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Abstract Smart farming aims at improving agriculture production by using artificial intelligence and smart devices
and, in continuity, farming optimization aims at supporting autonomous decision-making to maximize crop
yield. In this context, the question of predicting the future days of growth stages transition of a plant is still
a challenge, as existing automated predictions are not accurate nor reliable enough to be effectively used in
the farming process. We propose here an approach based on Choquet integral, performing an aggregation
of multiple imperfect predictions into a more accurate and reliable one, considering the specific relevance
of various prediction sources as well as interactions, synergies, or redundancies between them. To identify
the numerous parameter values defining the Choquet-based decision model, we propose a generic approach
of optimization based on observed history, ensuring a reduced sensitivity to parameters, thanks to a
principle of less specificity. Our proposal defines so an evaluation function assigning to any potential
solution a predictive capability, quantifying the conformance of its outputs to evidence, as well as an
associated optimization process based on the satisfaction degrees regarding a set of stated inequalities. The
case study concerns an implemented prototype that enables, for a given culture and several input sources,
to help farmers, providing them with better predictions of the growth stages. We also analyze the reliability
of the process, enabling the assignment of an objective probabilistic criteria to any provided prediction.
The experimental results are very encouraging, the predicted day remaining stable despite presence of
noise and local errors.
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Abstract. Smart farming aims at improving agriculture production by using arti-
ficial intelligence and smart devices and, in continuity, farming optimization aims
at supporting autonomous decision-making to maximize crop yield. In this con-
text, the question of predicting the future days of growth stages transition of a plant
is still a challenge, as existing automated predictions are not accurate nor reliable
enough to be effectively used in the farming process. We propose here an approach
based on Choquet integral, performing an aggregation of multiple imperfect pre-
dictions into a more accurate and reliable one, considering the specific relevance
of various prediction sources as well as interactions, synergies, or redundancies
between them. To identify the numerous parameter values defining the Choquet-
based decision model, we propose a generic approach of optimization based on
observed history, ensuring a reduced sensitivity to parameters, thanks to a prin-
ciple of less specificity. Our proposal defines so an evaluation function assigning
to any potential solution a predictive capability, quantifying the conformance of
its outputs to evidence, as well as an associated optimization process based on
the satisfaction degrees regarding a set of stated inequalities. The case study con-
cerns an implemented prototype that enables, for a given culture and several input
sources, to help farmers, providing them with better predictions of the growth
stages. We also analyze the reliability of the process, enabling the assignment of
an objective probabilistic criteria to any provided prediction. The experimental
results are very encouraging, the predicted day remaining stable despite presence
of noise and local errors.AQ1

Keywords: Choquet integral · Decision model · Parameters identification ·
Smart farming applications

1 Introduction

Rapid population growth has increased the demand for food production and hence the
pressure among farmers to meet customer demand. We consider here the agricultural
domain, a strategic area where, today, a major issue consists in increasing field pro-
ductivity while respecting the natural environment and farms sustainability, requiring
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the development of advanced decision support tools supporting the farmer’s day-to-day
decision process.

In this context, a key issue in maximizing crop efficiency is this of making reliable
predictions regarding growth stage transitions of plants, especially dates of transitions
from a present stage to the next one enabling the farmer to prepare and perform relevant
actions at the best instant with a maximized impact on efficiency (e.g., triggering irri-
gation, adjusting water flow, adding precisely optimized quantity of intrants, …). Such
predictions should be based on various available sources of information, that deliver in
practice more or less accurate and reliable information [9].

In this context, multi-criteria decision requires use of aggregation functions, such as
fuzzy integrals, among those the well-known integral of Choquet. This latter is defined
from a fuzzy measure representing not only the relative importance of the various criteria
but also the possible interactions between them [2]. Choquet integral will be used here
as an operator of aggregation, in charge of fusing multiple imperfect predictions into a
more certain and accurate one, exploiting source diversity to get a more significant and
reliable information for guiding decisions.

In this paper, we focus on the Choquet integral, proposing a parametric model for
data aggregation. We put our interest on an application of smart farming, proposing a
generic way to identify the parameters of a growth stage prediction model. We point
out that in a previous work [7], we proposed a fuzzy decision support environment for
smart farming ensuring better data structuration extracted from farms, and automated
calculations, reducing the risk of missing operations.

Our aim here is to identify the parameters of a Choquet-based decision model using
a training dataset including past data delivered by available sources jointed the corre-
sponding observed evidence, proposing a set of optimized parameter values. Our pro-
posal defines 1) a function enabling to evaluate the prediction capability of any potential
solution based on a set of inequalities, standing for the evidence this model enables
to satisfy, 2) an algorithm adapted from the classical gradient descent and providing a
robust solution, 3) a way to objectively evaluate in operation the reliability of the made
prediction in each case.

Our operator, based on Choquet integral, should apply ponderations to each informa-
tion source, considering possible interactions, synergy complementarity, or, conversely,
partial redundancy, between them. It will transform the input fuzzy sets delivered to
sources into a new fuzzy set aggregating the input sources and delivering a global value
of confidence based on several source-dependent inputs. The solution to our problem
will be the optimum of our evaluation function, the obtained evaluation value quantify-
ing both the ability of the solution to make right predictions and the robustness of this
solution. This approach has been validated on data issued from a set of fields, on several
years.

This paper focuses on a study in the agricultural domain aiming at improving smart
technologies. The originality of our proposal relies on one hand on identifying a model
only using conformance to stated inequalities, not requiring values of a function to be
learnt, and on the other hand, on the robustness of the obtained solution due to its least
specificity, reducing so the sensitivity to the defaults of training data.
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A Decision Model Based on an Optimized Choquet Integral 3

The remainder of this paper is organized as follows. Section 2 presents the prelimi-
naries and related works. Section 3 is dedicated to a formalization of our problem. Then,
in Sect. 4, we detail our proposal and its main components, and present the algorithm
enabling to identify the parameters of the Choquet integral. Section 5 presents a model
of decision based on our approach and then, the obtain numerical results on the chosen
case study and their interpretation are presented and discussed in Sect. 6. Finally, we
conclude and present our future work in Sect. 7.

2 State of the Art and Motivations

In this section, we first present preliminaries, and an overview of the related research con-
cerning Choquet integral and decision models along with our motivations and objectives,
and we shall then consider related works.

2.1 Smart Farming Applications and Systems: Motivations

The present issue falls into the developments of Smart Applications and Systems, that
aims at meeting the requirements of next generation agricultural processes, and more
especially these of precision farming [13]. Smart farming approach consists in deploy-
ing computer-based systems enabling the control of all actions on a culture, based on
information collected from terrain. The objective is to provide a smart support to the
farmer, executing automatized actions at the right time (e.g., watering), or informing
they of actions to be manually performed (e.g., adding a specified quantity of intrant).

In this context, a key aspect in smart farming is this of building estimations of present
and future states of development of the controlled culture, based on available pieces of
information, processing and consolidating them to obtain the best possible picture of
reality at t instant, as well as projections into the future. Theses estimations should be
reconsidered and rightly updated at any time with arrival of new pieces of information.

We consider here the case of surveillance of a culture with prediction of growth
stages (phenological stages) of a plant [10]. The plant being in a stage S, the objective
is to predict the future day of transition d toward the next stage S’. Each existing source
delivering its own imperfect prediction, the system must build a relevant aggregation of
the delivered data to deliver a better prediction, i.e., a more reliable and more accurate
one.

The overall functional architecture of our prediction process is presented on the
figure below. We have three levels, with 1) sensor and data acquisition level (including
terrain sensors, aircraft and sattelite images acquisition, external data collection through
web services invokation), 2) the level of prediction sources, i.e. the various algorithms in
charge of performing exprimental or more complex predictions, and at last 3) the global
aggregation level. The most general case being this of n sources of prediction, we shall
consider here, as an illustrative example, the case of 3 input sources (cf. Fig. 1).

Commonly used predictions sources are:

• Empirical « Degree Days» calculation [13], based on a cumulation of daily observed
min-max temperatures differences, quantity that should have to meet a given known
threshold, specific to plant and to considered phase.
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4 Y. Pollet et al.

• NDVI (Normalized Difference Vegetation Index), processed from visible and Infrared
reflectance extracted from satellite images.

• Interpolation from statistical tables.

Sensors 

Aggregation 
operator

Source-specific 
predictor

Source-specific
predictor

Aggregated 
prediction

Other sources

Single source predictionsMeasures

Data

Training dataset

Sensor level Source level Aggregation level

Source-specific 
predictor

Fig. 1. Functional schema of growth stages prediction (from [9]).

An available dataset, containing evidence and past predictions, may be geometrically
represented in of 2-dimensional factorial chart, thanks to a principal component analysis,
giving typical results such as the simplified one (cf. Fig. 2).

Fig. 2. Simplified representation of a Principal Component Analysis of a prediction dataset.
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A Decision Model Based on an Optimized Choquet Integral 5

We can see there is no way to clearly separate transition and non-transition days by
a simple hyperplane, or even by more complex classifiers, the reason being simply con-
fidences delivered by sources are just relative values inside a given session of prediction
(i.e., an instance of culture on a period), a level having no absolute quantitative meaning
by itself.

2.2 Background: The Choquet Integral

Choquet integral is often adopted as multifactor agregation operator, as it has an abil-
ity to properly model multiple types of interactions between sources, including partial
redundancy and substituability of some factors, with minimal hypothesis required on the
nature of data. In addition, we must mention its simplicity of calculation to be perfomed
at real time, as well as the human understandability of the various model parameters.

The notion of fuzzy integral, based on the concept of fuzzy measure [2], also called
capacity, enables to assign a relative importance, not only to each individual decision
criterion, but also for any subset of criteria. In the context of multi-criteria analysis, the
weight or importance of the set of criteria association influences the entire combination
of criteria, which could be also defined.

A capacity μ on the set is a function from into IR+, such as:

μ(Ø) = 0 (1)

μ(N) = 1 (2)

∀S ⊆N, ∀T ⊆N , S ⊆ T ⇒ μ(S) ≤ μ(T) (monotony)  (3)

The discrete Choquet integral related to the capacity μ is then defined as the function
that associates to any n-uple x = (x1, . . . , xn) ∈ IRn a value Cμ ∈ IR+, defined by the
following formula:

Cμ(x1, . . . , xn) :=
∑

i=1
i = n(μ(Aσ(i)) − μ(Aσ(i+1)) ).xσ(i) (4)

where σ is a permutation on such as Xσ(1) ≤ . . . ≤ Xσ(n), and where Aσ(i) := {σ(i) . . . ,
σ(n)}, , with, by convention, Aσ(n+1) := Ø. . To simplify notations, we shall write,
for i1, . . . , ip, p ≤ n:

μ({i}) = μi

μ({i, j}) = μi, j, (i �= j)

μ({i, j, k}) = μi, j, k(i �= j, j �= k, k �= i)

(5)

In a decision process, xi inputs will be the values attached to considered evaluation
criteria. With n = 1, i.e., with just two criteria, the Choquet integral formula (4) becomes
simply:

x1 ≤ x2 ⇒ Cμ(x1, x2) = (
μ1, 2 − μ2

) · x1 + μ2 · x2

x1 > x2 ⇒ Cμ(x1, x2) = μ1 · x1 + (
μ1, 2 − μ1

) · x2
(6)
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6 Y. Pollet et al.

Fig. 3. Graph of a Choquet Integral, in the case of two variables on [0, 1]2 domain.

as illustrated in Fig. 3, in the case where xi values belong to [0,1].
Graph of a Cμ function is always constituted of a set of hyperplanes sections defined

on each convex polytope 0 ≤ Xσ(1) ≤ Xσ(2) · · · ≤ Xσ(n). The function Cμ is continuous,
and derivable except on some singularities, the discrete Choquet integral being so the
unique linear interpolation of a function defined on the vertices of the unit hypercube
[0,1]n, i.e., on points .

A particular case of Choquet integral is the simple weighted sum
∑

i αi · xi (with∑
i αi = 1). In the most general case, with any values of capacity μ(S), , Choquet

integral generalises a classical weight vector. Limit cases of Choquet integral are the Min
and Max operators, that respectively corrresponds to the limit capacities μi = μi, j =
. . . = 1 (Max operator) and μi = μi, j = 0, . . . , except (Min operator):

Min(x1, . . . , xn) ≤ Cμ(x1, . . . , xn) ≤ Max(x1, . . . , xn) (7)

The cross terms μi, j , and more generally μi, j, k, .., enable to consider pairs, or more
generally subsets of non-additive criteria. In the case of a pair of criteria, we may have
so:

• Synergistic criteria: μi, j > μi + μj (super-additive effect)
• Redundant criteria: μi, j <μi + μj (sub-additive effect)
• Independent (complementary) criteria : μi, j =μi + μj (additive effect)

The Choquet integral so enables the representation of non-additive criteria, i.e., with
interactions between pairs or groups of more than two criteria. Its interest consists mainly
in considering in decision possible relevant interactions between groups of factors.

2.3 Related Work

The Choquet integral is based on two fundamental concepts: (1) utility; a function
which aims to model the preferences of the decision maker. Utility functions can be seen
as making it possible to translate the values of the attribute into a satisfaction degree
[4]. They are commensurable, monotonic and ascending because if an alternative a is
preferred to b then u (a) ≥ u (b) [8]; (2) capacity: models the fuzzy measure on which
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A Decision Model Based on an Optimized Choquet Integral 7

the integral is based and summarizes the importance of the criteria (the weight vector
traditionally used in additives) by aggregating utility functions. The learning ability of
the Choquet integral has been demonstrated, mainly in [6]. Functions dealing with data
mining issues such as least square and linear programming have been used in this context.
Preference learning consists in observing and learning the preferences of an individual,
precisely in particular when ordering a set of alternatives, to predict automatic scheduling
of a new set of alternatives [7].

The Choquet integral learning function is based on a set of concepts that make it pos-
sible to leverage the consideration of user preferences (or decisions) and the interaction
and/or synergy between the various criteria for data aggregation. Given a preferential
ordering on a sample learning, the discrete Choquet integral enable to quantify, then
learn, the relative weights of the different quality metrics.

In the literature, fuzzy integrals have been used for different purposes, for preferences
or opinions fusion from a variety of sources, and several applications and extensions of
fuzzy integrals have been developed. In [3], the authors have proven that the use of
fuzzy neural network is more effective than the decision tree algorithms often used in
the literature. The fuzzy neural network model allows precision improvement and less
redundancy in decision-making.

In our previous work, we have proven that applying Choquet’s integral to order data
sources according to the user’s preferences, is an interesting and challenging area of
research and can lead to more relevant results [5]. One originality of the work described
in this paper consists in the proposal of an evaluation function attaching to any potential
solution a degree of acceptability, based on truth degrees of inequalities.

In [13] the importance of utilizing machine learning techniques in smart farming
was demonstrated for end-users and experts in agriculture. The data mining techniques
applied in smart farming problems offer numerous solutions to farmers in a variety of
applications in the farming industry. The authors focus on yield forecasting, harvest
time, crop information and best variety to plant next season, which can be provided to
different end-users and experts. In [14], the authors distinguished the categories of cocoa
beans and the differences between them. The proposal aims at adaptively accumulating
contextual representations and introduces a contextual memory cell to progressively
select contextual statistics. The authors simultaneously correlate contextual relationships
to guide high-level representation retaining more detailed information, which helps to
discriminate small variations in smart farming application task management. In [15] the
authors proposed a Pythagorean fuzzy set (PFS) with Choquet Integral model integrated
for vertical farming technology evaluation. They characterize the most feasible option
from a group of vertical farming technologies considering a group of decision makers’
opinions. The Vertical farming alternatives are assessed, and a suitable option is detected
for the farm.

To meet the related works limitations, the originality of our proposal lies in answering
famers’ requirements by defining an approach of optimization, based on observation
history, ensuring a reduced sensitivity to input data thanks to a principle of less specificity.
A function assigning to any potential solution a predictive capability, quantifying the
conformance of its outputs to evidence, as well as an associated optimisation process
based on a degree of satisfaction regarding a set of stated inequalities.
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3 Problem Statement

Considering a crop with n prediction sources, information delivered by a source will
consists in a sequence of confidence levels xi(d) ∈ [0, 1] attached to future days 1, …,
D, given a temporal horizon of D days. xi(d) reflect the belief of the ith source regarding
the occurrence of transition from the present phenological stage to the next one exactly
at d day (cf. Fig. 4). We have so as many functions d ∈ {1, . . . , D} → xi(d) ∈ [0, 1]
as prediction sources i = 1, …, n, and xi(d) can be seen as a membership function of a
fuzzy subset of {1, …, D}, 0 meaning a null confidence, and 1 the maximum one.

No hypothesis is made on confidence levels semantics. One must point out these
levels are not probabilities, only inequalities between two values issued from the same
source at the same session of prediction being here significant. Note the case with several
days having all a 1 value is possible, reflecting an inaccuracy of the prediction.AQ2

Fig. 4. A fuzzy prediction on a temporal horizon of D days (from [9]).

We use Choquet integral as an operator of aggregation, in charge of fusing the later n
fuzzy predictions into a more certain and accurate one. It is expected from the combina-
tion of partially independent sources a more significant and reliable prediction for guid-
ing decision. This operator will have to apply proper ponderations to each information
source, considering possible, a priori unknown, interactions, synergy complementarity,
or, at contrary, partial redundancy, between them. The Choquet integral will transform
n fuzzy subsets into a result fuzzy subset, aggregating the n input sources. Our goal is
to enable an automated estimation of Choquet integral coefficients based on a recorded
history, i.e., on a set of past source prediction sessions in addition to the corresponding
observed evidence at the same session.

X = (x1, . . . , xn) denoting a confidence vector, n being the number of sources, the
training dataset consists in P sessions regarding the same plant, a session being related
to a field at a given time period. For each session, we have a sequence of X(d), prediction
vectors for days d = 1, …, D, in addition to dTr, the real day of transition, unknow at
prediction time but a posteriori observed for this session.

Available information may be expressed with a set of R = (D-1).P inequalities:

Cμ(Xk) < Cμ
(
Xevidence(k)

)
(8)

with k and evidence(k) ∈ [1, D.P], evidence(k) �= k being the dTr transition day for the
session containing day k.
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A Decision Model Based on an Optimized Choquet Integral 9

Our problem is to learn a μ capacity, i.e. the values of the 2n – 2 parameters μi, μi, j,
μi, j, k, · · · satisfying the above inequalities. Despite some of them may be trivially satis-
fied by any Choquet integral, i.e., for any μ, we keep them as input data of our problem,
intensities of differences being considered here as significant pieces of information. It
is the same for inequalities implicitly satisfied by transitivity, e.g., Cμ(X) < Cμ(Z), if
X < Y and Cμ(Y) < Cμ(Z).

Based on Choquet integral definition (4), input information may be expressed under
the form of R inequalities, applying on linear expressions:

ak
1 · μ1 + . . .+ ak

nμn + ak
1, 1 · μ1, 2 + . . .+ ak

n−1, n · μn−1, n + . . .+ ak
1, ..., n · μ1, ..., n > 0, k = 1, . . . , R

(9)

That is, using a matrix notation:

[A]k·[μ] > 0, k = 1, . . . , R (10)

where [A]k is the (2n-1) row vector
[
ak, . . . , ak

n, ak
1, 1, . . . , ak

n−1, n, . . . . . . , ak
1, ..., n

]
and

[μ] the (2n-1) column vector
[
μ1, . . . , μn, μ1, 1, . . . , μn−1, n, . . . , μ1, ..., n

]

That we may denote:

[A] · [μ] > 0 (11)

[A] being the rectangular matrix build with rows [A]k.
And coefficients μi, μi, j, μi, j, k, etc., satisfying the minimal set of constraints:

μi ≤ μi, j, ∀i, j; i �= j

μi, j ≤ μi, j, k , ∀i, j, k; i �= j, j �= k, k �= i

. . .

Withμi ≥ 0, ∀i, andμ1, ..., n = 1

(12)

that may be more concisely expressed by:

μ(S) ≤ μ(S’) ; |S’| = |S| + 1, S  ⊂ S’

with μ(Ø)  = 0 and μ1, …,n = μ(2N) ≤ 1
(13)

We have here no values regarding a function to be learnt, but only a set of statements
regarding inequalities. So, a direct identification method of the Choquet integral is not
applicable. For building the solution, we are expecting 1) a scalable algorithm, i.e., that
will be efficient for a huge training dataset with a time of execution linearly increasing
with respect to the number of sessions P. In addition, 2) we consider data as potentially
inaccurate, the solution having to be robust in case of conflicting examples, i.e., able to
tolerate some local “nearly satisfied” inequalities. At last, 3) we are expecting a solution
easily improvable by increments when new data are acquired.
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10 Y. Pollet et al.

4 Proposed Approach

Except in singular cases, inequalities (9) and (12) have either zero or an infinity of
solutions. In practice, as numerous xi, provided by sources are not perfect values, local
violations of a inequalities (2) should be accepted. So, we do not consider only exact
solutions, but all potential solutions with a μ vector satisfying the only strict inequalities
(5) related to a regular capacity definition. On this domain of potential solutions, we
shall optimize an evaluation function reflecting the expected characteristics considered
above, to get the best solution.

4.1 Evaluation Function

Considering a given μ capacity, the empirical distribution of [A]k.[μ] values on [-1, 1],
associated to a dataset, looks as the following histogram (cf. Fig. 5). We must choose as
solution the μ capacity such as this distribution has the less as possible negative values
(i.e., the most possible number of correct predictions), and so the greatest as possible
positive values, according to a principle of lowest specificity of the expected solution.
This is illustrated on the Fig. 5, case 2 being better than case 1, ideal case being this
where all [A]k.[μ] are exactly equal to 1.

Fig. 5. A fuzzy prediction on a temporal horizon of D days (from [9]).

To meet such an expected distribution of [A]k.[μ] values, we choose to minimize an
additive cost function having the following form:AQ3

Φ (μ) = ∑ k=1, …,R ϕ ([A]k.[μ]) (14)

where ϕ is a function : [−1, 1]m → IR+ continue, strictly decreasing, and C1 class,
with:

ϕ(1) = 0 (case of a perfect compliance to required inequality).
ϕ(x) being maximum for x = -1 (worst ordering).
ϕ being in addition strictly convex.
The fact that ∀δx > 0, ϕ(−δx)+ϕ(δx) > 2.ϕ(0), resulting from convexity, will give

us the guarantee that a local ordering defect corresponding to -δx is not compensated by
a positive margin of same intensity δx.
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A Decision Model Based on an Optimized Choquet Integral 11

So, we can choose a local cost function:

(15)

Normalizing the expression of ϕ(x) with respect to R, number of inequality
statements, we get:

�(μ) = −(1/R) ·
∑

k=1, ..., R
log2(1/2 · ([A]k·[μ] + 1)) (16)

This quantity quantifies the average “degree of order” with respect to evidence
present in results delivered by Cμ integral, expressing thus the predictive capability of
Cμ with the chosen μ capacity. This order reflects both the crispness of the aggregated
prediction and its degree of matching with observed reality.

We can remark ϕ is infinite for x = −1, i.e.:

limδ→−1 ϕ(δ) = +∞ (17)

corresponding to the case of a worst ordering, Fig. 6 showing the graphical representation
of ϕ function.

Fig. 6. Graphical representation of ϕ(x) = log2(1/2.(x + 1)) .

This definition of� appears as a particular case of a more general family of functions:

�v(μ) = −(1/R) ·
∑

k=1, ..., R
log2

(
v
([A]k·[μ]

])
(18)

v(δ) being a fuzzy comparator, i.e. a non-decreasing function associating to any δ =
[A]k · [μ] ∈ [−1, 1] a value ∈ [0,1], standing for the degree of truth of an assertion
[Cμ(Xd) < Cμ

(
XEvidence(d)

)]. v may be, for example, v(δ) = 1/2 ·λ · (1+erf ((
√

2 ·δ)),
where erf is the Gauss error function, enabling us to take into account a known inaccuracy
of input values x. Our first expression corresponds just to the case where v is just the
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12 Y. Pollet et al.

Fig. 7. Graphical representation of two comparators.

linear comparator v(δ) = 1/2 · (δ+1), Fig. 7 giving a comparison of the two definitions
of v comparator:

Note that another choice for � would be an energy-like functions having the
following definition.

�(μ) =
∑

k=1, ..., R
(Exp(−K .1/2 · ([A]k·[μ] + 1))− Exp(−K)) (19)

Note also that these functions may be approximated by a family of simple quadratic
functions such as, for example:

�(μ) =
∑

k=1, ..., R
([A]k·[μ] − 1) · ((2 − 4 · α) · ([A]k·[μ] − 1) (20)

where α is the expected value of the function ϕ at x = 0.5.

4.2 A Measure of Order

More generally, one can associate to any fuzzy prediction y, y(d), d = 1, …, D, either
coming from a single source, either issued from a multisource aggregation process,
a quantity S reflecting it actual lack of information in comparison to independently
observed evidence, value standing for a quantity of disorder. It is given by the formula
(15), evaluated on the only considered session of prediction, i.e., on the fuzzy subset y
given as input:

S(y) = (1/(D − 1)).
∑

d=1, ..., D, d �=dp
ϕ
(
y
(
dp

) − y(d)
)

(21)

where y
(
dp

)
is the prediction regarding the day of transition dp, and where ϕ(δy) =

−log2(1/2 · (δy + 1)).We can equivalently consider a quality factor defined by:

Q(y) = 2−Sys) ∈ [0, 1] (22)

Q(y) = 1 standing for a perfect prediction and Q(y) = 0 for the worst possible one.
Let’s define d0(y), the day index maximizing y(d), i.e., d0(y) = Arg(Sup{y(d),

d = 1, D} ). We have:

• If 0 ≤ S(y) ≤ 1/(D − 1), i.e., if Q(y) ∈ [
21/(D−1), 1

] = [
Q2(D), 1

]
, then the real

transition day d = evidence necessary correspond to d0, and the prediction evidence
= d0(y) is necessarily right.
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A Decision Model Based on an Optimized Choquet Integral 13

• If 1/(D − 1) ≤ S(y) ≤ (D − 2)/(D − 1), i.e., if Q(y) ∈ [
2(D−2)/(D−1), 2l/(D−1)

] =[
Q1(D), Q2(D) ], then the transition day may correspond to d0.

• If (D − 2)/(D − 1) ≤ S(y) ≤ 1, i.e., if Q(y) ∈ [
0, 2(D−2)/(D−1)

] = [
0, Q1(D)

]
, then

the transition day cannot correspond to d0, and the prediction evidence = d0(y) is
necessarily wrong.

�(μ) appears as the average value of S(y) on the given training dataset. It represents the
expected value of S related for any new prediction, quantify thus the performance of the
aggregation operator prediction.

The function �(μ) being strictly convex, as a sum of strictly convex functions,
and so, having a unique minimum, we use at first a simple gradient descent method to
minimize it. We combine this basic method with the use of a penalization function to
keep candidate solutions strictly inside the limits of the domain defined by the canonical
constraints (5).

4.3 Gradient Descent

The solution is a(2n–1)-dimension vector [μ] = [μ1, . . . , μn , μ1, 1, . . . , μn−1, n ,
. . . , μ1, ..., n

]
, denoted here [m] = [

m1, m2, . . . ., m2n−1
]
, minimizing �. � may be

expressed as:

�(m) = −L ·
∑

k=1, ..., R
log

(
1 +

∑
i=1, ..., 2n−1

ak, i · mi

)
(23)

where ak,i is the ith component of [A]k, and where L = 1/(R.Log(2))
The jth component of the gradient being:

∂�/∂nj(m) = −L ·
∑

k=1, ..., R
ak, j/

(
1 +

∑
i=1, ..., 2n−1

ak, i · mi

)
(24)

First, we calculate, for each statement of inequality k, the 2n-1 values ai,k. Then, a
loop calculates successive iterations mp of the m vector, according to the formula:

mp+1 = mp − εp.grad
(
mp

) +	
(
mp

)
(25)

where grad(mp) is the gradient vector
[
∂�/∂mj

(
mp

)]
, and where 	

(
mp

)
represents a

penalizations related to domain frontiers associated to the constraints μi ≥ 0, μi1, i2 ≥
μi1, μi1, i2, i3 ≥ μi1, i2, . . . , and εp being a step size with an initial value ε0, and possibly
updated at each iteration. The iteration loop stops when

∥∥mp+1 − mp
∥∥ < η, where is η

is a predefined value.
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14 Y. Pollet et al.

4.4 Penalization and Projected Gradient

We consider the frontiers of solution domain with the use of a penalization function
m → 	(m), defined as:

ψ(m) =
∑

i=1, ..., n
θ(μi)+

∑
S⊆N , S=∅, S �=N , {i}∩S=∅ θ

(
μS∪{i} − μS

)
(26)

where θ is continuous and derivable, θ(x) ≈ 0 for x > 0 , θ(x) being large positive for
x < 0. E.g., for n = 2, to express the required constraints μ1 ≥ 0, μ2 ≥ 0, μ1 ≤ μ1, 2,
μ2 ≤ μ1, 2 and μ1, 2 ≤ 1 we shall have:

	
([
μ1, μ2, μ1, 2

]) = θ(μ1)+ θ(μ2)+ θ
(
μ1, 2 − μ1

) + θ
(
μ1, 2 − μ2

) + θ
(
1 − μ1, 2

)

(27)

We use here a simple exterior penalization θ(x) = min(x, 0))2/(2 · γ ), γ being a
parameter in relationship with the expected result accuracy (e.g., η = 0.01).

As convergence process may be long, especially when the optimum solution is on
the domain frontier, i.e. on one of the canonical hyperplanes μi = 0, . . . , μi1, ..., ip =
μil, ..., ip, ip+1, . . . , μi, ..., in = 1, instead of a penalization, we decided to use an adaptation
of projected gradient method, that is simple in our case where domain is a convex
polytope closed by a set of canonical hyperplanes.

At each iteration, we evaluate the quantities:

ωi(μ) = μi, . . . .

ωi1, ..., ip, ip+1(μ) = μi1, ..., ip, ip+1 − μi1, . . . , ip, . . . .

ωi1, ..., in (μ) = 1 − μi1, ..., in, . . .

(28)

a negative ω value meaning that the candidate solution vector mp is out of the domain.
In this case, the actual step εp is adapted in such a way that candidate solution is put just
on the frontier. Then, at the next iteration, gradient grad(mp) is replaced by grad(mp)proj,
orthogonal projection of grad(mp)proj, on the considered hyperplane, ensuring that the
candidate solution will remain inside the domain.

5 Decision Model

Once the training achieved on the available dataset and having got, as a result, the values
of our μ capacity, the decision model will be used in operation. For each new session, i.e.,
for each new multisources n-vector input data X, X(d), d = 1, …, D, the Choquet integral
will deliver a fuzzy dataset defined by the membership function y(d) = Cμ(X(d)),
d = 1, . . . , D, and our decision model will propose as awaited transition day this of
maximum confidence:

dPred (X ) = Arg
(
Sup

{
Cμ(X (d)), d = 1, . . . , D

})
(29)

The user having no idea about the reliability of this result, and the actual quality of
it depending on the statistical distribution of Q on the dataset, the problem is now to
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A Decision Model Based on an Optimized Choquet Integral 15

provide the user with a quantity that will objectively reflect the confidence they can have
in the proposed day.

Figure 8 shows a typical statistical distribution of the Q quantity on a training dataset,
with 1) the global distribution of inputs on Q values, 2) the distribution of successful
predictions and 3) the distribution of wrong predictions (presented here in the case of D
= 11 days).

Using the values Cμ(X(d)) delivered by the Choquet integral, we first calculate a
quality of the prediction, evaluated with regards to the predicted day dpred:

Q∗(y) = 2−S∗(y), with S∗(y) = 1/(D − 1) ·
∑

d=1, ..., D, d �=dPred
ϕ(y(dPred )− y(d))

(30)

Fig. 8. Empirical distribution of Q quantity on a dataset.

We consider then the probability density p(q) of Q, the conditional probability
densities of sucessful and wrong predictions pS(q) and pW(q), and, at last, the global
probabilities of sucessful and wrong predictions PS and PW.

Using Bayes’ theorem, the conditional probability of a sucessuful prediction given
the known present value q of Q* is immediately given by:

P(success |q) = ps(q) · Ps/(ps(q) · Ps + pw(q) · Pw) (31)

That give the probability of the system estimation to be the real still unknow day of
transition. Here, the required densities of probabilities are simply estimated by intervals
of values [qi, qi + 1], after solution delivery at the last step of the algoritm.
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16 Y. Pollet et al.

6 Case Study and Experimental Evaluation

Our goal is to deliver to farmers estimated future states of their culture regarding its
development, maintaining and improving this estimation over time. More specifically,
evaluation of the proposed approach is led in the context of crop monitoring, aiming
at predicting the growth stages of a plant. So, in each stage, we propose to predict the
transition day regarding the next development stage of a plant. As already pointed out,
knowing with a sufficient advance the day of transition from a growth stage to the next
one is a very important issue for farmers, who have to to plan the sequence of actions to
be taken with the right timing (e.g. fertilization, watering, other treatments, …).

6.1 Experimental Setup

As an illustrative example, we base our experiment on three sources of input, which are
the classical empirical calculation, a statistical model of the plant, and an observation
by digital image processing [13].

The case study concerns cultivation of winter wheat in Normandy, which is a region
with a temperate oceanic climate in France. This case is based on data issued from data
recorded over several years mixed with data issued from simulation models.

In the considered example, we are at the beginning of stage 8 (maturity) and we are
trying to predict the end of ripening and therefore the beginning of stage 9 (senescence),
in order to harvest wheat at the best moment. The prototype was developed in Python
version 3.9.12 programming language.

To assess the robustness of our algorithm, we placed as inputs sensor confidence
data, parametrized as follows:

• The day of maximum confidence, drawn pseudo-randomly according to a Gaussian
centred on the day in question and with a sigma standard deviation called bias.

• The spread of the source over adjacent days (accuracy of the source), which is
calculated using the function f which associates x with:

f (x) = e−k.|x−day| (33)

With:

• Day: day this of maximum confidence
• k: accuracy (“spreading coefficient”) of the function. The larger k is, the more

accuracy the source (the spread is less important).

• Noise: variation of the confidence drawn randomly according to a Gaussian of stan-
dard deviation fixed in advance. For each day, the confidence value corresponds to
the starting confidence, to which we add the noise, which is drawn randomly until
we obtain a positive value.

The first three parameters (day of maximum confidence, bias and accuracy) corre-
spond to the configuration of the sources along the x axis (knowing that the triangular
shape of the source, in y, is also fixed by these parameters). Finally, the last parameter
(noise) corresponds to the variation in y of the source (noise). Figure 9 illustrates an
example of data source.
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A Decision Model Based on an Optimized Choquet Integral 17

Fig. 9. Example of data source.

6.2 Simulation Protocol

As a control, before of each simulation set, we first performed the algorithm on zero
bias and non-noisy sources. The spread is previously chosen and fixed for each of the
following simulation set.

For comparison and justification for using the Choquet integral, we also applied our
algorithm to a simple weighted sum (calculation of weights μ1, μ2, μ3), for identical
noisy or non-noisy sources. We performed simulations with noisy inputs 50 times per
fixed bias/accuracy/noise values. For each simulation set, we evaluated performance
with the following descriptive statistics about the predicted day of passage (cf. Table 1).

Table 1. Computed indicators.

Indicator Control data source or
simulations

Description

Type Both Weighted sum or Choquet integral

Day target (without noise) Control data sources Day predicted by the algorithm with
unbiased and noise-free control data
sources

Max value (without noise) Control data sources Maximum confidence value with unbiased
and noise-free control data sources

Avg predicted day Simulations Average predicted day

Std deviation pred day Simulations Average standard deviation of predicted
day

(continued)
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18 Y. Pollet et al.

Table 1. (continued)

Indicator Control data source or
simulations

Description

Min pred day,
Max pred day

Simulations Resp. Minimum and maximum predicted
days by the algorithm during the
simulations

Avg max integral value Simulations Average maximum confidence of
predicted days

Avg evaluation Simulations Average evaluation function value (please
refer to 4.1). We chose an evaluation
function in the form:
�(μ) =
2−�k=1, ..., R log 2(1/2.([A]k·[μ]+1)) (34)
The indicator is between 0 and 1. The
closer this indicator is to 1, the better the
prediction quality. On the contrary, the
closer the indicator is to 0, the worse the
quality

Avg source 1 quality,
Avg source 2 quality,
Avg source 3 quality,
Avg result model quality

Simulations The average quality resp. For each source
and for the computed result model
(Choquet or Weighted sum). Please refer
to part 6

Source 1 ratio,
Source 2 ratio,
Source 3 ratio,
Result model ratio

Simulations Ratio of right predicted day/ number of
simulations resp. For each source and for
the computed result model (Choquet or
Weighted sum). Please refer to part 6

In summary, the simulation protocol is set as follows:

• A precision value is fixed (identical for each source).
• We set a transition day.
• We generate the three data sources.
• We run the program for calculating the coefficients:

– for the Choquet integral.
– for the weighted sum.

• We fix a bias and a noise.
• We perform the following 50 simulations:

– We regenerate the 3 sources of biased and noisy data.
– We run the program for calculating the coefficients:

– for the Choquet Integral.
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A Decision Model Based on an Optimized Choquet Integral 19

– for the weighted sum.

• The descriptive statistics are calculated on the 50 simulations carried out.

6.3 Results

In this section, we present the results obtained under the form of graphs and
summary tables. We performed simulations with noisy inputs 50 times per fixed
bias/accuracy/noise values.

Simulation 1: Transition day: 9, runs: 50, bias: 0.8, noise: 0.1, accuracy: 0.5, deviation
between the confidence maximums of each source: 1 (cf. Figs. 10, 11, and Table 2).AQ4AQ5

Fig. 10. Graphs with control data sources and both Choquet/weighted sources results.

Fig. 11. Example of simulation result (nr 2 out of 50) with biased/noisy data.

Table 2. Experimental results (1st simulation set).

Type 

Control data sources Predicted day (calculated 
on 50 simulations) Avg 

max
integral 
value 

Avg  
evaluation 

Avg quality Ratio of right day 
prediction

Day target 
(without 
noise)

Max value 
(without 
noise)

Avg Std 
dev  Min  Max Source

1
Source

2
Source

3
Result 
model

Source
1

Source
2

Source
3

Result 
model 

Weighted 
sum 9 0.81 9.04 0.69 8 10 0.75 0.69 0.6 0.48 0.45 0.5 0.56 0.22 0.1 0.52

Choquet 9 1.0 8.94 0.65 8 10 0.88 0.83 0.6 0.48 0.45 0.59 0.56 0.22 0.1 0.58
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20 Y. Pollet et al.

Simulation 2: Transition day: 9, runs: 50, bias: 0.8, noise: 0.2, accuracy: 0.5, deviation
between the confidence maximums of each source: 1. Graphs with control data sources
and both Choquet and weighted sources results appear as identical to those of the previous
simulation (cf. Fig. 12 and Table 3).AQ6

Fig. 12. Example of simulation result (nr 8 out of 50) with biased/noisy data.

Table 3. Experimental results (1st simulation set).

Type 

Control data sources Predicted day (calculated 
on 50 simulations) Avg 

max 
integral 
value 

Avg  
evaluation 

Avg quality Ratio of right day 
prediction

Day target 
(without 
noise)

Max value 
(without 
noise)

Avg Std 
dev Min Max Source 

1
Source 

2
Source 

3
Result 
model

Source
1

Source
2

Source
3

Result 
model

Weighted 
sum 9 0.81 8.9 1.14 7 13 0.73 0.67 0.48 0.45 0.44 0.43 0.36 0.16 0.26 0.36

Choquet 9 1.0 8.78 1.17 7 13 0.85 0.79 0.48 0.45 0.44 0.48 0.36 0.16 0.26 0.36

Simulation 3: Transition day: 9, runs: 50, bias: 1.2, noise: 0.1, accuracy: 0.5, devi-
ation between the confidence maximums of each source: 1. Graphs with control data
sources and both Choquet/weighted sources results are identical to those of the previous
simulation (cf. Fig. 13 and Table 4).

Fig. 13. Example of simulation result (nr 16 out of 50) with biased/noisy data.
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Table 4. Experimental results (1st simulation set).

Type 

Control data sources Predicted day (calculated 
on 50 simulations) Avg 

max 
integral 
value 

Avg  
evaluation

Avg quality Ratio of right day  
prediction

Day target 
(without 
noise) 

Max value 
(without 
noise) 

Avg Std dev Min Max Source 
1

Source 
2

Source 
3

Result 
model

Source 
1

Source 
2

Source 
3

Result 
model 

Weighted 
sum 9 0.81 8.92 1.11 6 12 0.74 0.7 0.53 0.47 0.5 0.47 0.38 0.24 0.28 0.38

Choquet 9 1.0 8.82 1.13 6 12 0.91 0.82 0.53 0.47 0.5 0.53 0.38 0.24 0.28 0.38

Simulation 4: Transition day: 9, runs: 50, bias: 0.8, noise: 0.1, accuracy: 2, deviation
between the confidence maximums of each source: 1 (cf. Figs. 14, 15 and Table 5).

Fig. 14. Graphs with control data sources and both Choquet/weighted sources results.

Fig. 15. Example of simulation result (nr 4 out of 50) with biased/noisy data.
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Table 5. Experimental results (1st simulation set).

Type 

Control data sources Predicted day (calculated 
on 50 simulations) Avg 

max 
integral 
value 

Avg  
evaluation

Avg quality Ratio of right day  
prediction

Day target 
(without 
noise)

Max value 
(without 
noise)

Avg Std dev Min Max Source 
1

Source 
2

Source 
3

Result 
model

Source 
1

Source 
2

Source 
3

Result 
model 

Weighted 
sum 9 0.79 9.15 0.73 8 11 0.82 0.83 0.6 0.44 0.46 0.57 0.6 0.3 0.35 0.6

Choquet 9 1.0 9.15 0.73 8 11 0.88 0.9 0.6 0.44 0.46 0.6 0.6 0.3 0.35 0.6

Simulation 5: Transition day: 9, runs: 50, bias: 0.8, noise: 0.1, accuracy: 0.5, deviation
between the confidence maximums of each source: 3 (cf. Figs. 16, 17, Table 6).

Fig. 16. Graphs with control data sources and both Choquet/weighted sources results.

Fig. 17. Example of simulation result (nr 5 out of 50) with biased/noisy data.
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Table 6. Experimental results (1st simulation set).

Type 

Control data sources Predicted day (calculated 
on 50 simulations) Avg 

max 
integral 
value 

Avg  
evaluation 

Avg quality Ratio of right day 
prediction

Day target 
(without 
noise)

Max value 
(without 
noise)

Avg Std dev Min Max Source 
1

Source 
2

Source 
3

Result 
model

Source 
1

Source 
2

Source 
3

Result 
model 

Weighted 
sum 9 0.88 9.22 0.81 8 11 0.88 0.79 0.57 0.32 0.33 0.54 0.48 0.0 0.0 0.48

Choquet 9 1.0 9.14 0.92 6 11 0.89 0.81 0.57 0.32 0.33 0.56 0.48 0.0 0.0 0.48

Simulation 6: Transition day: 6, runs: 50, bias: 0.8, noise: 0.1, accuracy: 0.5, deviation
between the confidence maximums of each source: 3 (cf. Figs. 18, 19, and Table 7).

Fig. 18. Graphs with control data sources and both Choquet/weighted sources results.

Fig. 19. Example of simulation result (nr 16 out of 50) with biased/noisy data.
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Table 7. Experimental results (1st simulation set).

Type 

Control data sources Predicted day (calculated 
on 50 simulations) Avg 

max
integral 
value 

Avg  
evaluation

Avg quality Ratio of right day 
prediction

Day target 
(without 
noise)

Max value 
(without 
noise)

Avg Std dev Min Max Source 
1

Source 
2

Source 
3

Result 
model

Source 
1

Source 
2

Source 
3

Result 
model 

Weighted 
sum 6 0.91 5.86 0.89 4 8 0.91 0.8 0.17 0.4 0.15 0.38 0.0 0.42 0.0 0.42

Choquet 6 1.0 5.86 0.89 4 8 0.93 0.82 0.17 0.4 0.15 0.39 0.0 0.42 0.0 0.42

6.4 Discussion

Experimental results show the mean prediction quality for the Choquet integral is always
higher than this of a classical weighted sum, independently from input values, validating
the choice of the Choquet integral as aggregation operator. The prediction rate seems
low at first, but this is explained by the bias attached to the day of maximum confidence
of each source, which is different at each stage of the simulation.

Finally, the quality of prediction as well as the ratio of right day prediction of our
Choquet-based decision model are systematically superior or equal (the rare times it is
not the case can be weighed against the significance of certain calculations) to those
of the different sources separately considered, that tends to validate the interest of our
approach.

According to the calculations, the noise and then the bias that have the greatest
impact on the quality of prediction and the ratio of right day prediction. However, the
descriptive statistics seem to show a certain robustness of the algorithm, even with noisy
signal. The average predicted day does not seem to vary significantly.

7 Conclusion and Future Work

In this paper, we proposed a Choquet-based decision model associated to an original
parameter identification process, enabling to consider possible non-additivity such as
partial redundancy and the synergies between various input criteria. Using our approach,
we are able to identify the values of the decision model parameters, considering an input
training dataset from which we derivate a set of preference constraints the model has
to conform with. A measure enabling to evaluate a prediction capability, attaching to
any potential solution a degree of order, have been detailed. The results of experiments
are promising, as they provide better right day prediction ratios than those obtained by
both classical weighted sum approach and use of one data source considered separately.
Our approach provides in addition a useful quality of robustness due to the principle on
which the evaluation function used in our identification process relies.

The case study concerns smart farming, and the implemented prototype allows, for
a given culture and several input sources, to assist farmers, predicting growth stages
of a culture. This case study concerns the cultivation of winter wheat in Normandy.
Indeed, for a given culture, several sources of input are considered, mainly the classical
empirical calculation called “growing degree-days”, a statistical model of the plant and
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digital image processing. The experimental results are very encouraging, the predicted
days being stable despite the variation of the noise attached to inputs.

The proposed algorithm is currently extended to integrate more sophisticated entropy
criteria in the evaluation function, future work including an extension of the proposal
supporting the bi-capacities, which emerge as a natural generalization of capacities in
such context and could be interesting to integrate information that may go to against a
phase transition over a given period.

The number of inputs to be considered being potentially high, another extension
of our work concerns, among those, an algebraic approach enabling to a priori reduce
the dimension of the problem, and so reduce the number of Choquet parameters to be
identified, enabling so to consider larger source sets with less calculations.

At last, another extension of this work is this of considering additional inputs in
decision model, taking into account context specificities about a field or a region (e.g.
climate, quality of soil, …). The goal is to dispose of models with larger domains of
validity, i.e., appliable to larger sets of fields and cultures, one issue being the impossi-
bility of a direct integration of such variables as input of the integral due to nonlinear
effects, requiring the study of non-linear and fuzzy extensions of our Choquet-based
decisions model.AQ7
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