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Abstract: Zika virus (ZIKV) is an emerging arthropod-borne virus of major public health concern. ZIKV
infection is responsible for congenital Zika disease and other neurological defects. Antibody-mediated
virus neutralization is an essential component of protective antiviral immunity against ZIKV. In the
present study, we assessed whether our GFP reporter ZIKV derived from African viral strain MR766
could be useful for the development of a flow cytometry neutralization test (FNT), as an alternative to the
conventional plaque-reduction neutralization test (PRNT). To improve the efficacy of GFP-expressing
MR766, we selected virus variant MR766GFP showing a high level of GFP signal in infected cells.
A MR766GFP-based FNT was assayed with immune sera from adult mice that received ZIKBeHMR-2.
The chimeric ZIKV clone ZIKBeHMR-2 comprises the structural protein region of epidemic strain
BeH819015 into MR766 backbone. We reported that adult mice inoculated with ZIKBeHMR-2 developed
high levels of neutralizing anti-ZIKV antibodies. Comparative analysis between MR766GFP-based FNT
and conventional PRNT was performed using mouse anti-ZIKBeHMR-2 immune sera. Indistinguishable
neutralization patterns were observed when compared with PRNT50 and FNT50. We consider that the
newly developed MR766GFP-based FNT is a valid format for measuring ZIKV-neutralizing antibodies
in serum specimens.

Keywords: arbovirus; Zika virus; GFP reporter ZIKV; flow cytometry; neutralization test;
mouse immune sera; humoral immune response; virus neutralizing antibodies; plaque-reduction
neutralization test; flow cytometry neutralization test

1. Introduction

Mosquito-borne Zika virus (ZIKV) is an emerging flavivirus initially reported in Africa in 1947 [1].
Recently, ZIKV became a public health concern with recent epidemics occurring in Yap islands (2007),
French Polynesia (2013), and South America (2015) [2]. During these outbreaks, ZIKV infection was
reported to cause severe complications in humans, such as developmental abnormalities in infants and
Guillain-Barre syndrome in adults [3]. Also, ZIKV is capable of long-term persistence in human body
fluids and sexual transmission of disease has been documented [4,5].

Laboratory diagnosis of ZIKV infection is mainly based on RT-PCR method during the acute phase
of the disease [5–8]. Serological diagnosis of ZIKV infection is obtained at least one week after the
onset of the clinical symptoms [5,6]. It is frequently observed that members of flavivirus genus share
strong antigenic cross-reactivity making inconclusive serological tests especially in regions where ZIKV
and related flaviviruses, such as dengue viruses, co-circulate. To overcome this issue, the detection of
antibodies that have neutralizing activity against ZIKV can be achieved to confirm recent infection [8].
Plaque-reduction neutralization test (PRNT) is a widely accepted method to measure neutralizing
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antibodies in serum specimens [9]. Although PRNT is considered as a “gold standard” assay for
flavivirus neutralization, this specific but conventional format is a time-consuming method making
difficult the screening of a large number of samples. Noteworthy, virus plaque-based analysis is limited
to cultured cell lines, such as green monkey epithelial Vero cells, that permit plaque-forming assay.

New biological tests revisiting the conventional PRNT method are necessary for the rapid
measurement of ZIKV-neutralizing antibodies in large serum series. Consequently, several reporter
gene-based methods for neutralizing assays have been recently developed for ZIKV [10–12]. Given that
reporter systems afford the ability to visualize viral expression inside the infected cells, we generated a
GFP reporter ZIKV entitled ZIKVGFP [13]. We demonstrated that ZIKVGFP is a performing tool for the
monitoring of ZIKV replication in the host cell as well as the screening of antiviral compounds [13–20].
In the present study, we adapted ZIKVGFP for the measurement of ZIKV-neutralizing antibodies by
flow cytometry analysis. The GFP reporter ZIKV-based flow cytometry neutralization test (FNT) was
challenged with serum samples from mice inoculated with ZIKV. Results showed that our newly
developed FNT generated ZIKV-neutralizing antibody titers that are equivalent to those obtained with
conventional PRNT.

2. Materials and Methods

2.1. Cells and Virus

Vero cells (clone E6) and A549Dual cells (Invivogen, Toulouse, France), referred to hereafter as
“A549 cells”, were cultured at 37 ◦C under 5% CO2 atmosphere at 37 ◦C in MEM Eagle medium,
supplemented with 5% heat-inactivated fetal bovine serum (FBS) and 2 mM L-glutamine, 1 mM sodium
pyruvate, 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 0.5 µg/mL amphotericin B (PAN Biotech,
Aidenbach, Germany). The recombinant ZIKVGFP derived from molecular clone ZIKV MR766MC is
described elsewhere [13]. ZIKVGFP and derived viral clone MR766GFP stocks were amplified on Vero
cells and titrated by plaque-forming assay on Vero cells, as described elsewhere [21]. Virus titer was
expressed as plaque-forming unit per mL (PFU/mL).

2.2. Generation of MR766GFP

Variants of ZIKVGFP were selected using a limiting dilution cloning method. Briefly, Vero cells
seeded in 96-well plates (10,000 cells/well) were infected 5 days with ZIKVGFP at the multiplicity
of infection (m.o.i) of l0−4. Supernatants of GFP-positive cell monolayers were recovered, and the
second round of virus cloning was performed on Vero cells, as described above. Viral clone MR766GFP

was selected and then passaged twice on Vero cells to produce a final virus stock for experiments.
The infectious titer of the working MR766GFP stock was 7.7 log PFU/mL on Vero cells.

2.3. Focus-Forming Assay

For the focus-forming assay, Vero cells were seeded in 24-well plates. Virus samples were added
to the cells for 2 h at 37 ◦C and then incubated with 0.8% carboxymethylcellulose (CMC). After a
4-day incubation, cell monolayers were fixed with 3.7% formaldehyde (FA) in PBS, followed by
permeabilization with 0.15% Triton X-100 in PBS for 5 min. Cells were incubated with a mouse anti-GFP
(Abcam, Cambridge, UK) at dilution 1:1000 followed by incubation with HRP-conjugated anti-mouse
IgG antibody (Abcam, Cambridge, UK) at dilution 1:2000. Virus plaques were revealed with Vector
NovaREDTM peroxidase substrate (Cliniscences Nanterre, France) and counterstained with 0.5% crystal
violet in 20% ethanol. Plates were scanned with an Epson scanner (Levallois-Perret, France).

2.4. Mouse Serum Specimens

The protocols and subsequent experiments in mice were ethically approved by the Ethics
Committee for Control of Experiments on Animals at the CECEMA (Montpellier, France) with the
reference n◦036 and by the French Ministère de l’Enseignement Supérieur, de la Recherche et de
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l’Innovation with reference APAFIS#9137-2017030316134494 v6 (February 28th, 2018) [22,23]. A total of
29 individualized mouse immune serum specimens was selected for this study [23]. The first group of
adult BALB/c mice (n = 5) was inoculated with heat-inactivated ZIKBeHMR-2, a second group (n = 15)
received a single dose of 5 log PFU of ZIKBeHMR-2, and a third group (n = 14) received two doses of 5
log PFU of ZIKBeHMR-2 with a 6-week interval. All the serum specimens were heat-inactivated at
56 ◦C for 30 min.

2.5. Plaque-Reduction Neutralization Test

For the plaque-reduction neutralization test (PRNT), Vero cells were seeded in 24-well plates.
Serum samples were 2-fold serially diluted in DMEM supplemented with 2% FBS with a starting
dilution of 1:50, and incubated with an equal volume of a virus sample containing 100 PFU of MR766GFP

for 2 h at 37 ◦C. The virus-antibody mixture was added on cell monolayers for 2 h at 37 ◦C and then
incubated with 0.8% CMC in growth medium. After a 4-day incubation, cell monolayers were fixed
with 3.7% FA in PBS and then stained with 0.5% crystal violet in 20% ethanol. Visible plaques were
manually counted. The neutralizing antibody titers were determined as the reciprocal of the last serum
dilution that resulted in a 50% residual of infectivity of negative-control serum samples. PRNT50

values were determined from a nonlinear regression analysis.

2.6. Flow Cytometry Assay and Flow Cytometry-Based Neutralization Test

For flow cytometry assay, cells were seeded in 24-well plates. Virus samples were added to the cells
for 18 h. Cells were gently harvested by trypsinization, fixed with 3.7% FA in PBS, and permeabilized
with 0.15% Triton X-100 in PBS for 5 min. Samples were incubated with mouse anti-flavivirus E
MAb 4G2 at dilution 1:1000 (R&D Biotech, Besançon, France) and then with Alexa 647-conjugated
anti-mouse IgG antibody (Abcam, Cambridge, UK) at dilution 1:1000. Cells were analyzed with a
Cytoflex flow cytometer (Beckman Coulter, Villepinte, France).

For flow cytometry-based neutralization test (FNT), 20,000 cells per well were seeded in 96-well
plates. Serum specimens were 2-fold serially diluted in DMEM supplemented with 2% FBS with a
starting dilution of 1:50, and incubated with an equal volume of a virus sample containing 20,000
PFU of MR766GFP for 2 h at 37 ◦C. The virus-antibody mixture was added to the cell monolayers
for 20 h. Cells were fixed with 3.7% FA in PBS, and 10,000 cells of each assay were analyzed for
GFP expression with a CytoFLEX flow cytometer (Beckman Coulter, Villepinte, France). The 100%
infectivity was obtained with the number of ZIKV-infected cells positive for GFP expression in the
absence of serum samples. The neutralizing antibody titer was determined as the serum dilution that
resulted in a 50% reduction of GFP expression (FNT50) and was calculated by nonlinear, dose-response
regression analysis.

2.7. Statistical Analysis

Linear regression was used to determine the correlation, with associated p-value, between PRNT50

values and FNT50 values. Pearson’s correlation coefficients (r) and the coefficient of determination (R2)
were determined using Prism software version 7.01 (GraphPad, San Diego, CA, USA).

3. Results

3.1. Generation of Viral Clone MR766GFP for Flow Cytometry Neutralization Test

To generate a more reliable GFP reporter ZIKV for flow cytometry neutralization test, recombinant
ZIKVGFP was repeatedly passaged on Vero cells using a limiting dilution cloning method [13]. A single
virus clone, hereafter named MR766GFP, was selected for further studies. The progeny virus production
of MR766GFP variant in Vero cells was at least 1.5 log higher than for parental ZIKVGFP [13]. Expression
of MR766GFP was examined in Vero cells infected at a multiplicity of infection (m.o.i.) of 1 (Figure 1).
We observed that most of the virus plaques produced in the focus-forming assay were positively
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stained by anti-GFP antibody (Figure 1A). Flow-cytometry analysis confirmed that Vero cells positive
for GFP expression were recognized by the anti-E mAb 4G2 (Figure 1B). Thus, the MR766GFP variant is
a suitable GFP reporter ZIKV for the development of a FNT.
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Figure 1. Characterization of viral clone MR766GFP on Vero cells. In (A), the example of infectious
virus foci developed after a focus-forming assay using anti-GFP antibody. To visualize infectious virus
plaques, the cell monolayer was counterstained with crystal violet. In (B), cells were infected 24 h with
MR766GFP at an m.o.i. of 1. The GFP-positive cells (GFP) stained with anti-E MAb 4G2 (4G2) were
analyzed by flow cytometry analysis. In (C), mean fluorescent intensity (MFI) of MR766GFP-infected
cells (MR766GFP), as determined by flow cytometry analysis. Control: mock-infected Vero cells.

3.2. Comparison Between MR766GFP-Based FNT Assay and Conventional PRNT

We reported that immunocompetent adult mice that received intraperitoneally 5 log PFU
of chimeric ZIKV clone ZIKBeHMR-2 developed high titers of ZIKV-neutralizing antibodies [23].
ZIKBeHMR-2 is a chimeric clone of ZIKV derived from historical African ZIKV strain MR766 in which
the structural protein region was replaced with that of epidemic ZIKV strain BeH819015 of Asian
lineage [23]. Noteworthy, the ZIKBeHMR-2 E protein lacks N-glycosylation [23].

The neutralization assays were assessed with a selection of 29 immune sera from adult BALB/c
mice that received one or two doses of ZIKBeHMR-2 with an interval of 6 weeks [23]. Immune sera
from mice inoculated with heat-inactivated ZIKBeHMR-2 served as negative controls [23]. The serum
samples were first subjected to testing by a conventional PRNT method in Vero cells using MR766GFP

(Figure 2). As expected, negative control immune sera exhibited no reduction of virus plaque number
at the lower dilution tested (1:50). In contrast, immune sera from mice inoculated with ZIKBeHMR-2
showed neutralizing activity against MR766GFP. The serum samples reduced the number of virus
plaques in a dilution-dependent manner. In mice that received a single dose of ZIKBeHMR-2, there
was a PRNT50 value of 130 (95% Confident Interval (CI): 93–182). After inoculation of a booster dose,
the ZIKV-neutralizing antibody titers increased up to 3051 (95% CI: 2251–4136). Thus, a conventional
PRNT confirmed the neutralizing activity of anti-ZIKBeHMR-2 immune sera against ZIKV.

The mouse serum samples were next assessed by MR766GFP-based FNT. The neutralization
tests were performed on Vero cells grown in 96-well plates, and GFP expression was examined 20 h
post-infection (Figure 3). By flow-cytometry analysis, the percentage of GFP-positive Vero cells infected
with MR766GFP reached 55%. There was no reduction in the percentages of GFP-positive cells using
immune sera from mice inoculated with heat-inactivated ZIKBeHMR-2 that served as a negative virus
control (Figure 3A). Whereas mouse anti-ZIKBeHMR-2 immune sera showed neutralizing activity
against MR766GFP in a dilution-dependent manner (Figure 3B,C). In mice (n = 15) that received a single
dose of ZIKBeHMR-2, there was a FNT50 value of 117 (95% CI: 81–169). After inoculation of a booster
dose, the FNT50 values of immune sera (n = 14) increased up to 2469 (95% CI: 1673–3645).
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Figure 2. Plaque-reduction neutralization test on anti-Zika virus immune sera. The neutralizing ability
of mouse serum specimens against MR766GFP was determined by plaque-reduction neutralization test
(PRNT) on Vero cells. Samples of anti-ZIKBeHMR-2 immune sera were tested individually. Serum
specimens were two-fold serial diluted starting at a 1:50 dilution. The results are shown normalized to
the 100% infection achieved with MR766GFP without serum. In (A), the immune sera of BALB/c mice
inoculated with heat-inactivated ZIKBeHMR-2 served as a negative control (negative control). In (B),
immune sera of BALB/c mice that received a single dose of ZIKBeHMR-2 (5 log PFU) (1st dose). In (C),
immune sera of BALB/c mice that received two doses of ZIKBeHMR-2 (5 log PFU) with an interval of 6
weeks (2nd dose).
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Figure 3. Flow cytometry neutralization test on Vero cells. The neutralizing ability of mouse serum
specimens against ZIKV was determined by flow cytometry neutralization test (FNT) on Vero cells.
Samples of anti-ZIKBeHMR-2 immune sera were tested individually. Serum specimens were two-fold
serial diluted starting at a 1:50 dilution and mixed with an equal volume of virus sample containing
20,000 PFU of MR766GFP. The virus-antibody mixture was added on 20,000 Vero cells grown in 96-well
plates. At 20 h post-infection, the percentage of positive cells for GFP expression was determined
by flow-cytometry analysis. The number of GFP-positive cells without serum was considered 100%
of infectivity. The results were expressed as the percentage of GFP-positive cells in assay relative
to that calculated in absence of serum. In (A), the immune sera of BALB/c mice inoculated with
heat-inactivated ZIKBeHMR-2 served as a negative control (negative control). In (B), immune sera of
BALB/c mice that received a single dose of ZIKBeHMR-2 (5 log PFU) (1st dose). In (C), immune sera of
BALB/c mice that received two doses of ZIKBeHMR-2 (5 log PFU) with a 6-week interval (2nd dose).

Data fitting between PRNT50 and FNT50 values on anti-ZIKBeHMR-2 immune sera revealed a
linear relationship (R2 = 0.90, p-value <0.0001) between the two assays (Figure 4). This indicates a
concordance between conventional PRNT and a FNT method based on a single infection round. Such
results support the utilization of MR766GFP-based FNT for measuring ZIKV-neutralizing antibodies in
serum specimens.
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Figure 4. Scatter plots of PRNT50 and FNT50 values in Vero cells. PRNT: plaque-reduction neutralization
test; FNT: flow-cytometry neutralization test. The PRNT50 and FNT50 were determined as the reciprocal
of the last serum dilution that resulted in a 50% residual of infectivity of negative-control serum samples.

We next evaluated whether the MR766GFP-based FNT can be performed in human cells that do
not support virus plaque assay such as human epithelial A549 cells. To evaluate the performance of our
FNT on A549 cells, MR766GFP was incubated with serial dilutions of immune sera from mice inoculated
with one or two doses of ZIKBeHMR-2. The virus-antibody mixtures were used to infect A549 cells
seeded in 96-well plates. At 20 h post-infection, the GFP expression was observed in infected A549 cells
by flow cytometry analysis. The percentage of GFP-positive A549 cells infected with MR766GFP reached
50%. There was a 100% infectivity with immune sera directed against heat-inactivated ZIKBeHMR-2
(Figure 5A). We observed that anti-ZIKBeHMR-2 immune sera reduced MR766GFP infectivity for A549
cells in a serum dilution-dependent manner (Figure 5B,C). In mice (n = 15) that received a single dose
of ZIKBeHMR-2, there was a FNT50 value of 161 (95% CI: 119–216). After inoculation of a booster dose,
the FNT50 value of immune sera (n = 14) increased up to 2320 (95% CI: 1507–3570).
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Figure 5. Flow cytometry neutralization test on A549 cells. The neutralizing ability of mouse serum
specimens against ZIKV was determined by FNT on A549 cells. Samples of anti-ZIKBeHMR-2 immune
sera were tested individually. Serum samples were two-fold serial diluted starting at a 1:50 dilution and
mixed with an equal volume of virus sample containing 20,000 PFU of MR766GFP. The virus-antibody
mixture was added on 20,000 A549 cells grown in 96-well plates. At 20 h post-infection, the percentage
of positive cells for GFP expression was determined by flow-cytometry analysis. The number of
GFP-positive cells without serum was considered 100% of infectivity. The results were expressed as the
percentage of GFP-positive cells in assay relative to that calculated without serum. In (A), The immune
sera of BALB/c mice inoculated with heat-inactivated ZIKBeHMR-2 served as a negative control
(negative control). In (B), immune sera of BALB/c mice that received a single dose of ZIKBeHMR-2
(5 log PFU) (1st dose). In (C), immune sera of BALB/c mice that received two doses of ZIKBeHMR-2 (5
log PFU) with a 6-week interval (2nd dose).
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As shown in Figure 6, there was a linear relationship (R2 = 0.94, p-value <0.0001) between
FNT50 performed in Vero and A549 cells. Thus, human epithelial A549 cells are suitable for the
measurement of ZIKV-neutralizing antibodies in serum specimens based on our newly developed
MR766GFP-based FNT.
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The FNT50 were determined as the reciprocal of the last serum dilution that resulted in a 50% residual
of infectivity of negative-control serum samples.

4. Discussion

The development of new neutralizing assays that overcome the restrictions presented by the
conventional PRNT methods become a priority for ZIKV. To this aim, we took advantage of our
previously developed GFP reporter ZIKV (recombinant ZIKVGFP), which had been demonstrated
to be a powerful tool for the monitoring of virus replication as well as the screening of antiviral
compounds [13–20]. In routine, ZIKVGFP infection is observed by flow cytometry analysis at 18–24 h
post-infection based on the GFP signal. In the present study, we identified MR766GFP as a variant
of ZIKVGFP exhibiting a greater propensity to produce a GFP signal associated with a higher virus
progeny production.

Here, MR766GFP was assayed with serum specimens from adult BALB/c mice inoculated with a
chimeric viral clone ZIKBeHMR-2, which contains the structural protein region of epidemic Brazilian
ZIKV strain BeH810915 into a MR766 backbone [23]. ZIKBeHMR-2 has a non-glycosylated E protein
due to the introduction of a limited number of amino acid substitutions in the E glycan-loop of
BeH819015 [23]. The ability of ZIKBeHMR-2 to induce anti-ZIKV antibody production had been
validated in adult BALB/c mice immunized by the intraperitoneal route [23]. The serum specimens
obtained from mice inoculated with one or two doses of ZIKBeHMR-2 were evaluated for neutralizing
antibodies by conventional PRNT. Immunized mice developed anti-ZIKV antibodies that neutralize
MR766 with PRNT50 values reaching up to 3500 [23]. Consequently, anti-ZIKBeHMR-2 immune sera
were suitable for a comparative analysis between our MR766GFP-based FNT and conventional PRNT,
the latter being considered as a “gold standard” assay for flavivirus neutralization. FNT was first
performed on African green monkey Vero cells which are commonly used for neutralization tests. Vero
cells were grown in 96-well-plates. The neutralizing activity of anti-ZIKBeHMR-2 immune sera against
ZIKV was estimated within two days. There was a linear correlation between FNT50 and PRNT50 values
with R2 coefficient of determination of 0.9. Thus, our newly developed GFP reporter ZIKV-based FNT
allows a prompt and reliable detection of ZIKV-neutralizing antibodies in serum specimens. A such
method was next employed on human epithelial A549 cells, and there was a linear correlation between
FNT50s values in A549 and Vero cells with an R2 coefficient of determination of 0.94. We propose that
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MR766GFP-based FNT is a suitable method for the general measurement of antibody-mediated ZIKV
neutralization. Now, it is of paramount importance to estimate our newly developed FNT format for
the detection of ZIKV-neutralizing antibodies using human serum specimens from Zika patients.

5. Conclusions

In the present study, we demonstrated that viral clone MR766GFP is a suitable GFP reporter
ZIKV for the identification of ZIKV-neutralizing antibodies in serum specimens by flow-cytometry
analysis. The time-saver MR766GFP-based FNT format could provide a reliable platform for measuring
antibodies that neutralize ZIKV in a large number of serum specimens without the requirement for
plaque-forming formation. Further studies will be necessary to determine whether conventional PRNT
method might be replaced by our newly developed MR766GFP-based FNT for epidemiological cohort
studies as well as vaccine development on ZIKV.

6. Patent

The viral clone ZIKBeHMR-2 has been described in the patent entitled “Vaccine compositions
comprising an attenuated mutant Zika virus” under the number WO2017220748A1 (priority date
2016-06-23).
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