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Abstract
This paper presents the LIUM-TTS entry for Blizzard 2023.
It is the first participation of the LIUM in the Blizzard Chal-
lenge. The Blizzard Challenge 2023 focused on French lan-
guage in two tasks. The Hub task was provided with 50 audio
hours (with partially aligned annotation), and the Spoke task
only 2 hours. The proposed TTS for the Hub task consists
of a Transformer-based grapheme-to-phoneme, a FastSpeech 2-
based acoustic model, and a fine-tuned Waveglow vocoder. The
output of this system has been fed through a voice conversion
module from Hub to Spoke voice. The perceptual evaluation
of our system in comparison with other Blizzard participants
shows its weaknesses and highlights future working axes to deal
with upcoming challenges.
Index Terms: Blizzard Challenge 2023, Text-to-speech, voice
conversion,

1. Introduction
The annual Blizzard Challenge intends to compare speech syn-
thesis approaches on a given task. While most Text-to-Speech
(TTS) systems are developed for English, the recent editions
of Blizzard foster different languages such as Mandarin (2020),
Spanish (2021) and French (2023). While the Spanish edition
focused on the synthesis of English words within a Spanish sen-
tence, the Mandarin and the French editions tackle the issue of
small amounts of data to train a synthesizer. To do so, French
audiobook data has been released to participants and two tasks
are proposed:
• Hub task: almost 50 hours from a female speaker (NEB)
• Spoke task : almost 2 hours of another female speaker (AD)

With the recent progress in speech synthesis, the quality and
intelligibility of the synthetic speech signals are becoming very
close to natural speech, thus allowing an extensive use of such
technology in various domains. However, while most efforts
have concentrated on English audiobooks data, the specificity
of other languages or other domains have not been extensively
investigated.

One of the main challenges in TTS is to find the har-
mony between the written text given in input and the realiza-
tion of prosodic and pronunciation characteristics in the output
speech. Previous works investigated the impact of pronunci-
ation in the perception of quality and expressivity of the syn-
thetic speech [1]. The adaptation of the phoneme sequence ob-
tained from the text with a pronunciation dictionary (canonical)
to the voice corpus has shown a clear preference in terms of
quality [2]. In French, four types of phoneme confusions can
occur between the canonical sequence and the realized pronun-
ciation : 1) related to the speaker itself (for example /o/ ↔ /O/),

2) elision of final liquids (/l, K/), 3) voice assimilation (devoic-
ing /Z/ → /S/ or voicing) and 4) deletion of shwa /@/ [2]. To these
phenomenon, one should add the liaison, and the mismatch be-
tween the output of the phonetizer and the phonemes as labeled
in the voice corpus. For these reasons, a special care has been
made in the LIUM-TTS entry regarding pronunciation model-
ing.

To cope the pronunciation issue, the end-to-end neural
TTS systems were first designed to take textual inputs such as
the mono speaker Tacotron 2 [3] or the multi-speaker Deep-
Voice3 [4]. However, some recent approaches still use phoneme
sequences in input, as for FastSpeech [5]. This option implies
to use an external grapheme to phoneme (G2P) convertor. Data
driven G2P converts input graphemes into phoneme sequences
which are adapted to the voice corpus. In our submission, we
decided to use this last option.

Speech synthesis is theoretically based on the source-
filter model, where the source generates voiced/unvoiced sig-
nal (pitch, rhythm and energy) and the filter adapts the spec-
tral content to the target phonemes. While Tacotron 2 enables
to model the duration with an attention mechanism, the non-
autoregressive FastSpeech also incorporates a variance adapter
to augment latent information of duration, pitch and energy. A
Tacotron 2 architecture with an additional loss between pre-
dicted and reference alignments to prevent duration modeling
issues has shown nice improvements [6].

One important aspect of the 2023 Blizzard edition is to gen-
erate synthetic samples with only 2 hours of speech from the tar-
get voice. To do so, multi-speaker TTS can be conditioned on
one-hot vectors [4] or speaker embeddings [7, 8]. The last op-
tion allows to generate new voices without retraining the TTS
system. Another option is to train a mono-speaker TTS, then
convert the synthetic speech to the target voice.

Our contribution for Blizzard 2023 is made of different
components :

• The front-end is made of a G2P convertor which manages the
specificity of written French

• A mono speaker FastSpeech based TTS system
• A voice conversion system based on an adapted Tacotron2

model
• A Waveglow based speech vocoder

2. Data
Each task corresponds to a target voice, either Nadine Eckert-
Boulet (NEB) or Aurélie Derbier (AD). NEB has read numerous
books whose recordings are available on Librivox. In the Syn-
PaFlex project, more than 87 hours of this voice were extracted
and annotated according to various expressive aspects in order



to build a corpus dedicated to French expressive TTS [9]. In-
deed, the speaker is able to change her prosody and modify her
voice in order to personify some characters with a distinct style
from the indirect speech [10].

In the challenge version, a subset of 5 books read by NEB
has been selected [11]. The available audio data is summarized
in Table 1. Audio data was provided in the form of 16-bit PCM
WAV files, each sampled at 22,050Hz. Each file is a complete
book chapter containing book sentences read aloud, as well as
potential ambient noise and background conversation. Annota-
tion files are in CSV format, with each line corresponding to
a segmented speech excerpt, the time in milliseconds at which
the excerpt starts and ends within the corresponding chapter file,
and a text transcript. We refer to these speech excerpts as ”ut-
terances” for the rest of this article.

A statistical examination of the two voices pitch contours
on the utterance level shows the pitch distribution of AD is more
spread out (average = 164.3Hz, standard deviation = 55.3) than
NEB (avg. = 194.9, std = 41.4) who has a more stable voice.
We also noticed that NEB speaker has a slight foreign accent
when speaking French.

Among the available data, some books have been pho-
netically aligned, so that, we can retrieve phoneme sequences
for a subset of the voices. The phonetic alphabet is derived
from SAMPA [12] and includes additional silent characters,
combined phones (for instance k&s for /k s/) and punctuation
marks. This last information is crucial for speech synthesis as
the prosodic content adapts to the construction of the utterance.
For example, a question mark implies generally a raise in the
pitch contour.

As shown in Table 1 an automatic phoneme alignment is
provided for all utterances of the Spoke task. In total, 68% of
utterances for the Hub task were provided with alignment infor-
mation.

Task Speaker Utterance source # utt Length (h) Alignment

Hub
(FH1) NEB

Madame Bovary
(G. Flaubert) 14417 11.10 ✓

Les mystères de
Paris (E. Sue) 28333 21.54 ✓

Les tribulations d’un
chinois en Chine (J. Verne) 1279 1.10 ✓

Les tribulations d’un
chinois en Chine (J. Verne) 4876 4.18 -

La fille du pirate
(H.-E. Chevalier) 6040 5.00 -

Le vampire (P. Féval) 8998 8.61 -

TOTAL 63943 - 51.53

Spoke
(SH1) AD

Various audiobooks 1608 1.43 ✓

Parliament transcripts 907 0.65 ✓

TOTAL 2515 2.08 ✓

Table 1: Description of the audio data for the Blizzard Chal-
lenge 2023.

We decided to split each dataset (only the aligned part) as
follows:
• NEB: NEB-train (80% of the aligned data), NEB-valid (20%

of the aligned data) and NEB-test (unaligned data).
• AD: AD-train (80% of the aligned data), AD-valid (20% of

the aligned data).
We investigated the quality of the data, especially, we used

an overlapping speech detection on all the data [13]. It is found

that in some files from AD dataset, two speakers (a male and
AD) were talking but these files were discarded from the train-
ing set in the released data.

3. Systems
Speech audio generation is typically divided in three separate
steps: 1) a front end which processes grapheme sequences into
machine readable representations, 2) an acoustic model that
generates an intermediate time frequency representation of sig-
nal, and 3) a neural vocoder which produces the synthesized
speech waveform.

3.1. Front-end

3.1.1. G2P architecture

A grapheme-to-phoneme (G2P) block is employed to convert
the orthographic representations of words into their correspond-
ing phonetic representations. The architecture of G2P, is based
on the work from Yolchuyeva et al. [14]. It is a 6-layer forward
transformer encoding followed by a dense layer trained using
the Connectionist Temporal Classification (CTC) loss function
at the word level. We used an available implementation of the
architecture1 with default parameters. The output of the G2P
model includes special characters and punctuation marks, pre-
serving the original textual characteristics during the grapheme-
to-phoneme conversion process.

3.1.2. Training Data

For the training set of the G2P, we use two types of data. 1)
the data provided by the challenge, NEB-train (and AD-train
for second task) 2) an additional dataset called Lexique383
[15] which is a French lexical database covering approximately
140,000 French words along with their orthographic and pho-
netic representations. The words come from a corpus of books
and film subtitles. By including Lexique383 in our training
data, we enhance the diversity of the dataset. This increased
diversity allows the model to better cover various name identi-
ties and handle particular or rare words.

3.1.3. Training Steps

Our G2P is trained from scratch using both Lexique383 and
NEB-train (and AD-train for second task) in two phases. In the
initial training phase, the G2P trained on word level using only
Lexique383. This initial phase allows the model to learn the
basic mappings from grapheme to phonemes. In the next phase,
the G2P is trained on the NEB-train (and AD-train for second
task) dataset at the utterance level. In this phase, the G2P would
be able to account for contextual factors such as ”liaisons” in
French pronunciation. This fine-tuning process not only adapts
the model to the specific characteristics of the NEB dataset, but
also incorporates the speaker style. For example, it can handle
cases where different speakers have distinct pronunciations for
the same words (”magnifique” is annotated as /m a n∼ i f
i k/ or /m a n j i f i k/ in NEB, when it is annotated
as /m a n i f i k q/ in AD).

3.1.4. Evaluation

To evaluate the performance of the G2P model, we measure the
Phoneme Error Rate (PER) on words without special characters.
The results are as follows:

1https://github.com/as-ideas/DeepPhonemizer



• Pretraining on the Lexique383 then fine-tuning on NEB-
train: testing on NEB-val yields a PER of 0.9%. This model
is used for the first task.

• Pretraining on the Lexique383 then fine-tuning on NEB-train
+ AD-train: testing on AD-val yields a PER of 1.6%. This
model is used for the second task.

These results demonstrate the importance of fine-tuning the
model on dataset-specific utterances and adapting to different
speaker styles. Evaluation of the first model with the data of
the second model shows higher PER (PER of AD-val with first
model is 3.4%).

3.1.5. Limitations of the G2P

While one of main objective of using additional dataset has been
the augmentation of diversity of words, but our G2P is not still
completely compatible to predict the correct phoneme sequence
of some name identity. For example, ”Nicaragua” would be
transcribed as /n i k a r a g a/ instead of /n i k a
r a g w a/. Another challenge that a French G2P is facing
is the liaison. While our model is able to predict most of the
cases but still there are places that it makes an error such the
liaison between ”premier” and ”entretien” (the model predic-
tion is /p r xˆm j e a∼ t r xˆt j e∼/ instead of
/p r xˆm j e r a∼ t r xˆt j e∼/).

3.2. Mono speaker acoustic model

3.2.1. Model

The acoustic model must be able to predict the frequency con-
tent for a given grapheme or phoneme sequence, but also, must
infer the duration of each input symbol (duration model). In
Tacotron2, the duration model is implicitly tackled by the atten-
tion module, but the loss function only includes spectrogram
similarity. However, alignment issues, as well as phoneme
duplication and skipping problems still occur. To cope with
this issue, one option is to modulate the attention block with
a phoneme alignment loss which can improve prosody [16].

FastSpeech [5] incorporates a dedicated module for
phoneme duration prediction. FastSpeech2 [17] further im-
proves speech quality by learning additional variation informa-
tion in the form of pitch and energy. Therefore, such system has
the advantage of greatly minimizing alignment issues. Further-
more, FastSpeech 2 is trained almost twice as fast as Tacotron
2, and inference time is reduced greatly because of the model’s
non-autoregressive nature.

Preliminary results have shown that alignment improve-
ments with the modified Tacotron2 did not lead to satisfying
results in comparison to the one obtained with FastSpeech2. So
we decided to use only the FastSpeech2 system, building upon
the public implementation available on GitHub2.

3.2.2. Training data

To train the mono-speaker acoustic model for the Hub task, we
use the aligned subset of NEB-train. In light of the speech qual-
ity of our initial results, and because of time constraints, we de-
cided not to use forced alignment to obtain the remaining 32%.
We also trained a mono-speaker acoustic model for the Spoke
task with the AD-train set, which is fully aligned.

FastSpeech2 models are trained for 1000k iterations each
with a batch size of 16, amounting to 408 epochs for the Hub

2https://github.com/ming024/FastSpeech2

task and 7160 for the Spoke task. The models are trained from
scratch with the Adam optimizer, a learning rate of 10−3 and an
eps value of 10−9. Mean Absolute Error is minimized against
target mel-spectrograms derived from the ground-truth audio;
pitch (using the WORLD vocoder), energy and duration pre-
dictors minimize Mean Square Error against extracted ground-
truth values, as described in [17].

3.3. Voice conversion system

To build a synthetic AD voice, two options are available: 1)
train a mono-speaker acoustic model on AD data (as described
in the previous section), 2) convert the synthetic NEB voice into
AD voice by using a voice conversion system. We selected the
second approach, which is described in sections 3.3.1 and 3.3.2,
and we discuss the reasons and limitations relative to this choice
in the results section.

3.3.1. General idea

This part describes a Voice conversion system, which is used
for the second task (Spoke task). The general idea of how we
will achieve this task is shown in Figure 1. We make use of
the acoustic model trained on Hub task data to get a first audio
sample with another voice (here NEB), and this audio sample
is used to extract WavLM features. These features are then fed
to a modified Tacotron2, which is trained to reconstruct speech
with AD voice from WavLM features coming from Spoke task
dataset.

Figure 1: Global overview of the submitted systems. Blue ele-
ments are trained on NEB data, yellow ones are on AD data.

3.3.2. Model description and training

The model we use is an adaptation of Tacotron2 [3], in which
we use WavLM features as an input instead of one-hot em-
beddings of graphemes or phonemes. In terms of architec-
ture, we replaced the first embedding layer by a linear layer
of same size, since the input of this layer will no longer be one-
hot encoded. This model is supposed to be trained on single-
speaker data of the target voice. At inference, the model is fed
with WavLM features extracted from source speech, uttered by
source speaker, and since the model only saw target speaker
during training, the generated mel-spectrogram represents the
source sentence uttered with target voice.

Prior to training, we extracted T × 768-sized WavLM rep-
resentations from each train sample from AD dataset using the
WavLM-Base checkpoint provided by Microsoft 3, where T de-
notes the time dimension. These features will be used as an in-
put to our model, to predict the 80-band mel-spectrogram. We
use Tacotron2 implementation by Nvidia 4 and used a batch size
of 32 and a learning rate of 1e-3. Other hyperparameters were
left to default values.

3https://github.com/microsoft/unilm/tree/
master/wavlm

4https://github.com/NVIDIA/tacotron2



3.4. Vocoder

3.4.1. Model

As our neural vocoder, we chose to use Waveglow [18], a non-
autoregressive, flow-based generative network. This choice is
based on unsatisfactory results with MelGAN and HiFiGAN,
which came packaged with FastSpeech 2 in the implementation
we used.

3.4.2. Training

A universal checkpoint, pre-trained on the English LJSpeech
dataset [19], was made available by the original publishers on
the official Waveglow repository5. We fine-tuned two versions
of this universal checkpoint with the Hub and Spoke task data,
respectively, incorporating the unaligned Hub data.

We found out both the universal vocoder (referred to as Uni-
versal Waveglow in the following) and the fine-tuned models
(FT Waveglow) to be very close in audio quality. Because the
Universal checkpoint benefits from a lower computational cost,
we considered it as a valid candidate for our system. The final
decision between universal and fine-tuned was taken through an
internal perceptual test presented in 4.2.

On inference, we remark that generated audio contains an
audibly noticeable amount of high-pitched noise. The official
code repository for Waveglow packages the model with a de-
noiser module, which removes some of the vocoder fingerprint
by substracting a noise signal from the original output. The
noise is created by traversing the Waveglow layers with a zero-
filled tensor; the resulting waveform is then substracted from
the original audio. A strength parameter of the denoiser allows
for some control over the scaling factor λ of the noise tensor. In
our experiments, we found λ = 0.1 and 0.2 were producing the
better sounding results.

4. Results
4.1. Internal objective evaluation

In order to enhance the cost-effectiveness of perceptual tests, an
objective evaluation approach is adopted to automatically esti-
mate the quality of synthetic signals. This approach considers
various indicators : the loss values of the acoustic model, which
encompasses alignment, pitch, and energy errors, in addition to
Perceptual Evaluation of Speech Quality (PESQ) [20] and Mean
Opinion Score (MOS) prediction.

PESQ was initially developed in the telecommunication do-
main, and asses the quality of a speech signal by comparing it
to a reference. It has been demonstrated to be significantly cor-
related with perceptual evaluations in the context of synthetic
speech [21]. In order to calculate PESQ score6, the synthetic
and original waveforms are downsampled to 16kHz. It ranges
approximately from 1 (bad) to 5 (excellent). The MOS predic-
tion model consists of a 2-layer MLP head fed with a wav2vec
representation of the signal, referred to as WV-MOS [21]. We
use the trained model7 by the authors on the Voice Conversion
Challenge 2018 dataset [22]. MOS scores range from 0 (bad) to
5 (excellent). The Table 2 compares the PESQ and MOS score
(the higher, the better) of different configurations of TTS on
NEB-val. The confidence intervals are computed on the mean
score of NEB test files, assuming a Gaussian distribution, with

5https://github.com/NVIDIA/waveglow
6https://github.com/ludlows/PESQ
7https://github.com/AndreevP/wvmos

a confidence level of 0.95.
It is important to acknowledge certain limitations of the

evaluation methods employed. While PESQ can provide in-
sights, its suitability for assessing the quality of synthetic
speech may be limited, specially when a particular aspect of
quality is in question. The PESQ is very powerful to estimate
acoustic quality. However, a mistaken pronunciation would
probably leads to a good acoustic quality but bad perceptive
quality. Moreover, the WV-MOS model used for evaluation was
not specifically trained on French speech data, which could af-
fect its accuracy when evaluating French synthetic speech.

System Universal Waveglow FT Waveglow
Metric no DN λ = 0.1 λ = 0.2 no DN λ = 0.1 λ = 0.2
PESQ 1.24±0.02 1.23±0.02 1.22±0.02 1.27±0.02 1.26±0.02 1.26±0.02
WV-MOS 4.21±0.04 3.63±0.04 3.51±0.04 3.88±0.04 3.82±0.04 3.72±0.04

Table 2: Objective evaluation of two vocoders with three level of
denoising on NEB-val. no DN means that no denoiser is applied
while λ corresponds to the strength of the denoiser

An important observation made during the evaluation is that
by increasing the power of the denoiser (comparing λ = 0.1
and λ = 0.2 with no denoiser), the fine-tuned vocoder demon-
strates a significantly higher score than the universal vocoder.
By listening to generated samples, we are convinced that the
use of denoiser is necessary, so the fine-tuned Waveglow with
denoiser is selected as the vocoder.

4.2. Internal perceptive evaluation

Two AB listening tests were set up in order to select our final
submission.

The first test was designed to estimate the impact of fine-
tuning the vocoder on NEB data for the Hub task (universal vs.
fine-tuned), and the strength of the denoiser (λ = 0.1, 0.2).
40 sentences from our test set were generated with the mono-
speaker TTS model and the 4 vocoders. 16 participants an-
swered to 40 AB pairs. The results show that a denoiser strength
of λ = 0.2 (25.0% with fine-tuned vocoder, resp. 23.4% with
universal) is preferred over λ = 0.1 (16.9%, resp. 18.2%).
These results contradict the objective measures (Table 2), high-
lighting the limitations of current objective measures, such as
WV-MOS. One possible explanation is that objective measures
tend to focus on specific aspects of quality, which may not be as
important in perceptual evaluation. This observation confirms
that objective metrics are not entirely reliable.

We also observed that with a denoiser strength of λ = 0.2,
the fine-tuned vocoder was preferred (49.3%) over the universal
version (37.7%).

The second test aims at finding the best approach for the
Spoke task. To do so, we compare the mono-speaker TTS-AD
trained on AD data only with TTS-NEB + VC-AD. We also
included re-synthesized samples to have an upper bound. 13
participants answered to 40 AB pairs. From this test we con-
clude that the conversion pipeline is preferred (48.4%) to the
mono-speaker system (39.9%).

To conclude on this evaluation experiment, we choose the
two approaches illustrated in Figure 1 for submission:
• Hub Task: mono-speaker TTS-NEB + vocoder fine-tuned on

NEB data with a denoiser strength of λ = 0.2

• Spoke Task: mono-speaker TTS-NEB + Vocoder-NEB (λ =
0.2) + voice conversion VC-AD + vocoder-AD (λ = 0.2)

From our work, we can infer some limitations. First, the
G2P is not able to generate correct pronunciations in some



Figure 2: Boxplot of quality scores of each submitted system for
all listeners in the Hub task (NEB).

cases. Second, the denoiser introduces an artefact that is not
stable over the different utterances. Moreover, it slightly mod-
ifies the timbre of the voice, what could explain the bad results
we obtained regarding speaker similarity.

4.3. Blizzard results

Beside natural voice (A), the generated signals of 18 participant
teams and 2 baseline system (BF and BT) have been evaluated
for the FH1 task. There were 14 participants for the FS1 task.
Our system was affected the letter ”K”.

4.3.1. Results of Hub task (NEB)

The submitted systems have been evaluated in three main as-
pects: general quality, intelligibility and similarity with origi-
nal voice of the NEB speaker. The intelligibility scores of sys-
tems has been reported by two metrics. First the homographs
(HOMOS) pronunciation accuracy, which evaluates the ability
to choose the right phonemes for words that share the same
grapheme representation as another word but have a different
pronunciation. Second, the intelligibility in the context of dif-
ferent semantically unpredictable sentences (SUS).

The boxplot of mean opinion scores (MOS) in terms of sys-
tems’ general quality from all listeners in the Hub task (NEB)
is showed in the Figure 2. (K) achieved a score of 3.2 (with
SD=1.07) in average. When our system is ranked 14 by taking
into account all listeners, based on only Non native and Non
speech experts listeners, it is ranked 12 and obtain an average
score of 4.1 (with SD=0.83). This reveals the different quality
perspectives in the different target community.

Our system has performed with a homographs pronuncia-
tion accuracy of 0.57 (SD=0.50) and a word error rate in SUS
context of 0.22 (SD=0.26) in terms of intelligibility. Its ranking
stands at 16, which can be concluded that our system faced a
bigger difficulty in SUS and HOMOS intelligibility compared.
The Blizzard result reveals a similarity MOS score of 2.5 (with
SD=1.22) for our system, although a large SD (also a high
p-value in pair comparisons) of systems has made the rank-
ing open to question. As an example, two participant systems
archived higher similarity MOS (in average) than natural voice.

4.3.2. Results of Spoke task (AD)

For the second task, the generated signals of systems have been
evaluated on the aspect of general quality and the similarity with
original voice of the AD speaker.

Our system does not perform very well in the Spoke task
and has been obtained a quality MOS score of 2.5 (SD=1.05).
Its performance in terms of similarity to original speaker is the
same as for the overall quality, with a MOS of 2.3 (SD=1.18).

Figure 3: Boxplot of quality scores of each submitted system for
all listeners in the Spoke task (AD).

5. Conclusion
The LIUM TTS composed of three main modules adapted for
the French language and Blizzard challenge. A Transformer
based G2P is trained from scratch to deal with the specificity
of read French. For the Hub Task, a FastSpeech based model
is employed as the acoustic model and a Waveglow vocoder.
For the Spoke Task with limited volume of data from another
speaker, a voice conversion approach is followed. In this ap-
proach, we developed a WavLM based feature extractor fol-
lowed by a voice conversion and adapted vocoder. In compari-
son to an approach where a full system is trained for a second
voice, our approach has the advantage of reducing the compu-
tational cost by using the former pipeline. The proposed system
for the Hub Task has 136M trainable parameters (115M for the
Spoke Task). The training runtime for the complete pipeline of
Hub Task was 144 hours, while the Spoke Task took 60 hours
on a GTX 1080 GPU.

While this is our first LIUM TTS, we have reached ac-
ceptable perception results for the Hub task. However, sev-
eral aspects need to be improved. The performance of the TTS
in terms of intelligibility convinced us that not only the G2P
should be trained on more data on utterance level, but also a
dictionary of proper and foreign names can help a better per-
formance. The results we obtained in terms of speaker simi-
larity, indicates that we raised some signal quality issues with
our fine-tuned Waveglow vocoder. We believe that the vocoder
fine-tuning and the choice of denoiser can be more optimized.

Even though each module has an objective function that has
been optimized during training, we observed that checkpoints
corresponding to the lowest error, does not necessarily lead to
an improvement of synthetic quality. One of the main difficul-
ties that have been faced is the automatic evaluation of the syn-
thetic voice, and more precisely the objective evaluation of the
different modules. We conclude that there is room for improve-
ment in the quality estimation during the development process.
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