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CAN SCHOOL ARITHMETIC BE SEEN AS THEORY BUILDING?

Christine Chambris1 and K. (Ravi) Subramaniam2

Abstract:

Mathematicians have identified both problem-solving and theory-building as important
for the development of mathematics. Recognizing that the latter is not prominent in 
school mathematics, some researchers have suggested the inclusion of theory-building 
practices in school mathematical learning. Inspired by this, we go further to suggest 
that learning school arithmetic may be seen as primarily a theory building activity. In 
this paper, we argue that a mathematical theory of quantity constitutes a unifying goal 
for arithmetic and provides a coherent basis for theory building practices, as well as 
applications of the theory to mathematical reasoning, which we suggest, enhances 
access to key mathematical practices in elementary mathematics classrooms. We 
present an outline of such a theory for the restricted case of whole numbers and 
addition. Numbers are seen as quantities and reasoning about numbers has underlying 
it a broader reasoning about quantities. In support, we point to some curricular 
approaches that emphasize numbers as quantities.

Keywords:  Theory  building,  Theory  of  quantity,  Coherence,  School  arithmetic,
Japanese Curriculum, Davydov curriculum

Gowers (2000), distinguishes two broad kinds of interconnected mathematical
practices  –  problem-solving,  and  building  and  understanding  theories,  and
argues for the importance of both. The distinction has inspired researchers in
mathematics education to inquire into the role of theory building in the school
mathematics curriculum. Bass (2017), also a mathematician, defines

theory-building  practices  to  be  creative  acts  of  recognizing,  articulating,  and
naming a mathematical concept or construct that is demonstrably common to a
variety of apparently different mathematical situations (...) that, at least for those
engaged in the work, might have had no prior conceptual existence. (p. 230)

Among  theory-building  practices  in  mathematics  education,  Bass  includes
cognitive  processes  of  abstraction  from  a  range  of  situations  or  problems,
exhibiting  mathematical  connections  between  different  representations  or
mathematical  concepts,  and  investigating  and  identifying  a  common
mathematical structure underlying apparently different problems. 

The  discussion  above  suggests  that  there  are  a  variety  of  theory  building
practices that may be relevant to mathematics education. We are inspired to go
further and suggest that theory building could be an important, if not central,
part of learning elementary mathematics. Bass stresses the difference between
the theory-building practices (the process) and the mathematical theories (the
product). Further, if actions that involve “seeing connections, sensing structure,

1LDAR, CY Cergy Paris Université, F-95000 Cergy-Pontoise, France; email: christine.chambris@cyu.fr
2Homi Bhabha Centre for Science Education, TIFR, India; email: subra@hbcse.tifr.res.in

1 - 1



Chambris, Subramaniam

and abstracting commonalities” (p. 230) count as theory-building practices, one
also expects to find practices that support the product through application of the
theory to reasoning – deducing statements from other statements – which are
central to both mathematics and the learning of mathematics. We suggest that in
order to make possible the activity of theory building central in learning school
arithmetic,  a critical  missing element is a reference mathematical theory that
binds together these practices as a coherent whole. We inquire into what such a
theory might be. But before that, we address an important related question.

WHY IS THEORY BUILDING NOT WIDELY RECOGNIZED AS AN IMPORTANT
PART OF SCHOOL ARITHMETIC EDUCATION?

One of the major epistemological changes in mathematics in the 19th century
was a change in the approach to axiomatization: axioms built on the idealisation
of reality were replaced by axioms based on the no contradiction principle3 that
diverged from intuitions about reality. Simultaneously,  sets replaced quantities
as the basic objects of mathematics (Otte, 2007). Although set theory provides a
common foundation for much of mathematics, it is extremely abstract, and not
accessible to a child. The New Math reform (1955-1975) sought to introduce set
theory as a foundation for mathematics education in many countries (Kilpatrick,
2012). Such attempts soon encountered strong criticisms and were eventually
abandoned. Foundational or theoretical aspects of elementary mathematics and
their  axiomatic  presentation  were  no longer  seen as  important  and a  largely
application oriented problem-solving perspective  became the dominant  frame
for school mathematics. This said, the foundation of the school arithmetic to be
taught did not change again, and set theory remained the dominant, most often
implicit, reference in many educational systems (Kilpatrick, 2012).

Since school arithmetic had only so abstract a starting point as set theory, it is
not  surprising  that  the  practice  of  theory  building  by  students  was  seen  as
unlikely and found little place in how the learning of school mathematics was
imagined. Yet,  unlikely  does  not  mean  impossible  or  unnecessary.  We  are
guided by Kolmogorov’s (1938/1960)  assertion  that  “divorcing mathematical
concepts [numbers] from their origins, in teaching, results in a course with a
complete  absence  of  principles  and  with  defective  logic”  (p.10,  quoted  by
Davydov, 1975, p. 120). What mathematical  theory do we expect  learners to
build in the early years of schooling? We argue that such a theory must be built
on  children’s  intuitions  about  quantities.  Our  position  is  that  arithmetic,  as
learned  in  elementary  school,  is  about  quantities.  Numbers  can  be  seen  as
operators on quantities, hence inherit the properties of quantities (Steiner, 1969)
and  can  be  treated  as  quantities.  Arithmetic  and  quantities  therefore  do  not
belong to two different domains – the mathematical and the physical – as some
researchers have assumed (e.g., Nunes & Bryant, 2022).

3This does not mean that mathematics was contradictory before!
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In the following sections,  we provide an outline of a mathematical theory of
quantity (restricted to the addition operation for reasons of space), whose aim is
to provide a  sound and coherent  basis  for  modeling knowledge required for
reasoning in school arithmetic. Applications could be to form a reference for
school arithmetic and to guide theory building practices in instructional settings.
The theory formalises certain ideas that may be abstracted from experience. For
explanatory  support,  we  present  a  possible  set  of  these  experiences,
reconstructed  with  attention  to  logical  coherence  rather  than  actual  learning
trajectories.  Deriving an  instructional  sequence  from these  experiences  is  an
empirical  research  question  that  we  do  not  address  here.  We  also  do  not
investigate how the abstract ideas emerge from experience or how difficult or
easy it is for learners to abstract these ideas but merely point to the considerable
literature that does so (e.g., Davydov, 1999; Steffe & Olive, 2010).

BUILDING NUMBER THEORY (PART 1): QUANTITIES

Historically speaking, numbers were founded on the measurement of quantities
(e.g., Bourbaki, 1984).  Even though this viewpoint was abandoned, prominent
mathematicians  in  the  20th Century,  concerned  about  issues  of  teaching  and
learning  mathematics, developed  theories  that  constructed  numbers  from
quantities. We start this section with naive ideas on quantities,  which can be
abstracted from experience and form the basis for developing a mathematical
understanding of quantity. It is to be noted that these ideas do not include any
notion of number or counting.  In the subsequent section, we sketch the outline
of a mathematical theory of quantity in correspondence with these naive ideas.

Towards the abstraction of an intuitive idea of the quantity, and of the idea of a size

One can imagine carrying or weighing diverse objects, thereby forming an idea
of  “heaviness”, related to one’s senses,  i.e., a specific  sensation.  We highlight
the  following  ideas  associated  with  such  experiences:  A)  The  imagined
sensation of heaviness will include the idea of being more or less heavy. B) At
times, it may not be possible to say which “heaviness” is  greater. In this case,
the two “heavinesses” will be said to be similar or equal. C) One can form an
idea  of  combining  two  “heavinesses”,  perhaps  by  imagining  holding  two
objects, one for each of the two, in one hand. From their combination, one can
form  the  idea  of  a  third  heaviness  (the  heaviness  of  the  combination).  D)
Perhaps  after  some experiences  of  this  kind,  one will  be convinced that  the
combined third heaviness is greater than each of the first two. In  other words,
the heaviness increases in combination. E) Another question arises when one
chooses two heavinesses, one big and one small: Is it possible to find a third one
(the difference) such that when the small and the third are combined, it forms
the bigger one? This would require several attempts, but the conclusion should
be positive. F) Let us consider the combination of a first heaviness and a second
one. The first could itself be the combination of two heavinesses, which we may
call “parts” of the first heaviness. We can now combine these three heavinesses
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in other ways: Combine one of the two parts of the first with the second, then
the resulting heaviness with the remaining part of the first heaviness. One should
get convinced that these different ways of combining finally result in the same
heaviness. We leave to the reader to reason through the previous points A-F to
solve the following G and H tasks. G) Imagine three heavinesses, the first bigger
than the second, and the second bigger than the third. Is the first bigger than the
third? H)  Imagine three heavinesses, the first bigger than the second, and the
second bigger than the third. Is the difference of the second and the first smaller
or  greater  than  the  difference  of  the  third  and  the  first?  The  experiences
described in  I  and J  serve  as  an introduction  to  the idea  of  composition by
repeating a certain quantity. I) Imagine two heavinesses and wanting to know
whether one needs a big or a small amount of times the small one to get the big
one. (This could be useful for example to anticipate if one needs many or few
round  trips  to  transport  a  big  heap  of  sand,  in  a  barrow that  has  a  limited
capacity, in terms of heaviness.) J) One may also notice that if the barrow is not
filled to capacity in each trip, there will be more trips required.

We now take another example (Fig. 1). Imagine two heaps of identical buttons.
A) One has only a few buttons (H1), the other has many (H2). This is sensible.
B) In some cases, it would be difficult to say which heap is bigger (H2 and H3).
To solve this problem, one can use a shovel that resembles the ‘pelle à grosse’.
(Such shovels were actually used, in a more sophisticated way, by foremen in a
shell  button  factory  in  North-France  to  measure  the  work  done  in  a  day).
Sometimes the shovel may not work, when the heaps both have less buttons than
the shovel can contain (Sh0), or both have more (Sh1). One will then have to
find another suitable shovel (Sh2). If the amounts of the two heaps perfectly fit
the  same  shovel,  one  can  say,  it  is  the  same  amount  of  buttons.  (The  two
amounts of buttons are similar or equal.) C) One can combine two amounts of
buttons.  For  instance  considering  two amounts  of  buttons  (H1 and H2)  and
associated shovels (shovels that perfectly fit the heaps, Sh1 and Sh2), one can
find a shovel that perfectly fits the combined quantity (Sh4). We let the reader
imagine  further  realistic  situations  and  problems  with  shovels  that  would
correspond to the letters D to J discussed above with regard to heaviness. 

Figure 1: heaps of buttons (H1, H2, H3), pelle http://ouvragesdedames.canalblog.com,
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drawings of shovels (Sh0 – copy of original; Sh1, Sh2, Sh4 – ad hoc shovels)

These  descriptions  of  experiences  involve  discrete  quantities.  Experiencing
these  as  quantities  without  the  aid  of  counting is  uncommon since  counting
starts very early in most cultures. Nevertheless, it is possible to treat these as
quantities even without the cultural resource of a counting number system. We
remind  the  reader  however,  that  these  descriptions  do  not  carry  any
recommendations for designing instruction.

According to Bass, as mentioned earlier, an important aspect of theory building
practices is abstraction of commonalities. In the discussion above, we notice two
moves that can be characterised in this way. One of them is to be able to replace
“in the mind” the sensation (in terms of heaviness or the amount of buttons) by
the idea (of the heaviness, the idea of the amount of buttons), we call the size,
and the other to be able to imagine comparisons, and combinations of several
sizes, based on the concrete realization of only some of them. We also suggest
that the use of the words “more” and “less” participate in this abstraction.

Another aspect of theory-building is to identify the common structure between
the different  types of  sizes  (for  example,  heaviness  and amount  of  buttons).
Above, when imagining situations D to J involving buttons, the reader may have
identified  such  a  structure.  Although it  predates  the  major  reorganization  of
mathematics, Bezout’s introductory words of his arithmetic treatise (1764/1821)
can be interpreted as a theoretical statement that summarizes a structure and an
abstraction  of  commonalities:  “In  general,  everything  that  is  susceptible  of
increase or decrease [structure] is called quantity. Extent, duration, weight, etc.,
are quantities [quantity is the abstraction of extent, duration, weight]”. (p.1)

The quantity as a mathematical structure

Here we present  more precisely stated  propositions about  quantity.  They are
inspired  notably  by  Kolmogorov’s  theory (1979)  and  our  naive  ideas  on
quantities presented in the previous section that guided our own understanding
of the theory.  We have chosen the axioms aligned with the basic hypothetical
experiences  described  above.  Although  we  do  not  assume  commutative
property, one could choose it to be part of the axioms. Indeed, various choices
are possible for the axioms or starting points of the theory. The choice could be
made  on  the  basis  of  the  cumulative  experience  of  the  learners  and  the
confidence with which they reason about certain relationships. 

(a)  The  first  axiom  is  that  of  trichotomy.  There  is  a  relation:  Given  two
quantities a, b, one and only one of the three holds: a>b, b>a, a=b.

(c) There is a composition law: a*b=c. This means, given two quantities a and
b, a can be composed (or combined) with b to form a third quantity c.

An important aspect of the composition law is its link with the relation. Indeed,
when a  quantity  is  composed with another,  it  increases.  In  other  words,  (d)
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Given a, b,  a*b>a. This axiom (monotonicity of *) has a reciprocal facet (e):
existence of complement. Given a, b, a>b, the quantity c exists such that b*c=a.

To remain close to F above, we choose the following axiom as a fundamental
property of the composition law: (f) For any a,  b,  c, (a*b)*c=(a*c)*b (f1) and
(a*b)*c=a*(b*c) (f2). From (e) and (f) we can deduce the relation > is transitive,
and that > is a strict total order. 

Properties of the composition law: The law is 1) associative, 2) commutative
(the law will then be noted (+), as per usual convention) and 3) any element is
cancellative (a+b=a+c => b=c). We now prove these properties. 

1) The associative property is (f2), part of (f) in the description above.

2) Proof of commutative property: Given a, b, c, b*c=a, we have: b*b=b*b =>
(b*b)*c=(b*b)*c =>(b*b)*c=(b*c)*b, and (b*b)*c=b*(b*c) => a*b=b*a.

3) Proof of cancellation property:  If  b>c, then there is  d such that  c+d=b and
a+b=a+(c+d)=(a+c)+d,  then  a+b>a+c.  If  b=c,  then  a+b=a+c.  If  b<c,  then
a+b<a+c. Consequently:  a+b=a+c => b=c.

A Quantity is a structure (Q,+) such that a>b <=> there exists c such that b+c=a.

(g) A consequence of 3 is that the complement is unique. This allows one to
define subtraction. Given a, b, a>b, we denote the complement as a-b. (h) Given
a,  b,  c, such that  a>b>c, then,  a-b<a-c. The proof based on the facts:  a=b  +  d  ,
b=c+e (e),  a=(c+e)+d=c+  (  e+d  )   (f). Informally: one difference is a part of the
other.

We have presented and in some cases proved, in formal or natural language,
some properties of quantities. We see the latter language as a means to support
and guide teachers’ work. The former notably supports education research about
mathematical coherence. Other properties were omitted for reasons of place.

From quantities to numbers

The brief sketch of the mathematical notion of quantity presented above does
not involve the notion of a number. In the theories of quantity developed by
several mathematicians, it is clear that the “amounts of times” in “the amount of
times a given quantity is iterated” forms the idea of a number (as suggested in
our I and J above). The number is seen as a number of times, whether these
times are a whole number of times or fractional times4. This is a bridge between
quantities and numbers that can be formulated in different ways. For instance,
Whitney (1968) says that the iterations (of an element) can be seen as a set of
operators, and that this set satisfies the Peano axioms. Steiner (1969) assumes
that the set of whole numbers is already available and lets it operate on the set of
quantities.  Defining  a  general  set  of  operators,  he  shows  that  this  set  is

4 “Fractional times” requires an additional axiom: Be n whole number, a a quantity (i.e., a size), there exist b a
quantity (i.e., a size), such that a = n.b, where n.b means n iterations of b. Then b is the “n-th of a”.
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isomorphic to the set of numbers. In this way, the properties of quantities are
transferred to numbers. This enables one to obtain order and composition law on
the sets of numbers (that are actually the same as common order and addition of
numbers) (Steiner, 1969).

In  the  following  sections,  we  discuss  two  different  curricular  contexts,  that
reflect elements of the theory that we have sketched above.

THE EL’KONIN-DAVYDOV (ED) CURRICULUM: THE STATUS OF QUANTITIES

The  ED curriculum is  generally  mentioned for  its  features  of  early  algebra.
Interestingly,  Kolmogorov’s  theory  (1979)  forms  the  foundation  for  the  ED
curriculum (Davydov,  1975).  Today,  this  feature  of  the  curriculum is  rarely
made explicit.  For instance,  it  is not mentioned in the ESM special  issue on
Davydov (106, 2021) that a mathematical quantity theory shapes the curriculum.

Are  there visible  features of  the curriculum that  recall  the theory? Davydov
(1975, p. 135-138) summarizes the grade 1 curriculum. It is organized in a series
of  six  topics.  Topic  I  is  “Comparing  and  assembling  objects  (according  to
length, volume, weight, composition, and other parameters)”. Topics II and III
focus on comparison and signs >, <, =. Topic IV, “The operation of addition
(and subtraction)”,  starts  with “Observations of  changes in objects  in one or
another  parameter  (such  as  volume,  weight,  length,  or  time)” and  mentions
“increase” and “decrease”. Later, Topic V is titled: “The shift from an inequality
of  the  type  A < B to  equality  through addition (or  Subtraction)”.  It  includes
“Writing formulas of the type: if A < B, then A+x = B; if A > B, then A-x = B”. 

Topic I recalls “steps” A and B of our intuitive approach of the theory, while
topic IV  includes  step  “D”,  and  topic  V  recalls  “step”  E.  In  Davydov’s
progression,  the  operations  of  addition  and  subtraction  are  first  considered
independently, each in its relation with order in topic IV (a kind of step D for
both, in other words). They are linked in topic V. Investigating the curriculum,
we understand that the successive topics enable the students to state, one after
the  other,  expressions  of  the  axioms  with  letters  and  signs  (that  represent
quantities  -thus  sizes-  and  their  relationships  students  dealt  with  in  their
experiments);  to  engage  in  thinking  with  the  meaning,  and  relationships  of
letters  and  signs,  thanks  to  the  realistic  problems  students  have  to  solve.
Students explore quantities of different types, simultaneously. This thus suggests
the  abstraction  of  the  notion  of  quantity,  and of  its  structure.  We think our
approach sheds light on the internal mathematical coherence of the curriculum, a
coherence that is possible only thanks to the presence of quantities at the starting
point of the theory, a feature that is, according to us not often stressed in articles
that focus on the ED curriculum. One can also notice that our intuitive approach
did  not  include  any  visible  algebraic  feature.  This  said,  a  perhaps  invisible
feature of our intuitive presentation is the use of language to describe relations
between quantities, an important means to abstract from realistic contexts.
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Davydov makes a case for the study of quantities in the following quote:

Real  number  is  based  on  positive  scalar  quantities,  the  concept  of  which  is
defined by all ten of the properties [listed by Kolmogorov]. (…) It is striking that
natural numbers, fractions  (rational numbers), and real numbers  themselves can
be represented as quantities (both Kagan and Kolmogorov mention this).

It may be concluded from the material cited above that natural and real numbers
are  equally  closely  related to  quantities  and  certain  of  their  essential
characteristics (properties 1 to 7 [equivalent to our (a) to (f)]).  Might not the
child study these and the other properties as a special  topic  before he is
introduced to the numerical form  for describing the relationship between
quantities? (Davydov, 1975, p. 133, underlined as in original, bold is ours)

THE JAPANESE CURRICULUM: THE GENERAL ASPECT OF NUMBER

Fujii (2015) describes Japanese teachers’ focus on quasi-variables, suggesting to
us that it might be a feature of the Japanese curriculum: 

Close attention to the specific numbers does not mean that teachers are sticking
to a concrete level of thinking and encouraging students to think about things
concretely. On the contrary: teachers consider the general aspect of the number –
its quasi-variable aspects (p.14). 

Fujii does not mention quantities. Yet, we find his words an interesting echo of
Davydov’s words. Here are some examples involving quasi-variables:

The reason why 13 – 9 or 12 – 9 is the first task is that the minuend 9 is close to
ten, and it is easier for the student to separate 13 into 10 and 3 and subtract 9
from 10 and then add the difference to 3. 13 – 9=(10 + 3) – 9=(10 – 9) + 3. (p.15)

Fujii (2015) describes a procedure in terms of “subtracting-adding”, combined
with place value knowledge. We note instead this is a subtraction version of our
property (f). The quantity 13 is seen as composed of 10 and 3 (based on place
value). It is then equivalent to remove a quantity from it or from any of its parts. 

In a design study with Australian and Japanese students, Fujii (2003)  reported
some  examples of students’ reasoning about subtraction problems such as 32-
5=32-10+5: “The bigger the number you are subtracting, the smaller the number
you  are  pulsing  [plusing].  They  all  make  a  ten  together.”  (p.61)  [Tim]  …
“whatever number he is taking away” (Tim), “whatever the number is you are
taking away” (Zoe), “for any number you are taking away” (Alan), “there is
always a number to make ten” (Adam).” (p.61)

Focusing on the generality of the students’ reasoning Fujii interprets these as
instances  of  “algebraic  thinking”  (p.  61)  in  students.  Looking closely  at  the
students'  arguments,  we identify  that  some  of  them  are  quantitative (those
underlined  by  us).  We  suggest  the  generality  stems  from  the  fact  that  the
reasoning is about the notion of size that has been abstracted and that its general
properties  involving order  and  addition [combination]  became  available  in
students. For instance, we interpret the sentence  “there is always a number to
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make ten” as: from a given number (a size, smaller than 10), there is always a
number (a size) that can be added, to form a greater number (a greater size, 10).
This is property (e). We also notice that Tim’s reasoning expresses property (h).
In other words, we suggest these students express their sense of the structure of
the quantity that they have recognised in numbers.

We argue that the properties embedded in the “general aspect of number” are
those  of  the  “quantity”.  Are  there  reasons  why  Japanese  teachers  foster
quantitative reasoning? We also ask: do the quantities play a specific role in the
Japanese  curriculum?  Several  scholars  have  highlighted  a  specific  focus  on
measurement  in  the  Japanese  curriculum  (Batteau,  2019,  Watanabe,  2007).
More  recently,  scholars  (Karagöz  Akar  et  al.,  2022)  speculated  about  a
relationship  between  high  level  of  tasks  in  multiplicative  reasoning  and
measurement in the Japanese  curriculum. Chambris  and Batteau  (2021) have
suggested a connection between measurement and the arithmetic curriculum.

With similar arguments to Davydov, we make the following hypothesis: there is
a  transfer  of  the  properties  of  quantities  (those  of  order  and  of  the
composition law), i.e., of a structure, to the set of operators / numbers, that
enable  to  “understand” the  written  /  oral  number  as  a  quantity,  i.e.,  a
similar structure.  Can Japanese school arithmetic be seen as fostering theory
building practices based on the notion of quantities? Answering this question
requires a further investigation of the curriculum with this question in mind.

CONCLUDING REMARKS

The  mathematician  Wu (2011)  argues  about  the  lack  of  coherence  in  some
curricula.  We  suggest  that  this  might  be  a  consequence  of  the  invisible
constraint caused by the level of abstraction in the starting points available for
the  theory.  The  mathematical  and curricular  analyses  provided in  this  paper
suggest  that  basing an arithmetic curriculum on quantities  might provide the
required  coherence  for  theory  building  practices.  This  is  because  quantity
provides a starting point of the curriculum based in intuition, but is defined as a
size that has specific properties, that in turn may be investigated and used both
to  solve  meaningful  quantitative  problems,  and  to  create  new  mathematical
abstractions. Thus, a mathematical theory of quantity, of the sort outlined in this
paper, could provide a reference theory that supports theory-building in school
arithmetic.  Such  theory  building  would  lead  to  a  recognition  that  the
mathematical structure of quantity underlies that of number. Elaborating such a
structure  would  not  only  provide  coherence  in  understanding  number  and
number  relationships,  but  could  support  students’  in  confidently  making
deductions and providing explanations, which we suggest, enhances access to
key mathematical practices in elementary mathematics classrooms.
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