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aLaboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

bSolvay,Research and Innovation Center of Lyon, Saint-Fons, France

Abstract

Membrane processes may experience gel plugs that require specific cleaning steps. This

paper demonstrates with simulations how these plugs can occur. A physical model is used to

describe the particular diffusive behavior of gels. This model is implemented in an OpenFOAM

CFD simulation code to describe the dynamics of the gel layers when filtration is stopped.

During this step of relaxation, it is shown that the gel can expand and lead to a plug with

characteristic times in the order of minutes. The plugging is favored by a quick gel expansion

and by a slow diffusion removal. The operating conditions leading to the gel plugging are

analyzed and threshold conditions are unraveled. General practical recommendations on the

process control are drawn from these results.
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Highlights (3 to 5 bullet points maximum 85 characters, including spaces, per bullet point)

• Plugging of a lumen by a gel is simulated during a relaxation when filtration stops

• The plugging is favored by a quick gel expansion and by a slow diffusion removal

• Severe fouling and irreversibly degree of the gel are conditions leading to plugging

Graphical abstract (readable at a size of 5 * 13 cm)
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1 Introduction

In a number of situations, switching off the cross-flow or the driving pressure in a membrane

filtration system may lead to unexpected consequences such as the blocking of the feed channels.

Whether this sudden shut down is intentional at the end of a production session or unintentional

because of a pressure or temperature peak has been detected or a particle has blocked the inlet

lumen of a hollow fiber, the consequences are dramatic in terms of time and energy spent at

cleaning the system until its process capacity has been restored. Whereas numerous experimental

and numerical studies available in the literature provide quite a comprehensive understanding of

the fouling phenomena, the dynamics of the mechanisms occurring right after the system has been

turned off are far from being understood [1].

These phenomena certainly occur because the retentate in the channel cannot flow anymore.

In most cases, this non-flowing matter has the form of a gel. It has been established that the

way a colloidal gel was formed [2] has an impact on the cleaning efficiency afterwards. In waste

water treatment for example, the gel formed by extracellular polymeric substances (EPS) can lead

to clogging the feed channels [3]. The addition of calcium to alginate solutions, often used as

models for EPS, can lead to irreversible fouling to such an extent that it plugs the lumen of the

capillaries [4]. These mechanisms are linked to the properties of gels and to their propensity to relax

and are thus strongly dependent on the interaction between particles forming the gels, hence on the

electrolyte composition, pH ... [5], [6]. When filtering casein micelles, analysis of local concentration

profiles via in situ SAXS suggested that gel swelling after pressure release was strongly temperature

dependent [7].

Understanding these events is of theoretical but also technical importance. Unlike gravity-driven

membrane reactors where the long time scales involved allow experimental measurements (like to-

mography) of the film evolution associated with filtration/relaxation strategies [8], the experimental

techniques are scarce to investigate in situ and in real time what happens inside channels or thin

fibers once the pressure difference or the cross-flow have been zeroed. One can find multiphase flow

simulations combined to microfluidic experiments to have a better understanding of the mechanisms
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of resuspension events during membrane backwashing of micrometric particles [9, 10, 11]. However,

there are less studies investigating the same phenomena but for smaller particles or macromolecules.

The rare simulations performed to describe the dynamics of relaxation of gel layers have been per-

formed at a very local scale of a few thousands of particles. However, in membrane processes,

fouling layers can contain millions of 10 nm particles per µm2 of membranes area. Nevertheless,

the time scale of gel relaxation can be very large and strongly depends on the physico-chemical

properties [12], thus leading to difficulties to predict the fate of the fouling layers after the end

of a filtration step. Numerical tools and physical models that allow capturing the phenomena at

small scales are required to study the dynamics at the scale of the filtration process. In a previous

work, we had developed an Eulerian model describing the sol-gel transition at the process scale, in

which the physico-chemical and colloidal properties are accounted for via an osmotic pressure based

approach (Π-based model). Its relevance at describing situations occurring in membrane systems

has been shown in [13, 14]. The osmotic pressure is then the descriptor of local scale multi-body

inter-particle interactions: its variations with the colloids volume fraction, Π = f(φ) can be seen as

an equation of state for the colloidal suspension. It can be implemented in Eulerian equations for

large scale simulations.

It is interesting to understand the way a gel has formed, in order to better predict its fate

after the filtration. The formation of a gel results from a phase transition : the nature of surface

interaction changes from repulsion (ensuring stability of the suspension) to attraction (leading to

the gel). The relationship describing the osmotic pressure, Π = f(φ), is then modified by terms

reflecting the attractive interactions. The model we have developed to depict the sol-gel phase

transition of a dispersion [15] accounts for different gel reversibility degrees. The diffusion coefficient

required in an Eulerian model can then be derived from the Π-based model via the generalized

Stokes-Einstein equation. When the condition are getting close to the phase transition, the osmotic

pressure variation versus the colloids concentration reaches nearly a plateau corresponding to the

attractive forces balancing the dispersive forces. This quasi-plateau in the equation of state can

be also interpreted as a dramatic decrease in the diffusion coefficient, reflecting the existence of

an ”arrested phase” during gel formation, that can be more or less irreversible, depending on the
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colloidal interactions.

The purpose of the present work was to use the theoretical framework mentioned above and

detailed in sections 2 and 3.3, in order to describe the formation of a gel and its subsequent relaxation

once the cross-flow has been stopped and hence that the pressure difference between the retentate

and permeate compartments has returned to zero. For the sake of model simplicity, we shall work

in a cylindrical geometry, simulating a hollow fiber or tubular configuration and assume that the

dynamics of stopping the cross-flow is fast compared to the one of relaxing the gel layers, as in an

emergency shut-down or a head-blocking event in a hollow fiber bundle.

2 Π-based modeling of colloidal phases

The Π-based model relies on experimental or numerical data of the osmotic pressure as a function

of the volume fraction. This property, that is considered as an equation of state for a colloidal

dispersion, allows to account for the changes in the physical chemistry of a dispersion with its

concentration [16, 13, 14]. In fig.1 a), a fit of experimental data for colloids [17] illustrates the

different phases encountered when concentrating colloid :

• Ideal ”gas like” phase when colloids are diluted and then free to move (Van’t Hoff approxi-

mation)

• ”liquid like” phase when colloids are close enough (and then concentrated enough) to interact

(accounted for by the virial coefficients)

• ”solid like” or gel phase when colloids form a cohesive phase mostly resulting from the per-

colation of attractive interactions (called usually gel and deposit in membrane science)

Let’s note that in the solid phase, the Π-term should no more be called osmotic pressure (with its

thermodynamic definition) but compressive yield stress (mechanical property) : the particles form

a large network and the interactions between them become dominated by mechanical friction.
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In this paper, we use the osmotic model specifically developed [15] to depict the phase transition.

Knowing the osmotic pressure, it is possible to derive a collective diffusion coefficient (occurring in

a concentration gradient) via a Stokes Einstein generalized law :

D(φ) = D0
1

H(φ)

Vp
kT

(
∂Π

∂φ

)
(1)

where Π stands for the osmotic pressure, Vp refers to the volume of a particle with radius, a;

D0 = kT
6πµa (where k and T correspond to the Boltzmann constant and temperature respec-

tively) is the ”ideal” diffusion coefficient, H(φ) is the Happel hindered settling coefficient [18],

H(φ) = 1
K(φ) = 6+4φ

5
3

6−9φ
1
3 +9φ

5
3−6φ2

. The Stokes Einstein generalized law can be extended to express

the filtercake compaction by estimating the diffusivity of a cake from the compressive yield stress

derivative [19].

An example of the collective diffusion coefficient obtained from eq. 1 is shown in Fig. 1b) as a

function of the volume fraction. A minimum in the diffusion coefficient appears when the dispersion

approaches the phase transition. The low diffusion coefficient corresponding to the plateau in the

osmotic pressure curve in Fig 1a, Π(φ)) is a hallmark of nearly arrested dynamics like colloidal

gels or glasses [20, 21]. In regions where the colloidal concentration is close to critical value, the

relative velocity of between phases becomes negligible, as the drag force associated with the osmotic

pressure gradient decreases signifcantly, thus leading to a slowed dynamics [22, 23]. As previously

shown [15], the minimum of the diffusion coefficient allows to describe the slow dynamics of relax-

ation when the concentration is lowered after a filtration. The value of φ for which the diffusion

coefficient is minimum will be called a critical volume fraction later in this paper. This approach

can be generalized to other types of dispersion undergoing a phase transition during filtration.
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Figure 1: Π-based modeling method : a) Experimental data from [17] and fitting of the osmotic
pressure as a function of the volume fraction that leads to b) the estimation of the collective diffusion
coefficient from Eq. 1. Finally, c), the concentration profile can be obtained by integration. The
model allows to describe the different colloidal phases existing along the concentration range : the
ideal or ”gas like” phase described with a Van’t Hoff law for osmotic pressure, a constant diffusion
coefficient and an exponential concentration profile at the membrane -blue dashed lines-, a ”liquid
like” phase where colloids interacts but are still a dispersed sol and a phase transition leading to a
cohesive phase (deposit or gel) for high concentration until the close packed volume fraction, φcp.
In c) the concentration profile is a non conventionnal semilog plot of the distance as a function of
the concentration but the inset displays the resulting conventional plot of the concentration profile.
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Figure 2: Scheme of the diffusive (or mass) boundary layer at the membrane surface consisting of a
polarized layer and a gel layer. Collective diffusion describes this behavior by taking into account
interparticle forces due to the repulsion (in the polarized layer), attraction (involved in sol/gel
transition) and friction (in compacted layers). The particle-membrane interactions are neglected in
this study.

The concentration profile in the layer near the membrane (Fig. 2) can be obtained by solving the

mass balance in which the variation of the diffusion coefficient is given by equation 1. We assume a

fully retentive membrane. We neglect the particle-membrane interactions. This assumption leads

to consider that fouling is controlled by particle-particle interaction which is mainly the case during

the filtration of concentrated dispersions leading to multilayers accumulation; in this case, the effect

of first particle-membrane interaction are few important. We use the rectilinear coordinate x in

the direction normal to the membrane, with x = 0 at the boundary layer limit (the border of

the accumulation region) and x = δ at the membrane. This allows us to plot a unique solution,

applicable for every filtration condition. At steady-state, the differential equation to be solved is:

Jφ−D(φ)

(
∂φ

∂x

)
= 0 (2)

where J is the solvent permeation flux through the membrane assumed to be constant along x. When

eq. 2 is integrated, the concentration profile φ(x) is obtained for every distance x with respect to

the boundary layer limit where the concentration is equal to that of the bulk, φ0, according to:

x =
1

J

∫ φ(x)

φ0

D(φ)
dφ

φ
(3)
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An example of the concentration profile, φ(x), corresponding to the diffusion coefficient in Fig

1b), is displayed in Fig. 1c). In the dilute range (”ideal” phase) close to the boundary layer limit,

the profile follows an exponential growth associated with the constant diffusion coefficient. At

higher concentration (”sol” phase in fig. 1b)), the increase in concentration becomes less significant

as particles tend to repel each other, i.e. the colloids exhibit a higher osmotic pressure. Close to

the phase transition a rapid increase (jump) in concentration takes place, indicating the formation

of a denser phase. Once the denser phase has been formed, any further increase increase in con-

centration corresponds to a compaction of this dense layer up to the random close-packing volume

fraction φcp. It has to be noted that the plotted concentration profile spans the widest possible

range of concentrations (from φ0 to φcp). In practice, the concentration profile is truncated at x

corresponding to the boundary layer thickness δ which is controlled by the system hydrodynamics

(axial flow), leading to different maximum concentration at the membrane, φm according to:

Jδ

D0
=

∫ φm

φ0

D(φ)

D0

dφ

φ
(4)

For ideal dispersions, D(φ) = D0, Eq. 4 simplifies into the well known film model, J =

D0

δ ln(φmφ0
), plotted in dashed line in Fig.1c. The divergence between the solid and dashed lines

in this figure can be ascribed to the effect of interfacial interactions on the particle distribution.

In this paper, this Π-based modeling approach will be used to simulate the concentration profiles

during accumulation (filtration mode) and relaxation (system switched off) steps for a ”non-ideal”

colloidal system such as the one depicted in Fig. 1b). Simulations will be performed in a 2D

geometry representing a hollow fiber as explained in next section.

3 Numerical modelling

The filtration through a hollow fiber is considered, as outlined in figure 3. A suspension flow enters

into the tube with a parabolic velocity profile (left side of the domain in figure 3) and prescribed

pressure at the tube outlet. The boundary of the domain is a wall that mimics an idealized

membrane. During the deposit build-up, a permeate flux (purified fluid) is allowed to pass through
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the wall in the radial direction, whereas the colloids are considered to be fully retained (no particle

flux through the wall). This leads to concentration polarization at the membrane whereas the

concentration at the center of the fiber remains equal to the bulk concentration φ0. The filtration

law is imposed at the membrane to account for permeability reduction due to fouling. A system

shut down is simulated by equating the cross-flow and the filtration flux to zero. The domain

boundaries are then considered impermeable to both the particles and the fluid. We then observe

numerically the way the colloids accumulated at the membrane during the filtration step, now can

diffuse back towards the axis of the fiber. The origin of time (t=0) in Figures 4 to 11 is taken when

the system is switched off.

3.1 Operating conditions

The liquid phase consists of pure water, of density ρ = 1000kg/m3 and viscosity µ = 10−3Pa.s. The

hollow fiber inner radius is taken to be R = 0.4mm. When the flow velocity across the fiber section

at the entrance of the fiber U (used during the accumulations stage) is equal to 1.25 × 10−2m/s,

the flow Reynolds number Re = ρU(2R)
µ is equal to 10. The colloidal particles are assumed to

have a uniform radius, a = 10nm, leading to a diffusion coefficient in water at 25oC equal to

D0 = kBT
6πµa = 2.2 × 10−11m2/s. The other physico-chemical properties (surface charge, Hamaker

constant, ...) are embedded in the Π-term (Fig. 1a). During the filtration stage in cross-flow

conditions, the bulk volumetric concentration at the hollow fiber inlet φ0 is set to a constant value

between 1 and 4%. While the particles are advected by the flow, the competition between the

transport by advection and diffusion is characterized by a Péclet number, of the form Pe = J0R
D0

,

where J0 is the permeate flux per unit area for the clean membrane (at the fiber entrance). Note

that by construction here, the Péclet number based on the fiber radius and on the permeate flux

at the clean membrane is constant, unlike other definitions that can be found in the literature

where the Péclet is rather based on the boundary layer thickness which leads it to vary along the

membrane length. The characteristic permeate flux J0 is taken to be several orders of magnitude

smaller than the main cross-flow velocity during the filtration, (for instance J0 = 5.5 × 10−6m/s)

leading to Pe = 100. Finally we consider that the tube length is L = 40R. Table 1 summarizes the

10



different dimensionless numbers used for this study.

Dimensionless number Value
J0
U 3.3× 10−4, 10−3, 3× 10−3

Re = ρU(2R)
µ 10

Pe = J0R
D0

100, 300, 900

a/R 2.5× 10−5

L/R 40

Table 1: Summary of the operating conditions written in dimensionless form.

3.2 Transport equations

The fluid equations of motion, i.e. continuity and momentum balance, are assumed to be weakly

disturbed by the presence of colloidal particles. This presumes that the physical properties of the

fluid (like the viscosity and Newtonian behavior of the fluid flow) are not modified at the macro-

scopic scale, which holds true as long as the concentration is relatively small. We will see at the end

of this section that this assumption is satisfied during the accumulation stage as most of the flow

regions are dilute, except in the thin polarized layer at the membrane, but not during the relaxation

stage where the colloids can fill the entire section of the fiber. For this reason, the colloid relaxation

is only considered in the absence of imposed cross-flow. Last, this assumption allows us to consider

steady equations of the flow motion and unsteady transport equation for the colloidal phase, which

reduces significantly the computational cost as the transient fluid flow equations would require very

small time steps to be solved correctly.

The velocity and pressure fields during the accumulation state are set as following. Given that

L� R, it can be shown that the steady-state solution of the velocity field in the r−z plane follows

eqs. 5 and 6

uz(r, z) = −∂p
∂z

R2

4µ

[
1− r2

R2

]
, (5)

ur(r, z) =
∂2p

∂z2

R2

8µ
r

[
1− r2

2R2

]
(6)
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where ur and uz denote the velocity components in the radial and axial directions, respectively. The

fluid viscosity µ is assumed to be constant.When accumulation is simulated, this assumption can

have consequences on the kinetics of the gel layer formation. Considering concentration-dependence

of the viscosity (in addition to the diffusion) induces a larger accumulated layer at the membrane.

However the concentration profiles in the radial direction and the evolution of the boundary layer

in the axial direction are relatively similar [14]. Also Park and Nagele have shown that neglecting

the osmotic pressure effect at the membrane has a much stronger impact on the concentration

polarization than neglecting the concentration-dependence of transport properties in particle ultra

filtration. When the relaxation process is considered (the flow and permeate flux are turned off),

this assumption would play a minor role on the initial condition used for the simulations but has

no consequences on the dynamics in the simulations, as the mixture velocity is zero.

The pressure field p varies mainly in the axial direction. We further assume that the radial

outflow velocity at the membrane surface is proportional to the effective pressure, i.e. the static

pressure p(z) of the fluid flow minus the local osmotic pressure Π(φ|r=R) that accounts for the

colloid presence, J(z) = Lp [p(z)−Π(φ|r=R)]. The coefficient Lp represents the effective membrane

permeability the value of which is assumed to be constant. By means of a mass balance along the

axial direction (averaged over the cross-section), the pressure should satisfy the following second

order differential equation:

∂2p

∂z2
=

16µLp
R3

[p(r)−Π(φ)] , (7)

The relation between the permeate velocity at the tube inlet and the membrane permeability via

J0 = Lp×p|z=0, assuming that the osmotic pressure at the inlet has a negligible contribution (dilute

solution and absence of concentration polarization at the inlet), leading thus to the relationship

J
J0

= p(z)−Π(φ|r=R)
p(0) .

As for the colloidal particles, we apply a continuous description for their concentration field

φ(r, z) that represents the local volume of particles averaged over a coarse-grained spatial scale
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compared to the elementary volume corresponding to that scale. The equation of transport of the

colloidal particles is similar to that usually used for a scalar, where material fluxes of convective

and diffusive origin are both considered:

∂φ

∂t
= −5 · [φu−D(φ)5 φ] (8)

The main difference with respect to a standard scalar transport equation lays in the dependence of

the diffusion coefficient on particle concentration, D(φ), that can be described by the generalized

Stokes-Einstein equation, eq. 1. As far as phase separation (spinodal decomposition) does not

occur, equations 5, 6 and 8 capture the main features of the transport of colloidal particles by the

flow inside a hollow fiber. During the relaxation stage, the velocity is set to zero, and the pressure

in the fluid is constant all over the simulation domain. Therefore, transient effects on the particle

transport, like spatial pressure homogenization, are not considered here.

3.3 Numerical setup and solver

Equations 7 and 8 were solved with the aid of the OpenFOAM (Open Field Operation and Ma-

nipulation) software, version Foundation 7, and they were run on a single node (36 cores) at the

supercomputer Olympe at CALMIP center. The equation written with OpenFOAM formalism is

given in the SI2 supplementary information. The OpenFOAM solver was customized to solve the

transport equation (8) for the concentration field (φ) using equations 5 and 6 for the velocity field

(u). The solver includes the Π-based model of the diffusion coefficient (from eq. 1). The numerical

solver is based on van Leer, Gauss, and Crank–Nicolson schemes for spatial discretization of the

divergence and gradient terms, and for time advancement, respectively.

By means of axi-symmetry, the transport equations are solved in a 2D axi-symmetrical domain,

with a mesh based on 400 grid points in the radial direction, 1 grid point in the azimuthal (angular)

direction, and 2000 grid points in the axial direction (z-axis). The mesh illustrated in figure 3 is
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regular, uniform in the axial direction but non-uniform in the radial direction, where the mesh

elements are smaller near the wall, to better solve the stiff concentration gradients in that region

(an expansion ratio of 0.1 was used in the radial direction). Different grid distributions were tested

to verify that the results presented in this work are not significantly dependent on the mesh. As

for the time step, we used dt = 2× 10−4Ta, where Ta = R/U is the advection time scale during the

accumulation stage. During the relaxation, the time step was in such a way to respect the Fourier

stability criteria (dt < ∆x2
min/(2D0)), where ∆xmin denotes the smallest mesh size ≈ 6.2× 10−4R.

Figure 3: Configuration of the Cartesian 2D axi-symmetrical model in OpenFOAM (x-axis for the
radial direction, y-axis for the angular directions, and z-axis for the axial direction).

As for the boundary conditions, the suspension concentration at the tube inlet is set to φ0,

whereas the concentration gradient along the flow direction is set to zero at the outlet. At the wall,

the zero particle flux is imposed in the radial direction. During the relaxation stage, this simply

implies that the wall-normal concentration gradient ∂φ
∂x |x=R = 0 as the flux is purely diffusive.

However during the accumulation stage, the convection flux at the wall is different from zero,

and thus we explicitly imposed at x = R the following relation between the velocity and the
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concentration as well as the concentration gradient:

[
(urφ)−D(φ)

∂φ

∂r

]
r=R

= 0 (9)

The permeate velocity (ur|r=R = Um) (from eq. 5) and the subsequent concentration gradient

obtained from eq. 9 were implemented using the library swak4Foam.

No theoretical solution exists for the full problem, with arbitrary concentration-dependent dif-

fusion coefficient. However, when the diffusion coefficient is constant, the 2D problem (transport

in a channel flow with permeable walls, the so-called Berman flow) has been solved theoretically

at steady state by [24]. This solution has served as a first validation test for our numerical setup.

Moreover, during the relaxation step, the accuracy of the code is validated by verifying the conser-

vation of the mass in the volume of the fiber.

4 Results and discussion

During the simulations, the concentration field varying in space and time φ(r, z, t) can be recorded.

To illustrate the simulation outcome, a 3D plot of the 2D- concentration contour of colloidal parti-

cles accumulated near the cylindrical fiber wall has been displayed in figure 4. Then figures 5 and

6 show the concentration field at different times during the relaxation of a fouling layer. In these

figures, the concentration fields at the initial time correspond to the amount of colloids built up

during the filtration of a suspension at φ0 = 0.02 and 0.04, respectively.
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Figure 4: 3D plot of the concentrated layers inside the fiber for an injected concentration of φ0 =
4× 10−2 after accumulation (t = 0). The yellow line denotes the limit of the gel phase, where the
concentration is larger than φc = 0.06.

The instantaneous space-averaged volume fraction is denoted as φ(t). The total colloid volume

accumulated in the lumen during the filtration stage, scaled by the total lumen volume leads to a

space-average concentration φacc(t)

φacc(t) =

∫∫∫
V
φ(t) rdr dθ dz

πR2L
(10)

where θ denotes the angular coordinate. This quantity achieves a steady state after 15 seconds

of filtration and remains constant during the relaxation stage, as a no-particle flux condition is

imposed across all the fiber boundaries.
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The simulations allow describing the temporal evolution of the regions filled with a gel, where

the concentration exceeds the critical concentration φc. For instance in figures 4 and 6 the yellow

lines indicate the contour level φ = φc. We define φG as the total volume of colloidal particles in

the form of a gel phase normalized by the hollow fiber volume as:

φG(t) =

∫∫∫
V |φ>φc

φ(t) rdr dθ dz

πR2L
=

mgel(t)

ρpπR2L
(11)

that can be linked to the mass of gel, mgel, in the hollow fiber for a given particle density, ρp.

Similarly, the volume of the gel phase in the system is defined as the volume of the region filled

with the gel over the hollow fiber volume:

VG(t) =

∫∫∫
V |φ>φc

rdr dθ dz

πR2L
(12)

4.1 Occurrence of fiber plugging

Simulations of the accumulation and the relaxation steps have been performed for different con-

centrations of the feed suspension, φ0, and for different Péclet numbers, Pe. Figures 4 and 5 show

the relaxation of the concentrated layers along the hollow fibers after filtration at Péclet number of

300 (J0 = 1.6× 10−5m/s) of suspensions of volume fraction 0.02 and 0.04 respectively. In the sup-

plementary information SI3, the contours are given for the intermediate case of φ0 = 0.03 and the

contours are represented with a full scale color map (the maximum of the scale is adapted) to have

a better visualization of each concentration field. Figures 4 and 5 show two very different behaviors.

For the more dilute conditions (Figure 4), the concentrated layers are progressively redispersed in

the fiber. The volume of the gel, where concentration is above the critical concentration (yellow

line), fades out and disappears after about 100 seconds. The relaxation dynamics is different when

the fouling layer is the result of the filtration of a suspension at higher concentration (Figure 5).

The initial gel layer expands over the entire section of the hollow fiber. This suggests a poten-

tial plugging of the lumen by the gel. The occurrence of this plugging depends on the operating

conditions as shown in the following sections.
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Figure 5: Contour plot of the concentrated layers inside the fiber for an injected concentration of
φ0 = 0.02 after accumulation (t = 0) and during the relaxation times of t = 19.4 s, t = 48.4 s, and
t = 96.9 s. The fiber length is scaled by a factor 1/20 in the r-direction to ease the illustration of the
concentration field. In each snapshot, the boundaries of each contour plot represent the membrane
(top), the fiber center (bottom) the fiber inlet (left), and the fiber outlet (right). The yellow line
denotes the limit of the gel phase, where the concentration is larger than φc = 0.06.
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Figure 6: Idem figure 5 with φ0 = 0.04.

4.2 Effect of the feed volume fraction

Fig. 7 shows the time evolution of the volume fraction occupied by particles captured in a gel-like

phase φG and of the normalized fiber volume occupied by the gel VG during the filtration (t < 0)

and relaxation stages (t > 0) for various feed volume fraction, φ0, but with a constant filtration

Péclet number, Pe = 300. During the accumulation stage, the quantity of formed gel reaches a

plateau after a filtration time of the order of 10s. Upon relaxation, gel dispersion in the fiber

depends on the feed volume fraction. At the lowest feed volume fraction, φ0 = 0.01, the volume of

the gel phase is small and rapid gel dispersion is observed: it takes around 15s for the particles in

the gel to be entirely dispersed in the fiber. At larger φ0, the time for its removal becomes longer,

for instance around 1min for φ0 = 0.02.

If the concentration is further increased, we observe the relaxation of the gel layer in two stages,

a trend that is especially clear when the signal of VG is examined. For instance at φ0 = 0.03, at
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the beginning of the relaxation stage, the gel volume slightly increases before eventually decreasing.

The increase in the gel volume means that the polarized gel layer is expanding (see figure 7b).

Afterwards, we observe a partial removal of the gel, for instance 35% during 100s after the filtration

is stopped. This figure illustrates the gel expansion and its conjunction with the gel removal by

diffusion during the relaxation step. For φ0 = 0.04, an increase in the amount of particles in the

gel, φG in Fig. 6a, is observed despite the fiber being closed to mass exchange with the exterior.

It suggests that additional colloids are incorporated in the gel phase . It has to be noted that the

expansion in the volume, VG, is also more pronounced compared to φ0 = 0.03. Thus there is no gel

removal during the simulation time (100s).

Figure 7: Evolution in time of a) φG, the volume fraction of particles captured in the form of gel-like
phase b) VG, the volume of the gel during the accumulation and relaxation stages for different φ0.

20



The onset of the plugging of the hollow fiber can be tracked by monitoring the volume fraction

φ at the fiber exit, i.e. at the point r = 0 and z = L. We consider that plugging occurs when the

volume fraction φ at this position is equal to or larger than φc. Figure 7 shows the time evolution

of φ(r = 0, z = L, t) at the fiber center versus time. This figure suggests that the fiber is plugged

after 50s for φ0 = 0.04: indeed, the concentration increases up to the critical value leading to gel

formation. Note that the sol/gel transition is marked by a steep increase of φ as the colloids are

in metastable state in regions where the concentration range is close to phase the transition. For

φ0 = 0.03, the global volume fraction of particles captured in a gel-like phase φG decreases with

time (as suggested by figure 7), but the volume fraction at the fiber center increases gradually

to form a plug after around 3 min (inset of figure 8). It means that, during the mild increase of

the concentration at the fiber center (before the sudden jump), there is a slow diffusion of the gel

content towards the retentate phase. Eventually, the volume fraction of colloids remaining in the

gel phase is still higher than the critical concentration whereas the volume fraction of colloids in

the retentate phase has increased to such an extend that it overcomes the critical concentration:

at the end, the whole fiber cross section is filled with a gel phase. The 2D contour (supplementary

information 3) shows that at the end of the relaxation the gel occupies 21 % of the volume for a

feed volume faction, φ0 = 0.03, whereas the gel occupies 52% after the relaxation for the φ0 = 0.04

case.
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Figure 8: Time evolution of the colloid volume fraction φ(r = 0, z = L, t) during the relaxation
stage. The inset gives the evolution for a longer time when φ0=0.03. The dashed line represents φc
(the critical concentration). With time, the concentration in the center can reach the critical value
leading to complete fiber plugging: this occurs when filtration is performed at φ0 = 0.03 and 0.04.

Fig. 9 shows the radial concentration profile at the exit of the hollow fiber, φ(r, z = L) at

different instants during the relaxation stage. The steep concentration variation corresponds to

sol/gel phase transition. This figure illustrates the shift of the sol/gel front towards the hollow

fiber center (from large to small r), associated with gel expansion. For the case φ0 = 0.04, the

concentration jump reaches the center of the hollow fiber, leading to the fiber plugging by the gel,

between 40 and 50s, which corresponds to the time range at which a concentration jump is observed

on the red line of Fig. 8. From both figures, we thus conclude that the invasion of the fiber by

the gel is captured by the sudden increase in the signal of the concentration at the fiber center

φ(r = 0, z = L, t).
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Figure 9: Radial profiles at the fiber outlet for the relaxation times of 0, 10, 20, 30, 40, 50, and
60s (from right to left) for φ0 = 0.04. The radial direction was scaled by the fiber radius: 0 and 1
correspond to the fiber center and membrane respectively.

4.3 Effect of the permeate flow during the accumulation stage

To investigate the impact of the filtration conditions during the accumulation stage on the plug

formation, we performed simulations at various Péclet numbers (based on the permeate velocity,

fiber radius and diffusion coefficient D0). We show that both the Péclet number and the bulk volume

fraction influence the quantity of gel accumulated in a given time, and thus the possibility of fiber

plugging during the relaxation. The Péclet number Per was varied between 100 and 900 and the

volume fraction of the feed suspension φ0 was varied between 0.01 and 0.04. Figure 10 illustrates

the impact of the Péclet number on the time evolution of φG during both the accumulation and

relaxation stages for φ0 = 0.04 (the most concentrated case in this study). Increasing the Péclet

number results in larger amount of particles trapped in the gel phase during the accumulation stage,
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where steady state is reached after few seconds. During the relaxation stage, the curves of φG suggest

that when filtration was performed at Per = 100, the retained particles in the form of a gel were

not sufficient to expand and block the fiber. On the contrary, at Per = 300 and 900, φG increases

at the onset of the relaxation stage (more noticeably for Per = 900), indicating the occurrence of

additional incorporation of dispersed particles in the gel during gel expansion (as explained in the

previous section). This analysis is supported by figure 11 that displays φ(r = 0, z = L, t) during the

relaxation step. When the concentration at the fiber center exceeds the critical concentration φc, we

consider that fiber plugging can potentially occur. This figure suggests that fiber plugging occurs

after 28s (resp. 46s) when Per = 900 (resp. 300): the larger the Péclet number, the smaller is the

time required to reach fiber plugging. These tests illustrate the importance of choosing a convenient

set of operating conditions in order to avoid fiber plugging. If the concentration is relatively large,

we can avoid plugging by decreasing the filtration velocity.
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Figure 10: Volume of the particles in the gel during the accumulation and relaxation stages for a
φ0 = 0.04, for different filtration conditions during the accumulation stage.

25



Figure 11: Volume fraction (φ) at the fiber center during relaxation for different filtration conditions
during the accumulation stage for φ0 = 0.04.

4.4 Discussion and derived recommendations to avoid gel plugging

Our simulations show that two mechanisms happen during the relaxation of concentrated layers as

sketched in the graphical abstract :

• a spatial expansion of the gel which was initially compressed on the membrane

• a redispersion of the colloidal particles from the gel by diffusion towards the liquid phase

filling the rest of the lumen

Gel plugging occurs when the gel layers formed at the inner surface of the hollow fibers expand

(predominantly in the radial direction) and reach the center of the fiber before eventual removal of

the particles from the gel by diffusion.
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To define the conditions leading to plugging, a phase diagram that indicates if the plugging

occurs during relaxation according to the operating conditions during the accumulation step is

plotted in Figure 12. For a feed concentration of 0.01, no plugging was observed whatever the

Péclet number, whereas for higher feed concentrations, plugging is observed when the filtration

Péclet number increases. In the cases where the inlet concentration was 0.03 and 0.04, no plugging

was observed for a Péclet number of 100. This is mainly because at this Péclet number, the amount

built-up is not sufficient to form a gel over the whole section of the hollow fiber. Figure 12 allows

to appreciate that the gel plugging forms for conditions of filtration with high volume fraction and

high permeation flux. As more fouling occurs during the accumulation stage, the risk of gel plugging

increases and may occur more quickly after filtration has stopped.

Figure 12: Impact of feed concentration (φ0) and filtration conditions (Per) on the fiber plugging.
The blue crosses and red crosses indicate respectively that no plugging is observed (n.p.) or fiber
plugging occurs after a numerically measured relaxation time. A colored area is added on the top of
the diagram to indicate qualitatively the range of operating conditions that lead to fiber plugging.

To summarize, the gel plugging is thus favored :
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• when the quantity of the gel and its compression at the membrane surface are important : it

will act as a ”compressed gel reservoir” that leads to a rapid spatial expansion

• when the gel is weakly reversible : it will lead to a slow removal by diffusion

The latter depends on the variation in the diffusion coefficient close to the phase transition point

(Figure 1b). This parameter of the model discussed in a previous paper [15] can be linked to the

temperature and to the inter-particle interaction that determine the ability to relax [22]. In a study

of gel formation in hollow fibers with alginate (used as a model of EPS) [4], it has been shown that

the addition of calcium that leads to irreversible gels can plug the lumen of the capillaries. The

observation of gel plugging was also favored by high permeation fluxes. Our simulation data can

explain the effects of these two parameters (permeate flux and gel irreversibility) on the plugging via

the interplay between the characteristic times of the gel expansion (induced by the gel mechanical

forces reflected in our model by the ”diffusion coefficient” above the phase transition) and of the

gel redispersion (by diffusion across the phase transition slowed down by the minimum of diffusion

sketched in Fig. 1b).

Let’s point out that the redispersion of the gel by diffusion is also dependent on the interfacial

area between the gel and the solution. However, due to the cylindrical geometry of the hollow fiber,

the interfacial area between the gel and the solution, where the redispersion occurs, is reduced as the

gel expands toward the center. The gel/solution area is initially, when the gel is compressed at the

membrane surface (Fig. 3), in the range of 2πRL = 40mm2 but is reduced to πR2 = 0.5mm2 when

a plug is formed on the membrane section (Fig. 12). This drastic drop in gel/solution interfacial

area reduces the kinetics of the gel removal by diffusion as soon as the gel plug is formed.
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Figure 13: 3D representation of the gel plugging after a filtration made for a φ0 = 0.04 and à Péclet
of 300 after a time of 100s. By comparing with the Fig. 3, at the beginning of the relaxation, it
can be seen that the gel/dispersion area is reduced when the gel occupies the whole section of the
hollow fiber that in turn leads to a drastic reduction of the gel removal.

Although the model is not validated by experimental data, qualitative practical recommendations

can be drawn from these results.

• Avoid filtration conditions leading to severe fouling : as it exists critical conditions for the

formation of gel during filtration [25, 26, 13], there is threshold conditions of filtration op-

erating conditions that can lead to the bore plugging during the shut down of the filtration

system (Figure 10) : the relaxation of the gel can lead to a blockage of the fiber lumen. It is

well known that intensive filtration conditions lead to severe fouling. We show here that this

can also lead to a complete plugging of the fibers by a gel.

• Never totally stop the cross flow in filtration rig after a controlled or unexpected system shut

down : in the absence of an axial flow after the filtration, the expansion of the concentrated

layers can lead to the formation of a plug on the whole section of the fibers sometimes in
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few seconds. A gentle axial flow after the accumulation step can avoid the formation of gel

plugging. Simulations can show this effect but there are not presented here as a quantitative

simulation is not possible without taking into account the specific rheology of the concentrated

phase (this was not necessary during the relaxation as only diffusion occurs)

• When working with modules with several hollow fibers or tubes in parallel, avoid fluctuations

of axial flow rate. Preferential flows may lead to a higher flow and in turn more severe fouling

in some fibers. If during the operation, the total flow rate fluctuates leading to a lower axial

fiber in fibers with severe fouling, the relaxation of the accumulated layers can also lead to

lumen plugging. Such phenomena are sometimes observed in industry during the filtration

of a highly concentrated dispersion (fermentation broth, dairy products) in multi-channel

tubular membranes.

5 Conclusions

Simulations of gel layer relaxation (after a filtration system has been switched off) have been

performed in a cylindrical geometry, with an osmotic pressure based model accounting for the

sol/gel phase transition. When the pressure and cross-flow are suddenly switched off, the simulations

describe a rapid gel expansion and a progressive gel diffusion towards the retentate remaining within

the lumen. Above the thresholds defined in the paper, this gel expansion can lead to complete

plugging of the hollow fibers at time scales of about ten seconds or minutes depending on operating

conditions. This plug occurs when the layers originally built up on the inner surface of the hollow

fiber reach the fiber center. A plug is formed if the amount of retentate remaining in the lumen is

not sufficient to disperse (by diffusion) the amount of colloids trapped in the gel phase, so that the

final concentration falls below the critical concentration. This numerical work leads to practical

recommendations : a cleaning step or a rinsing step must shortly follow the filtration step to prevent

the gel from jamming the bore of the fiber. Keeping a cross flow, even low, to eliminate the layers

of concentrate before their expansion is highly recommended.
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7 Nomenclature

φ volume fraction field
φ0 bulk volume fraction
φc critical volume fraction sol/gel phase transition∏

(φ) Osmotic pressure [Pa ]
ρ fluid density [kg.m−3]
µ fluid viscosity [Pa.s]
a particle radius [m]
D0 particle thermal diffusion from Stokes-Einstein relation [m2.s−1]
D(φ) particle collective diffusion [m2.s−1]
H(φ) Happel function
K(φ) Sedimentation coefficient
kB Boltzmann constant = 1.38064852 ×10−23 [m2.kg.s−2.K−1]
L fiber length [m]
Lp hydraulic permeability of the membrane [(s.m2).kg−1 ]
p pressure field [Pa ]
r radial direction [m]
Per Péclet number based on the permeate velocity
R fiber diameter [m]
Re Reynolds number
T temperature [K]
Uz tangential velocity field [m.s−1 ]
Ur radial velocity field [m.s−1 ]
Vp particle volume [m3]
z tangential direction [m]
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8 Supplementary information

8.1 SI1: Validation of the transport equations

The numerical transient solution of the transport equations was validated in a configuration inspired

by the theoretical work of Haldenwang et al. [24]. A flow in two-dimensional channel was considered.

At the channel walls, a constant fluid velocity in the wall-normal direction was imposed, U0 which

represents the permeation velocity. A parabolic velocity profile in the streamwise direction was

imposed at the channel inlet. A specie (called ’A’ for instance) was injected uniformly at the

channel inlet, Cin, which value was maintained constant in time. The dimensionless Reynolds and

Peclet of those simulations were Re0 = 0.758 and Pe0 = 0.5 both being based on U0 for the velocity

scale and H for the length scale. The time step was dt = 10−3H/U and the mesh size was .........

The concentration profile C/Cin is plotted as a function of the wall-normal coordinate in figure 14,
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at a distance L/H = 10 from the channel inlet. This figure shows a good agreement between the

numerical solution and the theoretical prediction of [24].

Figure 14: Comparison of the concentration profile obtained from OpenFOAM simulations (sym-
bols) and the theory of [24] (solid line).

8.2 SI2 : Writting of equations in OpenFOAM formalism

OpenFOAM need a specific formalism for the equation writting. For instance, equation 7 is written

whose solution is in OpenFOAM : solve(fvm :: laplacian(p) == 16.0 ∗ nu ∗ rho ∗ Lp/Foam ::

pow(scd, 3.0) ∗ (p− Pi/rho))

8.3 SI3 : Additional contour for the relaxation after a filtration

The next figure represents the contour for the concentration during the relaxation after a filtration

of a dispersion with a volume fraction of φ0 = 0.02 and φ0 = 03 φ0 = 0.04. To be complementary

to the one presented in the article (Fig. 4 and 5), the color map is here at full scale for all contours

(the maximum of the scale is then variable) to have a better visualization of the concentration

profile.
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The figure 14 for φ0 = 03 is the intermediate case between the Figure 4 and 5 presented in the

paper. In these conditions the plugging by the gel appears only after a long time and it occupies

a small part of the total volume (green line in the Fig. 7). It illustrates the transition from no

plugging conditions with gel removal (Fig. 14) to conditions with gel plugging only at the end of

the hollow fiber (Fig. 15) or over a significant length (Fig. 16).

Figure 15: Contour plot of the concentrated layers inside the fiber for an injected concentration of
φ0 = 2 × 10−2 after accumulation (t = 0) and during the relaxation times of 4.8, 9.7, 19.4, 48.4,
96.9, 193.7, 290.6, and 387.5 seconds. The fiber length is scaled by a factor 1/20 in the r-direction
to ease the illustration of the concentration field. In each snapshot, the boundaries of each contour
plot represent the membrane (top), the fiber center (bottom) the fiber inlet (left), and the fiber
outlet (right). The yellow line denotes the limit of the gel phase, where the concentration is larger
than φc = 0.06.
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Figure 16: Contour plot of the concentrated layers inside the fiber for an injected concentration of
φ0 = 3 × 10−2 after accumulation (t = 0) and during the relaxation times of 4.8, 9.7, 19.4, 48.4,
96.9, 193.7, 290.6, and 387.5 seconds. The fiber length is scaled by a factor 1/20 in the r-direction
to ease the illustration of the concentration field. In each snapshot, the boundaries of each contour
plot represent the membrane (top), the fiber center (bottom) the fiber inlet (left), and the fiber
outlet (right). The yellow line denotes the limit of the gel phase, where the concentration is larger
than φc = 0.06.
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Figure 17: Contour plot of the concentrated layers inside the fiber for an injected concentration of
φ0 = 4 × 10−2 after accumulation (t = 0) and during the relaxation times of 4.8, 9.7, 19.4, 48.4,
96.9, 193.7, 290.6, and 387.5 seconds. The fiber length is scaled by a factor 1/20 in the r-direction
to ease the illustration of the concentration field. In each snapshot, the boundaries of each contour
plot represent the membrane (top), the fiber center (bottom) the fiber inlet (left), and the fiber
outlet (right). The yellow line denotes the limit of the gel phase, where the concentration is larger
than φc = 0.06.
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