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An explicit Estimated Baseline Model for Robust
Estimation of Fluorophores using

Multiple-Wavelength Excitation Fluorescence
Spectroscopy

A. Gautheron, M. Sdika, M. Hébert, B. Montcel

Abstract— Spectroscopy is a popular technique for iden-
tifying and quantifying fluorophores in fluorescent mate-
rials. However,quantifying the fluorophore of interest can
be challenging when the material also contains other fluo-
rophores (baseline), particularly if the emission spectrum
of the baseline is not well-defined and overlaps with that
of the fluorophore of interest. In this work, we propose a
method that is free from any prior assumptions about the
baseline by utilizing fluorescence signals at multiple exci-
tation wavelengths. Despite the nonlinearity of the model,
a closed-form expression of the least squares estimator is
also derived.

To evaluate our method, we consider the practical case of
estimating the contributions of two forms of protoporphyrin
IX (PpIX) in a fluorescence signal. This fluorophore of
interest is commonly utilized in neuro-oncology operating
rooms to distinguish the boundary between healthy and
tumor tissue in a type of brain tumor known as glioma.
Using a digital phantom calibrated with clinical and ex-
perimental data, we demonstrate that our method is more
robust than current state-of-the-art methods for classifying
pathological status, particularly when applied to images of
simulated clinical gliomas. To account for the high variabil-
ity in the baseline, we are examining various scenarios and
their corresponding outcomes. In particular, it maintains
the ability to distinguish between healthy and tumor tissue
with an accuracy of up to 87%, while the ability of existing
methods drops near 0%.

Index Terms— Estimation Methods, Source Separation,
Non-Linear Spectral Unmixing, Fluorescence optical imag-
ing, Fluorescence spectroscopy, Optical Signal, PpIX,
Glioma, Neurosurgery
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I. INTRODUCTION

FLUORESCENCE is a non-linear optical process in which
a chemical compound absorbs light at a specific wave-

length and subsequently emits light at different wavelengths.
In many materials including biological tissues, fluorescence
involves a variety of fluorescent molecules. Some of these
compounds may serve as can be relevant biomarkers in
biomedical applications, by analyzing their time response after
excitation or emission spectrum. Studying the temporal fluo-
rescence response of biological tissues enables the estimation
of fluorophore concentrations fitting decay models [1], or the
estimation of neural activation spikes [2]. Fluorescence spec-
troscopy analyzes the spectral signal emitted by fluorophores.
This technique offers several advantages for characterizing
molecular reactions or interactions. For example, the spectral
fluorescence response of biological samples can enable the
detection of to detect breast cancer [3] or residual tumors in
the vicinity of the surgical site [4]. However, as in [5] and
[1], and in most practical cases, it is necessary to extract the
temporal or spectral response of the fluorophores of interest
from a global signal may include the fluorescence signal of
other compounds. The base component signals can either be
assumed to be known [6], assumed to have a specific signal
shape (such as a Gaussian) [7], [8], or estimated through blind
unmixing routines, such as the nonnegative matrix factoriza-
tion algorithm [9]–[12]. In other words, a measured signal is
of a linear combination of variable signals from fluorophores
that are located near the measurement probe. We are interested
in characterizing the specific contribution of a fluorophore of
interest. Blind unmixing algorithms are generic and can be
applied to various domains [1], [10], [13], [14] However, in
our case, because they have limitations because they cannot
accurately isolate contributions that are specific to a particular
fluorophore of interest.

The sensitivity of fluorescence spectroscopy remains mainly
limited by the presence of other fluorophores. The variability
of the fluorescent response of these other fluorophores depends
a lot on external factors [8], [15]–[23]. The high variability
of these fluorophores can lead to significant crosstalk with
the fluorophore of interest. Omitting a fluorophore, poorly
modeling it, or using an incorrect reference spectrum affects
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the detection of specific fluorescence signals from the fluo-
rophores of interest. Crosstalk events cause an overestimation
of the amplitude of the target fluorophores, leading to an
overestimation of the contributions of the fluorophores of
interest. This leads to a drop in specificity when interest
biomarker contributions are utilized in a classification pipeline
[19], [22].

To eliminate crosstalk, the general approach is to include
a baseline signal in the model that encompasses all factors
unrelated to the fluorophores of interest. Existing approaches
are effective when the emission spectral band of the baseline
is far from the one of the fluorophores of interest. In these
cases, the analytical a priori on the baseline is an exponential
shape function [15], [24]. When the emission spectral band of
the baseline is close to or within one of the fluorophores of
interest, the existing methods remain more limited and very
often expert-dependent. In these cases, the baseline is modeled
by a Gaussian function [8], or functions so-called expert,
which contains a finite number of fluorophores of interest
whose fluorescence signal shape is assumed known [22], [23],
[25]. All these models have strong limitations in the face of
the variability of baseline fluorophores or when some baseline
fluorophores emit too close to the wavelength range of the
fluorophore of interest. Despite these limitations, fluorescence
spectroscopy has shown its relevance for several applications
in neuro-oncology [26]–[31], food analysis [32] or biological
studies at cell level [33].

Another approach suggested in [10] is to use the blind-
source separation technique as a spectral unmixing routine.
The main improvement of this technique is to estimate the
baseline instead of modeling it. But this technique has existing
limitations first as it requires an expert a priori to correctly
tune hyperparameters like the number of sources. In addition,
this technique is highly time-consuming as it relies on an
iterative solver.

We propose in this study a novel approach to estimate the
interest biomarkers’ contributions. To relieve hyperparameters
determination and the a priori on the spectral shape of the
emission by the baseline, our method uses several excitation
wavelengths, which is in contrast with the single excitation
used in literature so far. This additional measurement allows
us to estimate the baseline that must be fixed in a single
measurement problem. However, considering multiple excita-
tion wavelengths results in a non-linear estimation problem
that in general does not have a closed-form solution. For
the specific case of two distinct wavelengths, we were able
to find the conditions for the problem to have a unique
solution and to derive an analytic expression of the solution
for all the variables. This makes our method computationally
efficient, free from parameter tuning and cumbersome iterative
estimation procedures.

To evaluate our method, we consider the practical case of the
estimation of the contributions of two forms of Protoporphyrin
IX (PpIX) in a fluorescence signal. This fluorophore of interest
is widely used in the operating theatre in neuro-oncology to
characterize the healthy/tumoral boundary of a brain tumor
named glioma [34]–[36]. Glioma is the most frequent and
aggressive primary brain tumor whose main therapy is com-

plete tumor removal surgery [37] followed by Stupp protocol
[38]. Thus, the neurosurgeon uses this information on PpIX
contributions to remove or not the measured tissue.

Various 5-aminolevulinic acid (5-ALA) induced PpIX flu-
orescence spectroscopy methods have been proposed to over-
come sensitivity issues of fluorescence microscopy applied to
low-density infiltrative parts of High-Grade Glioma (HGG)
[25], [39] or to Low-Grade Glioma (LGG) [40]. However, the
high levels of crosstalk due to the presence of other non-5-
ALA-induced fluorophores largely impair specificity, because
healthy samples are classified as tumoral. In section II, we
first describe the new estimation method using multiple exci-
tations and derive the closed-form solution of the associated
estimation problem. In section III, we describe the numerical
phantom calibrated on real HGG and LGG data [8], [41].
Then, numerical results show that our method improves the
robustness of the estimation of PpIX contributions and thus
the specificity of the classification. Especially in cases where
existing methods fail, e.g. when other fluorophores emit in
the same spectral domain as PpIX. Finally, we compare the
performance of our method with other methods issued from the
literature in terms of their ability to maintain significant speci-
ficity in detecting the healthy/margins boundary on synthetic
images of LGG and HGG calibrated on a real experimental
system [8]. Our method keeps a specificity of 87% while other
models’ specificity drops to 0% at best.

II. METHODS

A. Physical Model
The spectrally resolved signal of the fluorescence emission

used in this study relies on multiple excitation wavelengths.
The spectrally resolved signal of the fluorescence measured
signal m can be written as:

m(λ, λe) =

n∑
i=1

αiηi(λe)Si(λ) + γ(λe)m(λ), (1)

where λe is the fluorescence excitation wavelength, Si(λ) ∈
Rp is the normalized emission spectrum of a fluorophore of
interest, ηi(λe) ∈ R the quantum yield at excitation wave-
length λe, αi ∈ R the contribution of the ith fluorophore of
interest. b(λ) ∈ Rp, the baseline represents other endogenous
fluorophore emission spectra whose amplitude concerning
the excitation wavelength is modeled by γ(λe) ∈ R. Each
emission spectrum Si(λ) has been normalized by its integral
over the entire wavelength range.

Si(λ) refers to the signal of the fluorophores of interest and
ηi corresponds to the amplitude variation due to the different
excitation wavelengths. γ represents the baseline amplitude
variation due to the different excitation wavelengths, and b(λ)
is the baseline i.e. the residual signal of all but the fluorophores
of interest. Fluorophore estimation is the problem of estimating
αi. In this problem, Si(λ) and ηi are supposed to be the
known, αi, γ and b(λ) are to be estimated.
One emphasizes that the main assumption in equation 1 and
hereinafter is that the fluorescence baseline keeps the same
emission spect,ral shape whatever the excitation wavelength
is. This assumption is based on the fact that the emission
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spectra are generally independent of the excitation wavelength
[42]. Please note that in the presence of k distinct excitation
wavelengths, the condition n + k − 1 ≤ (k − 1)p is required
for the problem to be either overdetermined or perfectly
determined. We assume hereinafter that the previous condition
is fulfilled. Moreover, it is assumed that p ≫ k, e.g. p =
819 and k = 2, as in Part III.
For the sake of concreteness, we consider only the case of n =
2 fluorophores of interest and k = 2 excitations wavelengths:

m = α1η1S1 + α2η2S2 + b
m′ = α1η

′
1S1 + α2η

′
2S2 + γb.

(2)

Defining contributions and the estimated measurements vector
as α = (α1, α2)

T ∈ R2 and m̂ =
(
mT ,m′T )T ∈ R2p,

equation 2 can be written in a matrix form as

m̂ =

(
S I
SE γI

)(
α
b

)
(3)

= Mγ

(
α
b

)
where S =

(
η1S1 η2S2

)
∈ Rp×2, E = diag (ρ1, ρ2) ∈

R2×2 and ρi =
η′
i

ηi
∈ R.

B. Estimation Model

1) Estimated Baseline Model (EB): Our estimator of the
fluorophore contributions, called the Estimated Baseline model
(EB), is the least square solution of the equation 3:

α = argmin
∥∥∥∥m̃−Mγ

(
α
b

)∥∥∥∥2
2

(4)

where m̃ = (mT ,m′T )T ∈ R2p×1 is the experimental
measurements vector. In this optimization problem, α, b and γ
are the variables to estimate and all other parameters are given.
We stress that, as opposed to the state-of-the-art, the Estimated
Baseline model is considered as a semi-blind method by
assuming that the spectral shape of the baseline, which is
estimated directly from the data, is the same at two excitation
wavelengths.

2) Analytic Resolution of Estimated Baseline Model: The
interaction between γ and b make the Estimated Baseline
Model non-linear. However, we will show in this section that
it is still possible to find a closed-form expression for α.
The problem is treated in two steps: the least-square solution
(αγ , bγ) for a given γ is first derived and then the optimal γ
is found:

min
α,γ,b

∥∥∥∥m̃−Mγ

(
α
b

)∥∥∥∥2 = min
γ

min
α,b

∥∥∥∥m̃−Mγ

(
α
b

)∥∥∥∥2
= min

γ

∥∥∥∥m̃−Mγ

(
αγ

bγ

)∥∥∥∥2. (5)

For a fixed γ, matrix Mγ is constant and the problem is
linear. The optimal (α, b) is given by (αγ , bγ) = M+

γ m̃ =
(MT

γ Mγ)
−1MT

γ m̃ where M+
γ is the Moore Penrose pseudo

inverse of Mγ .

An expression for M+
γ can be obtained using a formula for

the inverse of block matrices, equation 2.3 of [43]. MT
γ Mγ is

given by:

MT
γ Mγ =

(
STS + (SE)TSE (I + γE)ST

S (I + γE) (1 + γ2)I

)
(6)

and if Eg = γI−E and S̄ =
(
STS

)−1
, the Schur complement

Su of MT
γ Mγ is:

Su = S̄
−1

+ ET S̄
−1

E − (I + γE)ST I

1 + γ2
S (I + γE)

=
EgS̄

−1

Eg

1 + γ2
. (7)

Defining Egg = (I + γE)E−1
g and S̄ =

(
STS

)−1
,

(MT
γ Mγ)

−1 has the following expression:

(
MT

γ Mγ

)−1
=

((
1 + γ2

)
E−1

g S̄E−1
g −E−1

g S̄EggS
T

−SEggS̄E
−1
g

(I+SEggS̄EggS
T )

1+γ2

)
(8)

and finally, the pseudo inverse M+ is given by:

M+
γ =

(
γE−1

g S+ −E−1
g S+

I−γSEggS
+

1+γ2

γI+SEggS
+

1+γ2

)
(9)

where S+ = S̄ST =
(
STS

)−1
ST .

Note that this expression is valid only when S is full rank
and Eg is invertible, i.e, when γ /∈ {ρ1, ρ2}.

These two conditions are in agreement with the physics
of the problem: S is full-ranked when the fluorophores of
interest are not correlated, invertibility of Eg means that the
baseline and the fluorophores of interest are not correlated.
The two excitation wavelengths should be chosen to ensure
that γ at these wavelengths is different from the ratios of the
fluorophores of interest. From a signal processing point of
view, this condition creates specific hot points for γ where α
cannot be estimated. Noises in the measurements m and m′

enlarges these hot points into instability regions. It is assumed
hereinafter that these conditions are satisfied.

3) Analytical estimation of the parameters: Using expression
9 for M+

γ , the least-square solution for α and b for a given
γ are given by:

αγ = E−1
g S+ (γm−m′) (10)

bγ =
m+ γm′

1 + γ2
+

SEggS
+

1 + γ2
(m′ − γm)

=
1

1 + γ2
(m+ γm′ − SEggEgα) (11)

4) Residual calculation and γ estimation: Equation 5 can
now be written:

min
γ

ϕ(γ) = rTr + r′ Tr′ (12)

where(
r
r′

)
= Mγ

(
αγ

bγ

)
−
(
m
m′

)
=

(
Sαγ + bγ −m

SEαγ + γbγ −m′

)
.
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Using equations 10 and 11, one obtains:

(1 + γ2)r = (1 + γ2)Sαγ +m

+ γm′ − S(I + γE)αγ − (1 + γ2)m

= γSEgαγ − γ(γm−m′)

= γSEgE
−1
g S+(γm−m′)− γ(γm−m′)

= γ(SS+ − I)(γm−m′), (13)

and

(1 + γ2)r′ = (I − SS+)(γm−m′) (14)
−γ(1 + γ2)r′ = (1 + γ2)r,

from which the following expression of ϕ can be deduced:

ϕ(γ) =
γ2 ∥q∥2 − 2γqTq′ + ∥q′∥2

1 + γ2

where q = (I − SS+)m and q′ = (I − SS+)m′.
As ϕ is a rational function with no real pole and goes to

+∞ at ±∞, the optimal γ is a zero of:

dϕ

dγ
= 2

(γqTq − qTq′)(1 + γ2)− γ(γ2qTq − 2γqTq′ + q′Tq′)

(1 + γ2)2

=
2

(1 + γ2)2
(γ(qTq − q′Tq′) + γ2qTq′ − qTq′). (15)

As the discriminant of the numerator

∆ = (qTq − q′Tq′)2 + 4(qTq′)2 ≥ 0 (16)

is positive, there are two distinct roots:

γϵ =
q′Tq′ − qTq + ϵ

√
∆

2qTq′ with ϵ ∈ {−1, 1} (17)

The second derivative of ϕ is positive for the optimal γ and:

d2ϕ

dγ2
=

d

dγ

(
2qTq′

(1 + γ2)2
(γ − γ+

opt)(γ − γ−
opt)

)
=

2qTq′

(1 + γ2)4
[(γ − γ+

opt + γ − γ−
opt)(1 + γ2)2

− (γ − γ+
opt)(γ − γ−

opt)4γ(1 + γ2)] (18)

and consequently

d2ϕ

dγ2
(γϵ) =

ϵ2
√
∆

(1 + (γ−1)2)2
(19)

and we conclude that ϵ = 1 i.e. γ+ is the optimal γ.

III. VALIDATION ON SIMULATIONS

In this section, we consider the practical case of the es-
timation of contributions of PpIX in a fluorescence signal.
This fluorophore of interest is widely used in the operating
theatre in neuro-oncology to characterize the healthy/tumoral
boundary of a brain tumor named glioma [34], [35]. Glioma is
the most frequent and aggressive primary brain tumor whose
main therapy is complete tumor removal surgery [37]. Thus,
the neurosurgeon uses this information on PpIX contributions
to remove or not the measured tissue. Now, we compare
the proposed method with state-of-the-art methods, including

blind sources separation method when possible. We consider
the two different forms of PpIX described in [15]. Besides
the well-known PpIX fluorescence emission appearing with
a maximum at 634 nm under excitation at 405 nm, another
fluorescence band can be observed with a maximum at 620 nm
under specific conditions [15]. These two bands, hereinafter
labeled PpIX620 and PpIX634, can be interpreted as bands
corresponding to two different forms of PpIX [8], [15], [20],
both ones having some interest. Parameters with subscript
1 denote quantities related to PpIX620 and parameters with
subscript 2 denote quantities related to PpIX634.

We compare our method with multiple excitation models
extrapolated from those of the literature. We define a digital
phantom calibrated on real High-Grade Gliomas (HGG) and
Low-Grade Gliomas (LGG) data to get a realistic simulation
environment.

We now distinguish LGG with two pathological statuses,
LGG and Healthy, from HGG with four pathological statuses:
Solid Part, Dense Margins, Sparse Density Margins, and
Healthy.

The baseline is defined as the non-5-ALA induced fluo-
rescence, meaning the fluorescence that would be emitted in
the same tissue without prior administration of 5-ALA to the
patient. We assume that a pre-processing of the measurements
has already taken place to subtract autofluorescence away
from the spectral band of interest as proposed in the liter-
ature [15], [24]. Thus, the resulting baseline considers only
non-5-ALA-induced fluorophores whose emission is almost
overlapping with the one of PpIX. The performance of the
EB method is estimated for various conditions of baseline
fluorophores whose emission spectrum overlaps the one of
PpIX. Performance metrics that we use are the error of
estimated PpIX contributions and the accuracy, sensitivity, and
specificity of classification in the pathological status. Finally,
the clinical diagnostic performance is assessed using glioma
images synthesized by an experimentally calibrated digital
phantom.

A. Models for comparison purpose

Using the same notations as in section II-B, we now describe
multiple excitation models extrapolated from those of the
literature.

1) Baseline Free Model (BF): In the Baseline Free model
(BF), the baseline contribution is discarded. In the existing
literature [15], [24] after having subtracted an exponential
shape function, a least-square regression is used to estimate
the fluorescence contributions of PpIX into the fluorescence
signal.BF1 refers to the Baseline Free Model with one exci-
tation wavelength, which can be written in matrix form as
follows:

m = Sα . (20)

BF2 refers to the Baseline Free Model with two excitation
wavelengths. It can be written in matrix form as follows:

m̃ =

(
S
SE

)
α . (21)
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In both cases, the parameters are estimated using a linear least
square regression.

2) Gaussian Baseline Model (GB): In the Gaussian Baseline
model (GB) [8], the contribution of the baseline spectrum into
the fluorescence signal is a Gaussian function and a least-
square method is used to estimate PpIX contributions α1, α2.
GB1 refers to the Gaussian Baseline Model with one excitation
wavelength, which is defined in equation 22. GB2 refers to
the Gaussian Baseline Model with two excitation wavelengths,
which can be written as follows:

m = Sλe = α1S1 + α2S2 +A · G(µ, σ) (22)
m′ = S

λ
′
e

= α1η
′
1S1 + α2η

′
2S2 +A′ · G(µ, σ) (23)

where α1, α2, A, A′, µ, σ are estimated by a bounded
least squares curve fitting method with α1 ∈

[
0, 106

]
, α2 ∈[

0, 106
]
, A ∈

[
0, 106

]
, A′ ∈

[
0, 106

]
, µ ∈ [580, 605] nm,

σ ∈ [5, 100] nm. Bounds have been defined from [8].
3) Non-negative matrix factorization (NMF): We compared

our results with a blind spectral unmixing method, known
as non-negative matrix factorization (NMF) [44]–[46], using
the nnmf internal routine of MATLAB 2022b. In the same
trend as the equation 2 in [12], the 1-by-2p matrix m̃T of
the measured signal is factored into two nonnegative matrix
W (1-by-n′) and H (n′-by-2p) such as m̃T ≈ W ×H . For a
small set of n′ nonnegative representative vectors concatenated
in H , W represents their weights of m̃T . In the case of
spectral unmixing, n′ can also be seen as the number of
different sources sought. For the rest of this article, we will
set n′ = n+1 to 3: PpIX620, PpIX634, and the baseline. On
a practical aspect, the stopping criteria and initial values of W
and H were set to default values. The initial value of W was
a randomly generated array of numbers between 0 and 1. The
initial value of H was set to known reference spectra and a 1-
dimensional randomly generated array of numbers between 0
and 1 for the baseline. Experiments have also been performed
using randomly generated arrays of numbers between 0 and 1
as the initial values of H and W . They lead to slightly poorer
classification results which do not change the conclusion. The
stopping criteria were either a residual value lower than or
equal to 1e-4 or a relative change in the elements of W and
H lower than or equal to 1e-4.

4) Multivariate Curve Resolution-Alternating Least Squares
(MCR-ALS): Multivariate Curve Resolution-Alternating Least
Squares (MCR-ALS) is a group of techniques for recover-
ing pure response profiles [47] (spectra, pH profiles, time
profiles, ....) of chemical constituents or species from unre-
solved mixtures obtained in chemical processes when no prior
information is available on the nature and composition of
these mixtures. MCR-ALS methods have been extended to the
analysis of many types of experimental data [48], including
multi-channel data and non-evolutionary processes, such as
abundance extraction for Multispectral Fluorescence Lifetime
Imaging Microscopy [49]. Practically, we used the toolbox
described hereafter [50], using known reference spectra and a
1-dimensional randomly generated array of numbers between
0 and 1 for the baseline. The precision was set to 0.01% and
no constraints were set on spectra and concentration, as for

the EB method. The maximum iterations boundary was set
to 100, which was considered as high enough because the
iteration process stopped at iteration 22 caused by reaching the
set precision. Experiments have also been performed using the
pure method of extraction of initial spectra. In that case, the
iteration process stopped at iteration 52 caused by reaching
the set precision. They lead to slightly poorer classification
results which do not change the conclusion.

B. Fluorescence digital phantom
To make a fair comparison of the new EB method with

existing ones, we use a fluorescence digital phantom. This
phantom includes PpIX and also additive fluorophores which
compose the baseline. The digital phantom is parameterized
from in vivo data [8] and experimental data obtained on liquid
PpIX phantom made as in [20], [51].
We consider two excitation wavelengths λe = 405 nm and
λ′
e = 385 nm which are the respective maxima of the

absorption spectrum of the two forms of PpIX considered
here; the quantum yield ratio for PpIX620 is η′1/η1 = 1.62;
for PpIX634, it is η′2/η2 = 0.76, referring to [41]. The
measurements and reference spectra used in the generation
and the processing related to this part have a dimension p=819.
To make the baseline fluorescence spectrum neutral towards
the studied models, the latter is modeled as a Lorentzian
function with various parameters: the quantum yield γ(λe),
central emission wavelength λpara, standard deviation σpara,
and amplitude A.

A two-part noise calibrated on experimental data is included
in the fluorescence simulation phantom: a Poisson noise P
mimics photon noise and an additive Gaussian white noise N
mimics electronic noise. This leads to the following function
representing the generated spectrum:

m = P [α1η1S1 + α2η2S2 + b(λe)] +N , (24)

where

b(λe) = γ(λe) ·A · 2

πσpara

1

1 +
(

λ−λpara
σpara

2

)2 .
All results given in this work have been computed over 105 α
random draws equally split into 100x100 bins to map the
region α ∈ [0, 2] × [0, 2]. Each region of the α plane is
associated with a pathological status (cf. Fig. 2). We focus
on the boundary between healthy and tumoral tissues, which
corresponds to an area of this plane. All random draws were
performed with Gaussian distributions linked with pathological
status, whose parameters are extracted from previous in vivo
works [8].

C. Sets of Baseline parameters
Seven baseline datasets have been simulated. These datasets

correspond to different scenarios for the application of our
method in clinical practice. The simulation parameters are
given in Table I where U(a, b) is a uniform distribution
between a and b, and Γ(k, β) is a gamma distribution with
shape factor k and scale factor β.
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Name of Parameters Description
the dataset

General

A = Γ(4.102, 82.6840) u.a.
λpara = U(590, 650) nm
σpara = U(0, 25) nm
γ = U(0.1, 1.125)

General case with all the
existing problems due to
an endogenous
fluorophore of low
amplitude compared to
PpIX

Amplitude A = Γ(4.102, 826.684) u.a.

Study of the influence of
endogenous
fluorophore’s**

amplitude. For example,
the amplitude of the
lipopigments
fluorescence signal
increases with aging
[52], [53].

Width σpara = U(0, 50) nm

Study of the influence of
the spectral width of the
endogenous
fluorophore**. For
example, the spectral
width of the lipofuscin
classically extends on 80
nm [54] but in certain
studies, it is extended
well beyond [23].

Outside
λpara = U(550, 590) nm
γ = U(0.1, 3.00)

Study of the influence of
the central wavelength
of the endogenous
fluorophore** located in
the emission range of
the PpIX. For example,
water-soluble porphyrins
have an emission
maximum near the PpIX
emission range [17],
[19], [25], [55].

Inside λpara = U(620, 640) nm
γ = U(0.1, 3.00)

Inner γ = U(1, 1.2)

Study of the influence of
the quantum yield of the
endogenous
fluorophore**. For
example, endogenous
fluorophores such as
water-soluble porphyrins
may have quantum
yields close to those of
PpIX620 and PpIX634.

Across γ = U(0.6, 0.8)

TABLE I: Parameters used for the simulation of the seven
baseline datasets. Only differences from ”General” are speci-
fied for the following six datasets. **In this Table, endogenous
fluorophore corresponds to a non-5-ALA-induced fluorophore.

The first three datasets of parameters are defined to study the
robustness regarding the amplitude or width parameters of the
fluorescence spectrum attached to the baseline. The Outside
and Inside datasets study the influence of the position of the
baseline central wavelength regarding the spectral emission
band of PpIX. The Inner and Across datasets are defined to
study the impact of the baseline fluorescence quantum yield.
This parameter is particularly critical regarding the instability
areas of EB (see II-B.2). The Inner dataset models baseline
quantum yields ranging out of the PpIX instability spots,

whereas the Across set models the intersection of the baseline
and PpIX quantum yields ranges. An example of fluorescence
spectrum for some of the baseline sets is plotted in Fig. 1.
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Fig. 1: Measurement signal (in blue) and PpIX signal (in
orange) for each baseline dataset in row and for each excitation
wavelength in column. The green area corresponds to the
signal addition due to the baseline. Each signal m, resp. m’,
corresponds to a vector such as mT , resp. m′T , ∈ Rp×1 with
p = 819.

D. Classification method

To reach the final aim of pathological status prediction, one
evaluated the ability to classify tissues from the estimated
contributions of PpIX inside the fluorescence spectrum. The
same simulated measurements m̃ have been independently
processed by each estimation model, and estimated PpIX
contributions α∗ have been classified with a naive Bayesian
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(a) LGG Case (b) HGG Case

Fig. 2: Display level set of probability map to be in the class of
the given color. In a), LGG class corresponds to the red color
and the Healthy class to the green one. In b), the Core class
corresponds to the black color, Dense Margins to the red color,
Sparse Margins to the blue color, and the Healthy class to the
green one. In each figure, the horizontal axis corresponds to
α1 and the vertical axis to α2.

classifier [56]. Knowledge of classes given in [8] has been used
to define a priori probability laws associated with each class.
Ground truth PpIX contributions α used in the phantom have
also been classified to serve as a reference for classification
performance. For each bin, we compute the accuracy acc by
using the formula below where c is a class, c∗ an estimated
class, C the set of classes, s a sample, Sc the set of samples
in class c, c∗s the estimated class for the sample s, N the total
number of samples in a bin, and Nc the number of samples of
the bin that belong to the class c. For each bin of any map, the
color is related to the accuracy value, the greener the higher
accuracy.

acc =
∑
c∈C

(∑
s∈Sc

(c∗s = c)

Nc

Nc

N

)
=
∑
c∈C

p(c∗ = c) · p(c) (25)

p(c) follows a gaussian probability law whose parameters
are defined in [8]. The accuracy is computed in LGG or
HGG cases. For an HGG, the estimated parameter pair of
each measurement may be associated with a most likely class
between Core, Dense Margins, Sparse Margins, or Healthy.
For an LGG, the same classification may occur for the two
following classes: Low Grade, i.e. tumoral, or Healthy. In Fig.
2, we computed the probability map of classes of the HGG
case, resp. LGG, to help interpret the accuracy maps. This
allows us to associate a most likely class to each region of the
(α1, α2) plane. The region in the bottom left corner of each
map corresponds to the healthy tissue region. One notices that
the probability 0.5 represents the border between two different
classes of the α plane region.

We also compare our results with blind spectral un-
mixing methods such as non-negative matrix factorization
(NMF) and the Multivariate Curve Resolution-Alternating
Least Squares(MCR-ALS). Since the latter do not necessarily
provide unmixing results in (α1, α2) space, the comparison
was performed after the final output of the spectral unmixing

followed by classification process, in sections III-E.2 and III-
E.3. We chose not to proceed with output space adaptation
of the spectral unmixing method to keep a fair comparison
between all methods. To perform the classification, it was
necessary to train separate Bayesian classifiers for HGG and
LGG on the general dataset for the NMF, resp. MCR-ALS
results. The training of the four separate Bayesian classifiers
(two for NMF and two for MCR-ALS) is conducted using
45 items for each class. To compare the classification results
of each state-of-the-art method, we opted to generate receiver
operating characteristic (ROC) curves and calculate the area
under the curve (AUC). The higher the AUC, the better the
classifier. The AUC was computed after using NMF, MCR-
ALS, or estimation models.

E. Results and Discussion
Fluorescence signal by non-5-ALA-induced fluorophores

varies a lot, which leads to important crosstalk with PpIX.
Each baseline set of parameters represents one example among
all possible spectra. we now look at the estimation error on
the parameters of interest with every model and for all these
sets.

Fig. 3: Mean and standard error of Absolute estimation Error
of α. Each color bar corresponds to an estimation method,
and each group corresponds to a set of baseline parameters
(refer Table I). BF1, resp. GB1, BF2, GB2 refers to the
Baseline Free Model with one excitation wavelength, resp.
the Gaussian Baseline Model with one excitation wavelength,
the Baseline Free Model with two excitation wavelengths, and
the Gaussian Baseline Model with two excitation wavelengths.
The Estimated Baseline Model (EB) is our proposed method.

1) Estimation Error on α: In Fig. 3 are presented the mean
value and the standard error of the absolute estimation error
between the ground truth α used to generate spectra with the
numerical phantom and α∗ estimated using a given method on
a specific baseline set of parameters (see Table I). One sees
that with every model, the error increases a lot except for the
EB for which the error remains rather constant. Concerning
General, Amplitude, and Witdh datasets, we can notice that
existing models are all quite insensitive to Width but very
sensitive to Amplitude and that EB2 remains insensitive to
Width while solving the Amplitude issue. Considering the Out-
side dataset, existing models work well because the emission
band of the baseline is far from the PpIX emission spectrum:
crosstalk is low, and baseline and PpIX are decorrelated.
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Fig. 4: Accuracy Map for each estimation method in column : GT, resp. BF1, GB1, BF2, GB2 refers to Ground Truth, resp.
the Baseline Free Model with one excitation wavelength, the Gaussian Baseline Model with one excitation wavelength, the
Baseline Free Model with two excitation wavelengths, the Gaussian Baseline Model with two excitation wavelengths. The
Estimated Baseline Model (EB) is our proposed method. We classify on one side Low Grade Glioma (a) and on the other side
High Grade Glioma (b). Columns give the set name defined in Table I : the baseline’s amplitude increased when going from
General to Amplitude dataset.

Comparing the Inside dataset with the Outside one, we notice
that the error made by state-of-the-art models is increased on
average by at least a factor of 5. At the same time, the EB
model varies very little: the error is on average increased by
a factor of 1.24. EB is not very sensitive to Inside/Outside
datasets since it has no a priori on the spectrum of the baseline
while existing methods are very sensitive to the baseline
emission band.

For Inner Dataset, EB has the lowest error and, at the
same time, other models are not better than the General case.
The Inner Dataset is chosen to be favorable for EB since
the baseline quantum yield γ is decorrelated from those of
PpIX. Because existing models do not consider it, they are
insensitive to changes of γ. On the contrary, Across Dataset is
chosen to be unfavorable for EB. One notices the significant
increase in EB’s error when the quantum yield of the baseline
approaches those of PpIX. This is a direct consequence of
specific hot areas explained in the previous Section II-B.2.
It seems important to point out that the case modeled by
the Across dataset is not very plausible physically. because
it considers a fluorophore with a quantum yield γ close to
PpIX without the spectral shape corresponding to the one of
PpIX. Moreover, if this case happens, one solution to tackle

this issue can be to change λe, so the hot points will be outside
the area of interest.

EB is not always the model that has the lowest error,
especially when the a priori are in favor of existing models
(see for example the Outside dataset). In any case, it maintains
a low error even when the amplitude increases. The Across
case is not very plausible physically. A more plausible physical
case where fluorophores are very close to PpIX would be a
merge of Across and Inside datasets. We assume that all the
models would become bad because the case is very difficult
for all models, even EB would not solve this case.

2) Impact of α∗ on classification: In Fig. 4, one sees with
both LGG and HGG that with the Amplitude dataset, EB
is the only model able to correctly classify Healthy samples
when the baseline amplitude increases. Comparing single- and
two- excitation wavelength models for the Amplitude dataset,
one can notice that two excitation wavelength models (GB2,
BF2) improve a little the correct classification of Healthy class
samples located in the center of the region. It is confirmed
by an increase of BF2, resp. GB2, accuracy compared to BF1,
resp. GB1 in Fig. 5. Thus, the success of EB is more due to the
estimated baseline than the multiple excitation wavelengths. In
the case of HGG, the border between Low-Density Margins,
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(a) LGG Case

(b) HGG Case

Fig. 5: Mean Accuracy of the region of interest (0 ⩽ α1 ⩽
0.25, 0 ⩽ α2 ⩽ 0.75). Each color corresponds to the same
model and each group to a specific set of baseline parameters.
GT, resp. BF1, GB1, BF2, GB2 refers to Ground Truth, resp.

the Baseline Free Model with one excitation wavelength, the
Gaussian Baseline Model with one excitation wavelength, the
Baseline Free Model with two excitation wavelengths, the
Gaussian Baseline Model with two excitation wavelengths.
The Estimated Baseline Model (EB) is our proposed method.

High-Density Margins, and Core is thicker for GB1, GB2 and
BF1, BF2 models than for EB which is a direct consequence of
the estimation error by these models, refer to Fig 3. In addition,
the shading effect in Fig. 4 reveals a loss in classification
precision for core and margins classes. In the case of LGG,
the ability to classify is lost because there are only two classes.
For the Width dataset, we notice that EB is the only model
whose accuracy remains constant with both LGG and HGG.
Thus, EB seems to be the most relevant model if the baseline
amplitude or width has an important variability.

We now study the impact of the baseline central wavelength
on accuracy (see Fig. 5). Considering the Outside dataset,
all models have similar performance. One can notice for the
Inside dataset that EB is the only model whose accuracy
overpasses 75%. Despite the estimation error being higher in
EB than in existing models, the classification performance is
equivalent in the Outside dataset where there is no crosstalk
between baseline and PpIX fluorescence spectra. We can thus
consider using EB even when there is no crosstalk issue since

it is as good as the state-of-the-art methods. This result is
striking because EB was not particularly expected to perform
in this case. This result reveals the strength of EB compared
to other models: it is less sensitive to the emission band of the
baseline.

Let us assess the impact of baseline fluorescence quantum
yield on accuracy. For the Inner dataset, the accuracy is the
same as in the General dataset for all models. Thus, the drop
of error with EB, in this case, does not affect the classification.

General Amplitude Width Outside Inside Inner
0

0.5

0.6

0.7

0.8

0.9

1

A
U

C

GT
BF

1

GB
1

BF
2

GB
2

NMF
MCR ALS
EB

(a) LGG Case

General Amplitude Width Outside Inside Inner
0

0.5

0.6

0.7

0.8

0.9

1

A
U

C

GT
BF

1

GB
1

BF
2

GB
2

NMF
MCR ALS
EB

(b) HGG Case

Fig. 6: Area under the receiver operating characteristic curve
(AUC). Each color corresponds to the same model and each
group to a specific set of baseline parameters. GT, resp. BF1,
GB1, BF2, GB2 refers to Ground Truth, resp. the Baseline
Free Model with one excitation wavelength, the Gaussian
Baseline Model with one excitation wavelength, the Baseline
Free Model with two excitation wavelengths, and the Gaussian
Baseline Model with two excitation wavelengths. The AUC
of the Non-Negative Matrix Factorization (NMF) spectral
unmixing method, resp. the Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS) method, is represented
in each group by the royal blue bar, resp. by the dark blue bar.
The Estimated Baseline Model (EB) is our proposed method.

Since the strength of the estimated baseline model is given
by the estimated baseline, one now wants to compare it to blind
spectral unmixing methods. We chose NMF as the comparison
method. However, since the estimated output parameters of
each model are not in the same space, we observe the receiver
operating characteristic curve and the area under this curve for
each method. Fig. 6b, resp. Fig. 6a, represents the area under

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3299689

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

the curve (AUC) for the different methods and datasets in the
HGG case, resp. LGG case.

The General dataset is the classifier training dataset for
NMF. One notices that in terms of AUC on this dataset the
NMF method performs worse than our Estimated Baseline
model for both the LGG and HGG cases.

As the baseline’s amplitude increases in the dataset Ampli-
tude, the AUC of the NMF method drops as much as that of the
state-of-the-art models. When the baseline’s width increases in
the dataset Width, the AUC of the NMF method is reduced a
little compared to the Estimated Baseline Model’s one.

Considering the Outside dataset, all models have similar
performance for LGG. For HGG, NMF performs somewhat
worse than all other methods, including EB. For the Inside
dataset, the AUC of NMF and peak methods are lower than
GT’s AUC whereas the EB and GT’s AUC are similar for both
LGG and HGG.

One focuses on the effect of baseline quantum yield on the
AUC. For the Inner dataset, the AUC is the same as for the
General dataset for all models: the AUC of NMF is lower than
the one of EB. For the Across dataset associated with HGG,
we note that the AUC of NMF remains lower than the one
of EB. For LGG, NMF has an AUC in the same range as the
one of EB.

Indeed, EB has a better accuracy and a higher AUC than the
existing models including NMF when the baseline amplitude
increases, and it keeps an accuracy and AUC equivalent to
those of existing models in the unfavorable case of Across
dataset where the baseline quantum yield γ is close to those
of the PpIX. One can imagine using EB all the time even if
in cases modeled by the Across dataset since at worst it will
be equivalent to state-of-the-art performances.

3) Clinical Practice performance on synthesized glioma im-
age: To measure the final impact of this study on clinical
practice, we apply the ”estimation + classification” pipeline to
an image of glioma considering a real experimental system.

Each glioma is either LGG (Fig. 7a) or HGG (Fig. 7b).
Clinically, the average size of the glioma is 3 cm, we set
its size to 75% of image size so the pixel size corresponds to
130 µm which corresponds to the typical scale at the tissue
level. A single spectrum is generated in each pixel according
to the pixel’s ground truth class. Thus, the emission spectrum
of the baseline and the contributions of the fluorophore of
interest are different between the two neighboring pixels. The
size of a measurement probe is 4 mm (30 pixels in the image)
which corresponds to the typical size of a spectroscopic probe
or hyperspectral imaging system in the literature [8]. Images
of Fig. 7 account for the spatial point spread function of
the probe: the initial 300x300x2xp hyperspectral images have
been padded with replicates of the borders of the original
content and then convolved with a Gaussian kernel of size
30x30 pixels. Finally, the resulting 300x300x2xp hyperspectral
images, called Clinical Synthetic Images (CSI), are clipped to
the original size. For all images, the estimation is performed
independently pixel by pixel. To numerically estimate the clas-
sification, we simplify the problem into two classes, healthy or
tumor tissue. We thus calculate the sensitivity also called true
positive rate (TPR) and specificity called true negative rate
(TNR) of each classification for all datasets. These metrics
are relevant because sensitivity refers to the model’s ability
to correctly detect tumor tissues, while specificity relates to
the model’s ability to correctly detect healthy tissues. Case
General 1px of Tables II is equivalent to section III-E.2
because the convolution effect of the probe is not considered.
One notice that the classification task is an ill-posed problem
because the sensitivity and specificity of ground truth are
unable to reach 1.0.

We first focus on the Amplitude and General Datasets.
Corresponding sensitivity (TPR) and specificity (TNR) values
are given in Tables IIa, IIb. We notice a strong impact of
the measurement probe’s convolution on the classification
sensitivity (TPR) which goes from approximately 80% to

General 1px General CSI Amplitude CSI Outside CSI Inside CSI Inner CSI Across CSI
Model TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR

Ground Truth 0.58 0.79 0.94 1.00 0.94 1.00 0.94 1.00 0.94 1.00 0.94 1.00 0.94 1.00
BF1 0.41 0.86 0.16 1.00 0.00 1.00 0.93 1.00 0.16 1.00 0.16 1.00 0.16 1.00
GB1 0.46 0.84 0.92 1.00 0.05 1.00 0.96 1.00 0.21 1.00 0.92 1.00 0.92 1.00
BF2 0.48 0.83 0.80 1.00 0.00 1.00 0.94 1.00 0.65 1.00 0.22 1.00 0.69 1.00
GB2 0.51 0.82 0.93 1.00 0.09 1.00 0.95 1.00 0.87 1.00 0.92 1.00 0.93 1.00
NMF 0.54 0.80 0.97 1.00 0.47 1.00 0.98 1.00 0.95 1.00 0.96 1.00 0.96 1.00

MCR ALS 0.57 0.79 0.97 1.00 0.18 1.00 0.99 1.00 0.96 1.00 0.96 1.00 0.97 1.00
EB 0.57 0.79 0.94 1.00 0.93 1.00 0.94 1.00 0.94 1.00 0.94 1.00 0.94 1.00

(a) LGG Case
General 1px General CSI Amplitude CSI Outside CSI Inside CSI Inner CSI Across CSI

Model TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR
Ground Truth 0.59 0.89 1.00 0.97 1.00 0.97 1.00 0.97 1.00 0.97 0.90 1.00 0.90 1.00

BF1 0.43 0.93 0.98 1.00 0.01 1.00 1.00 0.98 0.97 1.00 0.26 1.00 0.26 1.00
GB1 0.48 0.92 1.00 0.99 0.29 1.00 1.00 0.95 0.98 1.00 0.87 1.00 0.87 1.00
BF2 0.49 0.91 0.99 1.00 0.09 1.00 1.00 0.97 0.99 1.00 0.49 1.00 0.79 1.00
GB2 0.52 0.91 1.00 0.98 0.85 1.00 1.00 0.96 0.99 1.00 0.87 1.00 0.88 1.00
NMF 0.76 0.82 0.93 1.00 1.00 0.70 0.98 1.00 0.91 1.00 0.92 1.00 0.93 1.00

MCR ALS 0.79 0.81 0.95 1.00 0.30 1.00 0.99 1.00 0.95 1.00 0.94 1.00 0.95 1.00
EB 0.59 0.89 1.00 0.97 0.99 0.97 1.00 0.97 1.00 0.97 0.90 1.00 0.90 1.00

(b) HGG Case

TABLE II: Sensitivity (TPR) and Specificity (TNR) values for different datasets including clinical synthetic images (CSI) ones.
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(b) HGG Case

Fig. 7: Results on 300x300 clinical synthetic images of Low-Grade Glioma (a) and High Grade Glioma (b). Row name
corresponds to an estimation model: GT, resp. BF1, GB1, BF2, GB2 refers to Ground Truth, resp. the Baseline Free Model
with one excitation wavelength, the Gaussian Baseline Model with one excitation wavelength, the Baseline Free Model with
two excitation wavelengths, and the Gaussian Baseline Model with two excitation wavelengths. The Estimated Baseline Model
(EB) is our proposed method. Columns gives the set name defined in Table I: the baseline’s amplitude increased when going
from General to Amplitude dataset. The red color refers to the tumor area while the green color refers to the healthy area. In
HGG Case (b), the orange color refers to sparse tumor margins.

100%. In the same way, the specificity (TNR) increases
from 59% to 73 % at best. This is relevant in terms of
clinical practice since the neurosurgeon removes millimeter-
sized pieces that therefore give very high sensitivity. Moreover,
previous results are confirmed on simulated glioma: only EB
can correctly distinguish healthy tissues from tumoral ones
when the amplitude of the baseline increases.

One can see a loss of specificity when comparing the Inside
with the Outside dataset for all models except EB. This goes
along with previous results. In addition, the specificities of
the Outside dataset are higher than in the General dataset.
This is due to the difference in baseline positions between the
two datasets. Moreover, in the HGG case, we notice that the
specificity of GB1 and GB2 is better than the one of Ground
Truth. This bias of the method has no physical sense and is
because the Lorentzian is narrower than the Gaussian.

Thus, when the Lorentzian is positioned where the Gaussian
of the GB models can be (i.e. the outside Dataset), then the
Gaussian baseline of GB models has higher values than the
Lorentzian at the level of the PpIX peaks. As a result, α is
systematically underestimated and we have this effect of a
fall in the number of true healthy identified as tumoral and
therefore an increase in specificity.

Looking at Inner and Across datasets, we notice that the
specificity of each model is not impacted by the change related
to these datasets. EB has the best specificity in the unfavorable

case of Across dataset where the baseline quantum yield γ is
close to those of the PpIX. From a performance point of view,
the EB method is 1.06 times faster than the blind methods
which are finally not very accurate, and 1706 times faster than
the accurate state-of-the-art methods (GB2). From a clinical
point of view, EB is the best of all models in all studied cases.

IV. CONCLUSION

In this work, we proposed a novel approach using several
excitation wavelengths to estimate the PpIX fluorescence-
related biomarkers contributions which make our method free
from any a priori on the fluorescence emission spectrum of
the baseline.

Furthermore, we derived analytical expressions for the least
square estimator of the proposed model. This allows our
method to be computationally efficient and free from the use
of iterative non-linear estimation procedures. We have shown
that this new model better estimates the pathological status
of the measured tissue when baseline amplitude increases: it
keeps a specificity almost equal to that of the ground truth
while the one of existing models drops to 0. In addition, this
new model is as accurate as existing models in unfavorable
cases, e.g., when baseline quantum yield is near PpIX ones.
This new model reveals the potential of multiple excitation
wavelengths to increase the classification sensitivity of fluo-
rescence measurements.
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Future work may focus on hot spot management and
extend this study to more than two excitation wavelengths.
In addition, complementary aims will be explored regarding
the application of the model to real clinical data and the
correlation between the baseline and the fluorophores of inter-
est. Furthermore, the characterization of the execution speed
depending on the image size and the size p of the spectra
could be explored in relation to clinical constraints. This work
assumes the independence of the baseline spectral shape with
the excitation wavelength, which is consistent with the physics
of fluorescence. However, complex microenvironments could
induce mechanisms that alter this assumption, and the EB
model’s robustness to such effect could be explored. As
described in [36], 5-ALA-induced PpIX is the clinical gold
standard for HGG despite the associated financial constraints.
In neurosurgery, compared with other fluorescent agents, 5-
ALA-induced PpIX is an agent that specifically labels tumor
cells. For LGG, the use of 5-ALA as a surgical adjunct remains
more limited mainly by limited PpIX visible fluorescence,
which reduces the signal-to-noise ratio of the measurements,
and the post-processing applied gives poorer results. The EB
model presented and characterized in this article aims at
better differentiating the PpIX 620 and 634 forms, which
are present together in cases where the fluorescence signal
is weak. Finally, the EB model could be applied to other
fluorophores of clinical interest, particularly to try to determine
the relative quantities of NADH protein-bound form and free
one.
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