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A B S T R A C T   

Localized topological modes with high robustness to various perturbations are receiving increasing attention. 
Recently, zero-order topological vortex modes have been designed in phononic structures, in analogy with zero- 
energy fermionic states modulated by Jackiw-Rossi binding mechanism. Such localized modes may have po-
tential applications for biosensing, bioimaging and on-chip communication. In this work, we propose a pillared 
phononic plate with a Kekulé distortion of pillars position to bind topological modes at a vortex core via 
dispersion engineering. The phase winding and amplitude diagrams of the topological vortex mode are observed 
experimentally. It is found that existence of vibration peaks and corresponding mode patterns are strongly robust 
against the random perturbation of resonant frequencies of pillars at the vortex core. We further design a to-
pological resonant sensor for mass sensitivity. The frequency of the topological vortex mode is almost linearly 
sensitive to added small mass at the vortex core in terms of mass values and positions. The proposed pillared 
plates provide a platform for potential applications such as energy localization and harvesting, remote health 
monitoring.   

1. Introduction 

In the field of topological matter, a great deal of current interest is 
focused on the study of localized modes for artificial manipulations in 
various applications such as synthetic dimensional topological insulator 
[1], Moiré lattices [2–4], topological Anderson insulators [5–7] and so 
on. The traditional localized modes (e.g., cavity mode) constructed by 
removing scatterers in artificial structures are widely used for wave-
guiding and demultiplexing phenomena [8,9], slow wave velocities 
[10,11], high-density energy harvesting [12,13], among others. How-
ever, these modes are very sensitive to the precise geometric parameters 
and their performance can be altered by random perturbations in actual 
manufacturing and operating processes [14,15]. 

Conversely, localized modes with topological character could pro-
vide strong robustness against various perturbations [16–22]. The 
achievement of topological phases allows for unprecedented manipu-
lation of waves, such as Non-Hermitian skin modes [23–25], topological 
insulators [16,26–28], Weyl semimetals [29–31] and topological 

disclination states [32–35]. Particularly, the zero-dimensional topolog-
ical systems could be used for sensing, energy capture or on-chip com-
munications. Intriguingly, the Jackiw-Rossi model [36] allowed to 
construct a zero-dimensional localized topological fermionic state at the 
core of a vortex-fermion system, which is similar to paired fermion states 
in p-wave superconductors [37]. The equivalent localized zero modes 
could be trapped when the phase and mass of Dirac fermions are subject 
to a Kekulé distortion [38]. Inspired by the Jackiw–Rossi model, anal-
ogous topological photonic and phononic localized modes [39–47] 
originated from intervalley coupling and defined by Kekulé distortion 
have been designed and allow to achieve zero-dimensional optical, 
acoustic and elastic modes. Recently, Kekulé distortion was used to 
achieve the degenerate topological states bind to disclinations [39]. 

In particular, to trap an elastic topological vortex mode, a model of 
mass-neck spring resonators on a plate (mimicking the case of pillared 
phononic crystals) associated with the Kekulé distorsion of their posi-
tions has been developed [48]. Then, its functional application to energy 
harvesting has been investigated [49]. The high energy density resulting 
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from the localization enhancement associated with this topological 
vortex mode may be used for biosensing [50], bioimaging [51,52] and 
on-chip communication [53]. The mass-neck spring resonators can be 
well described with the multiple scattering theory [48,49], however, the 
complex geometry of resonators hinders the potential applications 
especially at micro/nano scale for compact and integrated devices. Pil-
lared resonators play an important role in discovering rich physics of 
different vibrating modes [54]. Compared to the hole scatterers [41], 
the pillared resonators provide an additional freedom to manipulate the 
elastic waves especially with subwavelength pillar’s size. Although the 
shape is simply cylindric, pillared resonators have diverse vibrational 
properties and neighboring coupling effects [54,55], making them un-
predictable with an analytical theory model at the moment. Meanwhile, 
the vortex mode can be expanded in anisotropic media [56] and 
furthermore could be designed in other shapes such as in Laguerre- 
Gaussian beams [57,58] or with the fractional topological charge 
[59]. It is therefore necessary to reveal how to realize topological vortex 
modes with pillared resonators. 

In this work, we propose cylindrical pillars to construct the zero- 
dimensional topological vortex mode in a phononic plate. We first 
design the topological vortex modes by engineering the dispersion of the 
pillars. The vortex phase and topological peak are numerically and 
experimentally validated. We then exhibit the robust behavior of topo-
logical vortex modes as a function of the randomness of pillars’ resonant 
frequencies which may be induced in geometrical or material parame-
ters from actual manufacturing and operating processes. Furthermore, a 
topological resonator mass sensor is proposed regarding the value and 
position of the mass. Finally, we make a summary of this work. 

2. Principles of the Jackiw-Rossi binding mechanism 

The Jackiw-Rossi model [36] constructs a vortex-fermion system 
that sustains localized topological fermionic states at vortex core. The 
Jackiw-Rossi binding mechanism of such vortex states is similar to 
paired fermion states in p-wave superconductors [37] modulated by 
breaking the parity and time-reversal symmetries that is defined as 
Majorana bound state. The equivalent zero mode was trapped in gra-
phene lattice by a twist in the phase and mass of Dirac fermions, which is 
called Kekulé distortion [38]. 

Analogous to the Jackiw-Rossi binding mechanism, vortices sup-
porting localized zero-mode have been designed in optic [43,44] and 
acoustic [39,46] clusters by means of a Kekulé distortion. It could be 
preferable to apply the distortion to the position of the scatterers (pillars 
in our case) rather than to their geometrical parameters such as height or 
radius. We start from a honeycomb lattice with its Brillouin zone (BZ) 
presented by blue-dashed lines in Fig.1. Such a lattice displays Dirac 
cones at the K and K’ valleys of BZ. A uniform deformation of the lattice 
gives rise to a bigger unit cell and hence a smaller BZ (red lines in Fig. 1) 
where the initial K and K’ points are folded to the Γ point in [50]. 
Finally, the Kekulé deformation will be at the origin of a complex valley 
modes hybridization which leads to a band gap opening and trapping of 
the vortex mode. The honeycomb supercell could be considered as a 
double C3v-symmetric system, as shown by the yellow and blue solid 
dots in Fig. 1. The position-dependent Kekulé distortion with phase 
winding can be formulated as 

ϑ(r, θ) = δR(r)⋅( − iφ)e− iφ(k⋅r+ϕ), (1) 

The distorted lattice can be defined as (rx+Reϑ, ry+Imϑ), where δR(r) 
= R0tanh(|r|/w) modulates the bandgap open process with distortion 

Fig. 1. Mechanism of the topological vortex with 
position-dependent Kekulé distortion. The color band 
along with δR is to illustrate the opening of the 
bandgap with the winding number n = 1. The circle 
color band demonstrates the evolution process of 
bandgap width modulated by Kekulé phase θ. The 
minimal bandgaps at θ = 0, 2π/3 and 4π/3 show a 
periodicity of 2π/3. The outside six honeycomb 
supercells give the position-dependent of scatterers 
(blue and yellow dots) with Kekulé distortion, which 
explains that the common bandgap is 2π/3 based on 
identical geometric supercells.   
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amplitude R0 = 0.12a/
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, φ corre-

sponds to the double C3v-symmetric system and equals 1 and -1 for 
yellow and blue C3v-symmetric pillars, respectively. The Kekulé wave-
vector is fixed to k =

[
4π/

̅̅̅
3

√
a,0

]
, r is the undistorted position vector of 

pillars and a is the supercell lattice constant (See geometric parameters 
in methods). Importantly, the winding phase ϕ = nθ embodies a topo-
logical pumping for trapping the vortex mode [60]. Here the winding 
number n is set to be 1. The circle color band demonstrates the evolution 
process of bandgap width modulated by Kekulé phase θ. The dispersion 
curves of narrowest or widest bandgaps can be found in Appendix A. 
Both the narrowest bandgaps at θ = 0, 2π/3 and 4π/3 and widest 
bandgaps at θ = π/3, π and 5π/3 reveal a clearly 2π/3 periodic repeti-
tion. The distorted supercells at narrowest or widest bandgaps have 
essentially the same geometric structures, except for different selection 
methods, which illustrates the periodicity of common bandgap. Around 
the center, we have δR = 0, and the gapless core (as can be seen by the 
dark blue color in Fig. 1) eventually captures a topological vortex. Such 
bandgap pattern modulated by position-dependent Kekulé distortion 

could construct the topological vortex mode, also called topological 
mid-gap state. 

To excite the topological vortex mode and observe the phase wind-
ing, we proposed the experimental device shown in Fig. 2(a). We 
manufacture the pillared phononic plate sample made of Aluminum 
based on integrated milling machines and standard material parameters 
(See simulation and fabrication in methods). The magnetic excitation 
source E is put in front of the pillared phononic plate to imitate an 
approximate point source for exciting the topological vortex mode for 
flexural waves in the plate at point (0, − a). Three axis laser Doppler 
vibrometer at the back-side scans the out-of-plane displacements of the 
detection D (See measurement in methods). The whole metal sample is 
suspended by quadrangular symmetrical metal rings and existed by a 
magnetic coil as shown in Fig. 2(b). 

3. Validation of the topological vortex mode 

The simulated eigenfrequencies and selected representative 

Fig. 2. Experimental setup. (a) Sketch of experimental device with the excitation magnet E at the front side and the detection D at the back side captured by laser 
Doppler vibrometer, in which the point D is also the vortex core and the orign point in. (b) Pillared phononic plate sample for experimental observation of topological 
vortex modes. The magnetic excitation source is set near the center of the sample at point (0, − a). 

Fig. 3. Eigenmode simulations of topological vortex mode. (a) Eigenfrequencies of a finite pillared cluster cover the common bandgap from 7.63 kHz to 9.69 kHz 
exhibited by white zone with radius R = 0.2208 m. (b) The out-of-plane patterns of the topological vortex mode at 8.35 kHz (red solid dot in panel a), traditional 
localized edge mode at 8.37 kHz (orange solid dots) in the common bandgap and the bulk mode at the 9.82 kHz (blue solid dots) in the light-blue zone. 
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eigenmodes about the part of the finite phononic plate in Fig. 2(b) with 
pillars are shown in Fig. 3. The light-blue and white zones indicate the 
bulk band and common bandgap in Fig. 3(a), respectively. Based on our 
expected design with position-dependent Kekulé distortion, the topo-
logical vortex mode appears at 8.352 kHz. In the common bandgap, 
there are many traditional localized edge modes due to the existence of 
boundaries of the finite structure, which is identical to edge states in a 
triangular acoustic structure [61]. In Fig. 3(b), the topological vortex 
eigenmode clearly bounds to the vortex core at 8.352 kHz and highlights 
spots (displacement peaks) around the vortex core. For traditional edge 
states such as at 8.37 kHz, the displacement at the center of the plate is 
almost zero, which allows us to experimentally observe the topological 

vortex mode. We also show the example of the trivial bulk mode at 9.82 
kHz in Fig. 3(b) whose displacement spreads over the plate. The vortex 
mode is highly localized in a small domain around the vortex core and 
does not extend to the boundary of the structure. It will remain even 
unaffected if the size of the sample is increased in the simulation. For 
this reason, the simulation has been performed by assuming free 
boundary conditions and this reproduces very well of the experimental 
results even the effective sample is hanged at its corner. 

Experimental validation of the excited topological vortex mode is 
carried out and compared with numerical simulation in Fig. 4 (See the 
simulation and measurement in Methods). The blue zone indicates the 
common bandgaps in Fig. 4(a) and (b). Topological peaks in common 

Fig. 4. Experimental observation of topological vortex modes. (a) Simulated (Sim.) and (b) experimental (Exp.) response spectra normalized by the topological peaks 
at 8352 Hz (Sim.) and 8375 Hz (Exp.) at the point of vortex core (blue ball in (c-f)), respectively. Quality factors of the topological peaks are QSim. = 588.2 and QExp. 
= 271.5. The Experimental setup is the same as in Fig. 2 and magnetically excited at point (0, − a). The blue zones in (a, b) are the common bandgaps. Normalized 
patterns of phases (c, d) and out-of-plane displacements (e, f) of the topological vortex mode measured within the range of − 10 to 10 cm of x- and y-axes at to-
pological frequencies 8352 Hz (Sim.) and 8375 Hz (Exp.), respectively. 

Fig. 5. Robustness of the topological vortex mode. (a) The robustness of maximal height random disturbance Δh of the scatterers at vortex core. The left and right 
axes of the double y axis are frequencies of topological peaks and their error δ under the random disturbance Δh, respectively. (b) Patterns of topological peaks with 
height random disturbance Δh = 0, 2.5%, 5%, 7.5% and 10%, respectively. The point P is the max value of the pattern at topological peak with Δh = 0. 
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bandgaps are observed at fts = 8352 Hz in simulation (Sim.) and fte =
8375 Hz in experiment (Exp.) with a negligible error | (fts − fte)/ fts | =
0.27%, which shows an excellent consistence. The topological vortex 

mode has an extra sharp peak with a high-quality factor Q = fp /Δ fp, 
where fp and Δ fp are the peak value and the width of midfrequency of the 
vortex mode, respectively. The quality factors of topological peaks are 
QSim. = 588.2 and QExp. = 271.5 that reveals the quality factor of the 
vortex mode can be affected by manufacturing and operating conditions 
but still achieve a high value in practice. Interestingly, the trivial peak 
above the upper frequency limit of the common bandgap in simulation 
in Fig. 4(a) doesn’t appear in the experimental response curve in Fig. 4 

Fig. 6. The influence of added objects on the topological vortex modes as a function of (a) normalized mass Δm at vortex core (as shown in the inset) and (b) 
normalized deviated position away from vortex core center Δx (as shown in the inset). The normalized mass ΔmA is the same as point A in panel (a), and the right 
axes of the double y axis are the error δ of topological peaks in (a) and (b), respectively. 

Fig. S1. The classical double Dirac cone at Γ point (Grey bands) before Kekulé distortion and (a) the narrowest and (b) the widest bandgaps opened after the 
distortion and delimited respectively by the orange and blue dispersion curves. The insets in (a) and (b) show unit cells with six pillared scatterers of the narrowest 
and widest bandgaps, respectively. 

Fig. S2. The sensing of Young’s modulus, where E is the Young’s modulus of 
the aluminum alloy. 

Fig. S3. (a) Position of the vortex center and excitation magnet. (b) Photograph 
of the magnet and magnetic coil in the sample for Lamb wave excitation. 
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(b), which further supports the importance of robustness of topological 
mode. 

To validate the formation of a vortex mode, simulated and experi-
mental displacement phase and amplitude patterns are also captured in 
Figs. 4(c-f) around the vortex core (blue ball in (c-f)), which is the 
original point of the Kekulé distortion. From Figs. 4(c) and (d), both of 
the simulated and experimental displacement phase patterns have 
continuous positive and negative phase alternation and shape the phase 
winding in the vortex core with a periodicity of 2π/3, which reveals the 
formation mechanism of a vortex mode and drives finally displacement 
patterns. From Figs. 4(e) and (f), the displacement patterns at topolog-
ical frequencies fts and fte show an excellent agreement, which could 
provide an effective and robust platform for wave function modulation 
with pillared phononic crystals. The robustness of the vortex mode 
frequency against disorder in the sample will be discussed in the next 
section. Here, we would notice that our work is a necessary step towards 
the technological design of samples at the microscale for operation at 
high frequencies. Indeed, in the latter case, the position and diameter of 
the pillars can be effectively controlled through the mask process at the 
microscale, while managing their heights poses a greater challenge, as it 
requires halting the film deposition. In the current configuration, the 
pillars are welded to the plate using laser welding, which can introduce 
an error in the final height of approximately 1 to 2%. This error is 
equivalent to the inaccuracies encountered during the growth process at 
the microscale, particularly when utilizing the electroplating technique, 
especially for high aspect ratio structures like ours. 

4. Robustness of the topological vortex modes 

The gapless (see Fig. 1) at the vortex core constructs the vortex 
modes. The resonant frequencies of the pillars at the vortex core, which 
mainly effected by the high of the pillar, the gapless will be modulated 
by the pillars at the vortex core. To verify the robustness of the topo-
logical vortex mode, we numerically focus on the random perturbation 
of pillars’ resonant frequencies at the vortex core, which have the 
highest ability of affecting the vortex mode via constructing the asym-
metric random perturbation at the vortex core [46,48,49]. The random 
disturbance of height Δh could lead to the disturbance of resonant fre-
quencies of the six scatterers at the vortex core, resulting in breaking the 
symmetry of vortex core in the pillared phononic plate. We present the 
topological vortex mode frequencies and the corresponding frequency 
deviations δ = |fΔh − ft |/|ft | in Fig.5(a), where the average frequency 
fΔh = 1/n

∑
fΔh(n) is the average values of topological peaks with 

random perturbations of height Δh(n) and n = 20. The light pink triangle 
area surrounding the average frequency response curve gives the 
boundary of the frequency deviation with random perturbations of 
height Δh(n). The corresponding average frequency deviations are still 
<0.1 %, even if the maximum frequency deviation does not exceed 
0.7%, showing strong robustness of the topological vortex mode. In 
Fig. 5(b), we present five displacement patterns of the topological vortex 
mode for different Δh and the point P is the max value of the displace-
ment at Δh = 0. One can note that all illustrations exhibit stable and 
robust vortex mode patterns. 

Resonant sensing such as mass sensors [62–64] is very important for 
remote monitoring of changes in mechanical environment. We now put 
an object with mass m at the vortex core and define the normalized 
object’s mass as Δm= m/mR, where mR is the mass of a single pillar. The 
corresponding maximal frequency deviations δΔm =

|fΔm − ft |/|ft |<0.27% and δΔx = |fΔx − ft |/|ft |< 0.19% reveal that topo-
logical modes are strongly robust against added objects. Interestingly, 
the frequency of the topological vortex eigenmode first increases line-
arly when the added object Δm is < 0.05 due to the stiffness contribution 

of added mass see Appendix B. Then it continuously increases to a 
maximum value when Δm = 0.08, and decreases slightly afterwards, as 
shown in Fig. 6(a). After some points (Δm = 0.08 in the above 
arrangement), the mass of the added object has a dominant role, the 
frequency of topological modes decrease with the increase of the added 
mass. We further select a normalized mass ΔmA = 1/30 and present the 
frequency as a function of the added object’s positions Δx= x/a in Fig. 6 
(b), where x is the deviated position from the center and a is the hon-
eycomb lattice constant. It is observed that the frequency first keeps 
stable when Δx < 0.06 then it decreases almost linearly when Δx is 
smaller than 0.3, afterwards it remains unchanged. Meanwhile, the 
competition between the Young’s modulus and the mass is also an 
interesting topic, this point is discussed in Appendix B. The frequencies 
increase with the increasing of the normalized Young’s modulus. The 
variation of the frequency of the topological vortex eigenmode reveals 
that the vortex core plays important role in the topological vortex mode 
and it is sensitive to added small-mass objects which could have a po-
tential application for the biological cell sensing at nano scale. 

5. Summary 

We numerically designed and experimentally validated the topo-
logical vortex mode in phononic plates with pillared resonators by en-
gineering the dispersions. The displacement phase and amplitude 
patterns of the topological vortex mode agree well between the nu-
merical and experimental results. Considering the inevitable and 
random perturbations of pillars’ material or geometric parameters in 
practice which result in a deviation in pillar’s resonant frequency, we 
studied the influence of random height perturbation in pillars on the 
topological vortex eigenmodes and showed strong robustness in 
displacement patterns. Furthermore, the topological vortex mode is very 
sensitive to small-mass objects in the predictable frequency range in 
terms of mass and position, which could facilitate the design of resonant 
sensors. The proposed pillared plates with topological vortex modes can 
be used for energy localization and harvesting, remote health moni-
toring, signal processing, et al. 
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Appendix A:. Band structures of supercells 

To show bandgap width modulated by Kekulé phase θ, we calculated the dispersion curves of the narrowest in Fig. S1 (a) and widest bandgap in 
Fig. S1 (b) with the Kekulé phase θ = κπ/3 (κ=0,2,4) and θ = κπ/3 (κ=1,3,5). Grey dispersion curves show a clear double Dirac cone. Topological 
vortex modes originated from intervalley coupling and defined by Kekulé distortion will appear in the opened gap at the Dirac frequency. 

Appendix B:. The sensing for the mass and rigidity of added objects 

Different materials have different specific parameters and the Young’s modulus cannot be continuous, so we chose the Young’s modulus of 
aluminum alloy in the main text. Meanwhile, the competition between the mass and the rigidity of the added object is also important to reveal the 
sensing of Young’s modulus. we investigated the sensing of the Young’s modulus in Fig. S2, where the Δm is kept belowΔmAto remain in the linearly 
range of Fig. 6(a). We can see that the frequencies increase with the increasing of the normalized Young’s modulus for different Δm. For Δm, it is still 
following the phenomenon as shown in the main text. 

Methods 

Simulation 

We use COMSOL Multiphysics with MATLAB to simulate the response spectra, phases and out-of-plane patterns of the full-scale pillared phononic 
plate model that contains the topological vortex mode. The geometric parameters of the pillared phononic plate are lattice constant a = 50 mm, height 
and radius of pillars h = 30 mm and r = 3 mm, respectively. The material parameters of aluminum alloy are Young’s modulus E = 71 GPa, Poisson’s 
ratio υ = 0.33, density ρ = 2730 kg/m3. The simulated process is Geometry model, Material settings, Solid Mechanics settings and study under given or 
desired number of eigenfrequencies around a set frequency. The ring-shaped perfectly matched layer was chosen to avoid reflection for calculating 
response spectra. To obtain high-precision simulation solutions and improve computing efficiency, the top surface of pillars and plates were meshed by 
free triangular elements, and swept under appropriate sizes. The meshed models contained about 6.27 and 6.42 million degrees of freedom for 
calculating of eigenstates and response spectra in frequency domain. The average element qualities of both models are larger than 0.77. 

Fabrication and measurement 

The sample is fabricated in its totality in aluminum, by soldering pre-machine rods into a pre-machine plate (by Facturee®). Each road with a 
length of 30.0 mm and with a diameter of 6.0 mm. The plate has a circular geometry with a diameter of 541.7 mm and a thickness of 2 mm. Four holes 
are distributed like a square at the corners of sample where made, to hang it from the celling with the help of wire steel, and the two bottom holes to the 
floor without tension on them, for the positioning of the sample. 

To generate the Lamb waves a magnet, with 5 mm of diameter and 5 mm of thickness, is located as it shows in the Fig. S3 (a) and glued with some 
cyanoacrylate adhesive. A Magnetic Coil (electromagnet) with an iron core is as close as possible, Fig. S3 (b). To get the full spectrum response, a 
periodic chirp signal, with the bandwidth from 4 kHz to 12 kHz is used as input signal, then amplified with a power amplifier (Brüel & Kjær Type 2706) 
and connected to the electro-magnet. The out of plane displacement from the back part (with no pillars) of the sample is recorded with the help of a 
doppler vibrometer, PSV-500-3D, perpendicular to the surface and scanned for the specific area of interest. 
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