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ABSTRACT 

Background: PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function 

(GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants 

have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the 

classification of PRSS1 variants very challenging.  

Methods: All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed 

with respect to their clinical genetics, functional analysis and population allele frequency. They were classified 

by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP 

guidelines-based seven-category system.  

Results: The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy 

number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion 

variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based 

upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we 

classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as 

“pathogenic”, 3 variants (missense) as “likely pathogenic”, 5 variants (four missense and one promoter) as 

“predisposing”, 13 variants (all missense) as “unknown significance”, 2 variants (missense) as “likely benign”, 

and all remaining 51 variants as “benign”. 

Conclusions: We describe an expert classification of the 100 PRSS1 variants reported to date. The results have 

immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal 

guidelines/standards for reporting PRSS1 variants. 

 

Keywords: Chronic pancreatitis; Genetic predisposition to disease; PRSS1 gene; Trypsinogen/trypsin; Variant 

classification 

 

List of abbreviations 

ACMG/AMP, the American College of Medical Genetics and Genomics/Association for Molecular Pathology 

ACP, alcoholic chronic pancreatitis  

AIP, autoimmune pancreatitis 

AP, acute pancreatitis 

CFTR, cystic fibrosis transmembrane conductance regulator 
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CI, confidence interval 

CP, chronic pancreatitis 

CNV, copy number variant 
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ER, endoplasmic reticulum 

FCP, familial chronic pancreatitis 

gnomAD, the Genome Aggregation Database 

GoF, gain-of-function 
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gpAF, global population allele frequency 
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GWAS, genome-wide association study 

HGMD, Human Gene Mutation Database 

hspAF, highest subpopulation allele frequency 

ICP, idiopathic chronic pancreatitis 

8.3KJPN, 8.3 K Japanese population reference panel 

KRGDB, Korean Reference Genome Database 

LD, linkage disequilibrium 

LoF, loss-of-function 

NA, not available 

OR, odds ratio 

RAP, recurrent acute pancreatitis 
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1. Introduction 

Chronic pancreatitis (CP) is a chronic inflammatory process leading to progressive morphological and 

functional changes of the pancreas [1, 2]. It has a prevalence of 36-125 per 100,000 individuals [3]. The process 

of CP is thought to be irreversible once initiated [4, 5] and there is currently no cure for the disease. Therefore, 

determining the genetic basis of CP holds out promise for developing new options in disease prevention and 

treatment. In 1996, a missense variant, p.R122H, in the PRSS1 gene (encoding cationic trypsinogen) was 

identified as a cause of an inherited form of CP, namely autosomal dominant hereditary CP (HCP) [6]. This 

marked the beginning of a new era in CP research. To date, more than 10 CP-related gene loci have been 

reported (for references, see [7]). Moreover, studies of PRSS1 variants led to the recognition of two distinct 

pathological pathways in the etiology of CP, namely the trypsin-dependent pathway [8] and the misfolding-

dependent pathway [9]. PRSS1 variants belonging to the former pathway include missense variants that increase 

trypsinogen (auto)activation and/or trypsin stability as well as copy number and regulatory variants that increase 

PRSS1 dosage; these variants have been collectively termed gain-of-function (GoF) variants [10]. PRSS1 

variants belonging to the latter pathway include only missense variants that could induce the formation of 

misfolded proteins that would in turn elicit endoplasmic reticulum (ER) stress; these variants have been termed 

gain-of-proteotoxicity (GoP) variants [10]. The existence of both GoF and GoP pathologically relevant PRSS1 

variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning monogenic to 

multifactorial, complicate the classification and interpretation of PRSS1 variants [11]. 

The American College of Medical Genetics and Genomics/Association for Molecular Pathology 

(ACMG/AMP)-recommended five-category scheme (i.e., “pathogenic”, “likely pathogenic”, “uncertain 

significance”, “likely benign” and “benign”) for classifying variants in Mendelian disease genes [12] has been 

widely used in the human genetics field. However, a serious drawback of this five-category scheme is that it 

cannot deal properly with variants that fall somewhere between “pathogenic” and “benign”. Employing CP as a 

disease model, and focusing on the four most studied CP-related genes (i.e., PRSS1, CFTR (encoding cystic 

fibrosis transmembrane conductance regulator) [13, 14], SPINK1 (encoding pancreatic secretory trypsin 

inhibitor) [15] and CTRC (encoding chymotrypsin C [16, 17]), we have recently proposed a seven-category 

system (i.e., “pathogenic”, “likely pathogenic”, “predisposing”, “likely predisposing”, “unknown significance”, 

“likely benign” and “benign”) for classifying variants in any disease-causing gene [10]. In a preprint, we have 

provided evidence to support our contention that the newly added “predisposing” variant classificatory category 
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is an appropriate repository for the many intermediate variants that fall somewhere between “pathogenic” and 

“benign” [18].  

As far as PRSS1 is concerned, our previous study employed many of the experimentally demonstrated GoF 

and GoP variants to establish proof of concept for our seven-category variant classification system [10]. Prior to 

our own study, two papers were directly relevant to the classification of PRSS1 variants. In 2014, Németh and 

Sahin-Tóth provided an early classification of the then published PRSS1 variants [19]. Their classifications relied 

strongly upon functional analysis data. For example, all variants that had not been functionally analyzed (apart 

from nonsense and canonical GT-AG splice site variants) were classified as being of “unknown significance”. 

Moreover, all missense variants that were experimentally shown to be compatible with a GoF or GoP mechanism 

were classified as “pathogenic”. The second paper did not include 5' and 3' variants or intronic variants (except 

for those occurring within the GT-AG canonical splice sites) and designated specific terms for classifying 

pathologically relevant PRSS1 variants (e.g., “pathogenic variants with established risk to be disease-causing”) 

[11]. Herein, we describe a classification of all currently known PRSS1 variants for CP within the framework of 

the ACMG/AMP guidelines-based seven-category variant classification system; an expert perspective from the 

Franco-Chinese GREPAN (Genetic REsearch on PANcreatitis) Study Group. 

 

2. Methods 

2.1. PRSS1 variants 

PRSS1 variants (and related references) were derived primarily from the Database of Genetic Risk Factors in 

Chronic Pancreatitis (will be described as the CP Database throughout the manuscript) [19, 20] and 

complemented by data from the Human Gene Mutation Database (HGMD) [21, 22]. Three variants were 

excluded from further consideration: one somatic variant (i.e., p.G191R identified in four tumors [23]; registered 

in the CP database) and two variants obtained via personal communications (registered in HGMD). Cross-

reference examination and keyword search (“PRSS1” plus “variant” or “mutation”) in PubMed identified 6 

additional variants (Figure 1).  

Variant nomenclature employed here was in accordance with [24]; NM_002769.5 and GRCh37/hg19 

chromosome 7 sequence were used as reference PRSS1 mRNA and DNA sequences, respectively. Herein, we 

would like to emphasize two points. First, multiple variant nomenclature errors have been corrected by the CP 

Database [20]. Second, NG_001333.2 (Homo sapiens T cell receptor beta locus on chromosome 7) has been 
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used by many investigators and the CP Database as reference PRSS1 DNA sequence, resulting in alternate names 

for five common 5’ variants (see subsections 3.2.1 and 3.4). 

 

2.2. Approaches to, and principles for, variant classification 

Functionality, a prerequisite for pathological relevance, is closely bound up with the type of variant or the 

variant’s location within the genomic sequence of the gene in question. This is of particular importance for 

classifying PRSS1 variants because both GoF and GoP variants are of pathological relevance whereas loss-of-

function (LoF) variants are benign in relation to CP [10]. We therefore classified them by variant type and 

pathological mechanism within the framework of our recently proposed seven-category framework (Figure 1). 

Here, it is worth emphasizing three points. First, we previously proposed an allele frequency threshold, 0.001 as 

an aid to distinguish PRSS1 “pathogenic” variants from “predisposing” variants with respect to CP [10]. Thus, 

any pathologically relevant PRSS1 variant having an allele frequency of ≥0.001 in the general population would 

be considered to be too common to cause CP; rather, it would be regarded as predisposing to CP. This 

proposition, which was based on the allele frequency cutoff recommended for filtering dominant Mendelian 

disease-causing variants [25], and validated against most of the experimentally confirmed PRSS1 GoF and GoP 

variants [10], will be adopted in the current study. Second, we previously proposed to classify LoF PRSS1 

variants (e.g., nonsense and canonical GT-AG splice site variants) as “benign” whilst specifying their protective 

nature in parentheses after the primary variant classificatory category [10]. Herein, we will classify all predicted 

and experimentally demonstrated LoF variants as “benign” whilst using the complementary term protective only 

for those variants causing a complete or almost complete LoF of the affected allele. Third, PRSS1 variants were 

not only reported in subjects with CP but also in subjects with other diseases (see subsection 2.3.1). Here we 

included all known germline PRSS1 variants in our classification. However, for those variants that were reported 

only in the context of non-CP diseases, their classification was carried out solely in relation to their pathological 

relevance to CP rather than to the non-CP diseases. 

 

2.3. Factors taken into consideration for variant classification 

2.3.1. Clinical genetic data 

Clinical genetic data refer to whether or not the variant in question has been found in subjects with CP or 

other diseases, or in controls. Data from some original reports were reinterpreted according to our working 

definitions of HCP, familial CP (FCP) and idiopathic CP (ICP), in line with our previous publications [17, 26]. 
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For variants that were reported in ≤3 studies, all studies were cited. For variants that were reported in >3 studies, 

only the first three publications or the first publication plus two other selected publications were cited along with 

the CP Database [20] (N.B. the CP Database collated comprehensively the related original reports and extracted 

the numbers of CP carriers and non-CP carriers for each variant). For any variant, a publication that possibly 

overlapped with a prior one from the same group (as annotated by [20]) was not cited here. Definitions of a 

variant as common (allele frequency of ≥0.05), low frequency (≥0.005 to <0.05), rare (≥0.001 to <0.005) or very 

rare (<0.001) are in accordance with Manolio et al. [27].  

PRSS1 variants have been confirmed to play a pathological role (either causative or predisposing) in not only 

HCP, FCP and ICP but also in alcoholic CP (ACP) (e.g., [28, 29]). PRSS1 variants may also play a role in 

autoimmune pancreatitis (AIP) (e.g., [30]) or asparaginase-associated pancreatitis [31] but definitive conclusions 

cannot be drawn at this stage owing to the limited data available and/or lack of replication. Here, clinical genetic 

findings made in these two rather specific manifestations of pancreatitis will not be considered as being 

informative with regard to the pathological role of PRSS1 variants in the etiology of CP.  

Whilst GoF and GoP PRSS1 variants predispose to CP, CP itself increases the risk of pancreatic cancer [32]. 

However, to date, a direct causal link between GoF and GoP PRSS1 variants and an increased risk of pancreatic 

cancer has not been established. Thus, germline PRSS1 variants found in pancreatic cancer will not be 

considered as equivalent to variants found in CP, let alone for those found in cancers affecting other 

organs/tissues. 

PRSS1 variants have sometimes been identified in patients with acute pancreatitis (AP), particularly 

recurrent AP (RAP) without known etiological factors. Given that 10% of subjects with a first attack of AP and 

36% of subjects with RAP would progress to CP [33], such findings will be considered here as clinical genetic 

evidence pertinent to the pathological role of PRSS1 variants in the etiology of CP. 

 

2.3.2. Functional analysis data 

Functional analysis data (with respect to the functional effect of the variant in question) refer to laboratory 

findings obtained from either biochemical analysis, cell transfection experiments, transgenic mouse studies or 

analyses performed using patient-derived material.  

 

2.3.3. Population allele frequency data 
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Global population allele frequency (gpAF) and highest subpopulation allele frequency (hspAF) of studied 

variants were obtained from the Genome Aggregation Database (gnomAD) [34, 35].  

 

2.3.4. In silico analyses and evidence-based conjecture 

The linkage disequilibrium (LD) between two variants was evaluated by means of the LDpair Tool available 

on the LD link website [36]. The regulatory potential of 5’ and 3’ variants was evaluated in terms of their 

RegulomeDB probability scores [37, 38], a model that integrated functional genomics features along with 

continuous values such as ChIP-seq signals, DNase-seq signals, information content change, and DeepSEA 

scores. The score ranges from 0 to 1. The higher the score, the more likely the variant is to be a functional 

regulatory variant [39]. SpliceAI [40, 41], the currently most accurate tool for predicting splicing variants (e.g., 

[42, 43]), was used to classify intronic, nonsense and synonymous variants in terms of their contribution to 

aberrant splicing. Evidence-based conjecture was employed for classifying variants without supporting 

functional data whenever appropriate.  

 

3. Results 

A total of 100 distinct germline PRSS1 variants, all reported in peer-reviewed papers, were derived from a 

combination of data from the CP Database, HGMD and literature search (Figure 1). Mindful of the existence of 

two discrete pathological mechanisms underlying CP-related PRSS1 variants, these were divided into five 

subcategories for classificatory purposes (Figure 1). Before going into the details, we reiterate that some PRSS1 

variants have so far only been reported in subjects with diseases other than CP; these variants were classified 

with respect to their relevance to CP rather than the non-CP diseases.  

 

3.1. Classification of gain of trypsinogen CNVs 

Consistent with previous publications [10, 19], all three gain of trypsinogen CNVs were classified as 

“pathogenic” because (i) they have been identified in multiple ICP patients and/or HCP or FCP families; (ii) they 

are absent or extremely rare in the general population; and (iii) their presumed dosage effect on the etiology of 

CP was confirmed by transgenic mouse studies (Table 1). 

 

3.2. Classification of 5' and 3' variants 

For ease of discussion, the 12 5' and 3' variants will be divided into common and uncommon variants. 
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3.2.1. Common variants 

All six common variants are in high LD, as indicated by the R2 values in Table 2. The first reported variant, 

c.-408T>C (rs10273639; known as c.-408C>T in accordance with NG_001333.2), will henceforth be used as a 

tag for this common haplotype. c.-408T>C has a gpAF of 0.5189 in gnomAD (v2.1.1) [35]. A previous meta-

analysis showed that c.-408T>C had a pooled odds ratio (OR) of 1.28 (95% confidence interval (CI) 1.17-1.40; 

p<0.00001) for ICP [44].  

c.-204A>C (rs4726576; known as c.-204C>A in accordance with NG_001333.2) has been shown, both in 

silico and in vitro, to be a functional regulatory variant [45, 46]. It has previously been classified as 

“predisposing” in the context of CP [10]. Of the remaining five variants, only c.-408T>C was subjected to a 

promoter reporter gene assay, and was shown to have no effect on gene expression [46].  

Herein, we assessed the regulatory potential of the six common variants in terms of the RegulomeDB 

probability score [37, 38]. As shown in Table 2, the experimentally demonstrated functional c.-204A>C variant 

has a RegulomeDB probability score of 0.75713 whereas the other five variants have scores of <0.14. We further 

correlated the six common variants with DNase I-accessible DNA regions in pancreatic tissue using data 

available from the NIH Roadmap Epigenomics Mapping Consortium website [47]. Only c.-204A>C was found 

to be located within a significant DNaseI-accessible DNA region within the PRSS1 locus (Supplementary Figure 

1). Additionally, c.-204A>C occurred within a MAF transcription factor binding site motif, according to 

RegulomDB [38] (Supplementary Figure 2a). Although MAF protein is highly expressed in the pancreas [48], to 

date, no studies have investigated its role in the exocrine pancreas. MAF proteins can act as transcriptional 

activators or repressors depending upon the target genes [49].  

The above cross-variant comparisons have demonstrated a clear difference between c.-204A>C and the other 

five common variants in terms of their potential regulatory features. This has served to strengthen the previous 

classification of c.-204A>C as “predisposing” while suggesting that the other five variants could be classified as 

“benign”. It should however be emphasized that c.-204A>C may not be the sole functional variant underlying 

the increased risk of the c.-408T>C-tagged haplotype. This risk haplotype has been recently shown to contain the 

PRSS3P2 and TRY7 pseudogenes whereas the alternative haplotype has lost the two pseudogenes [50, 51]; this 

alternative haplotype was reported to be associated with a protective effect against CP [52]. Interestingly, the 

risk haplotype appears to contain still functional PRSS3P2/TRY7 pseudogene enhancers that serve to upregulate 

pancreatic PRSS2 expression [53], which is consistent with the increasingly appreciated role of PRSS2 in 
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pancreatitis (see Masson et al. [52] and references therein). It is plausible that the risk conferred by the c.-

408T>C-tagged haplotype is attributable to two non-mutually exclusive mechanisms.  

 

3.2.2. Uncommon 5' variants 

Except for c.-338T>G, which was identified in 3 of 65 Chinese patients with pancreatic cancer but without 

pancreatitis [54], all six uncommon 5’ variants have been reported only once, either in CP patients or controls 

(Table 3). Herein, it should be noted that whereas c.-338T>G is very rare in combined gnomAD populations, it 

occurs as a low frequency variant in the Japanese and Korean populations according to their respective 

population-specific databases (i.e., 0.01468 in accordance with the 8.3 K Japanese population reference panel 

(8.3KJPN) project and 0.0109 in accordance with the Korean Reference Genome Database (KRGDB); Table 3). 

Four variants (c.-184G>A, c.-173C>T, c.-147C>T and c.-30_-28delTCC) were subjected to a promoter 

reporter gene assay but only c.-147C>T exhibited a significant (and negative) effect on gene expression [55]. 

Notably, c.-147C>T was identified as affecting a binding site for ATF4 [55]; ATF4 is highly expressed in the 

pancreas [48] and knockout of ATF4 has been reported to cause pancreatic deficiency in mice [56].  

We further performed a cross-variant comparison in terms of regulatory potential. All six uncommon 5' 

variants are located within the significant DNase I-accessible DNA region that contains the common c.-204A>C 

variant (refer to Supplementary Figure 1a). Presumably, the high RegulomeDB probability score for the 

functional c.-147C>T variant, 0.98, would be largely attributable to its location within this significant DNase I-

accessible DNA region and its disruption of the binding site for transcription factor ATF4 that has an 

experimentally confirmed role in the exocrine pancreas (Supplementary Figure 2b). By contrast, the identical 

and lower RegulomeDB probability score, 0.60906, for the other five variants would be accounted for by their 

location within the same significant DNase I-accessible DNA region even though they do not affect any known 

transcription factor binding sites (Table 3). 

Taken together, all six uncommon 5' variants could be classified as “benign” (Table 3). 

 

3.3. Classification of intronic variants 

There existed no functional analytic data for all 19 PRSS1 intronic variants with the exception of 

c.200+64_68delCCCAG. 

 

3.3.1. Two canonical splice site variants 
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Neither of the two canonical splice site variants, c.40+1G>A and c.200+1G>A, was found in subjects with 

pancreatitis (Table 4). Both of them represent predicted LoF (pLoF) variants in accordance with [34]. Herein, we 

confirmed their LoF nature by means of SpliceAI [40, 41]. c.40+1G>A was predicted to disrupt the splice donor 

site of intron 1 whilst activating a nearby downstream cryptic splice donor site; the mutant transcript, which 

would be predicted to encode a product comprising only 19 amino acids (Supplementary Figure 3), is likely to be 

subject to significant degradation by nonsense-mediated mRNA decay [57]. c.200+1G>A was predicted to 

disrupt the splice donor site of intron 2 whilst activating an upstream cryptic splice donor site within exon 2; this 

would be predicted to lead to the loss of the terminal 33 bp of exon 2, which would in turn lead to the translation 

of a protein with an internal deletion of 11 amino acids; the mutant protein cannot be functional owing to the loss 

of histidine 63, one of trypsin’s catalytic triad residues (Supplementary Figure 4).  

Consistent with our previous publication [10], these two pLoF variants were classified as “benign 

(protective)”. 

 

3.3.2. A pentanucleotide deletion variant with accompanying in vivo functional data 

c.200+64_68delCCCAG was detected in a Chinese AIP family but did not segregate with the disease [all 

three patients (one homozygote) and 3 of 7 genetically analyzed healthy members carried the variant]; it was also 

detected in a Chinese idiopathic AIP patient but was absent from 520 unrelated healthy controls [58]. RNA 

analysis using patient blood cells revealed a mutant transcript harboring an in-frame deletion of the first 141 

nucleotides of exon 2 [58]. In vitro biochemical characterization demonstrated that the mutant protein had lower 

trypsin activity than the wild-type protein with or without enterokinase treatment [58]. However, as illustrated in 

Supplementary Figure 5, the mutant transcript would encode a protein lacking amino acids 14-60 in the context 

of pretrypsinogen and the first 37 amino acids in the context of trypsin. Such a significantly truncated protein at 

the N-terminal end is unlikely to have any trypsin activity. These, together with the fact that PRSS1 has no 

confirmed role in AIP, would suggest that the detection of c.200+64_68delCCCAG in AIP was most probably a 

chance finding. Consequently, we think that it is reasonable to classify c.200+64_68delCCCAG as “benign” in 

the context of CP. 

 

3.3.3. The remaining intronic variants 

Two of the remaining 16 entries are worthy of mention. The first is c.41-49C>T, which was identified in 2 

patients (father and son) of an FCP family. However, c.41-49C>T has a rather high allele frequency in the 
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general population (i.e., gpAF, 0.001122; hspAF, 0.005499 (Table 4)). Applying our previously proposed allele 

frequency threshold of 0.001 [10] suggests that it is unlikely to be a “pathogenic” variant. The second is 

c.454+172C>T, which was found in a HCP family. However, it was co-inherited with PRSS1 p.N29I, the second 

most frequent PRSS1 variant causing HCP.  

Importantly, none of these 16 variants were predicted by SpliceAI to affect splicing, supporting their 

“benign” nature from a mechanistic viewpoint.  

 

3.4. Classification of nonsense, frameshift deletion and synonymous variants 

In common with the two canonical splice site LoF variants (Table 4), none of the six pLoF variants including 

five nonsense (p.Y37*, p.Q56*, p.W57*, p.Q86*and p.C160*) and one frameshift deletion (p.P164Lfs*3), were 

found in patients with CP (Supplementary Table 1). They are unequivocal LoF variants and were thus classified 

as “benign (protective)”. 

The two common silent variants, c.486T>C (c.486C>T in accordance with NG_001333.2; p.D162=) and 

c.738T>C (c.738C>T in accordance with NG_001333.2; p.N246=), are in high LD with the previously discussed 

c.-408T>C variant. Of the four rare silent variants, only c.204C (p.R68=) was identified in a patient with 

idiopathic pancreatitis (Supplementary Table 1). All six silent variants could be reasonably classified as “benign” 

since none of them were predicted to affect splicing by SpliceAI. 

 

3.5. Classification of missense, small in-frame duplication and gene conversion variants 

3.5.1. Variants with supporting functional analysis 

Thirty-six of the 54 missense, small in-frame duplication and gene conversion variants have been 

functionally analyzed, mainly by the Sahin-Tóth group. A functional test is generally regarded as the gold 

standard for classifying any variant. Therefore, it is relatively straightforward to classify these 36 variants on the 

basis of their supporting functional data.  

All 17 experimentally demonstrated GoF variants had a hspAF of <0.001. Of these variants, 7 affected the 

activation peptide sequence (i.e., the first 7 variants in Table 5), 3 affected Asn29, 4 affected Arg122, p.V39A 

segregated perfectly with the disease in a large HCP family (i.e., the variant was identified in all seven 

genetically analyzed patients but not in any of the four healthy family members analyzed [59]) whilst p.E190K 

was identified in an 11-year-old girl with ICP. All these 16 variants were characterized by a GoF effect on 

PRSS1 itself. The remaining p.E79K variant, which was identified in a total of 17 patients with FCP, ICP or 
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ACP in multiple studies [20], may be regarded as an outlier with respect to the GoF mechanism. The p.E79K-

cationic trypsin was shown to transactivate PRSS2 (encoding anionic trypsinogen, the second major trypsinogen 

isoform after PRSS1) more efficiently than the wild-type [60]; a finding compatible with the growing view that 

increased PRSS2 expression acts as an independent GoF mechanism underlying CP [52]. In short, the clinical 

genetic, functional and population data concurred, supporting a “pathogenic” classification for all 17 variants. 

Of the 10 experimentally demonstrated GoP variants, 6 were characterized by a severe secretion effect and 

all these 6 variants had a hspAF of <0.001. Of the 6 variants associated with a severe secretion effect, 3 were 

further analyzed with respect to ER stress in transfected cells; all three were found to exhibit increased ER stress 

markers. Of these 3 variants, two had been identified in HCP families (Table 5). By contrast, none of the four 

variants characterized by a moderate secretion effect were found in HCP families. Most importantly, one of these 

variants, p.G208A, had an allele frequency of 0.009514 in East Asians; based upon data from a large Chinese 

cohort study [61], p.G208A had an OR of 4.72 for ICP (95% CI 2.88-7.72, p=9.2 × 10-11) [62]. As a matter of 

fact, it was these two latter observations that prompted our proposal of the seven-category variant classification 

system [10]. Now that p.G208A is unequivocally categorized as a “predisposing” variant, it would appear 

reasonable to use “moderate secretion defect” and “severe secretion effect” as additional and functional criteria 

for classifying these GoF variants. Thus, the six variants with a severe secretion effect were classified as 

“pathogenic” whereas the four variants with a moderate secretion effect were classified as “predisposing” (Table 

5). 

All nine variants characterized by no effect or LoF were classified as “benign” (Table 5). 

 

3.5.2. Variants without supporting functional data 

The 18 missense variants lacking supporting functional data are summarized in Table 6. All were reported in 

single studies and were almost invariably found in single subjects. Moreover, eight of these variants were either 

found in controls or individuals with a disease that was not considered to be relevant to a pathological role for 

PRSS1 variants in CP. Nonetheless, just as a rare benign variant may be found in a CP patient by chance (see 

Table 5), a rare pathological variant may also be found in a non-CP patient or control by chance for many 

reasons (e.g., asymptomatic disease, late disease onset, low penetrance, de novo). It should also be emphasized 

that in silico prediction tools tend to have relatively poor overall performance in relation to missense variants 

[63]. Their utility would be even more limited for the prediction of functional consequences of PRSS1 variants 

owing to the existence of two possible pathological mechanisms. GoF variants are inherently refractory to 
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prediction [64] and we are not aware of any in silico tools that can distinguish GoP variants from LoF variants. 

Therefore, to be on the safe side, and following in the footsteps of Németh and Sahin-Tóth [19], all 18 missense 

variants could conservatively be classed as being of “unknown significance”. We nevertheless attempted to 

improve upon the classification of five of these variants using evidence-based conjecture.  

p.V39E was found in a patient with RAP and is absent from gnomAD (Table 6). p.V39A, which affected the 

same amino acid site as p.V39E, was a “pathogenic” GoF variant (see Table 5). p.V39A is thought to modify 

PRSS1 structure in such a way as to reduce trypsinogen cleavage at Arg122 by trypsin and at Leu81 by CTRC as 

well as reducing trypsin degradation by CTRC [65]. It is possible that p.V39E (as well as p.V39G that was 

identified serendipitously in a pediatric soft tissue sarcoma survivor; Table 6) has a similar effect to p.V39A. 

Taken together, we are minded to classify both p.V39E and p.V39G as “likely pathogenic”. 

p.Q98R was identified in a single patient with pancreatitis and has an extremely low allele frequency in 

gnomAD (Table 6). Interestingly, p.Q98K was a “benign” variant (see Table 5). Given that arginine and lysine 

have remarkably similar physicochemical properties (i.e., both are polar and positively charged) [66], we suggest 

classifying p.Q98R as “likely benign”.  

p.R122G was identified in a health control and has an extremely low allele frequency in gnomAD (Table 6). 

Given that both p.R122H and p.R122C are disease-causing, we would classify p.R122G as “likely pathogenic”. 

p.V123L was found in a subject without any overt pancreatic disease and is very rare in gnomAD (Table 6). 

p.V123M was a “benign” variant (see Table 5) and leucine is a conservative substitution for methionine [67], 

suggesting that p.V123L is a “likely benign” variant. 

 

4. Discussion 

The Franco-Chinese GREPAN Study Group comprises clinicians, geneticists, bioinformaticists and basic 

researchers with diverse and complementary expertise in CP. In this study, the Group provides an expert 

classification of the currently reported 100 PRSS1 variants with respect to their clinical relevance in relation to 

CP. Based upon the combined consideration of clinical genetic, functional analysis, population data and in silico 

analysis and evidence-based conjecture when appropriate, we classified 26 variants as “pathogenic”, 3 variants 

as “likely pathogenic”, 5 variants as “predisposing”, 13 variants as of “unknown significance”, 2 variants as 

“likely benign”, and 51 variants as “benign”. Apart from its completeness in terms of variants included, this 

study is characterized by two features. First, it employed in silico tools to aid the classification of 5’ and 3’, 

nonsense, silent and intronic variants but not missense variants. This decision was made on the basis of 
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balancing the biological plausibility of a given type of variant being pathologically relevant to CP or not with the 

reliability (and feasibility) of the in silico prediction tools on the other. For example, SpliceAI is a highly 

accurate tool for predicting the potential effects of single nucleotide substitutions or small indel variants on 

splicing. Therefore, a negative prediction for any silent or intronic PRSS1 variant strongly supports a “benign” 

classification. Even in the case of a positive prediction (i.e., predicted to affect splicing), from a mechanistic 

viewpoint, the aberrantly spliced transcript would most likely lead to a LoF rather than a GoF or GoP. In this 

regard, it is worth mentioning that the vast majority of the silent and intronic PRSS1 variants registered by 

ClinVar are classified as “uncertain significance”, “conflicting interpretations of pathogenicity” or “likely 

benign” [68]. In line with our above reasoning, most, if not all, of these ClinVar-registered silent and intronic 

PRSS1 variants should be reclassified as “benign” with respect to CP. By contrast, the existence of two types of 

PRSS1 pathologically relevant missense variants, GoF and GoP, made in silico predictions undesirable because 

these predictions could be potentially misleading. Therefore, one may have to rely heavily on functional analysis 

to classify clinically relevant PRSS1 missense variants. Second, having compared the GoP variants with respect 

to their clinical genetic, functional analysis and population data, we proposed to classify the variants with a 

“moderate secretion defect” as “predisposing” and the variants with a “severe secretion defect” as “pathogenic”. 

This functional phenotype-based classification criterion, together with our previously proposed allele frequency 

threshold, promises to improve our understanding of the complexity underlying disease expression and the 

genotype-phenotype relationship in CP.  

Variant classification is an important, complex and evolving issue in the field of human genetics, and this is 

reflected in the constantly refined variant classification standards/guidelines and the ever increasing number of 

reports of reclassified variants (for examples in both contexts, see [18]). In this vein, our proposed allele 

frequency threshold and functional phenotype-based classification criterion for distinguishing PRSS1 

“pathogenic” variants from “predisposing” variants (as well as our proposed classifications for some rare PRSS1 

missense variants) may need to be refined as more data become available. Indeed, separating “predisposing” 

variants from “pathogenic” variants is a difficult task, a process that would require us to make semi-arbitrary but 

nevertheless operational thresholds. As we noted previously, all such decisions “need to be made on a gene-by-

gene basis and would require close collaboration between researchers and clinicians with specific expertise in the 

diseases/genes in question” [10]. Finally, it should be emphasized that some variants classified as “benign” may 

occur in cis with an as yet unidentified pathological variant. 
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In summary, this study provides a systematic classification of the so far reported 100 PRSS1 variants for CP 

within the framework of the ACMG/AMP guidelines-based seven-category variant classification system. We 

believe that our study will have immediate implications for interpreting ClinVar-registered PRSS1 variants and 

should serve to provide optimal guidelines/standards for reporting PRSS1 variants in the future. 
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Figure 1. Variant collection and classification procedures. 
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Table 1. Classification of gain of trypsinogen CNVs 

Variant Clinical genetic data Functional analytic data gpAF (hspAF)a Classification 

(for CP) 

Triplication Causes HCP in multiple families [69]; has also 

been identified in cases with FCP and ICP [45, 

70]. Triplication CNVs identified in French 

patients [69, 70] were found to arise from a 

common founder chromosome [71]) 

GoF (three mouse transgenic studies [72-

74] were retrospectively identified to be 

informative in relation to the pathogenic 

mechanism underlying the trypsinogen 

gene dosage effect in pancreatitis [45]) 

NA Pathogenic  

Duplication Detected in multiple ICP patients and 2 FCP 

patients [20, 45, 70]; detected only in the 

youngest patient from an HCP family (the 

variant must have originated de novo since it 

was not detected in either parent) [75]. There 

existed at least five distinct duplication CNVs 

based upon breakpoint sequences characterized 

at the nucleotide sequence level [76] 

Same as above 0.00004610 (0.0001049, 

African/African American) 

Pathogenic  

Double GoF 

hybrid variant 

Identified in 1 HCP family with 6 patients 

across 3 generations [77] 

GoF (gene dosage plus the effect of 

p.Asn29Ile) [77]) 

NA Pathogenic  

aIn accordance with gnomAD SVs v2.1 [35]. NA, not available. 
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Table 2. Classification of common PRSS1 5' and 3' variants  

Location Varianta R2 (with 

respect to 

rs10273639)b 

Clinical genetic data Functional data RegulomeDB 

scorec 

Classification 

(for CP) c.nomenclature 

(NM_002769.5) 

g.nomenclature 

(chr7, hg19) 

rs number 

5' c.-408T>C (c.-

408C>T)d 

g.142456928T>C rs10273639  Association with CP 

discovered by means 

of GWAS [28]; 

replicated in multiple 

subsequent studies [20, 

78, 79]; pooled odds 

ratio of the risk allele 

for ICP was 1.28 [44] 

Not functional by means 

of a promoter reporter 

gene assay [46]; the risk 

haplotype is associated 

with slightly increased 

PRSS1 and PRSS2 mRNA 

expression in pancreatic 

tissue in a dosage-

dependent manner [28, 

44]; the risk haplotype 

contains still functional 

PRSS3P2/TRY7 

pseudogene enhancers that 

upregulate pancreatic 

PRSS2 expression [52, 53] 

0.13454 Benign 

 

5' c.-204A>C (c.-

204C>A)d 

g.142457132A>C rs4726576 0.9365 Found to be in 

complete LD with c.-

408T>C by 

resequencing the 

promoter region of 

PRSS1 in French 

Caucasian individuals 

[46]; associated with 

CP in an Indian study 

[80] and a Chinese 

study [81] 

GoF (increased gene 

expression by means of a 

promoter reporter gene 

assay [46]) 

0.75713 Predisposing  

 

5' c.-1809G>Ae g.142455527G>A rs3757378 0.7111 Found by direct 

sequencing of 2.1 kb 

PRSS1 5' region; 

linked with c.-408T>C 

and c.-204A>C but not 

associated with 

tropical calcific 

pancreatitis [80] 

No data available 0.00347 Benign 

 

5' c.-1798C>T g.142455538C>T rs3757377 0.7158 Same as c.-1809A>G No data available 0.13454 Benign 
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5' c.-1383A>G 

(c.-1383G>A)d 

g.142455953A>G rs9969188 0.9568 Same as c.-1809A>G No data available 0.0 Benign 

 

3' c.*12,596G>A g.142473466G>A rs13228878 0.6593 Identified by GWAS; 

linked with c.-408T>C 

and associated with 

asparaginase-

associated pancreatitis 

[31] 

No data available 0.09659 Benign 

 

aVariants are listed in the order of publication year.  
bData were obtained using the LDproxy Tool available on the LD link website [36] in the context of all populations. 
cData were obtained from the RegulomeDB website [38].  

dAlternate name in accordance with NG_001333.2 (Homo sapiens T cell receptor beta locus on chromosome 7). 
eThis variant was incorrectly listed as c.-1,808G>A in the original report [80]. 
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Table 3. Classification of uncommon PRSS1 5' variants  

Variant Clinical genetic 

data 

Functional data gpAF (hspAF)a RegulomeDBb Classification 

(for CP) c.nomenclature 

(NM_002769.5) 

g.nomenclature 

(chr7, hg19) 

rs number Score Motif 

c.-338T>G g.142456998T>G rs184553357 Identified in 3 of 65 

Chinese patients 

with pancreatic 

cancer (but without 

pancreatitis) [54] 

No data available 0.00006389 (0.001284, 

East Asian) [N.B. allele 

frequency in the Japanese 

population, 0.01468 

(8.3KJPN project) [82]; 

allele frequency in the 

Korean population, 0.0109 

(KRGDB project) [83]] 

0.60906 No Benign 

c.-184G>A g.142457152G>A rs139432246 Found in 1 of 242 

French ICP patients 

(not in 384 

controls) by 

resequencing [55] 

No effect on 

reporter gene 

expression [55] 

0.005121 (0.01849, 

African/African American) 

0.60906 No Benign 

c.-173C>T g.142457163C>T rs572772014 Found in 1 of 384 

French controls (not 

in 242 ICP patients) 

by resequencing 

[55] 

No effect on 

reporter gene 

expression [55] 

0.00003225 (0.00006529, 

non-Finnish European) 

0.60906 No Benign 

c.-147C>T g.142457189C>T rs754367025 Found in 1 of 384 

French controls (not 

in 242 ICP patients) 

by resequencing 

[55]  

Significantly 

reduced reporter 

gene expression 

(a reduction of 

86% of normal) 

by reducing the 

affinity of an 

ATF4 

transcription 

factor binding site 

[55] 

Absent 0.98c ATF4c Benign  

c.-36G>A g.142457300G>A rs377134514 Found in 1 of 236 

healthy Greek 

subjects [84] 

No data available 0.00002475 (0.00005014, 

East Asian) 

0.60906 No Benign 

c.-30_-

28delTCC 

g.142457306_142

457308del 

rs1287463139 Found in a single 

CP patient [85] 

Mild effect on 

reporter gene 

expression (a 

0.0004914 (0.004245, 

African/African American) 

0.60906d Nod Benign  
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reduction of 24% 

of normal) [55] 
aIn accordance with gnomAD v2.1.1 [35]. 
bData were obtained from the RegulomeDB website [38]. 
cUsed chr7(hg19):142457189-142457190 for querying RegulomeDB [38]. 
dUsed chr7(hg19):142457306-142457307 for querying RegulomeDB [38]. 
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Table 4. Classification of PRSS1 intronic variants 

Intron Variant Clinical genetic data gpAF (hspAF)a Classification 

(for CP) c.nomenclature 

(NM_002769.5) 

g.nomenclature 

(chr7, hg19) 

rs number 

1 c.40+1G>A g.142457376G>A rs149125789 Identified in a patient with benign pancreatic 

hyperenzymemia but without pancreatitis [86] 

0.00006010 (0.0003204, 

African/African American) 

Benign 

(protective) 

1 c.40+40delC g.142457415del rs779579792 Identified in 1 of 381 patients with 

pancreatitis; no controls were analyzed [87] 

NA Benign 

1 c.40+299G>A g.142457674G>A rs2011216 In LD with c.-408T>C [28] 0.3759 (0.6515, East Asian) Benign 

1 c.41-49C>T g.142458357C>T rs190942214 Detected in 2 patients (father and son) from a 

FCP family; no controls were analyzed [88] 

0.001122 (0.005499, 

Ashkenazi Jewish) 

Benign 

2 c.200+1G>A g.142458566G>A rs143909348 Identified in 1 of 55 alcoholics without 

pancreatitis [89] 

0.004579 (0.02871 

African/African American) 

Benign 

(protective) 

2 c.200+64_68delC

CCAGb 

g.142458629_142

458633del 

rs377590054 Detected in all three patients (one 

homozygote) and in 3 of 7 healthy members 

of a Chinese AIP family; detected also in a 

Chinese idiopathic AIP patient [58] 

0.00001422 (0.0002009, 

East Asian) 

Benign 

2 c.201-99G>C g.142459526G>C rs530207004 Identified in 1 of 50 patients with familial 

intestinal gastric cancer and 1 of 107 subjects 

from the normal Italian Tuscany population 

[90] 

0.0007646 (0.001297, 

European (non-Finnish)) 

Benign 

3 c.454+10A>Cc g.142459888A>C Not available Identified in 5 of 253 Han Chinese patients 

with pancreatitis (comprising 22 with alcohol-

related diseases, 16 with idiopathic disease, 30 

cases with hyperlipidemia, 35 with the 

hereditary form from six families, and 150 

with gallbladder disease) [91] 

NA Benign 

3 c.454+36T>Cd g.142459914T>C rs761438114 Identified in 1 of 65 Chinese patients with 

pancreatic cancer [92] 

0.0001275 (0.001655, East 

Asian) 

Benign 

3 c.454+75A>G g.142459953A>G rs1376416883 Identified in 27 of 253 Chinese patients with 

pancreatitis (comprising 22 with alcohol-

related diseases, 16 with idiopathic disease, 30 

cases with hyperlipidemia, 35 with the 

hereditary form from six families, and 150 

with gallbladder disease) and in 4 of 320 

controls [91] 

NA Benign 

3 c.454+127A>Te g.142460005A>T rs376116875 Detected in 1 of 29 Chinese patients with 

pancreatitis; this patient also carried 

NA Benign 
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c.454+157C>G (incorrectly named 

c.454+157G>C) [92]. Whether the two 

variants were in cis or in trans is unknown 

3 c.454+157C>Gf g.142460035C>G rs371236770 Detected in 2 of 156 Chinese patients with 

pancreatic cancer [93] and 1 of 29 Chinese 

patients with pancreatitis [92] 

NA Benign 

3 c.454+157C>Ag g.142460035C>A Not available Detected in 1 Chinese patient with CP [94] NA Benign 

3 c.454+172C>T g.142460050C>T rs878977606 Co-inherited with PRSS1 p.Asn29Ile in four 

patients from a HCP family [95] 

NA Benign 

3 c.455-192T>Ag g.142460090T>A Not available Detected in 1 Chinese patient with CP [94] NA Benign 

4 c.592-79G>Ah g.142460640G>A rs531271210 Detected in 2 (one Italian male and one 

Turkish female) of 109 patients with ICP [96] 

NA Benign 

4 c.592-78G>Ah g.142460641G>A rs1337286040 Detected in 2 (one Italian male and one 

Turkish female) of 109 patients with ICP [96] 

NA Benign 

4 c.592-24C>T g.142460695C>T rs192452846 Detected in 4 patient with pancreatitis [20, 87, 

97, 98]  

0.003316 (0.005373, non-

Finnish European) 

Benign 

4 c.592[-11C>T;-

8C>T]i 

g.[142460708C>T

;142460711C>T] 

rs183791770; 
rs200381474 

Detected in 6 subjects with pancreatitis [20, 

87, 98, 99] 

0.003305 (0.01476, South 

Asian) 

Benign  

aIn accordance with gnomAD v2.1.1 [35]. 
bIncorrectly named as c.200+56_60delCCCAG in the original report [58]. 

cIncorrectly named as c.454+10T>G in the original report [91]. 
dIncorrectly named as c.454+36A>G in the original report [92]. 
eIncorrectly named as c.454+127T>A in the original report [92]. 
fIncorrectly named as c.454+157G>C in the original reports [92, 93]. 
gThese variants were incorrectly described as exon 3 variants in the original report and were identified in the same patient [94]. Whether the two variants were in cis or in 

trans is unknown. 
hThese two variants were detected together. They are most likely to have been generated simultaneously [100] given their occurrence at adjacent positions and their absence in 

gnomAD. 
iThe two variants were annotated here to be in cis since (i) they are in complete LD (R2 = 1.0) using the LDpair Tool [36] in the context of all populations and (ii) they were 

detected together in all six carriers. 
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Table 5. Classification of functionally analyzed PRSS1 missense variants, small in-frame duplication and gene conversion variants 

Exon Variant Clinical genetic dataa Functional consequence gpAF (hspAF)d Classification 

(for CP) c.nomenclature 

(NM_002769.5) 

Amino acid 

change 

Number of HCP 

families (family 

description) reportedb 

Otherc 

GoF 

2 c.47C>T p.A16V 2 (4 patients across 2 

generations; 3 patients 

across 2 generations) 

[101] 

Frequently reported in 

patients with FCP or ICP 

[20, 102, 103]. It is the 

third most commonly 

detected rare PRSS1 

variant in CP [20]  

Increased activation [65] NA [104] Pathogenic 

2 c.49C>A  p.P17T  Arose de novo in a 

Hungarian CP patient 

[105] 

Increased activation [105] NA Pathogenic 

2 c.56A>C  p.D19A  Identified in a French ICP 

patient [106] 

Increased autoactivation 

[106] 

NA Pathogenic 

2 c.62A>C  p.D21A 1 (5 patients across 3 

generations; all 3 tested 

patients carried the 

mutation) [107] 

Also found in 1 patient 

with RAP [108] and 1 

patient with early onset 

pancreatitis [98] 

Increased activation [109] NA Pathogenic 

2 c.65A>G  p.D22G  Identified in two patients 

of a FCP family [110] 

Increased autoactivation 

[106] 

NA Pathogenic 

2 c.68A>G  p.K23R  Reported in 12 CP patients 

with FCP, RAP or ICP 

[20, 85, 98, 108]  

Increased autoactivation 

[106, 111] 

NA Pathogenic 

2 c.63_71dup  p.K23_I24in

sIDK 

1 (3 patients across 2 

generations; all 3 patients 

carried the variant) [112] 

 Increased activation [112] NA Pathogenic 

2 c.86A>T  p.N29I The second most 

frequent variant causing 

HCP [20]; in the first 

report, one family had 19 

patients across 7 

generations [113] 

Also frequently reported in 

patients with ICP [20, 61, 

114] 

Increased activation and 

stability [65] 

NA Pathogenic 

2 c.[86A>T;161A

>G] (gene 

conversion) 

p.[N29I;N54

S] 

 Identified in a patient with 

ICP [115] 

Increased autoactivation 

(solely due to p.N29I) 

[115]  

NA Pathogenic 
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2 c.86A>C  p.N29T 1 (8 patients across 3 

generations; all patients 

were mutation carriers) 

[116] 

Also reported in patients 

with FCP, ICP or RAP 

[20, 117, 118] 

Increased activation and 

stability [65] 

NA Pathogenic 

2 c.116T>C p.V39A 1 (9 patients across 3 

generations; all 7 

genetically analyzed 

patients carried the 

mutation whilst all 4 

genetically analyzed 

unaffected members did 

not carry the mutation) 

[59] 

 Increased stability [65] NA Pathogenic 

3 c.235G>A p.E79K  Identified in a total of 17 

patients with ICP, FCP or 

ACP [20], the first three 

reports being [60, 119, 

120] 

Increased transactivation 

of PRSS2 [60]; there is 

growing evidence that 

increased expression of 

PRSS2 is an independent 

mechanism underlying CP 

[52] 

0.00003579 

(0.0003076, 

African/African 

American) 

Pathogenic 

3 c.364C>T p.R122C  Identified in cases with 

ICP or FCP worldwide 

[20, 121-123] 

Increased autoactivation 

and stability [65, 122] 

0.00001988 

(0.00003517, European 

(non-Finnish)) 

Pathogenic 

3 c.365G>A p.R122H The most frequent 

variant causing HCP 

[20]; in the discovery 

report, one family had 20 

patients across 4 

generations [6] 

Also frequently reported in 

ICP patients [20, 114, 118] 

Increased autoactivation 

and stability [65, 124, 125] 

0.00001062 

(0.00002327, European 

(non-Finnish)) 

Pathogenic 

3 c.365_366GC>

AT (gene 

conversion) 

p.R122H 1 (4 patients across 4 

generations; the two 

genetically analyzed 

patients carried the 

mutation) [126] 

Identified in a Belgian 

patient with ICP [127] 

Increased autoactivation 

and stability [65, 124, 125] 

NA Pathogenic 

3 c.[343T>A;347

G>C;365_366d

elinsAT] (gene 

conversion) 

p.[S115T;R1

16P;R122H] 

 Identified in a 20-year-old 

German male with RAP; 

de novo occurrence in a 7-

year-old Polish girl with 

CP [128] 

A combination of 

increased trypsinogen 

activation (attributable to 

p.R122H) and secretion 

NA Pathogenic 
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(attributable to p.R116P) 

[128] 

4 c.568G>A p.E190K  Identified in an 11-year-

old girl with ICP [129] 

Increased autoactivation 

[129] 

NA Pathogenic 

GoP 

3 c.276G>T p.K92N  Identified in a Caucasian 

ICP patient [119] and a 

Chinese AIP patient [30] 

Moderate secretion defect 

[130] 

NA Predisposing 

3 c.298G>C p.D100H  Identified in 1/109 [96] 

and 1/351 [131] patients 

with ICP; co-inherited 

with a CTRC-deleting 

complex rearrangement in 

a subject with diabetes and 

identified alone in two 

clinically unaffected 

family members [132] 

Severe secretion defect 

[130] 

NA Pathogenic 

3 c.311T>C p.L104P 2 (both having 3 patients 

across 3 generations) 

[133, 134]; 

Identified in two ICP 

patients [20] and two FCP 

families [135] 

Severe secretion defect and 

elevation of ER stress 

marker [136] 

NA Pathogenic 

3 c.346C>T p.R116C 2 (3 patients across 2 

generations [137]; 3 

patients across 3 

generations [138]) 

Also reported in nearly 40 

patients with FCP or ICP 

[20, 96] 

Severe secretion defect and 

elevation of ER stress 

marker [138] 

0. 00007072 

(0.0007018, East 

Asian) 

Pathogenic 

3 c.371C>T p.S124F  Identified in 1 of 660 

German CP patients [118] 

Moderate secretion effect 

[130] 

0.000003977 

(0.00005437, East 

Asian) 

Predisposing 

3 c.380C>G p.S127C  Identified in an ICP patient 

and his unaffected mother 

[139] 

Severe secretion defect and 

elevation of ER stress 

marker [139] 

NA Pathogenic 

3 c.415T>A p.C139S  Identified in 13 CP carriers 

[20], the first three reports 

being [87, 91, 140] 

Severe secretion defect 

[138] 

NA Pathogenic 

3 c.416G>T p.C139F  Identified in 4 patients 

with ICP or RAP [99, 133, 

141] 

Severe secretion defect 

[130] 

NA Pathogenic 

4 c.508A>G p.K170E  Identified in 1 patient with 

CP [142] and 2 patients 

Moderate secretion effect 

[130] 

NA Predisposing  
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with tropical calcific 

pancreatitis [80] 

5 c.623G>C p.G208A  148 CP carriers reported 

[20], the first 3 reports 

being [87, 143, 144].  

Based upon data from 

ref. [61], the allele-based 

OR of p.G208A for ICP 

was 4.72 (95% CI 2.88-

7.72, p = 9.2 × 10-11) [62] 

Moderate secretion defect 

[130] 

0.0007141 (0.009873, 

East Asian) 

Predisposing  

No effect or loss-of-function 

2 c.107C>G  p.P36R  Identified in two patients 

with ICP [119, 130] 

Loss-of-function 

(degradation by CTRC) 

[130] 

0.00009908 (0.001353, 

East Asian) 

Benign 

3 c.241C>A p.L81M  Not segregated with CP in 

a Chinese AIP family (i.e., 

the variant was identified 

in the index patient with 

CP (12 y, female), her 

grandmother with CP and 

her healthy aunt but not in 

her grandfather with CP) 

[145] 

Biochemical analysis of 

recombined trypsinogen 

expressed in E. coli did not 

find differences in 

autoactivation or trypsin 

activity between the 

mutant and wild-type 

molecules [145]. 

Cleavage at Leu81 by 

CTRC is required for 

CTRC-dependent 

degradation of PRSS1 [65, 

146]; methionine is one of 

the conservative 

substitutions for leucine 

[67] and is one of the 

preferential cleavage sites 

of CTRC [147]; and 

p.L81M mutant was 

cleaved by CTRC as 

efficiently as wild-type 

[148] 

NA Benign 

3 c.248G>A p.G83E  Identified in 1 patient with 

ICP [119] 

Loss-of-function 

(degradation by CTRC) 

[130] 

NA Benign 
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3 c.263T>A p.I88N  Identified in 1 patient with 

CP [87] 

Loss-of-function 

(degradation by CTRC) 

[130] 

0.000007953 

(0.00004619, European 

(Finnish)) 

Benign 

3 c.292C>A p.Q98K  Identified in 1 patient with 

CP [142] 

Functionally neutral [130] 0.0001494 (0.0005880, 

Ashkenazi Jewish) 

Benign 

3 c.361G>A p.A121T  15 CP carriers and 6 non-

CP carriers reported [20], 

the first 3 reports being 

[91, 149, 150] 

Functionally neutral by 

biochemical analysis; and 

no secretion defect [151] 

0.00001995 

(0.00006172, 

African/African 

American) 

Benign 

3 c.367G>A p.V123M  Identified in 1 patient with 

ICP [119] and five non-CP 

subjects (1 unaffected 

control and four cancer 

patients) [20, 152, 153] 

Loss-of-function 

(degradation by CTRC) 

[130] 

0. 00003183 

(0.0001003, East 

Asian) 

Benign 

3 c.410C>T p.T137M  Reported in a total of 12 

CP carriers and 15 non-CP 

carriers [20], the first three 

reports being [87, 93, 140]  

Functionally neutral [130] 0.0006792 (0.009425, 

East Asian) 

Benign 

4 c.541A>G p.S181G  Identified in 6-year-old 

Italian boy with RAP; the 

patient also carried CFTR 

p.Phe508del; the two 

variants were present in 

the clinically normal 

mother [154] 

Functionally neutral [130] 0.00006362 

(0.0002613, South 

Asian) 

Benign 

aData from some original reports were reinterpreted according to our working definitions of HCP, FCP and ICP [17, 26]. 
bMost of these data were taken from Masson et al. [10]. Segregation data were additionally provided for variants reported in single HCP families. 
cFor variants reported in >3 unrelated studies, only the first three publications or the first publication and two other selected publications were cited along with the CP 

Database [20]. 
dIn accordance with gnomAD v2.1.1 [35].  
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Table 6. Classification of PRSS1 missense variants without supporting functional data 

Exon Variant Clinical genetic data gpAF (hspAF)a Classification 

c.nomenclature 

(NM_002769.5) 

Amino acid 

change 

2 c.97A>G p.N33D Identified in 1 patient (African origin) with 

idiopathic pancreatitisb [11] 

NA Unknown significance 

2 c.116T>A p.V39E Identified in 1 patient with RAP [155] NA Likely pathogenic 

2 c.116T>Gc p.V39G Identified in a pediatric soft tissue sarcoma 

survivor [156] 

NA Likely pathogenic 

2 c.125A>G p.N42S Identified in 1 patient with RAP [155] NA Unknown significance 

2 c.200C>T p.S67F Reported by a study of 10,389 cases from 33 

cancer types [153] 

0.00001593 (0.00002892, 

Latino/Admixed American) 

Unknown significance 

3 c.293A>G p.Q98R Identified in 1 patient with pancreatitis [98] 0.000003976 (0.000008790, 

European (non-Finnish)) 

Likely benign 

3 c.296A>G p.Y99C Identified in a patient with pancreatic ductal 

adenocarcinoma [157] 

0.000007953 (0.00001758, European 

(non-Finnish)) 

Unknown significance 

3 c.303G>C p.R101S Identified in 1 patient (Caucasian origin) with 

idiopathic pancreatitisb [11] 

NA Unknown significance 

3 c.310C>G p.L104V Identified in two patients and two healthy 

members of a family with solid pseudopapillary 

tumors [158] 

NA Unknown significance 

3 c.364C>G p.R122G Identified in 1 health control [152] 0.00003193 (0.00006498, European 

(non-Finnish)) 

Likely pathogenic 

3 c.367G>T p.V123L Found in 1/1000 German subjects without any 

pancreatic disease [130] and 1 patient with 

pancreatic cancer [152] 

0.00003536 (0.00006970, European 

(non-Finnish)) 

Likely benign 

3 c.403A>G p.T135A Found in a Chinese patient with pancreatic cancer 

who also carried c.410C>T (p.Thr137Met; see 

Table 5); whether the two variants are in cis or in 

trans remains unknown [93] 

NA Unknown significance 

3 c.443C>T p.A148V Identified in a patient with benign pancreatic 

hyperenzymemia [86] 

0.0003605 (0.002564, 

African/African American) 

Unknown significance 

4 c.487G>A p.A163T Identified in 1 ICP patient [99] 0.00004242 (0. 0002257, 

Latino/Admixed American) 

Unknown significance 

4 c.544A>T p.N182Y Identified in 1 of 1061 Chinese patients with ICP 

[61] 

NA Unknown significance 

4 c.557T>C p.V186A Identified in 1 patient (Ashkenaze origin) with 

idiopathic pancreatitisb [11] 

NA Unknown significance 
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5 c.689C>T p.T230I Identified in a patient with idiopathic pancreatitisb 

[11] 

NA Unknown significance 

5 c.721A>G p.N241D Identified in 1 patient (North Africa origin) with 

CPb [11] 

0.000003981 (0.000008799, 

European (non-Finnish)) 

Unknown significance 

aIn accordance with gnomAD v2.1.1 [35]. 
bThierry Bienvenu, personal communication.  
cConverted from chr7(hg19):142458481T>G (refer to Supplementary Table S2 in the original report [156].  
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