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Dynamics of Two Parallel Inverted Flags in Axial Flow

Shaoguang Wang, Mathias Legrand, Michael Païdoussis

Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

ABSTRACT

Two identical thin ŕexible plates, referred to as łinverted

ŕagsž, in a side-by-side arrangement are investigated theoretically.

A linear model is developed to predict the onset of instability. This

linear model elucidates the mechanism of instability and the

sensitivity of the critical ŕow velocity to the gap between the two

ŕags. The dynamics of a single ŕag has been studied massively,

but the coupling of multiple ŕags is seldom reported. The Euler-

Bernoulli beam theory and incompressible potential ŕow theory

are adopted in the model. The Galerkin method and Fourier

transform technique are used to solve ŕag displacements and ŕuid

potentials, respectively. As the ŕow velocity is increased, the őrst

mode becomes unstable via a pitchfork bifurcation. At higher

ŕow velocities, higher modes lose stability via Hopf bifurcations.

Out-of-phase and in-phase motions are predicted for the two ŕags.

It is found that the critical velocity is independent of the ŕag

gap-to-length ratio when it is approximately greater than 1. When

the ratio is reduced, the critical velocity becomes smaller. When

the ratio is extremely small, ŕutter occurs to the őrst mode before

static divergence.

Keywords: Inverted Ćags, linear stability analysis

1. INTRODUCTION

Recently, inverted ŕags have been of great interest in energy

harvesting systems due to large-amplitude ŕapping they might

feature and large strain energy they can store [1, 2]. An underwater

energy harvester can start up at extremely low ocean current speeds

and have a wide working range [3]. Flapping motions are also

considered in order to enhance the performance of some types of

heat exchangers [4]. A ŕag-ŕuid model was even used to study

human snoring [5].

The dynamics of a single inverted ŕag has been vigorously

investigated theoretically and experimentally. The aspect and

mass ratios are commonly the most important parameters. It

has been found that, for a slender ŕag, a larger mass ratio has

the effect of generating instability at lower ŕow velocities, while

for a two-dimensional ŕag, the mass ratio has no impact on the

critical point for static divergence, but it does for the onset of

ŕutter [6, 7]. The underlying mechanism giving rise to ŕapping

initially considered to be a vortex-induced vibration (VIV) [8, 9]

was shown to be self-excited [10]. Particularly for heavy ŕags,

periodic vortex shedding is not the cause but a consequence of

large-amplitude ŕapping.

The purpose of this study is to develop a mathematical model

that predicts the instabilities of two parallel inverted ŕags in axial

airŕow, as in Fig. 1. It is assumed that both ŕags undergo one-

dimensional motions and the ŕuid satisőes a two-dimensional

potential ŕow assumption. The Galerkin method is employed to

solve the equations of motion, and the Fourier transform technique

is adopted to obtain the perturbation pressure in terms of ŕag

displacements.

Flag 2

Flag 1

$

H

G

Fluid domain 0

Fluid domain 1

Fluid domain 2d 5 , *

3

FIGURE 1: TWO PARALLEL INVERTED FLAGS IN AXIAL FLOW

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The equation governing the dynamics of the transverse dis-

placement 𝑤 ( 𝑗 ) (𝑥, 𝑡) of ŕag 𝑗 ( 𝑗 = 1, 2) reads

𝜌𝑝ℎ𝑝𝜕
2

𝑡 𝑤
( 𝑗 ) + 𝐷𝜕4

𝑥𝑤
( 𝑗 ) + 𝑝 ( 𝑗 ) = 0 (1)

where 𝜌𝑝 is the ŕag density, ℎ𝑝, the ŕag thickness, function of

space 𝑥 and time 𝑡, 𝐷 = 𝐸ℎ3
𝑝/[12(1 − 𝜈2)], the ŕag stiffness, 𝐸 ,

Young’s modulus, 𝜈, Poisson’s ratio, and 𝑝 ( 𝑗 ) (𝑥, 𝑡), the perturba-

tion pressure acting on ŕag 𝑗 . The notation 𝜕𝑥𝑢 means partial

derivative of the quantity 𝑢 with respect to argument 𝑥. The

boundary conditions are given by

𝑤 ( 𝑗 ) (0, 𝑡) = 𝜕𝑥𝑤 ( 𝑗 ) (0, 𝑡) = 𝜕2

𝑥𝑤
( 𝑗 ) (𝐿, 𝑡) = 0,

𝐷𝜕3

𝑥𝑤
( 𝑗 ) (𝐿, 𝑡) = 𝜌𝑓 𝐿𝑈 (𝜕𝑡𝑤 ( 𝑗 ) (𝐿, 𝑡) −𝑈𝜕𝑥𝑤 ( 𝑗 ) (𝐿, 𝑡))

(2)

where 𝐿 is the ŕag length, 𝜌𝑓 , the ŕuid density, and 𝑈, the free

ŕow velocity. Incorporating the shear force boundary condition

into Eq. (1) by means of a Dirac delta function yields

𝜌𝑝ℎ𝑝𝜕
2

𝑡 𝑤
( 𝑗 ) + 𝐷𝜕4

𝑥𝑤
( 𝑗 ) + 𝑝 ( 𝑗 )

+ 𝜌𝑓 𝐿𝑈 (𝜕𝑡𝑤 ( 𝑗 ) −𝑈𝜕𝑥𝑤 ( 𝑗 ) )𝛿(𝑥 − 𝐿) = 0. (3)

The reason for doing this is that the system can be analyzed with

the ŕag treated as a standard cantilever beam subject to the simple

free-clamped boundary conditions [11].

The perturbation potential Φ(𝑛) (𝑥, 𝑦, 𝑡) in ŕuid domain 𝑛

(𝑛 = 0, 1, 2) satisőes the Laplace equation

𝜕2

𝑥Φ
(𝑛) + 𝜕2

𝑦Φ
(𝑛)

= 0 (4)

along with the boundary conditions

𝜕𝑦Φ
( 𝑗−1) (𝑥, ( 𝑗 − 1)𝑑, 𝑡) = 𝜕𝑦Φ( 𝑗 ) (𝑥, ( 𝑗 − 1)𝑑, 𝑡)

= (𝜕𝑡 −𝑈𝜕𝑥)𝑤 ( 𝑗 ) (𝑥, ( 𝑗 − 1)𝑑, 𝑡), 𝑗 = 1, 2

𝜕𝑦Φ
(0) (𝑥,−∞, 𝑡) = 𝜕𝑦Φ(2) (𝑥, +∞, 𝑡) = 0

(5)
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where 𝑑 is the gap between the two ŕags.

The perturbation pressure 𝑝 ( 𝑗 ) (𝑥, 𝑡) on ŕag 𝑗 is given by the

linearized unsteady Bernoulli equation

𝑝 ( 𝑗 ) = −𝜌𝑓 (𝜕𝑡 −𝑈𝜕𝑥) [Φ( 𝑗 ) −Φ
( 𝑗−1) ] at (𝑥, ( 𝑗 − 1)𝑑, 𝑡). (6)

Elsewhere the perturbation pressure is zero, i.e. 𝑝 = 0 for 𝑥 < 0

and 𝑥 > 𝐿.

To make these equations dimensionless and analyze the

problem in the frequency domain, we deőne the following dimen-

sionless quantities with asterisks: 𝑥 = 𝑥∗𝐿, 𝑦 = 𝑦∗𝐿, 𝑑 = 𝑑∗𝐿,

𝜇 = 𝜌𝑓 𝐿/(𝜌𝑝ℎ𝑝), 𝑡 = 𝑡∗𝐿2
√︁

𝜌𝑝ℎ𝑝/𝐷, Ω =
√
𝐷𝜔∗/(𝐿2

√︁

𝜌𝑝ℎ𝑝,

𝑈 = 𝑈∗√𝐷/(𝐿
√︁

𝜌𝑝ℎ𝑝), 𝑤(𝑥, 𝑡) = 𝑤∗ (𝑥∗)𝐿𝑒𝑖Ω𝑡 , 𝑝(𝑥, 𝑡) =

𝑝∗ (𝑥∗)𝑒𝑖Ω𝑡𝐷/𝐿3, and Φ(𝑥, 𝑦, 𝑡) = 𝜙∗ (𝑥∗, 𝑦∗)𝑒𝑖Ω𝑡
√
𝐷/

√︁

𝜌𝑝ℎ𝑝.

Substituting into Eqs. (3), (4) and (6) and dropping the aster-

isks for simplicity (valid in the following sections as well), the

dimensionless governing equations are

𝑤′′′′( 𝑗 )−𝜔2𝑤 ( 𝑗 )+𝑝 ( 𝑗 )+𝜇𝑈 (𝑖𝜔𝑤 ( 𝑗 )−𝑈𝑤′( 𝑗 ) )𝛿(𝑥−1)=0 (7a)

𝜕2

𝑥𝜙
(𝑛) + 𝜕2

𝑦𝜙
(𝑛)

= 0 (7b)

𝑝 ( 𝑗 ) = −𝜇(𝑖𝜔 −𝑈𝜕𝑥) [𝜙 ( 𝑗 ) − 𝜙 ( 𝑗−1) ]
|︁

|︁

(𝑥, ( 𝑗−1)𝑑) . (7c)

The prime notation 𝑢′ (𝑥) means őrst derivative of the function 𝑢

with respect to variable 𝑥; 𝑢′′, the second derivative, and so on.

The dimensionless boundary conditions for ŕag displacements

and ŕuid potentials are

𝑤 ( 𝑗 ) (0)=𝑤′( 𝑗 ) (0)=𝑤′′( 𝑗 ) (1)=𝑤′′′( 𝑗 ) (1)=0 (8)

and

𝜕𝑦𝜙
( 𝑗−1)

= 𝜕𝑦𝜙
( 𝑗 )

= 𝑖𝜔𝑤 ( 𝑗 ) −𝑈𝑤′( 𝑗 ) at (𝑥, ( 𝑗 − 1)𝑑)
𝜕𝑦𝜙

(0) (𝑥,−∞) = 𝜕𝑦𝜙 (2) (𝑥, +∞) = 0.
(9)

3. SOLUTION METHODS

The Galerkin method is used to solve the equation of mo-

tion (7a). The displacement of each ŕag is decomposed using the

őrst 𝑄 eigenfunctions of a cantilever beam in vacuum

𝑤 ( 𝑗 ) (𝑥) =
𝑄
∑︂

𝑛=1

𝐴
( 𝑗 )
𝑛 𝜓𝑛 (𝑥). (10)

Since the perturbation pressures on the ŕags are unknown, the

relation between pressures and displacements must be determined

őrst.

3.1 Perturbation pressures

Following the work on two parallel conventional (i.e.,

clamped-free) ŕags by Michelin and Llewellyn Smith [12], the

derivation of the perturbation pressure is brieŕy summarized here.

Interested readers can refer to [12ś14]. Note that the difference

for inverted ŕags is that the ŕow direction is reversed, i.e. there is

a sign difference in the ŕow velocity. The Laplace equation (7b)

is solved using the Fourier transform with respect to 𝑥, and a

general solution is obtained with coefficients to be determined by

the boundary conditions (9). Using the Bernoulli equation (7c),

the perturbation pressure can be expressed in terms of the ŕag

displacement as follows:

1

2𝜋𝜇

(︃∫

1

0

𝑝′(1) (𝜉)
𝑥 − 𝜉 𝑑𝜉 +

∫

1

0

𝑥 − 𝜉
(𝑥 − 𝜉)2 + 𝑑2

𝑝′(2) (𝜉)𝑑𝜉
)︃

= −𝜔2𝑤 (1) (𝑥) − 2𝑖𝜔𝑈𝑤′(1) (𝑥) +𝑈2𝑤′′(1) (𝑥) (11a)

and

1

2𝜋𝜇

(︃∫

1

0

𝑝′(2) (𝜉)
𝑥 − 𝜉 𝑑𝜉 +

∫

1

0

𝑥 − 𝜉
(𝑥 − 𝜉)2 + 𝑑2

𝑝′(1) (𝜉)𝑑𝜉
)︃

= −𝜔2𝑤 (2) (𝑥) − 2𝑖𝜔𝑈𝑤′(2) (𝑥) +𝑈2𝑤′′(2) (𝑥). (11b)

The őrst integral in Eq. (11) is treated as the Cauchy principal

value. It is computed numerically using the Gauss-Chebyshev

quadrature [15]. Due to the linearity of Eq. (11) in terms of the

ŕag displacement, it is convenient to express the perturbation

pressure in the form

𝑝 ( 𝑗 ) (𝑥) = −𝜔2𝑝𝑀 ( 𝑗 ) (𝑥) − 2𝑖𝜔𝑈𝑝𝐺 ( 𝑗 ) (𝑥) +𝑈2𝑝𝐾 ( 𝑗 ) (𝑥) (12)

where the components with superscripts 𝑀 , 𝐺 and 𝐾 correspond

to added mass, gyroscopic effects and added stiffness, respec-

tively [16].

Each pressure component is decomposed, using again the

cantilever beam eigenfunctions, as follows:

𝑝𝑀 (1) (𝑥) =
𝑄
∑︂

𝑛=1

𝛼𝑀𝑛 𝜓𝑛 (𝑥), 𝑝𝑀 (2) (𝑥) =
𝑄
∑︂

𝑛=1

𝛽𝑀𝑛 𝜓𝑛 (𝑥),

𝑝𝐺 (1) (𝑥) =
𝑄
∑︂

𝑛=1

𝛼𝐺𝑛 𝜓𝑛 (𝑥), 𝑝𝐺 (2) (𝑥) =
𝑄
∑︂

𝑛=1

𝛽𝐺𝑛 𝜓𝑛 (𝑥),

𝑝𝐾 (1) (𝑥) =
𝑄
∑︂

𝑛=1

𝛼𝐾𝑛 𝜓𝑛 (𝑥), 𝑝𝐾 (2) (𝑥) =
𝑄
∑︂

𝑛=1

𝛽𝐾𝑛 𝜓𝑛 (𝑥).

(13)

Inserting Eq. (13) into Eq. (11) lets the Cauchy principal values

be computed with the known functions 𝜓𝑛, and the pressure

coefficients can be solved in a simple system of equations. This

procedure is different from the treatment in [12], in which a

system of integral equations is solved with the unknown pressure

components incorporated in the Cauchy principal values.

3.2 Flag displacements

Applying Galerkin method to Eq. (7a) yields

𝑄
∑︂

𝑛=1

[︂

∫

1

0

[𝐴(1)
𝑛 (𝜓′′′′

𝑛 − 𝜔2𝜓𝑛)

+ (𝑈2𝛼𝐾𝑛 − 𝜔2𝛼𝑀𝑛 − 2𝑖𝜔𝑈𝛼𝐺𝑛 )𝜓𝑛]𝜓𝑚𝑑𝑥

+ 𝐴(1)
𝑛 𝜇𝑈 [𝑖𝜔𝜓𝑛 (1)𝜓𝑚 (1) −𝑈𝜓′

𝑛 (1)𝜓𝑚 (1)
]︂

= 0 (14a)

and

𝑄
∑︂

𝑛=1

[︂

∫

1

0

[𝐴(2)
𝑛 (𝜓′′′′

𝑛 − 𝜔2𝜓𝑛)

+ (𝑈2𝛽𝐾𝑛 − 𝜔2𝛽𝑀𝑛 − 2𝑖𝜔𝑈𝛽𝐺𝑛 )𝜓𝑛]𝜓𝑚𝑑𝑥

+ 𝐴(2)
𝑛 𝜇𝑈 [𝑖𝜔𝜓𝑛 (1)𝜓𝑚 (1) −𝑈𝜓′

𝑛 (1)𝜓𝑚 (1)
]︂

= 0 (14b)
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for 𝑚 = 1, 2, 3, . . . , 𝑄. Due to the orthogonality of the functions

𝜓𝑛 (𝑥); i.e.
∫

1

0
𝜓𝑛𝜓𝑚𝑑𝑥 = 0 when 𝑛 ≠ 𝑚 and = 1 when 𝑛 = 𝑚, the

previous identities simplify to

(︃ [︃

R 0

0 R

]︃

− 𝜔2

[︃

I 0

0 I

]︃

+ 𝑖𝜔𝜇𝑈
[︃

C 0

0 C

]︃

−𝜇𝑈2

[︃

K 0

0 K

]︃ )︃

(︄

A
(1)
𝑛

A
(2)
𝑛

)︄

− 𝜔2

(︃

P
𝑀
1

P
𝑀
2

)︃

− 2𝑖𝜔𝑈

(︃

P
𝐺
1

P
𝐺
2

)︃

+𝑈2

(︃

P
𝐾
1

P
𝐾
2

)︃

=

(︃

0

0

)︃

. (15)

Above, R is a diagonal matrix with the 𝑛th diagonal entry 𝑅𝑛𝑛 = 𝑟
4
𝑛,

where 𝑟𝑛 is the 𝑛th root of 1 + cosh 𝑥 cos 𝑥 = 0; I is an identity

matrix. The entries of C and K are 𝐶𝑚𝑛 = 𝜓𝑚 (1)𝜓𝑛 (1) and

𝐾𝑚𝑛 = 𝜓′
𝑚 (1)𝜓𝑛 (1) with 𝑚, 𝑛 = 1, 2, . . . , 𝑄. Quantities P1

and P2, with corresponding superscripts, are column vectors

containing the pressure coefficients 𝛼1, . . . , 𝛼𝑄 and 𝛽1, . . . , 𝛽𝑄,

obtained from the coefficients A
(1)
𝑛 and A

(2)
𝑛 by applying a Galerkin

procedure to Eq. (11).

4. NUMERICAL RESULTS AND DISCUSSION

A convergence test is done őrst to test the accuracy of com-

putation. It includes the number of terms (𝑄) in Eq. (10) and

the number of quadrature points (𝑁) for computing the Cauchy

principal values in Eq. (11).

4.1 Convergence Test

A large enough number of 𝑄 in Eq. (10) is required for

convergence of the eigenvalues. The őrst three eigenfrequencies

are calculated for various𝑄 as seen in Fig. 2. The eigenfrequencies

converge rapidly, even with a few terms.

The Cauchy principal values in Eq. (11) have a general

expression

𝑓𝑛 (𝑥) =
∫

1

0

𝜓′
𝑛 (𝜉)
𝑥 − 𝜉 𝑑𝜉. (16)

The lower beam mode shapes converge faster than the higher

ones, and the highest mode shape is tested for convergence with

increasing 𝑁 on 𝑥, 𝜉, as shown in Fig. 3: 𝑁 = 200 was found to

be sufficient.

4.2 Onset of Instability

Solving Eq. (15) yields 4𝑄 eigenfrequencies, and more specif-

ically, 2𝑄 conjugate pairs. One set of 𝑄 pairs corresponds to

out-of-phase modes, and the other set, to in-phase modes. There-

fore, only the eigenfrequencies with non-negative real parts are

presented in this section.

Figures 4 and 5 are Argand diagrams of the őrst three di-

mensionless complex eigenfrequencies for 𝑑 = 1 (large gap) and

𝑑 = 0.1 (small relative gap). The real part indicates the frequency

magnitude, and the imaginary part indicates damping. A negative

imaginary part indicates that the corresponding mode is unstable.

The numbers beside the dots are the values of dimensionless ŕow

velocity. For 𝑑 = 1 (Fig. 4), as the ŕow velocity is increased, the

őrst eigenfrequency becomes purely imaginary and one of the

solution branches crosses to the negative-plane, indicating the
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FIGURE 2: CONVERGENCE ANALYSIS ON EIGENFREQUENCIES:

[TOP] FIRST, [MIDDLE] SECOND AND [BOTTOM] THIRD.
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FIGURE 3: CONVERGENCE OF CAUCHY PRINCIPAL VALUES

onset of static divergence via a pitchfork bifurcation. When the

instability occurs, the two ŕags will be out-of-phase. The second

and third eigenfrequencies lose stability at higher ŕow velocities

via Hopf bifurcations. The critical ŕow velocities for out-of-phase

modes are lower than for in-phase modes.

For 𝑑 = 0.1 (Fig. 5), the out-of-phase modes associated with

the őrst two eigenfrequencies display different type of instability

from the large gap. The őrst out-of-phase mode loses stability near

zero ŕow velocity via ŕutter. Then as the ŕow velocity is increased,

in-phase static divergence will occur. This critical ŕow velocity

is lower than that for 𝑑 = 1. For the second eigenfrequency, it

is predicted that the in-phase mode loses stability at higher ŕow

velocity via a Hopf bifurcation; however, the out-of-phase mode

loses stability via static divergence, instead of ŕutter, at a very

large ŕow velocity. Compared with the large gap, although the

őrst mode in the small gap has a lower critical ŕow velocity, the
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TABLE 1: CRITICAL FLOW VELOCITIES VERSUS d

𝑑 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Flutter 0.002 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.020

Divergence 0.526 0.775 0.974 1.138 1.272 1.381 1.436 1.450 1.450

Flutter [12] 0.013 0.043 0.252

Divergence [12] 1.431 1.431 1.431 1.432 1.432 1.432 1.432 1.433 1.433

𝑑 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Flutter 0.023 0.106

Divergence 1.451 1.453 1.456 1.458 1.461 1.463 1.465 1.467 1.469 1.471

Divergence [12] 1.433 1.435 1.436 1.438 1.439 1.440 1.440 1.441 1.442 1.442
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MODE, [RIGHT COLUMN] IN-PHASE MODE

higher modes have higher critical ŕow velocities.

The sensitivity of the critical ŕow velocity to 𝑑 is listed in

Table 1. Flutter occurs only for very small gaps. The critical

ŕow velocity is near zero. As the gap is increased, only static

divergence is present, and the critical ŕow velocity is slightly

increased. The effect of 𝑑 plays a role in Eq. (11). When 𝑑 is

smaller, the őrst and second integrals mathematically become less

different. In other words, the perturbation pressure on one ŕag

caused by the displacement of the other ŕag is naturally similar

to the perturbation pressure caused by its own displacement,

indicating strong coupling between the two ŕags. This could

explain why the two ŕags lose stability at very low ŕow velocities.
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EIGENFREQUENCIES: [TOP ROW] FIRST, [MIDDLE ROW] SEC-

OND AND [BOTTOM ROW] THIRD; [LEFT COLUMN] OUT-OF-PHASE
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5. CONCLUSION

The őrst three modes of two parallel inverted ŕags with

varying gap in-between have been analyzed in this study. The

perturbation pressure on a ŕag caused by its deŕection is expressed

by a Cauchy principal value in the model.

At a relatively large gap, out-of-phase or in-phase motions of

the two ŕags are predicted, the former being dominant. The two

ŕags are őrst subject to static divergence in the őrst mode, and the

higher modes become unstable at higher ŕow velocities via Hopf

bifurcations.

When the gap is reduced to a small value, the two ŕags őrst

4



show out-of-phase ŕutter in the őrst mode at a very low ŕow

velocity and then have in-phase divergence at a high ŕow velocity.

The in-phase motion becomes dominant in the higher modes. It

can be predicted that when the gap 𝑑 → 0 the in-phase dominance

makes the two ŕags act as a single ŕag.
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