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Two identical thin ŕexible plates, referred to as łinverted ŕagsž, in a side-by-side arrangement are investigated theoretically. A linear model is developed to predict the onset of instability. This linear model elucidates the mechanism of instability and the sensitivity of the critical ŕow velocity to the gap between the two ŕags. The dynamics of a single ŕag has been studied massively, but the coupling of multiple ŕags is seldom reported. The Euler-Bernoulli beam theory and incompressible potential ŕow theory are adopted in the model. The Galerkin method and Fourier transform technique are used to solve ŕag displacements and ŕuid potentials, respectively. As the ŕow velocity is increased, the őrst mode becomes unstable via a pitchfork bifurcation. At higher ŕow velocities, higher modes lose stability via Hopf bifurcations. Out-of-phase and in-phase motions are predicted for the two ŕags. It is found that the critical velocity is independent of the ŕag gap-to-length ratio when it is approximately greater than 1. When the ratio is reduced, the critical velocity becomes smaller. When the ratio is extremely small, ŕutter occurs to the őrst mode before static divergence.

INTRODUCTION

Recently, inverted ŕags have been of great interest in energy harvesting systems due to large-amplitude ŕapping they might feature and large strain energy they can store [START_REF] Alam | łEnergy harvesting from passive oscillation of inverted foil[END_REF][START_REF] Kim | łFlapping dynamics of an inverted ŕag[END_REF]. An underwater energy harvester can start up at extremely low ocean current speeds and have a wide working range [START_REF] Wang | łAn underwater ŕag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition[END_REF]. Flapping motions are also considered in order to enhance the performance of some types of heat exchangers [START_REF] Rips | łHeat transfer enhancement in laminar ŕow heat exchangers due to ŕapping ŕags[END_REF]. A ŕag-ŕuid model was even used to study human snoring [START_REF] Huang | łFlutter of cantilevered plates in axial ŕow[END_REF].

The dynamics of a single inverted ŕag has been vigorously investigated theoretically and experimentally. The aspect and mass ratios are commonly the most important parameters. It has been found that, for a slender ŕag, a larger mass ratio has the effect of generating instability at lower ŕow velocities, while for a two-dimensional ŕag, the mass ratio has no impact on the critical point for static divergence, but it does for the onset of ŕutter [START_REF] Tavallaeinejad | łInstability and the postcritical behaviour of two-dimensional inverted ŕags in axial ŕow[END_REF][START_REF] Tavallaeinejad | łNonlinear dynamics of slender inverted ŕags in uniform steady ŕows[END_REF]. The underlying mechanism giving rise to ŕapping initially considered to be a vortex-induced vibration (VIV) [START_REF] Sader | łLarge-amplitude ŕapping of an inverted ŕag in a uniform steady ŕow ś a vortex-induced vibration[END_REF][START_REF] Goza | łGlobal modes and nonlinear analysis of inverted-ŕag ŕapping[END_REF] was shown to be self-excited [START_REF] Tavallaeinejad | łFlapping of heavy inverted ŕags: a ŕuid-elastic instability[END_REF]. Particularly for heavy ŕags, periodic vortex shedding is not the cause but a consequence of large-amplitude ŕapping.

The purpose of this study is to develop a mathematical model that predicts the instabilities of two parallel inverted ŕags in axial airŕow, as in Fig. 1. It is assumed that both ŕags undergo onedimensional motions and the ŕuid satisőes a two-dimensional potential ŕow assumption. The Galerkin method is employed to solve the equations of motion, and the Fourier transform technique is adopted to obtain the perturbation pressure in terms of ŕag displacements. 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The equation governing the dynamics of the transverse displacement

𝑤 ( 𝑗 ) (𝑥, 𝑡) of ŕag 𝑗 ( 𝑗 = 1, 2) reads 𝜌 𝑝 ℎ 𝑝 𝜕 2 𝑡 𝑤 ( 𝑗 ) + 𝐷𝜕 4 𝑥 𝑤 ( 𝑗 ) + 𝑝 ( 𝑗 ) = 0 (1) 
where 𝜌 𝑝 is the ŕag density, ℎ 𝑝 , the ŕag thickness, function of space 𝑥 and time 𝑡, 𝐷 = 𝐸 ℎ 3 𝑝 /[12(1 -𝜈 2 )], the ŕag stiffness, 𝐸, Young's modulus, 𝜈, Poisson's ratio, and 𝑝 ( 𝑗 ) (𝑥, 𝑡), the perturbation pressure acting on ŕag 𝑗. The notation 𝜕 𝑥 𝑢 means partial derivative of the quantity 𝑢 with respect to argument 𝑥. The boundary conditions are given by

𝑤 ( 𝑗 ) (0, 𝑡) = 𝜕 𝑥 𝑤 ( 𝑗 ) (0, 𝑡) = 𝜕 2 𝑥 𝑤 ( 𝑗 ) (𝐿, 𝑡) = 0, 𝐷𝜕 3 𝑥 𝑤 ( 𝑗 ) (𝐿, 𝑡) = 𝜌 𝑓 𝐿𝑈 (𝜕 𝑡 𝑤 ( 𝑗 ) (𝐿, 𝑡) -𝑈𝜕 𝑥 𝑤 ( 𝑗 ) (𝐿, 𝑡)) (2) 
where 𝐿 is the ŕag length, 𝜌 𝑓 , the ŕuid density, and 𝑈, the free ŕow velocity. Incorporating the shear force boundary condition into Eq. ( 1) by means of a Dirac delta function yields

𝜌 𝑝 ℎ 𝑝 𝜕 2 𝑡 𝑤 ( 𝑗 ) + 𝐷𝜕 4 𝑥 𝑤 ( 𝑗 ) + 𝑝 ( 𝑗 ) + 𝜌 𝑓 𝐿𝑈 (𝜕 𝑡 𝑤 ( 𝑗 ) -𝑈𝜕 𝑥 𝑤 ( 𝑗 ) )𝛿(𝑥 -𝐿) = 0. (3)
The reason for doing this is that the system can be analyzed with the ŕag treated as a standard cantilever beam subject to the simple free-clamped boundary conditions [START_REF] Rinaldi | łTheory and experiments on the dynamics of a free-clamped cylinder in conőned axial air-ŕow[END_REF].

The perturbation potential Φ (𝑛) (𝑥, 𝑦, 𝑡) in ŕuid domain 𝑛 (𝑛 = 0, 1, 2) satisőes the Laplace equation

𝜕 2 𝑥 Φ (𝑛) + 𝜕 2 𝑦 Φ (𝑛) = 0 (4) 
along with the boundary conditions

𝜕 𝑦 Φ ( 𝑗 -1) (𝑥, ( 𝑗 -1)𝑑, 𝑡) = 𝜕 𝑦 Φ ( 𝑗 ) (𝑥, ( 𝑗 -1)𝑑, 𝑡) = (𝜕 𝑡 -𝑈𝜕 𝑥 )𝑤 ( 𝑗 ) (𝑥, ( 𝑗 -1)𝑑, 𝑡), 𝑗 = 1, 2 𝜕 𝑦 Φ (0) (𝑥, -∞, 𝑡) = 𝜕 𝑦 Φ (2) (𝑥, +∞, 𝑡) = 0 (5)
1
where 𝑑 is the gap between the two ŕags.

The perturbation pressure 𝑝 ( 𝑗 ) (𝑥, 𝑡) on ŕag 𝑗 is given by the linearized unsteady Bernoulli equation 1) ] at (𝑥, ( 𝑗 -1)𝑑, 𝑡). [START_REF] Tavallaeinejad | łInstability and the postcritical behaviour of two-dimensional inverted ŕags in axial ŕow[END_REF] Elsewhere the perturbation pressure is zero, i.e. 𝑝 = 0 for 𝑥 < 0 and 𝑥 > 𝐿.

𝑝 ( 𝑗 ) = -𝜌 𝑓 (𝜕 𝑡 -𝑈𝜕 𝑥 ) [Φ ( 𝑗 ) -Φ ( 𝑗 -
To make these equations dimensionless and analyze the problem in the frequency domain, we deőne the following dimensionless quantities with asterisks: 3), ( 4) and ( 6) and dropping the asterisks for simplicity (valid in the following sections as well), the dimensionless governing equations are

𝑥 = 𝑥 * 𝐿, 𝑦 = 𝑦 * 𝐿, 𝑑 = 𝑑 * 𝐿, 𝜇 = 𝜌 𝑓 𝐿/(𝜌 𝑝 ℎ 𝑝 ), 𝑡 = 𝑡 * 𝐿 2 √︁ 𝜌 𝑝 ℎ 𝑝 /𝐷, Ω = √ 𝐷𝜔 * /(𝐿 2 √︁ 𝜌 𝑝 ℎ 𝑝 , 𝑈 = 𝑈 * √ 𝐷/(𝐿 √︁ 𝜌 𝑝 ℎ 𝑝 ), 𝑤(𝑥, 𝑡) = 𝑤 * (𝑥 * )𝐿𝑒 𝑖Ω𝑡 , 𝑝(𝑥, 𝑡) = 𝑝 * (𝑥 * )𝑒 𝑖Ω𝑡 𝐷/𝐿 3 , and Φ(𝑥, 𝑦, 𝑡) = 𝜙 * (𝑥 * , 𝑦 * )𝑒 𝑖Ω𝑡 √ 𝐷/ √︁ 𝜌 𝑝 ℎ 𝑝 . Substituting into Eqs. (
𝑤 ′′′′( 𝑗 ) -𝜔 2 𝑤 ( 𝑗 ) + 𝑝 ( 𝑗 ) + 𝜇𝑈 (𝑖𝜔𝑤 ( 𝑗 ) -𝑈𝑤 ′( 𝑗 ) )𝛿(𝑥 -1) = 0 (7a) 𝜕 2 𝑥 𝜙 (𝑛) + 𝜕 2 𝑦 𝜙 (𝑛) = 0 (7b) 𝑝 ( 𝑗 ) = -𝜇(𝑖𝜔 -𝑈𝜕 𝑥 ) [𝜙 ( 𝑗 ) -𝜙 ( 𝑗 -1) ] |︁ |︁ ( 𝑥, ( 𝑗 -1) 𝑑) . (7c) 
The prime notation 𝑢 ′ (𝑥) means őrst derivative of the function 𝑢 with respect to variable 𝑥; 𝑢 ′′ , the second derivative, and so on.

The dimensionless boundary conditions for ŕag displacements and ŕuid potentials are

𝑤 ( 𝑗 ) (0) = 𝑤 ′( 𝑗 ) (0) = 𝑤 ′′( 𝑗 ) (1) = 𝑤 ′′′( 𝑗 ) (1) = 0 (8) 
and

𝜕 𝑦 𝜙 ( 𝑗 -1) = 𝜕 𝑦 𝜙 ( 𝑗 ) = 𝑖𝜔𝑤 ( 𝑗 ) -𝑈𝑤 ′( 𝑗 ) at (𝑥, ( 𝑗 -1)𝑑) 𝜕 𝑦 𝜙 (0) (𝑥, -∞) = 𝜕 𝑦 𝜙 (2) (𝑥, +∞) = 0. (9) 

SOLUTION METHODS

The Galerkin method is used to solve the equation of motion (7a). The displacement of each ŕag is decomposed using the őrst 𝑄 eigenfunctions of a cantilever beam in vacuum

𝑤 ( 𝑗 ) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝐴 ( 𝑗 ) 𝑛 𝜓 𝑛 (𝑥). (10) 
Since the perturbation pressures on the ŕags are unknown, the relation between pressures and displacements must be determined őrst.

Perturbation pressures

Following the work on two parallel conventional (i.e., clamped-free) ŕags by Michelin and Llewellyn Smith [START_REF] Michelin | łLinear stability analysis of coupled parallel ŕexible plates in an axial ŕow[END_REF], the derivation of the perturbation pressure is brieŕy summarized here. Interested readers can refer to [12ś14]. Note that the difference for inverted ŕags is that the ŕow direction is reversed, i.e. there is a sign difference in the ŕow velocity. The Laplace equation (7b) is solved using the Fourier transform with respect to 𝑥, and a general solution is obtained with coefficients to be determined by the boundary conditions [START_REF] Goza | łGlobal modes and nonlinear analysis of inverted-ŕag ŕapping[END_REF]. Using the Bernoulli equation (7c), the perturbation pressure can be expressed in terms of the ŕag displacement as follows:

1 2𝜋𝜇 (︃∫ 1 0 𝑝 ′(1) (𝜉) 𝑥 -𝜉 𝑑𝜉 + ∫ 1 0 𝑥 -𝜉 (𝑥 -𝜉) 2 + 𝑑 2 𝑝 ′(2) (𝜉)𝑑𝜉 )︃ = -𝜔 2 𝑤 (1) (𝑥) -2𝑖𝜔𝑈𝑤 ′(1) (𝑥) + 𝑈 2 𝑤 ′′(1) (𝑥) (11a) and 1 2𝜋𝜇 (︃∫ 1 0 𝑝 ′(2) (𝜉) 𝑥 -𝜉 𝑑𝜉 + ∫ 1 0 𝑥 -𝜉 (𝑥 -𝜉) 2 + 𝑑 2 𝑝 ′(1) (𝜉)𝑑𝜉 )︃ = -𝜔 2 𝑤 (2) (𝑥) -2𝑖𝜔𝑈𝑤 ′(2) (𝑥) + 𝑈 2 𝑤 ′′(2) (𝑥). (11b)
The őrst integral in Eq. ( 11) is treated as the Cauchy principal value. It is computed numerically using the Gauss-Chebyshev quadrature [START_REF] Erdogan | łOn the numerical solution of singular integral equations[END_REF]. Due to the linearity of Eq. ( 11) in terms of the ŕag displacement, it is convenient to express the perturbation pressure in the form

𝑝 ( 𝑗 ) (𝑥) = -𝜔 2 𝑝 𝑀 ( 𝑗 ) (𝑥) -2𝑖𝜔𝑈 𝑝 𝐺 ( 𝑗 ) (𝑥) + 𝑈 2 𝑝 𝐾 ( 𝑗 ) (𝑥) (12)
where the components with superscripts 𝑀, 𝐺 and 𝐾 correspond to added mass, gyroscopic effects and added stiffness, respectively [START_REF] Païdoussis | Fluid-Structure Interactions: Slender Structures and Axial Flow[END_REF].

Each pressure component is decomposed, using again the cantilever beam eigenfunctions, as follows:

𝑝 𝑀 (1) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝛼 𝑀 𝑛 𝜓 𝑛 (𝑥), 𝑝 𝑀 (2) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝛽 𝑀 𝑛 𝜓 𝑛 (𝑥), 𝑝 𝐺 (1) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝛼 𝐺 𝑛 𝜓 𝑛 (𝑥), 𝑝 𝐺 (2) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝛽 𝐺 𝑛 𝜓 𝑛 (𝑥), 𝑝 𝐾 (1) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝛼 𝐾 𝑛 𝜓 𝑛 (𝑥), 𝑝 𝐾 (2) (𝑥) = 𝑄 ∑︂ 𝑛=1 𝛽 𝐾 𝑛 𝜓 𝑛 (𝑥). (13) 
Inserting Eq. ( 13) into Eq. ( 11) lets the Cauchy principal values be computed with the known functions 𝜓 𝑛 , and the pressure coefficients can be solved in a simple system of equations. This procedure is different from the treatment in [START_REF] Michelin | łLinear stability analysis of coupled parallel ŕexible plates in an axial ŕow[END_REF], in which a system of integral equations is solved with the unknown pressure components incorporated in the Cauchy principal values.

Flag displacements

Applying Galerkin method to Eq. (7a) yields

𝑄 ∑︂ 𝑛=1 [︂ ∫ 1 0 [ 𝐴 (1) 𝑛 (𝜓 ′′′′ 𝑛 -𝜔 2 𝜓 𝑛 ) + (𝑈 2 𝛼 𝐾 𝑛 -𝜔 2 𝛼 𝑀 𝑛 -2𝑖𝜔𝑈𝛼 𝐺 𝑛 )𝜓 𝑛 ]𝜓 𝑚 𝑑𝑥 + 𝐴 (1) 𝑛 𝜇𝑈 [𝑖𝜔𝜓 𝑛 (1)𝜓 𝑚 (1) -𝑈𝜓 ′ 𝑛 (1)𝜓 𝑚 (1) 
]︂ = 0 (14a) and

𝑄 ∑︂ 𝑛=1 [︂ ∫ 1 0 [ 𝐴 (2) 𝑛 (𝜓 ′′′′ 𝑛 -𝜔 2 𝜓 𝑛 ) + (𝑈 2 𝛽 𝐾 𝑛 -𝜔 2 𝛽 𝑀 𝑛 -2𝑖𝜔𝑈 𝛽 𝐺 𝑛 )𝜓 𝑛 ]𝜓 𝑚 𝑑𝑥 + 𝐴 (2) 𝑛 𝜇𝑈 [𝑖𝜔𝜓 𝑛 (1)𝜓 𝑚 (1) -𝑈𝜓 ′ 𝑛 (1)𝜓 𝑚 (1) 
]︂ = 0 (14b)

for 𝑚 = 1, 2, 3, . . . , 𝑄. Due to the orthogonality of the functions 𝜓 𝑛 (𝑥); i.e. ∫ 1 0 𝜓 𝑛 𝜓 𝑚 𝑑𝑥 = 0 when 𝑛 ≠ 𝑚 and = 1 when 𝑛 = 𝑚, the previous identities simplify to

(︃ [︃ R 0 0 R ]︃ -𝜔 2 [︃ I 0 0 I ]︃ + 𝑖𝜔𝜇𝑈 [︃ C 0 0 C ]︃ -𝜇𝑈 2 [︃ K 0 0 K ]︃ )︃ (︄ A (1) 𝑛 A (2) 𝑛 )︄ -𝜔 2 (︃ P 𝑀 1 P 𝑀 2 )︃ -2𝑖𝜔𝑈 (︃ P 𝐺 1 P 𝐺 2 )︃ + 𝑈 2 (︃ P 𝐾 1 P 𝐾 2 )︃ = (︃ 0 0 )︃ . (15) 
Above, R is a diagonal matrix with the 𝑛th diagonal entry 𝑅 𝑛𝑛 = 𝑟 4 𝑛 , where 𝑟 𝑛 is the 𝑛th root of 1 + cosh 𝑥 cos 𝑥 = 0; I is an identity matrix. The entries of C and K are 𝐶 𝑚𝑛 = 𝜓 𝑚 (1)𝜓 𝑛 (1) and 𝐾 𝑚𝑛 = 𝜓 ′ 𝑚 (1)𝜓 𝑛 (1) with 𝑚, 𝑛 = 1, 2, . . . , 𝑄. Quantities P 1 and P 2 , with corresponding superscripts, are column vectors containing the pressure coefficients 𝛼 1 , . . . , 𝛼 𝑄 and 𝛽 1 , . . . , 𝛽 𝑄 , obtained from the coefficients A (1) 𝑛 and A (2) 𝑛 by applying a Galerkin procedure to Eq. ( 11).

NUMERICAL RESULTS AND DISCUSSION

A convergence test is done őrst to test the accuracy of computation. It includes the number of terms (𝑄) in Eq. ( 10) and the number of quadrature points (𝑁) for computing the Cauchy principal values in Eq. ( 11).

Convergence Test

A large enough number of 𝑄 in Eq. ( 10) is required for convergence of the eigenvalues. The őrst three eigenfrequencies are calculated for various 𝑄 as seen in Fig. 2. The eigenfrequencies converge rapidly, even with a few terms.

The Cauchy principal values in Eq. ( 11) have a general expression

𝑓 𝑛 (𝑥) = ∫ 1 0 𝜓 ′ 𝑛 (𝜉) 𝑥 -𝜉 𝑑𝜉. (16) 
The lower beam mode shapes converge faster than the higher ones, and the highest mode shape is tested for convergence with increasing 𝑁 on 𝑥, 𝜉, as shown in Fig. 3: 𝑁 = 200 was found to be sufficient.

Onset of Instability

Solving Eq. ( 15) yields 4𝑄 eigenfrequencies, and more specifically, 2𝑄 conjugate pairs. One set of 𝑄 pairs corresponds to out-of-phase modes, and the other set, to in-phase modes. Therefore, only the eigenfrequencies with non-negative real parts are presented in this section.

Figures 4 and5 are Argand diagrams of the őrst three dimensionless complex eigenfrequencies for 𝑑 = 1 (large gap) and 𝑑 = 0.1 (small relative gap). The real part indicates the frequency magnitude, and the imaginary part indicates damping. A negative imaginary part indicates that the corresponding mode is unstable. The numbers beside the dots are the values of dimensionless ŕow velocity. For 𝑑 = 1 (Fig. 4), as the ŕow velocity is increased, the őrst eigenfrequency becomes purely imaginary and one of the solution branches crosses to the negative-plane, indicating the 

FIGURE 3: CONVERGENCE OF CAUCHY PRINCIPAL VALUES

onset of static divergence via a pitchfork bifurcation. When the instability occurs, the two ŕags will be out-of-phase. The second and third eigenfrequencies lose stability at higher ŕow velocities via Hopf bifurcations. The critical ŕow velocities for out-of-phase modes are lower than for in-phase modes.

For 𝑑 = 0.1 (Fig. 5), the out-of-phase modes associated with the őrst two eigenfrequencies display different type of instability from the large gap. The őrst out-of-phase mode loses stability near zero ŕow velocity via ŕutter. Then as the ŕow velocity is increased, in-phase static divergence will occur. This critical ŕow velocity is lower than that for 𝑑 = 1. For the second eigenfrequency, it is predicted that the in-phase mode loses stability at higher ŕow velocity via a Hopf bifurcation; however, the out-of-phase mode loses stability via static divergence, instead of ŕutter, at a very large ŕow velocity. Compared with the large gap, although the őrst mode in the small gap has a lower critical ŕow velocity, the 

EIGENFREQUENCIES: [TOP ROW] FIRST, [MIDDLE ROW] SEC-OND AND [BOTTOM ROW] THIRD; [LEFT COLUMN] OUT-OF-PHASE MODE, [RIGHT COLUMN] IN-PHASE MODE

higher modes have higher critical ŕow velocities.

The sensitivity of the critical ŕow velocity to 𝑑 is listed in Table 1. Flutter occurs only for very small gaps. The critical ŕow velocity is near zero. As the gap is increased, only static divergence is present, and the critical ŕow velocity is slightly increased. The effect of 𝑑 plays a role in Eq. [START_REF] Rinaldi | łTheory and experiments on the dynamics of a free-clamped cylinder in conőned axial air-ŕow[END_REF]. When 𝑑 is smaller, the őrst and second integrals mathematically become less different. In other words, the perturbation pressure on one ŕag caused by the displacement of the other ŕag is naturally similar to the perturbation pressure caused by its own displacement, indicating strong coupling between the two ŕags. This could explain why the two ŕags lose stability at very low ŕow velocities. 

EIGENFREQUENCIES: [TOP ROW] FIRST, [MIDDLE ROW] SEC-OND AND [BOTTOM ROW] THIRD; [LEFT COLUMN] OUT-OF-PHASE MODE, [RIGHT COLUMN] IN-PHASE MODE

CONCLUSION

The őrst three modes of two parallel inverted ŕags with varying gap in-between have been analyzed in this study. The perturbation pressure on a ŕag caused by its deŕection is expressed by a Cauchy principal value in the model.

At a relatively large gap, out-of-phase or in-phase motions of the two ŕags are predicted, the former being dominant. The two ŕags are őrst subject to static divergence in the őrst mode, and the higher modes become unstable at higher ŕow velocities via Hopf bifurcations.

When the gap is reduced to a small value, the two ŕags őrst show out-of-phase ŕutter in the őrst mode at a very low ŕow velocity and then have in-phase divergence at a high ŕow velocity. The in-phase motion becomes dominant in the higher modes. It can be predicted that when the gap 𝑑 → 0 the in-phase dominance makes the two ŕags act as a single ŕag.
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TABLE 1 : CRITICAL FLOW VELOCITIES VERSUS d

 1 

	𝑑	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
	Flutter	0.002	0.004	0.005	0.007	0.009	0.012	0.014	0.017	0.020	
	Divergence	0.526	0.775	0.974	1.138	1.272	1.381	1.436	1.450	1.450	
	Flutter [12]	0.013	0.043	0.252							
	Divergence [12]	1.431	1.431	1.431	1.432	1.432	1.432	1.432	1.433	1.433	
	𝑑	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	Flutter	0.023	0.106								
	Divergence	1.451	1.453	1.456	1.458	1.461	1.463	1.465	1.467	1.469	1.471
	Divergence [12]	1.433	1.435	1.436	1.438	1.439	1.440	1.440	1.441	1.442	1.442
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