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Université Paris-Saclay

CEA, List
F-91120 Palaiseau, France

baptiste.gueuziec@cea.fr

Jean-Pierre Gallois
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Abstract—The study of complex systems is essential in many
scientific fields for safety, reliability, and security reasons. These
systems are increasingly complex and often hybrid (with contin-
uous behaviors in discrete modes), making modeling tasks more
difficult. Each design requires a tradeoff between acceptable com-
putation time and good precision. Simulations using numerical
methods often sacrifice time efficiency for more precise results,
but this choice can show its limits on complex systems. Qualitative
reasoning techniques were proposed to sacrifice precision and
knowledge to improve speed and generality. They are especially
used in diagnosis and fault isolation. Eventually, abstraction
methods such as interval propagation or flow-pipe execution
emerged in what we now call semi-qualitative simulation, mainly
used for precision and property proving. This article proposes
an approach that bridges qualitative analysis and numerical
simulation methods. It consists in building a qualitative model of
a system that is used as a map of its behavior in various regions
of its state space to improve the efficiency of its simulation.
Therefore, the joint use of models of different natures helps
analyze the system’s behavior.

Index Terms—Cyber-physical systems, simulation, qualitative
analysis

I. INTRODUCTION

Complex systems [1] are involved in the modeling and
analysis of multi-component systems and natural phenomena.
Running simulations of such systems requires an efficient rep-
resentation of the model and a robust methodology. Modeling
those systems implies isolating their most important charac-
teristics and optimizing their representation for computation.
A significant difficulty is to find the best complexity/precision
trade, especially for hybrid systems [2], which need to consider
both discrete and continuous behaviors.

Depending on the available knowledge and the goal of
the simulation, the modeling phase will use different meth-
ods to abstract the system and represent the information.
Classically, more precise representations using numerical data
and differential equations are used for continuous behaviors.
The simulation consists in the numerical integration of these
equations using methods such as Euler or Runge-Kutta to
compute the precise behavior of the system.

However, Brown [3] and De Kleer [4] introduced the idea
of a qualitative representation of knowledge using symbolic
expressions and relations between the components of a model.
They developed it to help in computer-assisted calculus and

electronic problem-solving. Since then, scientists such as
Hayes [5], [6] and Forbus [7] opened new perspectives by
introducing notions such as naive physics and adding the
notion of process and dynamics. The question of high-scale
knowledge representation of a complex environment leads to
ideas such as concept-based graphs. Meanwhile, the challenge
of dynamics representation permitted the use of causality
graphs [8] or bond graphs [9]. Kuipers studied the application
of qualitative modeling for simulation [10], [11] and proposed
tools to simulate models with qualitative methods (QSIM) us-
ing qualitative differential equations or semi-qualitative tech-
niques (Q3) using interval propagation. He represents models
using qualitative differential equations, which are abstractions
of ordinary differential equations (ODE) obtained by isolating
the extrema, the variation sense, and the qualitative value of
the variables. The evolution of the values is represented by
qualitative states separated by landmarks (local extrema of one
variable or one of its derivatives). His tool Q3 combined this
approach with interval propagation techniques.

More advanced simulation methods such as the works on
flow-pipe propagation [12] or closed expansivity study [13]
tried to correct some drawbacks of the propagation of intervals.
Finally, Tiwari opened another branch of qualitative modeling
in [14], more adapted to systems represented by ODEs. He
proposed a numerical analysis of a system’s polynomial equa-
tions and their derivatives and used the results to create a map
of the state space of the model. Works presented in [15]–[17]
studied these different approaches of qualitative reasoning and
knowledge propagation, seeking an optimal representation of
models for general tasks. In this paper, we propose a modeling
method to improve simulation performance where precision is
not the main criterion, and the goal is to identify qualitative
behaviors without needing quantitative precision. We will use
the different concepts of qualitative modeling, enriched with
qualitative tendencies, which is the contribution that we will
detail further.

II. QUALITATIVE MODELING AND ORDERS OF
MAGNITUDE

A. Dynamic System Formalism

Throughout the rest of this document, we will consider the
study of dynamical systems expressed as D = ⟨Q,X,F, I, T ⟩,
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Ṫ = −T
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Fig. 1. Hybrid model of a thermostat

with Q the set of discrete variables of the system. Each
variable in Q represents the mode of a part of the system
(for instance, in a car, a variable may give the state of the
cruise control, and another the state of the air conditioning).
These variables take value in Q, which is the cartesian product
of the domains of each variable. X is the set of continuous
variables, which have values in X. X is classically Rn, with
n the number of continuous variables. F gives the flow of
the system (a function associating each mode to a set of
ODE on X and its derivatives constraining the evolution of
the continuous variables). I is the function associating each
mode to its invariant conditions. These invariants are properties
that always hold in a mode, and that are useful to analyze
the possible behaviors of the system. We represent F and I
with dictionaries. T represents the discrete transitions between
modes as a set of quadruplets (m1, cond ,m2, reset), which
means that when the mode of the system is m1 and condition
cond on the continuous variables is satisfied, the system goes
into mode m2 and resets the values of the Xi using the
function reset . The validity of cond forces the transition.

For example, a thermostat can be represented as Th =
⟨Q,X,F, I, T ⟩ [2], [14] with Q = {off, on}, X = R, and:

Q = {mode} with modeinit = off,
X = {T} with Tinit = 75,

F = (mode = on: Ṫ = −T + 100, mode = off: Ṫ = −T ),
I = (mode = off : T > 50, mode = on : T < 100),

T = {(on
T⩾80−−−→ off, T 7→ T ), (off

T⩽70−−−→ on, T 7→ T )}

It can be represented as an hybrid automaton (see Fig. 1).
When speaking about the equations of a model, we will

include every expression in the flow, the invariants, and the
conditions of the transitions. We will limit our study to poly-
nomial (including multivariate polynomials) functions. We are
currently working on generalizing our results to logarithmic-
exponential functions (a family of functions closed under sum,
product, and composition) and to more general functions.

For the qualitative analysis of the system, we need to
introduce the matrix q of the characteristic values of the
system. This matrix of size |Q| × |X| gives the characteristic
value of each continuous variable for each mode of the system.
The characteristic value qi,j gives us information about the
nominal range of the variable Xj in the mode corresponding
to the ith element of Q. In our example, we could define

q =

(
75
75

)
considering off as mode 0 and on as mode 1. We

off
Ṫ = −T

T > 50

decreasing

min

T = 70

on
Ṫ = 100 − T

T < 100

max

increasing

T = 80

T ⩾ 80

T ⩽ 70

Fig. 2. Qualitative model of the thermostat

chose these values because T varies in both modes mainly in
the interval [70, 80].

B. Qualitative Modeling of Dynamic Systems

The dynamics of complex systems is usually described with
modes, states, and events [7]. A mode corresponds to the
vector formed by the value of each discrete variable in Q and
a change of mode can modify the flow [14] and the causal
ordering of the events in the system [8]. The state of the
system is described using both the mode and the numerical
value of each continuous variable in X , and corresponds
to a precise situation. The drawback of using numerical
values is the lack of generality: simulating the system with
specific numerical values for continuous variables requires
either studying one trajectory or using many computational
resources to allow interval propagation. However, it tells us
nothing about the general qualitative behavior of the modeled
system. For this reason, in qualitative reasoning, we choose
to avoid the computation and propagation of precise values.
Instead, we focus on the relative position of both variables
and their derivatives compared to significant thresholds or
frontiers defined by equations. These equations allow us to
introduce the concept of qualitative states. The relative position
of the current state of the system to these frontiers defines
the qualitative state of the system at an instant. An example
of this qualitative division is shown in Fig. 2, which is a
qualitative representation of our example thermostat model.
The black rectangles correspond to the modes of the system
(here on and off). The black horizontal arrows correspond
to the transitions between modes. The circles labeled in blue
correspond to qualitative states (increasing, decreasing, min,
and max), and the blue vertical transitions between these states



are triggered according to qualitative thresholds computed
from the equations of the system.

C. Orders of Magnitude

Among the various tools used to reason on qualitative
models, we can find the orders of magnitude [18]. This method
expands the reasoning on sign, which is the very base of
qualitative methods [7], [10]. It is mainly supposed to avoid
the limitations of the sign algebra, especially the difficulty of
applying the + (and less significantly ×) operators to values
of unknown magnitude. Taking the magnitude of a value into
account allows for more precise and coherent computations but
also has drawbacks on the permissiveness of operators [19].
For example, transitivity, associativity, and distributive prop-
erties are more limited in this qualitative algebra. Reasoning
about magnitude can be absolute (comparison to fixed values)
or relative (comparison between variables) [20].

The first option to reason about orders of magnitude implies
partitioning the state space according to constant landmarks.
Variables are individually compared to these reference val-
ues ki and placed in the corresponding rectangle (multi-
dimensional closed interval), determining their magnitude. It
also requires choosing a scale to apply to these reference
values that will set the abstraction’s regularity and granularity.
The interest is that by optimizing the choice of landmarks,
it is possible to abstract the precise values completely while
preserving helpful information about the value of the state
variables. The scale can, for example, be linear or, if the
variable is to stay positive, logarithmic and rely on powers
of ki. The values ki will here depend on design criteria
of the system, such as the initial value or the anticipated
extreme points. When the sign can change, a linear scale may
be preferred. More generally, the choice of the state space
partition will strongly depend on the simulation’s objectives
and the system’s design [21]. For example, a linear scale in one
dimension based on a unique value k would be structured with
landmarks on the values 0, k,−k, 2k,−2k, . . . It could be used
in the case of the model of the thermostat, where the unique
system variable varies between values that are simultaneously
closely spaced and sufficiently far from zero to make any
logarithmic scale unusable. In this case, an adapted scale could
be a linear one with a value k = 2.

A second option is to use relative orders of magnitude. This
option compares variables with each other rather than with
reference values. This requires the physical quantities and units
to be comparable. Different comparison systems exist, such
as FOG [20], O(M) [18], or Rom [22]. These systems do not
use the same operators, but some of them are used in most
systems: Ne (negligible, also noted ≪), Co (comparable),
and Vo (Neighbor, or very close to). These operators can
give more precision than the usual ones, such as =, <, >, or
≈. Orders of magnitude are mainly used in purely qualitative
algebra because the intrinsic properties are incompatible with
the archimedean property and therefore not supported in R.
For example, it is supposed in Rom that if aNe b, therefore
(a+a)Ne b, which is not correct in archimedean spaces. Some

recent works added the operator Di , meaning distant [23],
and corresponding to the situation where the ratio between
two values is too important to consider them as comparable
(not of the same order of magnitude), but too small for
one of them to be negligible. Absolute and relative orders
can also be combined, but this requires an adapted space
partition and a precise definition of the relative operators.
The difficulty is to make the different frontiers match each
other. Otherwise, we get the superposition of two independent
measure scales, adding too much complexity for few benefits.
These techniques were designed to compare values, but we
must also compare functions to compare the behaviors of
variables and not only static values.

D. Order of Growth

Many works of the previous century have studied categories
of functions, and some categorized them on their order of
growth. This concept eases the representation of the behavior
of a function f : t 7→ f(t) when t → ∞. The notion of
order of growth was first formalized by Borel [24] and pushed
further by other scientists using the works of Hardy [25] on
logarithmic-exponential functions (set of functions obtained
by addition, multiplication, or composition of logarithm or
exponential functions, closed under addition, multiplication,
and composition). Let us consider f : R 7→ R a function. We
define the order of growth of f by c(f) = limt→+∞

ln|f(t)|
ln(t)

and c(f : t 7→ 0) = −∞. In the case of polynomial
functions f : t 7→

∑n
i=0 ait

i, we have c(f) = n. When f
is the sum of many terms, c(f) only considers its asymptotic
dominant term without consideration of the others. Moreover,
c(f) only has a meaning if f converges or diverges to an
infinite: if f is periodic or has no clear limit when t → ∞,
then c(f) does not exist. The expression of c allows us to
highlight some properties of the order of growth regarding its
reaction to operations. Using the properties of the logarithm, it
appears that for two logarithmic-exponential functions f and
g, c(fg) = c(f) + c(g) and c(f ◦ g) = c(f)c(g). Moreover,
if c(f) ̸= c(g), then c(f + g) = max(c(f), c(g)). Still, this
measure of asymptotic behaviors has some weaknesses. First,
with the given formula, it is impossible to distinguish constant
functions from logarithmic ones or to make a difference
between two exponential functions with their order of growth.
Actually, c(f 7→ k ̸= 0) = c(f : t 7→ ln(t)) = 0, and also
c(f : t 7→ et) = c(f : t 7→ 102t) = ∞, which is a severe
limitation for a behavior classification. Classifying an infinite-
diverging and a constant function with the same value cannot
be sufficient as a characterization. Finally, for our usage, this
order of growth only applies when t → ∞, making it useless
for analyzing systems at finite time scales through simulation.
Therefore, we want to generalize this concept to local areas
of the state space.

III. QUALITATIVE TENDENCIES

Our objective is to extend the notion of order of growth
to local rectangles to offer a qualitative abstraction of the
functions of a system using piecewise decomposition. To this



end, we will combine the tools presented earlier to propose
a qualitative local categorization and simplification of the
equations of a model. We will then reduce the complexity and
make the model’s behavior easier to understand at the price
of a loss in precision.

Let us consider the evolution of a variable y that varies
according to the function y = (t − 3)3 − 4 ∗ t2 − 2 ∗ t. The
observed behavior of the variable will be that of a classic cubic
function, with two phases of polynomial growth separated by
a decay phase. On a small scale, this decay period is essential
to determine a stop in the increasing qualitative behavior
observed earlier. However, on a larger scale, if we are just
interested to know the difference of magnitude at two times
t1 and t2, this decrease period has no interest: the tendency
is that the variable has followed a cubic growth between t1
and t2. This difference between general behavior and local
trajectory is the center of our idea and work. Depending on
the level of granularity and the information we seek, we can
adapt the expression of the equations of a system to optimize
its study without altering the results.

A. Comparison Tools and Dominant Terms

To generalize the notion of order of growth to a local
interval, we also use the notion of order of magnitude (both
absolute and relative) to simplify the behavioral equations of
the model. The logic is, for a vector of variables X and
f : X 7→ f(X) ∈ R, to extend orders of magnitude from
f(X) to f itself. By extension, this would apply to differential
equations as well. Intuitively, a function f(x) = x2 + x + 1
will not have the same kind of behavior if x = 0.025 or
if x = 1500. In one case, the behavior of f will (locally)
be linear, while in the second, it will be polynomial with
a major predominance of the x2 element. More specifically,
when 0 < x ≪ 1 (using the comparison operators introduced
in the previous parts), it appears that f(x) ≈ 1 because x
and x2 are negligible compared to 1 in that area. Introducing
the operator clocal(f), we would have c[−ϵ,+ϵ](f) = 0, with
0 < ϵ ≪ 1. As lim f(x)x→0 = lim(1)x→0, it is possible
to neglect the other terms of the function f to obtain an
acceptable approximation in the neighborhood of 1.

If we can give a more situational and larger negligibility
criterion (for example, if we consider that in the studied
system, x ≪ xs if x/xs < k, with k a constant to define
and xs a specific value for the variable x), then we could
replace the neighborhood of finite values by a rectangle inside
which f(x) ≈ 1. On the opposite, we could also say that if
x > 1

k , then f ≈ x2 for the same reason. Of course, the value
of k must be chosen accordingly to the design of the system,
and there is no question of giving a general value that could
be applied anywhere. An idea to correctly choose k is to fix
the limits of x (either explicitly with an invariant of the system
or implicitly by reasoning on the nature and quantities of the
variable) and to deduce a negligibility criterion from these
limits. For example, a chemical system, with density variables
evolving between 0 and 1, will not have the same negligibility
criteria as in a solar-system model, with distances outgrowing
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Fig. 3. Approximation of f(x) = x3 − 2x2 − 2 by dominance areas.

billions of kilometers. Knowing the expected variation space
of the simulation, we can deduce the highest magnitude that,
if added to a value in this interval, would not change its
interpretation and seem negligible compared to it. It will
also depend on the allowed margin of error: the authorized
inaccuracy will not be the same for a soap factory and a
nuclear plant. An adaptation to every case may be necessary.

When x → ∞, we use what we explained earlier regarding
the growth of the sum of functions. As the order of growth is
absorbent with the sum of monomials of different degrees,
we consider that for each monomial m of f such that
c(m) < c(f), there exists a specific value xs (depending on
the negligibility criteria mentioned earlier), such that for all
x > xs, m(x) ≪ f(x). We name fp a target function aimed to
approximate f precisely enough to preserve the properties of
f but with simpler behavior and expression. fp can be created
by replacing locally f by approximations in specific rectangles
from specific landmarks by suppressing one after the other the
monomials of f when they become negligible compared to the
dominant term (the highest degree monomial) of the function.
We give an example of a simple function in Fig. 3, showing
an approximation of the function f : x 7→ x3 − 2x2 − 2 to a
piecewise defined function.

In this figure, the two curves are mingled (excepted in the
|x| > 10 areas) because our approximation fp (black curve)
using the dominant terms in the different areas of the state
space gives us a satisfying representation of the function f
(the red curve) in terms of approximation and evolution form.
fp is defined as (the value 10 appears because we consider
orders of magnitude):



fp =



−2 if |x| ⩽ 1√
10

x3 and x2 Ne 2

−2x2 − 2 if 1√
10

⩽ |x| ⩽ 1
3√10

x3 Ne 2 and x2

x3 − 2x2 − 2 if 1
3√10

⩽ |x| ⩽
√
10

x3 − 2x2 if
√
10 ⩽ |x| ⩽ 10 2Ne x3 and x2

x3 if |x| > 10 x2 and 2Ne x3

B. State Space Sub-Partitioning
The point is now to apply this partition based on order of

growth to study the different equations of the model and to
map their behavior in the state space. As mentioned earlier, the
approximated behavior of a variable depends on the scale but
also on the time of observation. To know which abstraction
will be authorized, we must first confront the equations to
the magnitude taken by the variable in the state space and
then study the time slot we are interested in. This will
require a mapping of the state space that associates to each
set of the partition the dominant terms to be kept in the
approximated equation. To take our first example back, the
dominant term of the function x 7→ x2 − x + 1 will not be
the same depending on the current value of x. If we choose
a negligibility criterion of 10%, then the dominant term on
(−∞, 10] and on [10,+∞) will be x2, the dominant one on
[−0.1, 0.1] will be 1, while there will not be a single dominant
term on [−10, 10] \ [−0.1, 0.1].

We achieve this mapping by analyzing the different terms
of each equation and its variables, giving the importance
of the different terms in each area of the variation space.
Theoretically, it is possible to extend this manipulation to
logarithmic-exponential functions. However, for practical rea-
sons, we focussed our tests on polynomials only.

First, we explore the state space by analyzing the definition
space of each variable to avoid making useless computations.
For example, we know for a closed chemical reaction that the
total quantity of one component will not exceed the sum of
the initial quantity of all the components and that its density
will not exceed 1 by definition of this variable.

Using the system’s equations and negligibility criteria, we
automatize the model simplification with symbolic rules (par-
ticularly regarding the degree of the monomials of a poly-
nomial equation). Polynomials can be studied using solvers
to compute their zeros. Each term must be studied separately
and compared to the rest of the function using the negligibility
criteria and the scale chosen for this dimension of the system.
These comparisons provide their ranking between known
landmarks where their local orders of growth converge.

Each monomial function has an order of growth equal to its
order. The resolution of the equalities between the monomial
terms in a function is necessary to anticipate their dominance
inversion. The symbolic rules will have to be adapted to the
negligibility limit. However, we can express them as: f(x) =
o(eg(x)) for every f and g two polynomial functions when
x > q, with q the characteristic unitary value of the model
(corresponding to the most suited magnitude for the values
taken in the system), or m(x) = o(n(x)) if m and n are two
monomial functions with c(n)− c(m) = k > 0 and x >

√
qk.

In the case of multi-variable functions, we first rely on a
factorization tool to separate the variable in the expression
of the function. Once this step is accomplished, we treat the
univariate monomials just like in a classic polynomial, treat
the polynomial factors as if they were independent, and apply
the simplification in the complete function. When a product
of many factors cannot be simplified, we just keep it because
of the many influences it merges. The result is a product of
simplified polynomials that we consider our final function.

The landmarks of the partition are placed where there is
equality between different components of the same equation.
Around these landmarks, we place an area of qualitative
equality, where even if the components are not equal, they
are considered as comparable, being too close to neglect one.

Therefore, for a function f composed of n monomials fi,
we study separately the fi one after another. We inject them
in a target function fp initialized at 0 such that we compute
and solve the inequalities |fi| < |fp|/qf and |fi| > |fp| ∗ qf
with qf the characteristic value of f . In the intervals obtained
by computation of these inequalities, we consider respectively
that fi is negligible compared to fp (meaning that in this
interval, the expression of fp will not evolve) and that fi
dominates fp, (we then impose that fp = fi). On the rest
of the state space, we add fi to fp as they are comparable.

C. Bounding the Error

In this section, we will present a theoretical proof that the
obtained approximations give an error that we can confine or
prove as negligible compared to the function itself. For zero
order functions expressed as f = g + h with h a term or a
sum of terms negligible compared to g on an interval [a, b],
the error between f and its approximation fp = g is |h|,
that we supposed negligible. If we are interested in first order
dynamics of f , then let us call F =

∫ b

a
f(x) dx + F (a) =

Fx + F (a), and use the same notation for G and H . If h is
negligible compared to g on [a, b], then we can affirm that,
using the intermediate value theorem, g will not change its
sign. As h ≪ g, if the negligibility criteria is k, we have
|h| < |g|

k . Therefore, ∀t > a, |
∫ t

a
h(x) dx| <

∫ t

a
|h(x)|dx <∫ t

a
|g(x)| dx

k =
|
∫ t
a
g(x) dx|
k . This means that |Hx| < |Gx|

k =⇒
Hx ≪ Gx. This way, we can propagate the negligibility to
first-order dynamics and, with a simple recurrence, to higher-
order ones. Moreover, with a simple property, we can affirm
than

∫ t

a
|h(x)| dx < (t−a)∗maxy∈[a,b](|h(y)|), meaning that

we can bound the final error on finite rectangles. H(a) must
still be considered as nothing general can be expressed on it.

In the case of infinite intervals, the first part of the proof
still holds. However, it is not possible anymore to limit the
error as the function may not have an extremum on it.

D. Oscillation and Random Effects Nullification

We explained a method to simplify logarithmic-exponential,
and particularly polynomial functions. Our work on the order
of growth and local equivalence only applies to this category of
functions. However, we also propose other simplifications on
other functions, taking advantage of properties of periodicity



or randomness. In the case of dynamic differential equations
on long intervals, it is more complicated to assume that we
can neglect a term of the equation. Even if a term is relatively
negligible with respect to the main part of the equation, it can
still be necessary if the simulation duration is long enough
because the deviations will add up. As R is archimedean,
adding too many terms that are negligible compared to xn

may not give a result that is negligible compared to xn.
Consequently, reasoning dynamically on orders of magnitude
on long durations has limitations. However, long-range sim-
ulations allow us to make another simplification: periodic
functions can be neglected in equations if they respect some
criteria regarding their amplitude and frequency. If the system
is represented by an equation f = g + h with g non-periodic
and h periodic, we aim to know if it is possible to suppress
or to replace h in the simplified expression fp of f .

Let us consider the interval of study T . The frequency of h
will show if h is locally periodic, i.e. if we can still observe the
periodic nature of h when we consider only its local behavior
on T . When the period p of h is larger or comparable to T ,
then we can consider h as non-periodic, and the reasoning
of this paragraph does not apply. Otherwise, if p ≪ T , the
question is whether it is possible to use this periodic nature
to simplify the expression. By definition, a periodic function
varies in cycles around a mean value m, with higher and lower
values that will alternate. Our logic is to consider that the lower
and higher values may offset each other with enough periods
in an interval. To ensure that, we must first compute m on an
entire period to locate its value compared to the characteristic
value qm,v of the associated variable v in the corresponding
mode m. Let us make the hypothesis that every function we
will deal with is at least piecewise continuous and, therefore,
locally integrable. We can compute the medium value taken by
the function on one period with h̄ =

∫ t+p
t

h(x) dx

p . If m ≪ qv ,
with qv the relative order of magnitude, then the mean effect
of h on the complete function can be neglected. However, we
still have to look for the “variance” of h, represented by its
amplitude. With hM and hm the extreme values of h on one
period, we still have to ensure that |hM − h̄| and |hm − h̄|
are still not too important with regard to qv . If |hM − h̄| < qv
and |hm − h̄| < qv , then our last criterion is satisfied. A high
amplitude compared to qv could provoke qualitatively visible
behavioral changes. If |hM − h̄| < qv and |hm − h̄| < qv
but h̄ is not negligible compared to qv , we can still propose
a simplification of h by replacing it by its average value h̄. If
the movement around h̄ is sufficiently limited, it is possible
to consider only the mean value to identify the tendency.

When h is applied to a zero-order equation, the compensa-
tion property comes easily from the periodic nature of the
function and the required predicates. This means that the
deviation from the mean is restricted by a value supposed at
most comparable to qv . In the case of higher-order differential
equations, the demonstration is based on the Fourier series
of periodic functions. If the function h is periodic on T ,
then it can be expressed as h(t) =

∑+∞
n=−∞ an(h)e

−2iπ n
p t.

Therefore, if we call H the integral function of h, then
H =

∑+∞
n=−∞ − p

2niπan(h)e
−2iπ n

p t, which means that the
amplitude will regress and that the predicates that are true
for zero-order functions will stay valid for their primitives if
p is sufficiently small.

Everything explained here for periodic functions can also be
considered for stochastic terms of the functions. The analogy
can be completed using the mean value of the stochastic
function and by replacing the amplitude in a period with
the variance of the random variable. In this case, we rely
on the law of large numbers to observe the compensation
after many pseudo-periods for stochastic functions. After a
high number of time steps, the mean value of the random
variable should converge to its theoretical mean, and the
limited variance limits the potential qualitative change that
could be observed. Therefore, we simplify it as earlier by
replacing a stochastic function r, verifying these criteria by its
expected value. Observing an artifact is still possible because
the standard deviation does not give us a maximum amplitude
but only a probabilistic value of the observed deviation to the
expectancy. Nothing prevents a random variable from having
an unpredictable peak value way further from the expectancy
than the variance made us consider.

In brief, when faced with a periodic or stochastic term h
in an equation, we compute its mean value and compare it to
qv . If h̄ is negligible, we consider it as 0. In any case, we
must then examine the amplitude/variance of the term and its
period/sampling period. If both verify the described criteria,
their qualitative impact can be simplified to the mean value
of the term without considering the variation around it, which
will only cause local disturbances.

IV. IMPLEMENTATION AND CASE STUDY

A. Windy Ball and Equation Simplification
We have implemented our approach in Python, using the

Sympy library to work on specific structures for polynomials.
To manage periodic and stochastic functions, we manually
compute the abstraction of the functions we presented ear-
lier because of the difficulty of symbolically accessing the
necessary information about the function.

To illustrate the interest of our proposition, we present
two case studies on a windy ball system and a Van der Pol
oscillator. The first one consists of a ball bouncing on a flat
floor and exposed to the effects of an irregular wind.

We use a model where the evolution of the ball follows the
ordinary differential equations:{

ẋ = 10(1 + 0.5sin(10t))

ÿ = −g

Starting from an initial point (x0, y0) = (0, 10) and apply-
ing a numerical simulation from t = 0 to t = 7 with time
steps of 0.007, using a second-order Runge-Kutta integration
method, we get the result shown in Fig. 4. From there,
abscissas and ordinates correspond to the values of x and y.

As the term based on the sin function is periodic on [0, 7]
with a period p = π

5 < 7
10 , a mean value m = 0 and a



Fig. 4. Windy ball reference behavior

Fig. 5. Windy ball : suppressing the periodic term (orange)

maximal amplitude of 5, we can suppress this term from the
differential equation of ẋ and compare the new result to the
first one as shown in Fig. 5. This shows that if the timing of
the impacts is not exact because of the deviation caused by
the sin term in the real system, its periodic nature makes the
deviations compensate for each other. The tendencies are well
respected, leading to a qualitative reading of the simulation
that is very close to reality.

It is possible to modify the system’s dynamics to test more
of our statements. First, we can replace the sine with a stochas-
tic term to compare the new behavior with its approximation.
In Fig. 6, we can see that with a normal term defined by a
Gaussian function gauss(µ, σ) with µ = 0.1 and σ = 1 and
its approximation with g(t) = µ, we get very close results.
This shows that it is possible to consider only the value of µ
when the exposed criteria are satisfied.

We can also combine the two disturbing factors to see
whether our dominance reduction is additive. We show the
result in Fig. 7. Our approximation still efficiently captures

Fig. 6. Windy ball : suppressing the stochastic term (orange)

Fig. 7. Windy ball : suppressing both periodic and stochastic terms

Fig. 8. Windy ball: hybrid system with wind shear



the qualitative behavior of a periodic and stochastic differential
equation with a simpler ODE.

Finally, we make the system more complex and transform
it into a hybrid system with different equations for the wind
depending on the altitude of the ball. To make this model
hybrid, we suppose that the change in the wind effect is
discrete and happens at a precise altitude. The equation of
ÿ does not change, but the dynamics of ẋ becomes:

ẋ =

{
10(1 + 0.5sin(10t)) if y > 2

11− y2 otherwise

The precise integration and its approximation are compared
in Fig. 8. We observe a little deviation around the third bounce,
but it quickly disappears and does not change the qualitative
behavior. It will only change the location of some landmarks.

B. Van der Pol and Qualitative Behavior

To highlight the interest of our proposition for qualitative
behavior studies, we will apply it to the Van der Pol oscillator,
which is a continuous two-dimensional physical system de-
scribed by the two differential equations for the two variables
x and y, with b a positive constant parameter :{

ẋ = 10(y + x− x3

3 )

ẏ = b− x− 3y
4

In this system, the values may oscillate depending on the value
of b. As the oscillations happen around small values of x
and y, we choose the characteristic values q = (1, 1) and
choose a symmetric 2-logarithmic scale on each of them, on
both positive and negative values, which create a negligibility
criterion of 1

2 . Therefore, by applying our algorithm to these
elements, we can propose a simplified version of the flow,
which will then be expressed as:



ẋ =


10(x+ y) if |x| < 0.5

10(y − x3

3 ) if |x| > 4

10(y + x− x3

3 ) otherwise

ẏ =


b if |x| < b/2 and |y| < b/2

b− x if |y| < b/2 and |x| < 2b

b− 3
4y if |x| < b/2 and |y| < 2b

−x− 3y
4 otherwise

We then show the superposition of the curves obtained for
a simulation of both systems with the same number of time
steps and for two qualitative trajectories as shown in Fig. 9
and Fig. 10. The curves of the actual systems are in blue, and
the curves of the approximated one are in orange.

We can see in both figures that despite an apparent inac-
curacy in numerical values, the qualitative behaviors (conver-
gence or limit cycles) are preserved, which is what we were
aiming for. Moreover, switching from a 2-logarithmic scale to
a 4-logarithmic scale almost completely removes any visible
offset between the curves.

Fig. 9. Cyclic execution of a Van der Pol system and its approximation

Fig. 10. Convergent execution of a Van der Pol system and its approximation

V. LIMITS AND NON-NULLIFIABLE EFFECTS

In this paragraph, we will expose the limitations of our
contribution, which appear in borderline situations and for
very sensitive systems for which it is impossible to apply the
dominant term strategy we used before.

The first problem is the situation of borderline cases. When
the dominated elements are in a border situation, being signif-
icantly inferior to the tendency but not below the negligibility
frontier or periodic with an amplitude of the same magnitude
as the characteristic quantities of the system, the approxima-
tion fails. Such terms may cause significant consequences. An
example of this situation can be given by replacing the 0.5
factor of the sine function with a 2 in the windy ball case study.
The mean of the complete periodic term stays unchanged, but
not its amplitude. The maximum distances to the mean are
moving from 5 to 20, which is no longer inferior to ten. The
comparison of the simulation results in Fig. 11 illustrates this
ambiguity: qualitatively, the behavior has the same nature,
but the shift of the corresponding landmarks increases and
even creates a phase opposition in the approximated behavior.
Another example is when the system’s parameters are near a
behavior-switching condition. For example, in the Van der Pol
oscillator presented earlier, when b is close to the switching
value between the convergent and divergent behavior, it is



Fig. 11. Limit of the approximation with 2 sin.

possible to observe wrong trajectories.
The second problematic configuration comes from systems

where any conditions or equations modification can com-
pletely invalidate or qualitatively change the system’s behavior.
A simple example derived from our previous model is a windy
ball with an uneven floor. If we choose a sinusoidal floor,
we can emphasize two inherent problems. The first is that it
is only possible to apply the nullification to every periodic
function with enough knowledge about the internal variables
of this function. In our example, the cosine term takes as an
argument the x coordinate of the ball, which is itself a non-
expressible function. It is impossible to simplify the composed
function because we have no clue that cosx will indeed be
periodic as we do not have an explicit expression of x. It is
crucial to consider the composed functions, not only the top-
level ones. The second problem is the sensitivity to minimal
changes in the impact coordinates. Therefore, a sinusoidal term
can completely change the behavior with a low amplitude. We
show the results with and without approximation in Fig. 12.

With a wind of only 0.5 sin(15t) added to the dynamics of
x in the system, we see that the behaviors of the two models of
the same system diverge quickly after the first bounce. This
result raises the importance of being aware of the model’s
sensitivity before applying a dominant simplification.

VI. DETAILS OF THE ALGORITHM TO BUILD AN
APPROXIMATION

Before concluding, we present the algorithm used to com-
pute the qualitative approximation of the model of a system
by considering each of the possible approximations presented
earlier. We illustrate its application with a simple example.

This algorithm takes as entry a model in the form presented
at the beginning of this article. In the following steps, the
different modes of the same system will be treated separately.

The first stake is determining the unitary characteristic
values q for each variable and mode. If these values are
given explicitly in the model, we can use them as they are.
Otherwise, their computation will require more automatizing

Fig. 12. Limit of the approximation in the case of chaotic systems.

work and rely on prior structural and symbolic knowledge of
the system and an ability to deduce implicit information from
it. For example, in a chemical system, it is not explicit that
the masses will be preserved during the process. If we can
access a variable’s maximum and minimum expected values,
it will be possible to deduce q from them. If they have a
comparable magnitude, we can easily identify the unitary value
with the difference between the extrema. Otherwise, we place
the unitary value at the magnitude of the minimum.

For each mode, for each equation e, we create a tendency
function ê that approximates its behavior, initialized to ê0 = 0.
For each known monomial term mi of e, we compare the
magnitude order of mi with those of the terms in êi−1. We
compare the current monomial to each term of ê using the
continuity of the functions by solving êi−1j = mi, êi−1j =
mi/k and êi−1j = kmi, with êi−1j the jth term of êi−1 and
k the negligibility criteria as defined earlier. This gives us the
thresholds where this term becomes negligible or dominant.

With continuity properties, we have now the position of the
new monomial in comparison with each of the previous ones,
and we adapt the expression of ê with new segments to neglect
mi when there exist j with êi−1j such that êi−1j/mi > k, and
to neglect every êi−1j when mi/êi−1j > k.

Theoretically, we may handle logarithmic and exponential
terms by replacing k with log k in exponential terms and by
ek in logarithmic terms. However, this has not been tested yet.

Next, the computation continues on periodic terms of
period p. Their mean value is computed with the formula
f̄ = 1

p

∫ x+p

x
f(t) dt. We then compute the amplitude with

max(f̄−mint∈[x,x+p](f(t)),maxt∈[x,x+p](f(t))− f̄). Using
the criteria defined in subsection III-D, we compare these
values with the system unitary ones. This gives us information
on the possibility of simplifying the expression of the function.
Finally, this step is repeated on the stochastic terms of the
equation, yielding an approximated equation with bounded
expressions for specific state space areas.

For example, let us suppose that we have a system con-



sisting of 2 variables x and y with the equations ẋ =
t3 − t2 + 1 + y2 − 2sin(10t) and ẏ = y − 2xy. The
expression of ẏ cannot be simplified because we have no prior
information about the values taken by the variables x and y
nor any expression to compute them at any instant t. In the
expression of ẋ, the y2 term is also ignored because we do
not have an explicit expression for it. Secondly, we compute
the three monomial terms t3, t2 and 1 one after another. We
place ourselves in a system where the unitary value would be
1, and the negligibility criteria of 0.1. The tendency equation is
initialized to 0. The first term added to ê is 1. We then add the
monomial −t2 to ê. t2 is negligible compared to 1 if |t| < 1√

10
,

and 1 is negligible compared to t2 if |t| >
√
10. After that,

we can add the t3 term. This one is negligible before 1 when
|t| < 1

3√10
. 1 is negligible compared to t3 when |t| > 3

√
10

and t2 is negligible compared to t3 when t > 10. We then
deduce a partial expression of ê:

ê =



1 + y2 if |t| < 1√
10

1 + y2 − t2 if 1√
10

< |t| ⩽ 1
3√10

t3 + 1 + y2 − t2 if 1√
10

⩽ |t| <
√
10

t3 + y2 − t2 if
√
10 ⩽ |t| ⩽ 10

t3 + y2 if |x| > 10

Finally, using the amplitude and frequency of the sine
function, we can neglect sin(10t) when the absolute values
taken by the other terms are superior to 2. Therefore, we add
this term in the equation when |t| < 2.

VII. CONCLUSION

In this paper, we have presented a methodology to reason
about tendencies and dominant functions in the modeling of
the behavior of complex systems:

• we analyse the ODEs to determine what are the dominant
terms in different areas of the state space,

• we analyze the behavior of periodic terms in the observa-
tion window in order to determine if they can be ignored,

• we also recognize overall dominant behaviors, but that
are negligible in the context of the observation window.

This study allows us to build a qualitative model of the
system in the form of a map that tells us the dominant terms of
the system’s behavior in different areas of its state space. This
qualitative map allows us to adapt the computational effort
needed to simulate the system according to the position of the
state of the system in the areas of the qualitative state space
while preserving the qualitative behavior obtained through the
simulation. This is similar to using a topographic map when
hiking: if one knows they are close to a cliff, they will stop
running and watch their steps, while they can progress more
freely when far from any obstacle. Similarly to the hiking map,
the qualitative model of the system is built only once and can
be reused to optimize computational resources in simulations.

We can use the equations of the system to compute the
borders of the different areas of its qualitative state space.
However, we still need tools to determine beforehand the
suitability of our method to a given system (depending on its

sensitivity, for instance) and the quality of the approximated
qualitative behavior. This is currently the main limitation of
our approach. Our long-term objective is to use this approach
in the context of qualitative models design by combining it
with knowledge propagation methods.

REFERENCES

[1] M. Mitchell, Complexity: A guided tour. Oxford university press, 2009.
[2] T. A. Henzinger, “The theory of hybrid automata,” in Verification of

digital and hybrid systems. Springer, 2000, pp. 265–292.
[3] A. L. Brown, Qualitative knowledge, causal reasoning, and the local-

ization of failures. MIT Artificial Intelligence Laboratory, 1974.
[4] J. De Kleer, Qualitative and Quantitative Knowledge in Classical Me-

chanics, ser. AI-TR-. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1975.

[5] P. J. Hayes, “The naive physics manifesto,” Expert systems in the
microelectronic age, 1979.

[6] ——, Readings in qualitative reasoning about physical systems. Mor-
gan Kaufmann, 1985, ch. The second naive physics manifesto, pp. 46–
63.

[7] K. D. Forbus, “Qualitative process theory,” Artificial intelligence, vol. 24,
no. 1-3, pp. 85–168, 1984.

[8] P. J. Mosterman and G. Biswas, “Diagnosis of continuous valued systems
in transient operating regions,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 29, no. 6, pp. 554–565,
1999.

[9] R. R. Rosenberg and D. C. Karnopp, Introduction to physical system
dynamics. McGraw-Hill, Inc., 1983.

[10] B. Kuipers, “Qualitative simulation,” Artificial intelligence, vol. 29,
no. 3, pp. 289–338, 1986.

[11] D. Berleant and B. J. Kuipers, “Qualitative and quantitative simulation:
bridging the gap,” Artificial Intelligence, vol. 95, no. 2, pp. 215–255,
1997.

[12] X. Chen, E. Abraham, and S. Sankaranarayanan, “Taylor model flowpipe
construction for non-linear hybrid systems,” in 2012 IEEE 33rd Real-
Time Systems Symposium. IEEE, 2012, pp. 183–192.

[13] J. Jerray, “Orbitador: A tool to analyze the stability of periodical
dynamical systems.” in ARCH@ ADHS, 2021, pp. 176–183.

[14] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,”
in International Workshop on Hybrid Systems: Computation and Con-
trol. Springer, 2002, pp. 465–478.

[15] H. Zaatiti, L. Ye, P. Dague, J.-P. Gallois, and L. Travé-Massuyès,
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Gauthier-Villars, 1910, vol. 12.

[25] G. H. Hardy, “Properties of logarithmico-exponential functions,” Pro-
ceedings of the London Mathematical Society, vol. 2, no. 1, pp. 54–90,
1912.


	Introduction
	Qualitative Modeling and Orders of Magnitude
	Dynamic System Formalism
	Qualitative Modeling of Dynamic Systems
	Orders of Magnitude
	Order of Growth

	Qualitative Tendencies
	Comparison Tools and Dominant Terms
	State Space Sub-Partitioning
	Bounding the Error
	Oscillation and Random Effects Nullification

	Implementation and Case Study
	Windy Ball and Equation Simplification
	Van der Pol and Qualitative Behavior

	Limits and Non-Nullifiable Effects
	Details of the Algorithm to Build an Approximation
	Conclusion
	References

