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A B S T R A C T   

Metabolomics is now a mature phenotyping tool that provides substantial results within various scientific 
communities. Its application at large-scale, i.e. on large populations and/or samples, has shown its power for 
research activities from plant science to human epidemiology and medicine, but it still needs key methodological 
developments for its routine application. Here, we review the current state of large-scale metabolomics appli
cations, providing recent examples of large cohort studies in human and plant/environment research, and pre
sent the remaining scientific challenges of both fields. Then, we address the key common methodological issues, 
from analytics to data science, to fulfil these objectives and go towards a more comprehensive and interoperable 
large-scale metabolomics, making it a new key actor in the frame of the One-Health future research.   

1. Introduction 

Exploration of metabolites, reflecting a series of biological processes 
modulated by genetic and environmental changes, is of major interest to 
fill the gaps between genotypes and phenotypes. Metabolic profiling was 
first applied in the fields of drug discovery and chemotaxonomy [1–3]. 
Metabolomics, defined as the comprehensive analysis of the small mo
lecular weight compounds present in a biological system, emerged in the 
late 1990s and began to spread in various fields such as plant sciences, 
nutrition, pharmacology, medicine, and more recently environmental 
research [4]. As the metabolome is most closely linked to the phenotype, 

metabolomics is considered the ultimate strategy to decipher responses 
to internal and external stimuli, and thus discover new associated bio
markers. Today, it has increased in maturity and applicability, providing 
a phenotyping tool and systems biology approach [5–9]. 

Large-scale metabolomics, i.e. when applied to large populations 
and/or large numbers of samples (>1000), has shown its ability to 
provide substantial results within diverse scientific communities over 
the whole spectrum of life science (from unicellular to multicellular 
organisms). It successfully allowed defining individual phenotypes and 
their changes, elucidating the effects of factors (e.g. genetic, environ
ment, intervention, senescence/ageing...), discovering biomarkers and 
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validating metabolite patterns, that are characteristic of particular bio
logical states [3,10,11]. A literature search (see section 2) showed that 
large-scale metabolomics studies are on the rise and currently represent 
8% of the 4385 publications involving human cohorts (from PubMed, 
Feb. 2023), and ca. 9% of the 2174 in plant and environmental sciences 
(from WebOfScience, Feb. 2023). 

Due to challenges associated with the analysis of metabolites of great 
chemical diversity, a stepwise strategy from exploration to validation is 
currently used to ensure high-quality data. First, metabolite profiling is 
commonly performed on a “limited” number (<1000) of individuals/ 
samples and seeks to detect as many metabolites as possible in those 
samples. Then, some potential biomarkers are selected for validation in 
larger populations (from independent/multi-centre cohorts) for later use 
in routine practices, often using quantitative approaches. Generally, 
metabolite profiling is based on untargeted and/or semi-targeted ap
proaches, applied to hundreds to thousands of samples and implies 
various methods specific to each laboratory, analytical platform and/or 
matrix. Alternatively, large-scale targeted approaches often relying on 
commercial solutions/kits (e.g., Metabolon, Inc. (Morrisville, NC, USA), 
Biocrates® (Biocrates Life Sciences AG, Innsbruck, Austria)) can be used 
up to hundreds of thousands of individuals, which offer standardised 
time-effective procedures, yet on a restricted set of known metabolites. 

However, even though metabolomics studies are constantly 
increasing and improving in plant and environmental sciences, as well as 
in system epidemiology/medicine, large-scale applications are still 
limited due to technical bottlenecks. Despite specific dedicated and 
standardised operating protocols [12,13] as well as recommendations 
for minimum reporting standards for chemical analysis [14], the limited 
interoperability and the lack of replicability between experiments and 
facilities prevent large intercomparable studies [15,16]. More precisely, 
the main requirements for advancing the field are comprehensive 
metabolite coverage and confident metabolite identification, reproduc
ible, interoperable and robust data production workflows, throughput 
matching demand, accessible methods to users in terms of costs and 
results (user-friendly data visualisation and interpretation), and FAIR 
(Findable-Accessible-Interoperable-Reusable) data. 

Beyond these common methodological issues and the mutual tech
nical benefit of leveraging these bottlenecks, there is a crucial scientific 
interest in developing a more interdisciplinary analysis of the current 
biological challenges within transversal projects in the context of the 
One-Health concept. Indeed, this concept acknowledges that human 

health is interconnected with the health of ecosystems, including mi
crobes and plants, in which they coexist. In this context, metabolomics 
has the potential of being a key actor in improving and preserving 
human health, through optimising crop quality, identifying plant- 
derived bioactive compounds, and increasing the efficacy of preven
tion and treatments via more personalised approaches. 

Here, we review the current state of large-scale metabolomics ap
plications, providing recent examples of large cohort studies in human 
and plant research, and present the remaining scientific challenges of 
both fields. Then, we address the key common methodological issues, 
from analytics to data science, to fulfil these objectives and achieve more 
comprehensive and interoperable large-scale metabolomics. 

2. Large-scale metabolomics: definition and alternative 
approaches 

Recent advances in analytical techniques, particularly in mass 
spectrometry (MS) and nuclear magnetic resonance (NMR), allowed 
increasing data quality in metabolomics in terms of sensitivity and 
robustness, opening the door to its large-scale application. In literature, 
the term ‘large-scale’ is still ambiguous as it is used to describe two 
different concepts, either related to the population size, or sometimes to 
the metabolome coverage (i.e., number of metabolites detected). How
ever, the present review focuses on its application to large cohorts and/ 
or series of samples (>1000). 

Because of challenges associated with analysing metabolites of a 
great chemical diversity present in wide concentration ranges, different 
alternative complementary techniques/approaches do coexist in cohort 
studies, and are referred to under different terms. As an example, lip
idomics can be described as a subsection of metabolomics dedicated to 
lipid analysis, even if there is a continuum of polarity between lipophilic 
and hydrophilic metabolites. Some of their synonyms, such as ‘meta
bolic/lipid profiles’, refer either to biochemical measurements (e.g., 
glucose, HDL-cholesterol, total triglycerides …) or to the overall 
metabolomics/lipidomics scientific field itself. 

Consequently, a literature search aiming at evaluating the input of 
large-scale metabolomics/lipidomics in the various scientific fields was 
designed using a request combining words and expressions for three 
conceptual groups (“Metabolomics/lipidomics”, “cohort” and “human/ 
plant and environmental sciences”; see Supplemental Material 1). 

Fig. 1. A. Evolution of publication number, including 
metabolomics analyses of human cohorts (N = 4385), 
of which are studies involving over 1000 individuals 
(N = 335). B. Distribution of metabolomics ap
proaches among studies involving over 1000 in
dividuals. C. Distribution of analytical platforms used 
in metabolomics/lipidomics studies involving over 
1000 individuals. NA indicates that information was 
not available in the paper. ‘Combined’ approach re
fers to studies that use more than one approach, for 
example targeted and untargeted methods. D. Num
ber of detected metabolites in terms of population 
size analysed by targeted either metabolomics, lip
idomics or both (N = 157).   
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2.1. Human research 

Our results provided a useful snapshot of the evolving trend for large- 
scale metabolomics (Fig. 1A) and showed that around 8% involved over 
1000 subjects within human studies, revealing that large-scale metab
olomics has been emerging and constantly raising since 2018. These 
publications involved either one exploration/discovery study (74%, N 
= 335) or alternatively, a stepwise strategy from exploration to repli
cation/validation, in order to discover biomarkers and validate metab
olite patterns in various populations. Very few of them (8%) are based 
on longitudinal approaches with the follow-up of individuals, in the 
objective of characterising the changes of their metabolic phenotypes 
over time. 

These publications involved a wide diversity of metabolomic ap
proaches and analytical methods (Fig. 1B and C), often insufficiently or 
not adequately described from a technical point of view, reflecting the 
unsatisfactory standardisation level of the field. However, high coverage 
MS- and/or NMR-based analytical methods are generally used (in 25% 
of the studies) as a discovery and hypothesis-generating approach, 
involving the differential analysis of phenotypes in a semi-quantitative 
way, using an untargeted (global) approach (implying the analysis of 
all the detectable metabolites in a sample, including chemical un
knowns). Alternatively, targeted hypothesis-driven strategies (focused 
on the analytical detection of predefined metabolites) are used to obtain 
normalised or quantitative data (Fig. 1B). Due to the limitations of not 
getting absolute quantification of metabolites, recent developments try 
to mix various analytical approaches, tending to merge targeted and 
untargeted strategies [17] with the objective of obtaining both high 
metabolite coverage, robustness and lower costs, for large-scale appli
cations. These approaches (used in 18% of the identified publications) 
are generally based on the (semi)quantification of multiple known 
compounds from a targeted acquisition, either using low-resolution 
mass spectrometry or data-dependent methods performed on 
high-resolution instruments [18]. Alternatively, it can involve targeting 
multiple metabolites from an untargeted high-resolution data acquisi
tion (identified hereafter as semi-targeted approach, i.e. untargeted data 
acquisition combined with targeted data treatment). 

All these methods generally enabled detecting less than 250 metab
olites in human biofluids, except for lipidomics approaches where more 
than 500 lipid species can be profiled in large-populations (Fig. 1D). 
Within the Consortium of Metabolomics Studies (COMETS) that gathers 

metabolomics data from 72 international cohorts [19], it was observed 
that up to 88% of these cohort studies relied on four major analytical 
platforms providing standardised metabolomics service, namely 
Metabolon, Inc. (Morrisville, NC, USA), Biocrates® (Biocrates Life Sci
ences AG, Innsbruck, Austria), Broad Institute (Massachusetts Institute 
of Technology & Harvard University, USA), and Nightingale Health Ltd 
(Helsinki, Finland). Nearly 600 metabolites were identified as 
‘frequent’, being measured in at least 15 cohorts. Most of these metab
olites (91%) were measured for 10,000 to 50,000 participants, while 
only 7% (43 metabolites) were determined for more than 50,000 par
ticipants, meaning that metabolome coverage is still restricted to a 
limited number of metabolites, when applied in large populations. 

2.2. Plant and environment research 

The literature search showed that, although the number of studies is 
small, the trend has been increasing in recent years (Fig. 2A, Supple
mental Material 1). Our results revealed that in this field, the term 
“large-scale” is associated not only with the concepts already mentioned 
but also with the concepts “large-scale ecosystem”, “large-scale chronic 
pollution”, “large-scale fermentation”, “large-scale production”, “large- 
scale bioreactors”, “large-scale distribution”, “large-scale multisite”, and 
“large-scale climate-associated diversity gradients”. The term “cohorts” 
among the studies was associated with human studies. Of the 226 
selected articles (see Supplemental Material 1), 80% of the studies had 
sampling lower than 50 (considering biological replicates). This number 
is remarkably low, as compared to human cohorts, which draws atten
tion to the lack of large-scale studies in the plant field, thus positioning 
plant cohort metabolomics as a promising strategy in the future. The 
variability and difficulty of obtaining a large plant sample remain such 
that N = 20 has been considered by many authors in our literature 
search as large-scale. Our research highlighted that it is essential to 
define a standard minimum number of samples for plant science studies 
to qualify as large-scale, and the importance of making the number of 
samples for the metabolomics study explicit. Besides, the concept of a 
plant sample needs to be better defined, as unlike the human domain, 
some large plant cohort studies use pools of several specimens to 
constitute a single sample. The remarkably low number of samples in 
plant cohort studies can also be explained by the fact that two plant 
samples can represent a very large metabolomic diversity of organs, 
species, environments considered (compared to human samples), and a 

Fig. 2. A. Evolution of publication number, including large-scale plant science metabolomics analyses (N = 226), of which are studies involving more than 1000 
biological samples (N = 8). B. Distribution of studies involving metabolomic approaches on more than 1000 biological samples (N = 45). C. Distribution of analytical 
platforms used in metabolomics/lipidomics studies involving more than 1000 biological samples). 

G. Hajjar et al.                                                                                                                                                                                                                                  



Trends in Analytical Chemistry 167 (2023) 117225

4

smaller number would be sufficient to encapsulate the metabolic shifts 
of interest. Some studies in this research had a sampling range between 
100 and 1000 (considering biological replicates), representing 51% after 
the second screening. However, the number of studies that are effec
tively configured as large-scale, using a sampling greater than 1000 
represented only 18% of the studies (N = 8). 

As for human studies, we notice a variety of metabolomics strategies, 
but the untargeted approach prevails (76%) (Fig. 2B). The prevalence of 
untargeted approaches in plant science is directly related to the main 
objectives of these studies, namely molecular elucidation and the po
tential discovery of novel natural compounds for various species. Among 
the analytical methods used for large-scale plant studies, HRMS appears 
to be the most widely applied, regardless of the type of chromatography, 
as expected, to cover the vast metabolome of plants, given its broad 
chemical diversity (Fig. 2C). 

In summary, the diversity of analytical approaches and platforms 
used for large cohort analysis, allowed large-scale metabolomics making 
a rapid ascent in the analysis of human, microbial and plant metabo
lisms. We will highlight some recent publications in both fields that 
illustrate its power in metabolic phenotype exploration, classification 
and prediction. 

3. Large-scale metabolomics: from plant science to human 
epidemiology and medicine 

3.1. Meta-metabolomics of plants and environments 

In the context of global change, there is an increasing need to eval
uate and predict the adaptation capacity of natural ecosystems facing 
these stresses in order to ensure their sustainability and associated ser
vices. To this end, the value of metabolomics is even more remarkable as 
the meta-metabolome (i.e. metabolome of multiple species) integrates 
information from the genome/transcriptome/proteome and the envi
ronmental influences, making ecosystem metabolomics a strategy of 
choice to better understand the impacts of climate change and chemical 
stress, for instance. 

3.1.1. Predictive metabolomics for plant sciences 
Metabolomics is experiencing an unprecedented boom in plant 

biology research, enabling the discovery of molecular mechanisms 
involved in areas as varied as development, stress response or chemical 
ecology [6,7,20]. However, the methods for deciphering these in
teractions are relatively scarce, and the lack of predictive models of 

intricate systems is a pressing issue. This is where the metabolic analysis 
of large plant cohorts could help remove methodological bottlenecks, 
particularly through predictive metabolomics. Predictive metabolomics 
combines artificial intelligence (Fig. 3) (e.g., machine learning) and 
metabolomics to enable the top-down modelling (from phenotype to 
mechanism) of phenotype traits (e.g., yield, quality or the response ef
ficiency to environmental factors) that are predicted from metabolic 
data [21]. For the moment, such an approach is mainly limited to 
intraspecific diversity panels, like for single genotype tomato metab
olome able to predict up to 87% of biotic resistance to various pathogens 
[22]. Nevertheless, predictive metabolomics also seems valid for species 
panels, as illustrated with eight fruit species where biomass composition 
is evaluated for the prediction of relative growth rate [23]. More strik
ingly, predictive metabolomics for 24 extremophiles harvested across 
multiple natural microenvironments in the Atacama desert showed that 
the meta-metabolome accurately predicts the plant environment, with 
plants harbouring a generic metabolic toolbox associated with extreme 
habitat resilience, notably redox and hormonal metabolites potentially 
involved in trade-offs [7]. Another elegant study of 416 vascular plants 
corroborated that phytochemical diversity revealed by metabolomics 
can predict the alpine habitat [23]. These results confirm that the 
metabolome contains valuable information that can be channelled into 
the phenotype, and that predictive metabolomics of large cohorts under 
environmental conditions is appropriate for discovering easily measur
able traits (e.g., resilience, plant environment). Furthermore, 
multi-species strategies would enable approaching the metabolic 
complexity of ecosystems. This appears particularly relevant for hol
obionts and microbial communities (Fig. 3). 

3.1.2. Eco-metabolomics to explore the metabolome of microbial 
communities 

(Meta)-metabolomics of microbial communities is a growing field of 
research since it can provide a comprehensive picture of chemical in
teractions into microbial communities and with their host (e.g., plant- 
epiphyte interaction) but also their functioning (i.e., microbial activity 
as an ecosystem phenotypic trait) and their response to the surrounding 
environment [24,25]. Despite its relevance, such an approach remains 
scarce in microbial ecology, chemical ecology and ecotoxicology. For 
instance, most of the knowledge about microbial, chemical interaction 
comes from metabolomic investigations of co-culture of only two (or a 
few) species that are not representative of actual interactions in complex 
natural communities [25]. The recent developments in microfluidics 
and robotics pave the way for the simultaneous implementation of 

Fig. 3. Current large-scale metabolomic approaches aiming at analysing metabolic phenotypes and their complex interactions with intrinsic and extrinsic factors. 
They require statistical, artificial intelligence tools to enable top-down modelling in order to provide either novel biomarkers of status or treatment responses, or 
knowledge about mechanisms. 
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thousands of co-culture combinations with increasing complexity [26]. 
Overall, as recently reviewed by Bauermeister, et al. [27], there are 
tremendous methodological/technical improvements (e.g., molecular 
networking or machine learning-based annotation) in the field of 
MS-based metabolomics applied to microbiomes. At the computational 
level, emerging pipelines allowing the combination of 
meta-metabolomics and metagenomics are promising to enhance the 
prediction of microbial metabolic functions and microbial interaction (i. 
e., Genome-scale metabolic models, GEMs) [28,29]. Nevertheless, there 
are still significant knowledge gaps about the spatiotemporal dynamics 
of microbial metabolomes, limiting the prediction of ecosystem func
tions (e.g., biogeochemical cycles) across systems. To tackle this issue, 
Danczak, et al. [24] have recently proposed a theoretical paradigm 
named “meta-metabolome ecology” consisting of the application of 
ecological metrics to metabolome datasets funded on the hypothesis that 
metabolites assemblages are determined by stochastic or deterministic 
processes (as microbial taxa assemblage). Thus, identifying when, where 
and why metabolomes are directed by such processes would support a 
deeper understanding of the environmental factors (e.g., chemical stress, 
temperature, pH) that shape (environmental) meta-metabolomes. The 
parallel implementation of in situ predictive metabolomics on microbial 
communities as described above in plants [7] also appears particularly 
relevant for such an end. This would further allow the discovery of 
metabolites as biomarkers able to detect and predict impaired ecosystem 
functions supported by microbial communities. 

Despite these promising developments, Quinn, et al. [30] have 
recently highlighted that significant gaps still exist between analytical 
and microbial sciences to fulfil the above-mentioned objectives. In 
particular, microbial metabolomes’ diversity and functional roles have 
only begun to be investigated since it requires both analytical capacity 
and microbiomes’ scientific background. Thus, better communication 
between these two worlds would uncover the “dark matter” within 
microbiomes. One critical challenge in the following years will be our 
ability to unravel, in complex microbial communities (e.g., biofilm) or 
holobionts, what is the contribution/role of each component but also to 
distinguish the metabolites contributing to the interaction from those 
involved in the functions. 

3.2. Human epidemiology and medicine 

With the advancement of analytical technologies and data science, 
but also a reduction in costs, the generation of metabolomics data from 
epidemiological studies has significantly increased in recent years. 
Indeed, since the technical possibility to analyze several hundred to 
thousand samples in the early 2010s, different outlying large-scale 
studies or consortia were published, involving prospective cohorts and 
case/control design [31]. The National Institute of Health (NIH) also 
established the Consortium of Metabolomics Studies (COMETS) to 
gather international cohorts with blood metabolomics data on samples 
collected between 1985 and 2017 [19] in order to advance the knowl
edge of metabolomes and to improve the understanding of disease 
aetiology, diagnosis and prognosis. At the beginning of 2022, COMETS 
already comprised 72 internationally distributed cohorts which together 
included measurements of 4647 metabolites in up to 134,742 partici
pants (with a population size between 89 and 10,456 per dataset). More 
recently, metabolomics was used to provide a comprehensive readout of 
human physiology in the context of non-communicable disease (NCD) 
multimorbidity [32]. Indeed, this study was the first to perform a 
comprehensive metabolic profiling of plasma samples from a follow-up 
of 219,415 person.years, and to integrate it with deep phenotypic 
profiling, resulting in the identification of 420 metabolites shared be
tween at least two NCDs. It also highlighted that the analysis of blood 
metabolome provides an integrated view of interactions between 
intrinsic (genes, sex …) and extrinsic (environment, nutrition, medical 
treatments, microbiota …) factors. In particular, with the objective of 
studying the human system as a holobiont, metabolomics was used to 
decipher the complex relationships between gut microbiota, diet and 
host metabolism [33,34] (Fig. 3). From fasting and postprandial serum 
metabolomics, it has been shown that large-scale phenotyping could 
potentially stratify the gut microbiome into different health status in 
subjects without clinically identified diseases. In terms of precision and 
personalised prevention, metabolomics was also applied at large-scale to 
stratify populations by the identification of metabotypes, which consists 
in grouping individuals based on the similarity of their metabolic phe
notypes [35]. Finally, in medicine, metabolomics has shown its power to 

Fig. 4. Challenges towards large-scale metabolomics for application in plant and environmental sciences, and human epidemiology and medicine. 1: Represents the 
current state of large-scale metabolomics; 2: The required methodology for routine applications of large-scale metabolomics. 
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provide clinicians with novel biomarkers for disease states and evaluate 
individual treatment responses [36]. However, although only targeted 
quantitative metabolomics methods have been translated into clinical 
practices until now, untargeted approaches open the door to a paradigm 
shift in the perception of diseases, by giving more complex signatures of 
metabolites than single-molecule disease biomarkers [31,36]. 

Finally, the future role of metabolomics in population-wide person
alised medicine will require large, metabolomics-based screening pro
grams to obtain comprehensive information across ethnicities, different 
environmental conditions and health status [37]. It will involve moving 
towards N = 1 clinical trials and having access to robust and 
high-throughput metabolomics methods requiring small sample vol
umes, for reliable assessment from repeated measurements of metabolic 
status. All these objectives will also require a more interoperable 
metabolomics, gathering adequate high-throughput and robust analyt
ical methods that provide comprehensive and accessible phenotypic 
data. Besides, data science and semantics (ontologies, controlled vo
cabularies), will be essential to support the precise classification of pa
tients for diagnosis, care management, and translational research [38] 
(Fig. 4). 

4. Analytical tools and methods for large-scale metabolomics 

4.1. Towards high-throughput analyses 

Metabolomics approaches are constrained by the limits of the used 
analytical platforms and methods, on which depends the comprehen
siveness of the metabolite landscape, especially in the case of large-scale 
studies. In the context of the development of high-throughput metab
olomics, the need for speed without sacrificing quality is the most crit
ical issue [5]. Metabolite identification is still a major bottleneck, and 
the validity of proposed identities is therefore, of deep concern. 
Nevertheless, discussing this aspect is out of the scope of the present 
review article. The interested reader can refer to the recent review of 
Theodoridis et al. [39]. 

4.1.1. High-throughput sample preparation 
Firstly, sample preparation (e.g. extraction, filtration) has always 

been a time-consuming struggle and a crucial bottleneck in metab
olomics. In terms of accessing high-throughput and standardisation, two 
approaches should be favoured: protocol simplification and automation. 
Protocol simplification is complex to implement, as it inevitably leads to 
a loss of metabolite diversity. For instance, metabolites such as oxidised 
lipid derivatives (i.e., oxysterols, oxylipins) cannot be detected after 
simple protein precipitation. Similarly, plant-specific signalling metab
olites (e.g., redox compounds, phytohormones, metabolic intermediates) 
require sophisticated and stepwise extraction methods, which are 
incompatible with the high-throughput of cohort studies. Thus, protocol 
simplification entails compromising the coverage of the targeted 
metabolome. As such, protein precipitation by organic solvents (e.g., 
acetonitrile, methanol, ethanol) is the most common approach [40]. 
Depending on the protocol, a standardisation method easy to implement 
should be provided to be compatible with large sample numbers. This 
step is well established for blood samples, but more complicated for 
urine or other tissues (e.g., plants). 

Besides, automation of sample preparation can be laborious and 
time-consuming for its implementation. Despite these difficulties, fully 
automated methods, including e.g., weighing, extraction, filtration, 
quality control preparation, are today available on several robots [22, 
41]. However, partially automated protocols involving a simple dilution 
step [18] are the easiest to set up. Plant metabolomics has made 
tremendous progress in sample preparation, now allowing the stand
ardised high-throughput extraction of about 400 samples in 3 h from a 
minimum of material (about 10 mg dry weight) [7,22]. The success of 
this implementation was achieved by designing separate robots to 
perform specific tasks, rather than highly versatile systems that stack 

multiple modules. The use of greener extraction solvents (e.g. ethanol) 
has also contributed to the success of robotised preparation of plant 
extracts. More prospectively, and owing to the advent of state-of-the-art 
facilities for automated plant phenotyping, there is a solid appetite for 
integrating rapid, sensitive and automated metabolomics to enable deep 
phenotyping [42]. In human metabolomics, blood sample preparation 
protocols based on single-step solvent-based protein precipitations have 
been easily automated for the analysis of polar metabolites, but this task 
is more complex in lipidomics, where most efficient biphasic extractions 
must be implemented [43,44]. 

Further developments in robotisation of sample preparation are still 
mandatory to scale-up metabolomics. These methodological advances 
will also involve miniaturization, in response to the demand for small 
sample volumes for longitudinal and less-invasive studies. Moreover, it 
will allow reducing reagents and consumables in the context of eco- 
responsibility. Besides, microsampling strategies, and in particular 
dried blot spots, are increasingly used within large cohort studies as they 
facilitate an easy and ultra-fast collection of blood sample, thus 
becoming an effective tool for epidemiological and medical research 
[45–47]. 

4.1.2. Fast data acquisition methods 
In mass spectrometry-based methods, alternative strategies for high- 

throughput data production, and especially the need for liquid chro
matographic separation prior to tandem MS analysis [48–50], are 
coexisting (Fig. 1C). Coupling LC to HRMS has become the most 
powerful MS-based approach for the analysis and profiling of both polar 
and non-polar metabolites and lipids. The most widely used 
high-resolution mass spectrometers for metabolomics analysis by 
LC-HRMS are Orbitrap and TOF-based systems having distinct but often 
complementary features [51]. LC-HRMS workflows often provide the 
broadest metabolome coverage due to their ability to resolve isobaric 
potentially and isomeric compounds, dereplicate complex biological 
extracts and their associated minimised ion suppression effects. How
ever, the time associated with traditional LC-MS-based metabolomics 
can preclude its use for large-scale studies. Concurrently, direct intro
duction mass spectrometry (DIMS in low or high resolution) approaches 
with typical analysis time <1–3 min per sample have been proposed for 
high-throughput metabolomics [52], thus allowing the analysis of 
hundreds of samples per day [53] but at the expense of metabolome 
coverage. DIMS suffers from the inability to distinguish isomers or 
in-source fragments from true precursor ions, and is also directly 
impacted by (often strong) ion suppression effects. A recent comparative 
study showed that DIMS and LC-HRMS workflows highlighted shared 
discriminatory signals, with LC-HRMS providing (as expected) more 
comprehensive information in terms of metabolite identification [53]. 
This led the authors to recommend DIMS as a fast screening method for 
large sample batches and LC-HRMS for a more comprehensive analysis 
of selected samples. The introduction of ion mobility (IM) into metab
olomics and lipidomics workflows, especially those involving DIMS, can 
allow the separation of some isobaric and isomeric compounds [54]. 
Fast LC-HRMS methods (<10–15 min analytical time) have been 
recently described and can represent platforms for high-throughput and 
high-confidence metabolome coverage [55]. This can be achieved by 
using shorter UHPLC columns (see below) or by increasing chromato
graphic flow rate, column temperature or by modifying the LC gradient 
while still using 2.1 mm × 150 mm UHPLC columns [56,57]. Interest
ingly, the National Phenome Centre’s established platform combines 
both reversed phase chromatography and hydrophilic interaction liquid 
chromatography columns (both 2.1 mm × 150 mm) coupled to HRMS 
for the robust profiling (using standardised protocols and workflows, 
that have been made open) of more than 700 annotated biologically 
relevant metabolites in several hundreds of human biofluid samples 
[57]. Also, the recent development in nanoscale LC-ESI opens inter
esting perspectives regarding the need of miniaturization for improved 
detection sensitivity and enhancement of metabolome coverage [53], 
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but often at the expense of method robustness. Fitz et al. recently 
comparatively evaluated analytical (2.1 mm column i.d.), micro- (1.0 
mm), and nano-flow (0.3 mm) LC systems coupled to HRMS (while 
maintaining injection volume, mobile and stationary phases, gradient 
and detection parameters constant) for their ability to robustly and 
sensitively detect more than 50 endogenous metabolites and xenobiotics 
in human plasma [58]. The authors concluded that micro-LC provided 
the best compromise between signal intensity, retention time stability 
and metabolome coverage [58]. By reducing both diameter and length 
of the UHPLC column to 1.0 × 50 mm provided an analytical time of 2.5 
min/sample along with a 75% reduction in solvent consumption and 
improved batch reproducibility [59]. Such methodology offers the 
possibility of broad metabolic phenotyping for large sample sets at high 
throughput, as exemplified by the analysis of over 700 rat urine samples 
[59]. Finally, LC-IM-HRMS(/MS) workflows can present an unprece
dented metabolome coverage. For instance, the recently introduced 
Parallel Accumulation Serial Fragmentation (PASEF, available on tim
sTOF Pro instruments), that synchronises Trapped Ion Mobility Spec
trometry (TIMS) with MS/MS precursor selection and fragmentation, 
enabled the annotation of up to 1100 unique lipids in 1 μL of human 
plasma using two 30-min nanoLC-IM-HRMS/MS runs (one in positive 
and one in negative ion mode) [60]. 

More informative and exhaustive data acquisition protocols [61,62] 
are also of great interest to the field. Regarding MS/MS investigations, 
conventional data-dependent acquisition (DDA) fragmentation methods 
are still the most widely used in metabolomics and lipidomics work
flows. In this mode, precursor ions are selected using a small isolation 
window (typically 1 Da wide), which leads to high-quality and 
high-purity MS/MS spectra. However, selecting precursor ions is a 
(semi)stochastic event favouring the collection of the most abundant 
ions and sometimes of biologically irrelevant ones [63]. Therefore, 
specific rules have to be applied for the successful implementation of 
efficient DDA workflows, for instance with an iterative DDA script 
allowing to automatically remove pre-selected precursor and back
ground ions of MS2 acquisition by using repeated injections [64]. Be
sides, data-independent acquisition (DIA) workflows, including the 
Sequential Window Acquisition of all Theoretical fragment-ion spectra 
(SWATH) approach, are being increasingly used in metabolomics by 
enabling metabolite annotation and quantification through the acqui
sition of MS/MS spectra for all analytes in a single run [65–67]. A 
complementary approach to go towards high-throughput metabolomics 
analysis is the implementation of retrospective quantification from DDA 
or DIA data by using standardised internal standards (IS) broad mixture 
associated to bioinformatics tools able to identify the most relevant IS 
for each metabolite, as recently proposed in the chemical exposomics 
field [68]. 

In the case of NMR metabolomics, high-throughput data acquisition 
and processing workflows are well described in the literature [69]. 
Standard operating procedures rely on the acquisition of 1D NMR ex
periments with solvent signal presaturation, which are routinely applied 
on a broad variety of matrices (biofluids, extracts, or even tissues with 
HR-MAS spectroscopy) [70]. In recent years, standardised NMR hard
ware has been made commercially available, associated with databases 
and standard operating procedures (SOPs), so that large cohorts can be 
analysed on different sites equipped with the same analytical platform. 
Typical 1D NMR experiments include the nuclear Overhauser effect 
(NOESY) pulse sequence, which allows detecting signals from both 
metabolites and macromolecules, but also more selective experiments 
such as the CPMG (Carr-Purcell-Meiboom-Gill) experiments that filters 
out signals from macromolecules, or diffusion-edited pulse sequences 
that allow the selective observation of macromolecular signals. On 
typical NMR metabolomics hardware (600 MHz magnetic field), such 
experiments take between 5 and 30 min per sample, which confers them 
a high-throughput character. The latter is further ensured by 
well-defined SOPs as well as the use of refrigerated sample changers, 
which have been developed to facilitate the automated acquisition of 

large sample cohorts. These conditions typically make it possible to 
analyze up to 100 samples per day, making NMR well suited to the 
analysis of large sample cohorts (>1000). In addition to these routine 
detection methods, a great asset of NMR spectroscopy in metabolomics 
is its ability to provide a diversity of two-dimensional (2D) spectroscopy 
experiments that can be used to better spread overlapped peaks along an 
orthogonal dimension, thus offering the improved ability to discriminate 
between sample groups and identify potential biomarkers. While such 
2D methods are relatively time-consuming, several fast acquisition ap
proaches have been developed to make 2D NMR compatible with 
high-throughput metabolomics, resulting in data acquisition durations 
that do not exceed a few tens of minutes per sample [71]. 

4.2. Handling complex data 

4.2.1. Fast data processing 
With technological advances in the analytical platforms generating a 

huge amount of complex data, the development of data analytics is 
actually expanding with a great diversity of algorithms and tools with no 
real consensus. 

On the MS side, there is a great diversity of processing algorithms 
and tools [72], some of which can be cited as the main drivers (e.g. R: 
XCMS, MS-Dial, mzMine, MetaboAnalyst...). Most of these tools follow a 
similar workflow from ion chromatogram building, peak detection, 
retention time alignment, to the correspondence of peaks across sam
ples. Even if some of them have been wrapped in cloud environments, 
none has reached a complete consensus, and more importantly, none is 
yet ready to address all the high-throughput metabolomics challenges. 
Most of these tools can theoretically process hundreds of samples at the 
same time, but in practice, the end users face technical limitations of 
their computers with these locally installed software (e.g. amount of 
RAM, hard disk space). Even cloud based solutions have preset pro
cessing limitations usually made to limit huge calculation demand on 
shared servers (e.g uploads limited to 200 spectra files, disk quotas). 
Some alternative approaches have been recently developed, such as 
asari [73], which has delivered a new generation of computational 
performance, together with interesting linked and transparent data 
structures in all processing steps, contributing significantly to more 
reproducible data. In the same way, a new deep-learning based tool (i.e. 
NeatMS) has been recently proposed to handle peak alignment in large 
scale metabolomics [74]. Despite the increasing rate of MS technological 
development associated to ion characterisation (e.g., ion mobility, new 
MS/MS fragmentation techniques), most of the features extracted from 
MS metabolomics studies are still defined by a unique pair of m/z value 
and retention time. Only a few tools like SLAW [75] are ready to handle 
high-throughput analysis with MS/MS dimension, and this fact can be 
explained by the computational complexity of concurrently handling a 
high number of samples and high MS dimensionality (MS/MS or IM). 

In the case of NMR metabolomics, as described in the literature [69], 
untargeted metabolomics data processing can be achieved via several 
strategies. In the first one, NMR spectra are transformed into data 
matrices through bucketing, that is used to reduce the data dimension
ality. Spectra are segmented into small buckets (fixed or variable size), 
and each bucket is integrated. The second approach is to work with 
full-resolution spectra, requiring specific algorithms for peak alignment. 
Several algorithms have been developed to achieve automated spectra 
processing and bucketing, so that cohort size is not an issue for the 
routine processing of NMR metabolomics data. In the case of very large 
cohorts, additional steps can be added in the processing workflow such 
as chemical shift alignment, removal of unwanted signals, normalisation 
and cohort or batch correction [76]. In a third approach, concentrations 
of all quantifiable metabolites in a biological sample are calculated using 
deconvolution tools. Several tools are available that support both 
semi-automated NMR data processing as well as automated or 
semi-automated small molecule identification and quantification in 
biofluids [77]. For instance, Buergel, et al. used a commercial tool to 
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quantify 168 markers in 117,981 NMR spectra and predict individual 
multi-disease outcomes [78]. In addition, several freely available aca
demic programs can perform fully automated data processing and 
spectral deconvolution of 1D 1H NMR spectra but are limited to ana
lysing a specific biofluid, and the quantification is limited to 50–60 
compounds. Note that most available tools are only available to deal 
with 1D spectra. However, recent applications of machine-learning 
methods, in particular of deep neural networks, have shown promising 
results in the ability to deconvolute both complex 1D and 2D NMR 
spectra [79]. Nevertheless, the analysis of 2D datasets recorded on large 
sample cohorts remains a challenge. 

4.2.2. High-throughput data annotation 
On the MS side, efficient tools are continuously released [62,72,80, 

81] in order to address high-confidence metabolite annotation, but 
despite their ability to correctly attribute compounds names to detected 
feature at least at level 2 [82,83] none of these tools is ready for 
high-throughput metabolite identification though. The main strategy for 
large-scale metabolomics in terms of MS-based compound identification 
is still based on targeted approaches [62]. From a global point of view, 
the annotation challenge is even more complex in large studies, where 
high-throughput analytical methods are generally used, resulting in a 
huge number of complex data files. Moreover, the associated advanced 
data protocols (e.g., DDA, DIA …) are still limited to relatively small 
sample sequences and require specific dedicated processing tools [62, 
65]. In untargeted metabolomics, the issue of high-throughput data 
annotation remains one of the main bottlenecks [62,83], limiting its 
impact. Despite tremendous analytical and software evolution over the 
last years, the annotation step still leaves a large amount of unidentified 
or ambiguously identified compounds per dataset (>70% depending on 
matrices), limiting biological interpretability [72,84]. In both ap
proaches, the huge number of data files and the requested amount of 
computational memory to query databases and resources are a limita
tion to the use of some software or comparison tools, initially designed 
for small datasets (e.g., tools without batch query [72]). The actual 
growing number of bioinformatics tools and pipelines dedicated to 
annotation is in fact double-edged. Indeed, even if they give access to 
powerful MS data interpretation, they are based on algorithms with 
increasing complexity, and the lack of proper training can lead to a 
higher number of misinterpretations of the proposed annotations [62]. 

On the NMR side, software tools with specific spectral databases are 
also arising to facilitate the identification of metabolites in mixtures of 
1D NMR spectra, but some of these metabolites are misidentified 
because of large overlapping signals, while a large number of com
pounds are still unidentified [77]. Two-dimensional spectra are often 
required to obtain more structural information and assign new metab
olites. A promising tool has recently been developed, a web server for 
semi-automated 2D NMR analysis with peak fitting for quantification 
and database query for metabolite identification [85], opening the door 
to high-throughput annotation. 

4.2.3. Data fusion and normalisation 
The analysis of thousands of samples from large cohorts typically 

requires the acquisition of several batches (e.g., to avoid clogging of the 
ionisation source in MS), sometimes spaced over several months (e.g., in 
the case of limited patient inclusion over time), or even obtained on 
several instruments. The ability to merge and normalise these data for 
subsequent statistical analysis is a major challenge in metabolomics 
[86], and many methods and software tools have been proposed [87], 
such as WaveICA ([88] based on the biological samples), RUV ([89]; 
based on replicates), and SERRF ([90]; based on pooled quality controls 
QCs), which have been successfully applied to large cohort analysis. 

One of the main challenges is to overcome the unwanted variability 
in the data unrelated to the factor(s) of interest (in particular the tech
nical variability). This is why the identification of these sources of 
variation upstream of the experiment is essential to randomise the order 

of the samples in the analytical sequence and to position the controls to 
be included (e.g., internal standards, pooled QCs, sample replicates, 
reference materials; [91]). 

MS analytical drift within a batch can be corrected for each variable 
by modelling the values in the pooled QCs using local loess polynomial 
regression, splines, or machine learning [92]. Recently, it has been 
proposed to include the pooled QCs of variables with similar profiles in 
the model to obtain a more robust estimation of the drift [90,93]. 
Regarding the normalisation between acquisition batches, two strategies 
have been described: location-scale adjustment and matrix factorisation. 
The former seeks to harmonise the means (and variances) of the vari
ables across the batches. Robust estimates of these parameters can be 
obtained by using an empirical Bayes approach (ComBat method; [94]). 
Matrix factorisation strategies focus on control variables (i.e., not 
affected by the factor of interest) or on replicate samples to capture 
unwanted variation (e.g., by singular value decomposition; [89]). A hi
erarchical strategy for intra- and inter-batch normalisation has been 
recently applied to a cohort study of more than 1000 human plasma 
samples [95]. This approach, which combines QC-based signal drift 
correction (e.g., with loess) with replicate-based removal of unwanted 
variation, is of interest for large-scale untargeted studies, since it ach
ieves robust and efficient results without the need to include additional 
(isotope-labelled) reference compounds. In NMR, the variation due to 
different cohorts or different time periods of analysis, can be more easily 
corrected using a mean-centering operation to remove batches differ
ences in mean levels prior to statistical analysis [76]. 

Whatever the strategy, the use of complementary metrics (correla
tion coefficient between replicates, mixing of nearest-neighbour samples 
across batches, an increase of prediction performance) and visual
isations (principal component analysis, sample intensities along run 
order, difference of intensities between replicates, etc.) is essential to 
control the quality of the normalisation [96]. Furthermore, the avail
ability of data and analysis scripts is essential to reproduce the results 
[97]. When data were obtained with different analytical instruments or 
within different studies (e.g., in meta-analyses), it is necessary to match 
features between the data sets. Various alignment methods have been 
proposed to model the drift in retention time and m/z, which either 
require the raw data or the processed data only [98]. 

4.2.4. Large-scale data contextualisation and reporting: F.A.I.R. principle 
implementation 

Despite all the progress made in automating the analysis (analytical 
methods and bioinformatics) of metabolomic data in large cohort 
studies, many current approaches still involve manual curation by ex
perts, to validate annotations, or in the choice of a chemical name or the 
addition of identifiers for further data contextualisation. Therefore, the 
production of knowledge is often isolated in a publication, or without 
coherent and machine-readable metadata, or even orphaned from their 
original raw data. The integration of existing metabolomics standards 
and FAIR (Findable, Accessible, Interoperable, Reproducible) [99] 
considerations for the processing and sharing of complex data often 
remains at the stage of recommendations or best practices. In order to 
move towards the routine application of large-scale metabolomics, it has 
become crucial to incorporate into management practices methods for 
addressing the ‘quantity’ and ‘quality’ dimensions of the data generated 
by these high-throughput approaches, as well as their integration with 
other omics fields, and the sharing (within and outside projects) and 
reuse of these data. We therefore inventoried the existing resources that 
meet the FAIR principles [100] and the remaining problems of 
large-scale data management. [99,100]. One of the main markers of the 
FAIR nature of data is the definition of unique and globally persistent 
identifiers. Regarding the specific problem of metabolite reporting, 
regular ambiguities are still observed in metabolite names, even though 
recent tools make it possible, for example, to normalise lipid names 
[101]. In addition, the compact hash code of the IUPAC International 
Chemical Identifier “InChIKey” seems to be an appropriate identifier 
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since it provides information on the molecular backbone, isomer iden
tity or isotopes of identified Level 1 metabolites [14]. For compounds 
with incomplete structural annotation (e.g. unknown stereochemistry or 
unknown double bond position), other computational (e.g. SMILES, htt 
p://opensmiles.org/) or semantic (ChEBI, LipidMaps or PubChem) 
identifiers are possible alternatives. Concerning mass spectra, the 
hashed identifier “SPLASH” is an interesting solution for referencing 
spectra from the databases that identified a candidate metabolite [102]. 
A systematic data description is required with specific recommendations 
to improve (meta)data stewardship as recently observed in some fields 
[103]. The key point to address here is to find the minimum but also a 
good level of domain-specific descriptors (MSI [14], MERIT [104]) 
which should be precise enough for experts, and generic enough to be 
understood by other communities. Finally, finding data is also linked to 
the resources offered and consultable by the community. The diversity 
of metabolomics databases (spectral- or compounds-based) is an excel
lent point but the variability of “query engines” also limits the potential 
for data mining and federated searching necessary for large-scale con
textualisation. Some large cohort studies have paved the way for the 
creation of open data repositories (comets-analytics.org [115], or htt 
ps://omicscience.org/apps/mwasdisease/ [32]) but these resources 
have been built up independently of each other, and therefore remain 
community resources. 

Historically in metabolomics, data providers make published re
sources available on the World-Wide Web using free, open and universal 
standardised communication protocols. A double challenge arises here: 
facilitating access to searchable data and facilitating large deposits. As 
“FAIRness” does not automatically mean openness, the addition of an 
Authentication and Authorisation Infrastructure (AAI) protocol is rec
ommended in a FAIR data internet, although it should be as generic as 
possible or based on organisation-led solutions (e.g., European AAI 
ELIXIR). Unfortunately, metabolomics resources offer many authenti
cation solutions, poor documentation or access protocols and sometimes 
no programmatic access to data. Finally, metabolomics communities 
need to address the issue of (meta)data accessibility and persistence over 
time by adopting a targeted shared policy, but also by using a data 
management plan in line with FAIR principles. 

Making dataset exchangeable and machine-readable means making 
it compatible with a (meta)data structuring model, i.e., choosing a 
controlled vocabulary or a shared ontology. In metabolomics, the best- 
known example is the widely used spectral data exchange formats 
(mzML, nmrML, etc.). The ISA (Investigation/Study/Assay) data model 
[105] allows a complete representation of MS- or NMR-based studies 
and a description of associated experimental metadata. Choosing the 
‘best’ ontology to find descriptors and the ‘best’ controlled vocabulary to 
define descriptors in any study remains a gamble and may depend on the 
application field. However, some initiatives, such as Ontologies 4Chem 
[106] and BioPortal web portal [107] provide a comprehensive over
view of exploitable resources to access ontologies. Knowledge engi
neering also offers higher-level ontologies, such as the Semantic Science 
Integrated Ontology, for contextually enriching two linked data with 
qualified references. The benefit of annotations using ontology is also 
the potential it provides to create flexibility in the mapping between 
class of molecules and defined species (e.g., automatically mapping class 
of lipids and individual species like with chain lengths [108]). 

The next challenge is to reuse the deluge of data from the last decade, 
provided that the number and quality of labels attached to the data are 
sufficient. As it is easier to compare similar objects, studies complying 
with the minimum information of the Metabolomics Society Initiative 
(MSI) should be easily linkable. While metabolomic data repositories 
such as MetaboLights or Metabolomics Workbench offer such a “tagging 
service”, they are still limited by the quality of the metadata linked to 
the deposited datasets and sometimes deemed far from the minimum 
level required by MSI. As high-throughput metabolomics is a big data 
provider and consumer, a clear policy on data licensing and use is 
needed. Attaching a license at the time of data generation is, therefore, 

mandatory to define the rights of owners and future users even after a 
public repository. FAIR spectral metabolomic databases make extensive 
use of Creative Commons type licenses, compatible with high- 
throughput approaches [15,109,110]. 

5. One step further towards large-scale metabolomics across 
studies 

By adapting analytical methods for high-throughput robust profiling, 
the metabolomics community is actually establishing a framework for 
the rapid measurement and analysis of metabolites in large-scale 
studies. Progresses made in data science also enabled scalable process
ing workflows and e-resources. However, to go one step further towards 
large-scale metabolomics across studies, the question of the interoper
ability remains essential to be addressed, by first producing more 
standardised and confident, qualitative and quantitative data. Indeed, 
comparison and integration of data and results between studies are key 
in order to go towards a more knowledge-based and long-term strategy. 

Today, even if the COMETS initiative gathered metabolomics data/ 
results from several large-scale cohort studies to fulfil this objective, the 
assessment of metabolite overlap between the 5 widely used metab
olomics platforms requested a huge work of curation of metabolite 
names using several metadata collected from the analytical platforms to 
propose a cross-references metabolite table. Moreover, the comparison 
of blood metabolite levels was limited because only 2 analytical plat
forms compared their metabolite measurements against one another and 
highlighted moderately intercorrelated metabolites values (median 
correlation of approximately 0.5) [19]. 

In this context, the metabolomics quality assurance and quality 
control consortium (mQACC) is actually working on the identification, 
development, prioritization, and promotion of suitable reference mate
rials to be used in quality assurance and quality control to ensure 
standardisation of results obtained from data analysis, interpretation, to 
compare data within and across studies and across multiple laboratories 
[111]. In addition, the “metabolomic epidemiology” emerged as a 
growing area of research, a Task Group was recently created within the 
Metabolomics Society, to address the key challenges in order to advance 
the field [31]. It gathers experts in study design, data acquisition, data 
analysis and statistics, who identified a number of challenges mainly 
linked with standardisation. In particular, they highlighted the impor
tance of establishing 1) standard protocols for sample collection and 
storage for large-scale metabolomic studies, 2) reporting standards 
associated with study design, sample collection and analysis, 3) stan
dards for metabolomics data deposition together with metadata, 4) 
methods to enable causal inference links between metabolites and dis
eases. Successful translation also requires the adoption of SOPs, training 
in the interpretation of results, and adequate electronic infrastructural 
support [36]. 

Progress in the implementation of the FAIR principles in metab
olomics in the various scientific communities is today imperative for 
successful comparisons across studies. Combined with data science ef
forts, it will enable more effective management of heterogeneous and 
complex data stored in large volumes. This evolution in practices cannot 
take place without the emergence of interoperability hubs. These 
meeting points between disciplines and areas of expertise, made possible 
by digital technologies and the web, are emerging as virtual research 
environments or fleets of application programming interfaces (APIs). 
Interoperability and data sharing are also currently progressing thanks 
to the development and adoption of universal standards, in particular 
those proposed by the World Wide Web Consortium. More specifically, 
the use of the extensible knowledge representation model (RDF) makes 
it possible to represent interconnected data on the web and to facilitate 
their exchange on the web as well. The Data Catalogue Vocabulary 
Format (DCAT) is designed to describe data sets and facilitate interop
erability between data catalogues published on the web. These tech
nologies, which are specific to the Semantic Web, make it possible to 
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build increasingly massive inter-domain knowledge graphs [110], 
expanding the space of available life sciences data (or linked open data) 
and enabling to propose new hypotheses on health and environment 
issues. 

By addressing all these previously mentioned challenges, the 
metabolomics field will be able to converge towards larger application 
across studies and disciplines, and ultimately to effectively integrate the 
One-Health concept. First, there are mutual benefits of integrating plant, 
environmental and human metabolomes. Indeed, it has been shown that 
plant metabolic engineering allows a better understanding of the plant 
metabolic pathways leading to the optimisation production of plant- 
derived metabolites that have beneficial effects on human health 
through nutrition and novel pharmaceutical compounds [2]. Integrating 
nutrimetabolomics into the One Health approach was recently proposed 
as a key element for personalised medicine advancement [112]. 
Through initiatives such as cross-field databases and resources, the un
derstanding about how plant metabolites impact on health can be 
improved. In this context, the recent development of an integrated 
computational resource (the Aliment to Bodily Condition Knowledge
base) allows connecting plant products to health outcomes through their 
molecular mechanisms [109] for building informed nutritive hypotheses 
as the linking factor between dietary plants and human health [2]. 
Second, there are major opportunities for integrating metabolomes from 
the microbiomes (i.e., as independent communities in soil and water or 
within plant and human holobionts), to plants and humans to study the 
interaction between these ecosystems and their contributions to systems 
health [113]. These perspectives call for the collaborative efforts of 
multiple disciplines working to attain optimal health for humans and 
their ecosystems (Fig. 5). They also represent great technological chal
lenges both in analytical chemistry and data science within the metab
olomics fields, as it will require its routine application at large-scale 
across studies and disciplines. It will require a shift from field-specific 
research tools to tools valid and useable in a variety of scientific do
mains. This will especially be the case concerning common SOPs from 
data production to treatment, the development of common in
frastructures, able to run with highly interdisciplinary teams, operating 
on a daily basis with large-scale databases and multi-source data. Such 
transition will also require tailored education programs and continuous, 
complementary training for personnel as well as for systemic scientists 
[114]. 
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