 3 10m2 330 13.3

Member 7

room 1 15m2 495 20
room 2 10m2 330 13.3
room 3 14m2 462 18.6

Table 4: Rooms physical characteristics.

of each member has an initial temperature equal to 22°C and that the temperature of these rooms must
lie in the interval [tlow

ik , t
up
ik ] during the time interval [34, 48].

tlow =

 20 19 20 20 21 20 19
20 19 20 20 20 20 19
20 19 20 20 20 20 19

 tup =

 25 25 25 25 25 25 25
25 25 25 25 25 25 25
25 25 25 25 25 25 25


Each member has a single water heater, and Table 5 presents their physical characteristics. Parameter
cp = 1 is the specific heat capacity of water. Column M shows the weight of the water (kg), column
S designates the exchange surface of the water container with the external area, K is the exchange
coefficient (kcal/h·m2·°C). Finally, column T̄ water presents the initial temperature of each member’s
water heater. The members’ water must reach 60°C at period 16. The efficiency of the electricity-to-
heat transformation υ = Mcp/(Mcpr+∆SKr). Also, for simplicity, we assume that pC

ih which is member

Member S M T̄ water K r
1 7 350 15 1 1.2
2 1.5 75 17 1 1.2
3 2 100 18 1 1.2
4 3.75 200 19 1 1.2
5 2.4 150 10 1 1.2
6 2 100 10 1 1.2
7 2.6 150 8 1 1.2

Table 5: Water heaters characteristics.

i ∈ N non-controllable consumption at period h, is equal to one for each member at each period.
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4.1 Keys comparison
We present our numerical results in this section. First, we compare the key calculation methods, and
an illustration of the need for CC to control storage. Then, we show the impact of this control on the
distributed solution. Each member’s local scheduling problem (12) is reformulated using Special Ordered
Set variables as presented in Section 7.1 of [26] with a time limit time_limit = 20 seconds. Table 6
presents the distributed solution for our instance. We do not update K2. In this table, Column Avail
is the amount of photovoltaic energy that can be shared in the community or injected into the main
grid, and column Loss is part of Avail that needs to be injected into the main grid. Table 6 shows

Distributed solutions
Key obj kWh CPU Available kWh Loss kWh
K1 125.62 0.20 27.97 13.78
K2 115.50 0.20 27.97 3.65
K3 117.96 0.20 27.97 6.11
K4 115.50 0.25 27.97 3.65
K5 119.30 0.25 27.97 7.44

Table 6: Key comparison.

that the distributed management with keys K2 and K4 returns the best solutions, i.e., ensures more
local consumption of green energy than the other keys. Since initial consumption is determined without
information, consumers consume randomly to meet their initial optimum. Therefore, a sharing scheme
based on consumption will not incentive these members to shift the load. On the other hand, sharing
based on consumption leads to allocating energy to members who do not need it. Figure 3 shows the
different keys’ consumption shifts during the planning horizon after |N | + 1 iterations for key K2, and
two iterations for K1 and K3. Curves Available and Used represent respectively the amount of green
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Figure 3: Demand response illustration.

energy injected by prosumers and the amount of green energy available which is locally consumed. Total
need represents the total energy needed in the community for direct consumption or to be stored for
ulterior consumption. The area between curves Available and Used is the energy injected into the main
grid. It corresponds to column Loss in Table 6. Allocating energy to members who need it reduces the
area between available and Used curves, leading to a good distributed solution.

Table 7 presents the solution instance using updated K2. Iteration 1 in column 1 corresponds
to the case where F RCom = 0. Each column shows each member’s total energy collected from the main
grid during the planning horizon, one row per member. Row Sum presents the energy collection for the
whole community during the planning horizon. Updating keys provides good solutions for distributed
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Members
iteration 1 2 3 4 5 6 7 8 9

1 8.71 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13
2 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6
3 12 9.86 9.69 9.64 9.64 9.63 9.63 9.63 9.63
4 13.52 12.39 12.39 12.39 12.39 12.39 12.39 12.39 12.39
5 34 26.84 26.21 25.75 25.66 25.58 25.56 25.54 25.54
6 31 23.84 23.21 22.75 22.66 22.58 22.56 22.54 22.54
7 34 26.84 26.27 26.09 26.06 26.04 26.03 26.03 26.03
Sum 139.83 115.5 113.5 112.35 112.14 111.94 111.9 111.86 111.86

Table 7: Distributed management solution.
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Figure 4: Optimal distributed solution with updated K2.

management since it leads to better allocation. Consequently, consumers shift more loads at available
energy periods leading to a good solution since the objective value of the centralized optimum solution
is 111.16 kWh. However, there is a need to incentive storage if the energy to be shared is important.
Indeed, since the prosumers maximize their profit, they inject more at periods where the prices lead to
a maximum profit. This results in too much injection than required at certain periods. For example, if
we increase the total production

∑
i∈N P Gen

ih for h ∈ H by 50%, the glutton algorithm leads to a solution
with 79.34 kWh versus 64.02 kWh the optimal centralized solution’s objective value, which is an increase
of 24%. The remaining energy F rest is presented by Figure 5. We notice a lot of green energy available
in periods 10 to 17 while no energy is needed in the whole community (the opposite situation occurs
after period 17). That is due to the lack of global perception of the community’s state for prosumers.
CC could have incentive members owning batteries to store energy during periods 10 to 17 for ulterior
use.
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Figure 5: Storage requirement illustration.

4.2 Storage control
As shown in Figure 5, there is a need to incentivize the prosumers owing a BSS to store energy at certain
periods. We express this incentive as a limitation of the periodic injection of these members. Indeed, if
they cannot inject, they will store for the next periods. We introduce constraint (14) to achieve it. Then,
at each iteration, CC calculates ρih for i ∈ N, h ∈ H. In this paper, we set δi proportional to the size
of member i ∈ N compared to the other generating members who own the BSS. Each member i owing
a BSS has an initial δi = 1 kWh. Suppose member i′ produces twice as much as the other members,
δi′ = 2 kWh. Three members own the BSS, namely members 1, 2, and 3, according to the previous
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affirmation δ = [2, 1, 1, 0, 0, 0, 0]. We set the local scheduling time limit to 50 seconds for each member
at each iteration.
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(a) Before storage control: objective is 79.37 kWh,
energy injected into MG is 31.10 kWh.
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Figure 6: Storage control’s impact.

Since each member maximizes the profit, without injection limitation, the prosumers will directly
inject their surplus. That leads to important energy injected into the main grid (the area between the
red and green curves, which corresponds to the curve F rest respectively in Figures 6a and 6b). Limiting
prosumers owing BSS makes these members stock to reinject at other times, which allows having better
solutions, as displayed on Figure 6b.

4.3 Test on real data
This section presents numerical results using accurate historical data collected from Smart Lou Quila’s
demonstrator. Since we do not know the actual load classification, we assume each member’s loads
belong to the type C, i.e., no consumption modulation is expected. We compare the a priori and a
posteriori management and the keys. In the a posteriori case, the member n solves the problem with all
scheduling variables fixed except Cih, F out

nh and F in
nh for n ∈ N, h ∈ H. In the a priori management, the

variables related to storage are not fixed in addition to these previous variables.
We collect the generation and load data for one month, specifically, February 2023 for winter

and August 2021 for summer. Figure 7a presents the community’s cumulative load and generation for
the summer instance. The data are collected every 30 minutes over the horizons, respectively, 1344
and 1488 periods for february 2023 and august 2021. Each local problem is solve with a time limit
time_limit = 50 seconds at each iteration.

• A posteriori comparison. Here, we consider only the summer instance since it is the one
that allows a clear a posteriori comparison; the prosumers inject more. For this instance, the
community draws 4677.11 kWh from the main grid and injects 846.11 kWh into it if the members
do not exchange the energy. Notice that a distributed solution is optimal if all members optimally
solve their local problem at each iteration. If members exchange energy, the optimal distributed
solution using key K1 leads the community to collect 4240.87 KWh from the main grid, and 48.4%
of the injection (846.11 kWh) is not locally consumed. Key K2 returns an optimal solution of
4194.44 kWh drawn from MG, and 43% of the surplus goes to the main network. In the same line
we obtain an optimal solution of 4209.16 kWh using key K3, 45% of the surplus is injected into
the main grid. Finally, the keys K4 and K5 lead respectively to 4198.39 and 4369.30 collected
from the main grid, respectively 43.4% and 63.6% of the surplus goes to the main grid.

• A priori comparison. For the winter instance, using key K1, the community collects 7474.9 kWh.
The total injection of the community is 182.8 kWh, of which 25.3% is injected into the main grid
mainly because the energy allocated to some members was not consumed. Updated K2 increases
collective self-consumption, and only 0.13% of the local generation goes to the main grid. Key K3,
which improves key K1 by allocating energy only to members who need it leads to 7453.78 kWh
and 13.19% of the available energy injected into the main grid. For the summer instance, if the
prosumers do not exchange their surplus in the local community, a total of 4560 kWh is collected
from the main grid, and 714.77 kWh are injected into the main grid by the prosumers over the
month. If members exchange their surplus, the optimal centralized solution leads to 3867.88 kWh
collected from MG. For distributed management, on the one hand, using key K1, the community
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collects 4153.15 kWh for the main grid. On the other hand, the members inject 714.77 kWh of
their energy generation over the month, and 42.45% of this amount goes to the main grid. On
the other hand, the community collects 4063.07 kWh from MG using updated K2, and 28.7% of
injection goes to the main grid during summer. Key K3 leads to 4133.72 kWh collected from the
main grid, and 39.73% of the energy available goes to the main grid. In the line keys K4 and K5
lead respectively to 4079.66 and 4234.52 kWh collected from the main grid and 31.6% and 53% of
the injection goes respectively to the main grid. Finally, limiting the BSS owners’ injection using
key K2 leads to 4062.85 kWh collected from MG while members inject 707.67 kWh from which
28.11% goes to the main grid.

Key K2 returns better solutions because it allows, on the one hand, a better surplus allocation. On the
other hand, it allows storage for ulterior usage. Indeed, keys K1,K3 and K4 are related to the individual
consumption level and K5 is not related to the operations. In opposition, K2 shares the surplus between
the candidates uniformly, if a member i owning a BSS receives at period h an amount fih greater than
her consumption, i.e., fih ≥ Cih, she can store the excess for her ulterior usage (see Figure 7b). These
BSS owners can store for the community only under CC signals on prices and injection limitations.
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Figure 7: Summer instance.

Experience has shown that, unlike the conventional approach, proactive management can effec-
tively establish DR in a community. However, its effectiveness depends on the surplus allocation rules. On
the other hand, there is a conflict between equity and maximizing the rate of collective self-consumption
for a priori management. We recall that equity in this work consists in prioritizing the member who
consumes the least when sharing the energy surplus. In this case, the keys K2, K4, K5 are not fair.
However, K2 is the best solution, as it allows storage for later consumption.

Notice that we do not address the pricing issue in this work, i.e., we do not consider how prices
ṽCom

h and vCom
h for h ∈ H are set. CC determines these prices for the Smart Lou Quila scheme. The aim
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is to maximize local consumption of locally produced energy correlated to CC’s margin. Therefore, the
exchange prices in the community must be more attractive, i.e., the selling in the community must be
higher than the price at which the aggregator takes the excess, and the buying prices in the community
must be lower than the buying price from MG. That is why we use the following prices in euros per kWh:

vMG
h = vGES

h = 0.1685, ṽGES
h = 0.065

vCom
h = 0.1400, ṽCom

h = 0.12.

where ṽGES is the price of selling the surplus to the aggregator. These prices must also be sufficient to
amortize the marginal cost of using the BSS if we limit the injections.

5 Conclusion
In this paper, we present a parallel and distributed management method for large energy communities,
which leads to some reasonable solutions compared to centralized solutions. Furthermore, we introduce
an efficient allocation key for a priori management, which leads to a solution at 5.2% from the optimal
centralized solution on real world data. We finally emphasize the conflict between fair surplus allocation
and the high self-consumption rate that rises for certain definitions of fairness.

Some critical perspectives of this work are electric mobility and grid services. Concerning mobility,
for example, we would like to charge the community’s electric vehicles with the quantities injected at the
aggregator, considering the travel schedule. As for grid services, we can imagine a form of collaboration
between CC and the main grid, which would enable the community to supply neighboring households
or communities, depending on the state of the overall grid. Finally, the system includes uncertainty at
several levels; we have handled the deterministic case for simplicity’s sake. Future work may consider
them.
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