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Abstract—Complex systems modeling and simulation are crit-
ical in many industrial and research fields and specifically to
predict, prove, verify, and understand the behavior of cyber-
physical systems. The diversity of variables in a system creates
complexity [1] and a need for more efficient modeling and simula-
tion methods. In the case of hybrid systems [2], the heterogeneity
of the discrete and continuous parts makes these tasks more
challenging by adding the necessity to manage different types of
variables and transitions separately. Qualitative reasoning offers
a paradigm to study the behavior of such systems with a high level
of abstraction, trading precision and specificity against generality
and formalism. This paradigm can be preferred to numerical
analysis in specific situations, especially in the upstream study
of a system, in its design phases. However, the different repre-
sentations and the various contexts of such systems create an
important obstacle to define a general methodology for applying
qualitative reasoning and modeling to every case. In this article,
we propose a method and a tool to unify different qualitative
reasoning techniques on complex cyber-physical systems. We will
also develop the possibilities offered by the obtained abstraction
in various tasks such as formal proof, verification, property
analysis, diagnosis, simulation driving, and system monitoring.

Index Terms—modeling, qualitative reasoning, cyber-physical
systems, abstraction, simulation

I. INTRODUCTION

Cyber-physical systems [3] are central to many disciplines.
The ability to study, decompose, and understand them and
their behavior is crucial to increasing our technical abilities
in many industrial and scientific areas. Many methodologies
exist to study them, either at a component level or from a more
systematic point of view. However, all these methods lack
generality: they were mainly thought for precise applications,
be it a numerical simulation, test, or monitoring. Their high
degree of specificity makes them sparsely adapted to tasks that
require more general and abstract properties, and to reason
on the system. Moreover, the hybrid nature of many CPS
including feedback or human interactions adds a new form
of complexity. As hybrid systems [2] combine discrete and
continuous variables, their study is a more challenging task
and must involve more efficient and general methods.

Definition: We consider as an hybrid system any system
containing both continuous and discrete behaviors. These
systems can be described with:

• a discrete variable Q, also called the mode, defined on
the finite domain Q and whose value is noted m,

• a set X of continuous variables defined on the continuous
set X, with value x. The components of X are noted Xi,
with value xi. In view of practicality, we often consider
X = Kn with n = |X|.

We define a variable as a measurable quantity, with a
physical unit and a value. We also integrate into our description
a function I mapping each mode to a set of predicates
Invm ⊂ 2X representing the invariants of the system for the
mode m; a set T ⊂ Q ∗ 2X ∗ Q ∗ XX of modal transitions
represented by the departure mode m1, a transition condition
(a guard), the target mode m2, and a reset function giving the
new value of X when entering m2; and the flow F mapping
every mode m of Q to the dynamics vector of X containing
ordinary differential equations (ODE) on X and its derivatives.

Originally, qualitative modeling was introduced by
Brown [4] and De Kleer [5], who developed the concept of
qualitative knowledge about systems and processes. They
applied this theory mainly to electronics and computer-
assisted physics computation. They did not design this
representation of knowledge as a substitute for numerical
computation but as a complementary strategy. Indeed, they
presented their approach as a tool to solve general problems
by reasoning at a high level of abstraction on the system and
to refine the more specific sub-problems that could only be
solved with a more classic numerical computation. Therefore,
the initial idea was to add intelligence in problem-solving
and optimize the use of computational resources that should
be kept for sub-problems that really require them. If the
notions implied by qualitative have evolved since then, the
ambition remains unchanged: proposing a new reasoning tool
to supplement the very precise but too specific numerical
approaches available to study the different kinds of systems.
Major elements have been added to the theory of qualitative
modeling, such as naive physics [6], [7], the theory of
dynamic processes [8], and the concept of conceptual
closure of such a theory [9]. Qualitative modeling has made
significant advances with the works of Kuipers [10] on the
qualitative representation of the state space and the value of
system variables. He introduced a form of reasoning based on



sign algebra, using the values {−, 0,+} as abstractions of the
numerical values of the variables. The authorized operators
are {+, ∗}, and they illustrate the advantage of the sign
algebra as they preserve all their properties of transitivity,
associativity, and commutativity [11]. This method allows
the qualitative study of the behavior of a system based
on qualitative differential equations, which are abstractions
of numerical differential equations. The development of
this analysis led to the development of the QSIM tool.
However, the non-determinism of such operations and the
lack of precision showed the limits of the approach in the
case of systems with feedback or multiple successors for
a given state. Kuipers and Berleant partially resolved these
problems with their work on semi-qualitative reasoning [12].
In this approach, the sign algebra is completed with interval
propagation to integrate a part of numerical analysis and
resolve the uncertainties that cannot be studied with only sign
knowledge. This complementarity allowed the study of more
complex systems and the development of more advanced
versions of his tool, such as SQSIM and Q3. Some work has
been undertaken to combine it with orders of magnitude [13],
but the results did not meet the expectations. However,
interval propagation has since really progressed, allowing
advances such as flow-pipe computation [14] or more precise
uncertainty measures and correction. Tiwari completed this
approach [15] and generalized it to ordinary differential
equations (ODE) under the condition that the terms of the
equations must be polynomial according to the system’s
variables. This methodology requires an additional step of
numerical analysis upstream of the system study. However,
it can give more interesting results as it takes into account
the links between the dynamics and the values of a system,
while previous methods had the drawback of separating the
two aspects. In terms of applications, qualitative reasoning
mainly allows formal computation and proof using temporal
logic [16], diagnosis [17], [18], verification [19], [20] and
approximation [21]. Qualitative modeling implies reasoning
on multiple levels of abstraction. The most important ones are
the design space (also named ‘domain space’ by Forbus [9]),
centered on constructing an adapted representation of the
system and its context. Working on the design is the most
advanced form of qualitative reasoning as it involves non-
instantiated and even partially defined systems and therefore
requires the ability to compute and solve equations with
purely symbolic and non-valuated constants. The dynamic
equations of such a system can, for example, be defined as
ẋ = ax3 − 3xy2 with a a symbolic constant with unknown
value. The stakes of such a challenge are to help in the design
of complex systems very upstream in their development,
and to work on models defined with incomplete knowledge.
The state space of a system is a more tangible field, as we
can expect all the fundamental knowledge and values of the
system to be at least partially known. In this publication, we
will focus on the exploration and exploitation of the state
space, but we consider these results as preliminary to further
works to explore both design and state spaces. This article
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Fig. 1. Hybrid model of a thermostat

will present the current state of our methodology and tool to
create a qualitative model from an expression of the system,
explore it and create its behavior tree, and exploit it for
behavior analysis, simulation piloting, or system monitoring.

II. CONCEPTS

A. Cyber-Physical Systems

The main application of our works on qualitative mod-
eling is the analysis of cyber-physical systems. We include
in this term every system consisting of physical elements
controlled by a computational process. The representation
we choose to use as a reference takes the form S =
⟨Q,X, I, F, (minit, xinit), T ⟩ with Q the discrete mode de-
fined on Q, X the vector of continuous variables defined on
Kn with K = R in many cases, F the flow of the system (i.e.,
its dynamics), which maps the value m of Q to the set of ODE
that define the dynamics of X in mode m, minit the initial
mode and xinit the initial value of X . I is defined as explained
above and represented as a mapping from Q to predicates
on X. T is the set of all modal transitions, represented as
quadruplets (initial mode, transition condition, arrival mode,
reset values), where the reset values are represented with a
function in XX that gives the value of the continuous variables
after the transition from their values before the transition. The
equations of F are generally limited to K[Xi]Xi∈X (we will
use the notation K[X] for the rest of this article), the set
of polynomials on K with variables in X . As F defines the
continuous behavior of the system for each mode and T the
condition to switch the current mode to its successor, we can
now model the system’s operation.

For example, let us define a model of a thermostat as:

Q = {mode},
Q = {off, on},
X = {x} with x the temperature of the system in Celsius,
X = R,
I = {mode = off : x > 60, mode = on : x < 100},
F = {mode = off : ẋ = −x,mode = on : ẋ = 100− x},
(minit , xinit) = (off, 80),

T = {(off
x⩽70−−−→ on, x 7→ x), (on

x⩾80−−−→ off, x 7→ x)}

B. Hybrid Automaton

Hybrid automata [2] are a standard and efficient tool to
represent and study cyber-physical systems. They can be
defined as H = ⟨Q,X, V,E, Init, I, F, J, L⟩ with Q, X , I ,



and F corresponding respectively to the set of discrete vari-
ables, the set of continuous variables, the invariant constraints,
and the flow equations as for cyber-physical systems. (V,E)
is the control graph of the automaton, with V its vertices
representing all its states (in our syntax, V rather represents
the modes) and E the edges between the vertices. To represent
a cyber-physical system as an automaton, E can be obtained
by analysis from the transitions in T . Init is the set of initial
conditions, with predicates constraining the initial values of Q
and X . L is a pair composed of a set of labels and a mapping
from E to these labels. The label associated with a transition
can be the nature of the transition, its cause, or its specificity.
The structure of hybrid automata is particularly adapted to
represent the behavior of a cyber-physical system. For ex-
ample, we represented the thermostat system described above
as an hybrid automaton in Figure 1. This classic definition
isolates the different modes of the system as different states
of the automaton. Each one is characterized by its specific
flow conditions (i.e., the continuous dynamics associated with
the mode) and by transitions and initial conditions, defining
the values of the elements of X that allow a transition to
another mode and the reset values imposed after an incoming
transition. However, the trajectory of X is not taken into
account in this automaton model. In simple cases like this
one, it can be deduced from the expression of the flow,
whereas it can be impossible for more complex systems. This
means that this structure is oriented toward studying discrete
behaviors rather than continuous ones. However, studying CPS
also requires observing the continuous behavior of the system.
To this extent, we must not only deal with the dynamics of
the continuous variables but also with their trajectories and
properties, as these elements can give us helpful information
about the behavior of the global system. Moreover, knowing
the behavior of the continuous variables is necessary to know
which continuous transitions (constrained by the value of X)
can occur, and which ones are impossible in the current mode.
To this extent, we need to be able to compute the trajectory
of these variables.

One can compute these trajectories at two levels of abstrac-
tion, with two main families of techniques. The first one, and
the most commonly used, is the family of numerical methods.
Here, the trajectories are obtained with numerical simulation
techniques, including, for example, Euler integration or Runge
Kutta, that can give exact and reliable results. The main
problem of numerical methods in our context is that they do
not allow any generality in the simulation and may require
very high computation time for complex systems. Moreover,
any uncertainty can propagate and give very unpleasant results.
Uncertainty management needs to use more complex tech-
niques such as interval propagation methods, which require
more time and computational resources. Therefore, as we
especially seek an important generality more than precision
at this step of the system study, we prefer the other option,
which is qualitative reasoning. This choice implies discretizing
the state space in a finite number of qualitative states, which
are abstractions of the numerical values they include. This
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ẋ = 1+a1x2y−(b1+1)x
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Fig. 2. Hybrid model of a Brusselator system

discretization will allow the computation and study of an
abstract trajectory among the set of qualitative states. These
trajectories will benefit from being very general and represent
a whole family of numerical traces as a type of behavior.
We will represent such trajectories in another type of hybrid
automata featuring both modal and intra-modal transitions.
From now on, we will present how to obtain these trajectories.
Definition: In a qualitative model, we consider discrete or
modal transitions as changes in the values of the discrete vari-
able Q. The intra-modal or qualitative transitions correspond
to a change of the qualitative state without change of mode.

III. SYSTEM ABSTRACTION

A. Abstraction Methods

The first step to compute the qualitative trace of a system is
to transform our representation of the system to a qualitative
model to serve as computation support. Let us consider a
system S = ⟨Q,X, I, F, S0, T ⟩ with the notations already
defined.

We consider that the flow of the system is represented by
a mapping of each mode to an ordinary differential equation
Ẋ = F (X(t), t) with t the time parameter of the system.

To illustrate our explanations, we will take as an example
the hybrid Brusselator system, expressed as:

S = ⟨
Q = {mode}, X = {x, y},
Q = {1, 2}, X = R2,
I = {mode = 1 : x, y > 0; mode = 2 : x, y > 0},
F = {mode = 1 :

(ẋ, ẏ) = (1− (b1 + 1)x+ a1x
2y, b1x− a1x

2y),
mode = 2 :
(ẋ, ẏ) = (1− (b2 + 1)x+ a2x

2y, b2x− a2x
2y),

S0 = (1, (5.3, 2.6)),
T = {(1, x < y, 2, Id), (2, x > y, 1, Id)}

⟩

With this representation, it is possible to visualize the
discrete part of the model as a hybrid automaton, as already
explained (see Figure 2). For the continuous evolution, dif-
ferent abstraction methods have been introduced and used.
The choice of the abstraction method is critical because this
will mainly influence the possibilities and the precision of
the state-space exploration. Among the methods that have
been studied and proposed, the more useful in the case of



CPS are the methods of Kuipers and Tiwari. The use of
more advanced reasoning techniques implies converting the
continuous trajectory into a discrete evolution with the help
of an abstraction function α, that associates each position of
the system to a qualitative state, which belongs to a finite set.
The nature of this function is what differentiates the various
modeling approaches. The first method, brought by Kuipers,
only reasons in terms of landmarks (i.e., hyperplanes defined
by Xi = c with c a constant and i ∈ J0, |X| − 1K). The
abstraction of the variation space is made separately for the
variables themselves and their derivatives. The abstraction of
the state-space is done using landmarks on the zeros of the
variables and abstractions of the system’s differential equations
named qualitative differential equations (QDE) to make any
change of sign have influences on the other variables. For
example, if X = (x, y) and if x has a positive influence on
y, then the QDE characterising it will be y = M+x. In the
case of our case study system, ẋ = 1− (b+ 1)x+ ax2y will
be replaced by ẋ = M+y +M+x ∗M+y. As variables and
their derivatives are not completely linked anymore because
of the high level of abstraction, using these landmarks on the
components of Ẋ is more complex and does not give much
information. Actually, ẋ = ay and ẋ = ay2 are not different
in this abstraction space applied to R+.

It is also possible to use other landmarks (i.e., with Xi =
c ̸= 0) deduced from prior knowledge about the system. For
example, if we know that 100 km.h−1 and 1 km.h−1 are
important milestones around which the qualitative reasoning
about an autonomous car should process, they will be con-
sidered as reference landmarks to compare and abstract the
current value of the speed. However, as these values are not
from the sign algebra, they will not be propagated in the
equations as their properties do not match all the properties
of the most convenient algebra. This method allows simple
studies of systems based on explicit values chosen according
to the objectives and the context of the CPS. It means that
it is required to have a predefined instance and context of
the system and to know where and why it will be used.
This constraint is contrary to the main objective of qualitative
modeling: we must create models with as little information as
possible, so we should avoid contextual frontiers.

The approach of Tiwari has resolved this drawback: for
each mode m ∈ Q, using the equations defining the system
(both the dynamic equations, the invariant expressions, and
the transition conditions), the algorithm defines new variables
derived from X . Using all the elements p from Fm, Im, and
Tm (with Fm, Im, and Tm being the subset of F , I and T
associated with mode m) such that p ∈ K[X], we define a
set Pm initiated with Pm = {X0, . . . , Xn−1} with n = |X|.
∀p ∈ K[X] ∩ (Fm ∪ Im ∪ Tm), we set xp = p and we
add each xp to Pm. Then, ∀p ∈ Pm, if ṗ ̸= 0 ∧ ṗ /∈
Pm ∧ ∄ (b, d) ∈ K[X] ∗ Pm such that ṗ = b ∗ d, then ṗ is
added to Pm. As these polynomials include terms only defined
by their differential equation, it is likely that many of them
are neither nilpotent nor idempotent. Therefore, the more they
are derived, the more complex their expression will become.

For example, in the case of the Brusselator, the expression of
ẋ will be added to P . Once derived, the obtained expression
will be ẍ = a(−ax2y+ bx)x2+2a(ax2y− (b+1)x+1)xy−
(b + 1)(ax2y − (b + 1)x + 1). Deriving polynomials from
x and y many times may increase computational complexity
without major precision improvement. Therefore, choosing a
criterion to stop the filling of Pm is necessary. The more
elements Pm will contain, the more the qualitative model will
be refined, so this choice is the search for a trade between
precision and complexity. This criterion must be chosen before
the execution, so we still have a problem with non-instantiated
systems. If we have no information about the needed preci-
sion of the abstraction nor the usefulness of new reference
values, the criteria will have to be chosen arbitrarily. In our
Brusselator system, with a criterion of a maximum number of
derivations of 2, P1 and P2 are both initialized to {x, y}. Then
F [mode1][x] and F [mode1][y] are added to P1. I[mode1] is
also added as is the transition condition from mode1 to mode2.
At that time, we have P1 = {x, y, ẋ, ẏ, x − y}. Then, each
element is derived: as ẋ and ẏ are already in P1, they are not
added. However, d(x−y)

dt , ẍ and ÿ are.
Once P is computed, the next step is to take every p ∈ P

and use a polynomial solver to solve the equation p = 0. The
obtained solutions, expressed as Xi = f(X \Xi) will give the
expression of the nullclines of the state space and will allow a
discretization of the variation space of the variable. Each value
of X will now be abstracted by comparison to the nullclines.

Definition: We call qualitative state of a system the pair
(m, qs) with m the current mode and qs ∈ {+, 0,−}|Pm| a
vector such that ∀i ∈ J0, |Pm|−1 K, qs[i] = − if Pm[i](X) <
0, 0 if Pm[i](X) = 0, and + otherwise. The abstracted values
of X will be expressed as a vector of elements from {+,−, 0}
representing respectively for every p ∈ P the fact that p(X)
is negative, zero, or positive. Therefore, we can define the
abstraction function α : X 7→ {−, 0,+}|X| giving this vector
for every value s of X .

The advantage of this method is that it can be applied even
on non-instantiated systems: it does not require prior knowl-
edge about the context or the system’s objective, meaning it
is easy to generalize. However, as we treat systems defined by
ODE, there are many chances that the obtained polynomials
in P will be neither nilpotent nor idempotent. Therefore, the
stopping criteria will be required for the discretization to stop.
The problem is that we still need to define these criteria before
studying the system and that these criteria will still depend on
the case and the specific system.

Moreover, to apply this method, it is necessary to know
the explicit formula of the ODE, which means that it does
not automatically apply to systems defined by more abstract
structures such as bond graphs, causality graphs, or even
proportionality relations. Therefore, the method is limited to a
subset of CPS where the relations and dynamics are perfectly
known with symbolic formulas. We are currently working on
generalizing this abstraction to systems defined by causality or
proportionality, but we still have a way to go. In the case of
explicit equation with non valuated constants, α can be defined



but will not be callable before a complete definition of all the
symbolic constants as its return value depends on it.

B. Behavior Exploration

Once the state space’s discretization is over and we have
defined our abstraction function α, we can now focus on the
objective of qualitative reasoning for behavior analysis: the
exploration of the hybrid behavior tree. As we do not consider
the numerical value of the system’s state as necessary, we
only seek to propagate the qualitative state of the system and
explore all the possible trajectories starting from an initial
point. First, we must abstract this departure point to figure
out which qualitative state we are in.

Then, while we are not in an absorbent state or in an already
explored state, we explore all the neighbors of the current state
and add them to the list of qualitative states to be treated.
Two structures are used to memorize the qualitative states: a
Frontier list and an Explored list. The Frontier keeps the qual-
itative states from being analyzed, and Explored memorizes
the ones already studied. At this point of the computation,
we still consider the qualitative states that violate an invariant
or that may trigger a discrete transition among the others: the
separation will come later. This way, by neighbor propagation,
we can compute all the qualitative states where the system can
be in its real trace. Adjacent state propagation allows us to
determine all possible variation directions from the initial state.
To compute the direction of variation, we must compute the
Lie derivative: when on a nullcline defined by p = 0 separating
two states s1 and s2, the transition direction will often be
unique. To compute it, we use the Lie derivative defined by
LX(p) =

∑
XiinX

∂p
∂Xi

∂Xi

∂t . If there exist a valuation x of X
such that x ∈ s1 and that the sign of LX(p)(x) corresponds to
the change of sign of p during the transition from s1 to s2, then
this transition is allowed. Knowing a possible current value of
X means that we must have a way to reverse the abstraction
function and evaluate X when in the state (m, s1). Once all the
possible transitions from the current state s have been found,
we add all its successors that have not been visited to the
Frontier list and continue until the Frontier is empty. We then
add the current state to Explored. As we create states partially
based on the sign of the transition conditions, it is essential to
monitor which type of qualitative border the trajectories cross.
To this extent, each border equation is associated with the type
of constraint it was created from. If a nullcline obtained by the
zero of a transition condition is crossed, the post-processing of
the successor states function detects it, and the qualitative state
is replaced by the post-transition state from the target mode
in the exploration tree. We note this transition differently in
the tree as it is a modal transition, not just a qualitative state
change. Once the algorithm stops, we define the automaton
based on our execution, where we have the states defined by
the pair (mode, qualitative-state). For two states linked by a
transition, if mode1 = mode2, we note the transition as intra-
modal. Otherwise, the transition is noted as modal or discrete.
We use these qualifications as labels from L.

IV. INTRODUCTION OF QUALITATIVE ZONES

The first direction to improve the efficiency of qualita-
tive reasoning is to process a refinement of the state space
partition. This means adding new elements in the set P to
compute new borders to compare and situate the numerical
values. However, adding more polynomials that correspond
to no physical phenomenon does not have great interest. For
example, the qualitative states defined with nullclines of 5th

orders derivatives will rarely bring useful knowledge for the
computation. Therefore, the best option is adding new borders
based on equations from previously explored orders. With
this idea, we can create a proximity zone around each of
the previously computed borders, which will give information
about the distance to the coming event when crossing this
neighborhood limit. In the beginning, we imagined this as a
type of precaution frontier. We studied three main ideas to
create such limits that we will now call secondary borders.
The first idea we tested was to translate the main borders
from a chosen distance d to obtain the neighborhood limit.
The advantage of this idea is simplicity: each border can be
translated from a specific value in a given direction without
requiring heavy computation. However, the choice of the trans-
lation direction is entirely arbitrary, and such a frontier will not
have any physical meaning, especially in the case of borders
defined by nullclines. This is, however, the best solution for
the limits defined by Xi = k, with Xi a component of X and
k a constant in K: the translation direction is then naturally
following the axis defined by Xi. The obtained hyperplane
is parallel to the main border and defines a proximity area
around it at a constant distance d. In the case of nullclines,
this solution is not viable.

Another idea was to compute surfaces that are completely
parallel to the original nullclines: this would have assured
the same distance in every direction and would have visually
been very understandable. However, the computation of such
surfaces is much trickier than it seems: even in two dimen-
sions, computing the equations defining a curve parallel to
another is far from trivial. In two dimensions, in the case
of a parametric curve defined at any instant t by x = f(t)
and y = g(t) with f and g two functions, the equation of the
parallel curves to the parametric curve (x, y) are the parametric
curves defined by (x′, y′) with x′ = f(t)± kġ(t)√

ḟ(t)2+ġ(t)2
, and

y′ = g(t) ∓ kḟ(t)√
ḟ(t)2+ġ(t)2

, with k a constant. This choice

would make little sense as we seek simplification and less
computation than in numerical analysis. Moreover, such a
limit would not have any physical meaning. Consequently,
this idea of parallel surfaces does not fit our ambition in the
case of nullcline neighborhoods. Finally, the best proposition
we developed is using isoclines (i.e., surfaces defined with
a function f by ḟ = c ̸= 0. For each element p of P , we
must define a value cp ∈ K, then use our solver to solve
p = cp and p = −cp. The symbolic results will define
the surfaces that will delimit the neighborhood of each main
border. Solving these equations does not require specifically



heavy computation, and it corresponds to something concrete:
it allows us to know both when a variable from our polynomial
elements is about to change its sign when the value of cp is
set very low, but it can also inform us when the same variable
is about to vary very fast (and cause an unexpected mistake)
when cp is chosen high. We chose to separate these borders
from the previous ones. As we already have our discretization
of the state space in qualitative states, we now have another
discretization in areas that we call “qualitative zones”. If the
qualitative states give abstracted knowledge about the distance
from the current numerical state to each frontier, the qualitative
zones offer an abstraction of the distance separating it from the
nearest borders. This allows us to define a coordinate system
to locate the CPS in its state space and anticipate and reason
about the situation and the coming events.

Definition: We call Qualitative Position the triplet
(mode, qualitative state, qualitative zone) of a system.
This complementary information creates a qualitative state
space map designed to locate a numerical state and reason
about its successors. Finally, considering qualitative zones is
a good criterion to choose between two qualitative behaviors
that could not have been distinguished using qualitative states.
For example, in the Brusselator system defined in (1){

ẋ = 1− (b+ 1)x+ ax2y
ẏ = bx− ax2y

(1)

with a and b two positive constants, the analysis of qual-
itative states and transitions shows that the system is cyclic
around the convergence point. However, using this knowledge
to deduce whether the trajectory will be convergent without
proceeding to numerical computation is impossible. The con-
sideration of a proximity zone around the nullclines ẋ = 0 and
ẏ = 0 and around the stable point allows us to determine, using
the transition direction, if the system will converge towards
ẋ = ẏ = 0, or stay in a critical cycle around it. With a
sufficiently small distance d, the study of the surface defined
by ||a − conv|| = d or by |ẋ| < d ∧ |ẏ| < d will show if
the convergence is possible or not: if the propagation analysis
finds it possible with the Lie derivative that the system enters
this qualitative zone, then it is convergent. Otherwise, it will
deviate to a limit cycle.

V. COMPUTATION AND TOOL CREATION

To build our tool, we created two categories of systems
corresponding to different situations regarding the knowledge
we have access to. These two categories will be represented
using the possibilities of object-oriented programming with
two different classes. They will correspond respectively to
instantiated and non-instantiated systems. As a primary hy-
pothesis, we suppose that in the non-instantiated system,
the precise dynamic equations will be available, as will the
invariant constraints and transition conditions. In the case of
a system on which more knowledge is available (especially
about essential values of the variables, the objectives of the
system, or the effects of the environment), we use the other
category, which concerns the instantiated systems. Here, a

new data structure is added to the system, representing all
the landmarks that will be considered to study the system and
its behavior.

These two categories are differentiated using two classes
of objects, the first one named “System”, and the second
one, inheriting from the first, is named “Instantiated-System”.
We use object-oriented programming to impose a structure
the systems must follow. As we want to unify methods for
polynomial solving, symbolic computation, constraint solving,
and graph logic, we developed our program in Python to
benefit from its numerous libraries. To be able to solve all
the equations symbolically, we use the Sympy library. For each
mode taken separately, we discretize the associated state space
and compute the continuous automaton.

The discretization of the state space is done by placing all
the polynomial equations that define the system in the set
P and using the functions of symbolic solving provided by
Sympy to resolve the equalities p = 0. Sympy also gives
us the tools to derive the polynomials according to time,
to test if the newly obtained formula is a factor of existing
polynomials using its polynomial module, and to create the
qualitative state based on the comparison of a value to every
polynomial. The results of the resolution of the nullcline
formula are given as n-uplets with n = |X|, in the form
(f0(Xi), ..., Xi, ...fn−1(Xi)), that express the equation of the
surface of the border.

We then compute the abstraction function: for each numer-
ical value x of X and for each p ∈ Pm, we compute the sign
of p(x) to determine on which side of each of the nullclines
the current state is. The qualitative state is then represented
by an array of −1, 0, and 1, corresponding respectively to −,
0, and + but making operations easier to compute.

For example, in our example, let us suppose that the current
mode is mode1, that the numerical value of the system is
(1.5, 4.3), and that the parameters have value (a1, b1) =
(1.2, 1.4). If P1 = [x, y, x− y, 1− (b1 + 1)x+ a1x

2y, b1x−
a1x

2y] as we computed before, the qualitative state of the
system is [+,+,−,+,−]. Then, from the system’s initial state,
we computed an algorithm of qualitative state propagation to
explore the behavior and all the possible trajectories of the
system based on mathematical properties such as the interme-
diate value theorem, inequality solving, or Lie derivatives.

In order to propagate the current state to compute the
behavior tree of the system, we first look at all the qualitative
states in contact with each found state. This is done by
taking the array of a state as a reference and by creating
copies of it where one digit is changed to a possible adjacent
state (in the direction of the intermediate value theorem),
meaning that a 1 or a −1 can change to 0, and that a 0
can be converted either to a 1 or a −1. In the case of a
state s1 = [1, 1,−1, 0,−1], its computed possible succes-
sors will be [0, 1,−1, 0,−1], [1, 0,−1, 0,−1], [1, 1, 0, 0,−1],
[1, 1,−1, 1,−1], [1, 1,−1,−1,−1] and [1, 1,−1, 0, 0].

Then we must check whether each of these possible succes-
sors exists or not. It means that we must use a constraint solver
and check if the conjunction of all the inequalities defining



the states can be True at a point of the space. If it can, the
state exists, and we keep it for the next steps. Otherwise,
the state does not exist, and we forget it. Moreover, if the
new state corresponds to an invariant violation, we keep it in
a special category: we will still study the feasibility of the
transition, but keep it as an invalid one. The difficulty arising
in this step is that Sympy does not allow constraint solving for
inequalities: only equality solving is allowed when it comes
to a conjunction of equations. Therefore, we used a second
Python library allowing symbolic computation specifically for
this task, which is Z3. To this extent, we had to design
a translation program, converting Sympy expressions to Z3
equations and also converting the variables. Z3 uses an SMT
solver to solve a conjunction of symbolic inequalities on a
specified set of variables and returns “sat” if the created
problem admits a solution. Therefore, to check if a state exists,
we convert all the equations and inequalities that characterize
it to the Z3 format, create a problem based on the conjunction
of all these inequalities, and call the Z3 SMT solver to know
whether a solution exists.

Once all the neighbors of a qualitative state s1 have
been isolated, we must then determine which are successors
and which are predecessors. As explained, we do this by
computing the Lie derivative of the equation corresponding
to the border. We execute it with a scalar product between
[ ∂p
∂Xi

for Xi ∈ X] and [∂Xi

∂t for Xi ∈ X], with p = 0 defining
the border. Ideally, this should be evaluated on a numerical
value x of X located in the current state in order to determine
the sign of this scalar. However, we have not yet found an
expression for the concretization function that could give for
any qualitative state the corresponding numerical values. To
bypass this problem, we use the constraint solver in Z3. We
create a virtual state of size |Pm| + 1, with the |Pm| first
elements being the elements of the initial state, to which we
associate a 1 if crossing the border turns p from negative to
positive, and −1 otherwise. This new element is linked to
the equation obtained with the Lie derivative formula. Then,
we call the constraint solver again to determine if this virtual
qualitative space exists. If the associated problem is satisfiable,
then the Lie derivative on the border allows the transition, and
the state s2 considered as a possible s1 successor is an actual
successor of s1. We add s2 to the list of successors of s1 and
s1 to the list of predecessors of s2. Otherwise, the transition
from s1 to s2 is impossible, so we do not add s2 as a real
successor of s1.

With all the intra-modal transitions computed for each
mode, the algorithm now browses the states corresponding to
a modal transition constraint crossing. As the natures of the
equations defining the qualitative states are kept, one can refer
to them and observe which actual successors of s1 change the
value of the associated digit. When one transition to such a
state is found, a modal transition to the corresponding target
mode replaces the previously computed intra-modal transition.
The reset function activates to determine in which qualitative
state from the new mode the transition will arrive.

In the end, the algorithm returns an automaton expressed

Fig. 3. Complete qualitative automaton of the hybrid Brusselator system

as a multi-dimensional dictionary, where the identifier of each
mode and qualitative state are used as keys, giving for each
of these states its predecessors and its successors. The state
corresponding to the initial value of the system contains the
string “start” in its predecessors list.

Applied to the hybrid Brusselator and translated into a
graphic version, the algorithm gives us the result shown
in Figure 3 for the hybrid automaton.

In this figure, the blue vertical arrows correspond to intra-
modal (or qualitative) transitions, while the red (oblique) ones
are the modal (or discrete) transitions. The thin red arrows
represent the one-way transitions, and the thick ones represent
transitions that can happen in both directions. No label was
added to qualitative transitions, while discrete transitions are
labeled with their respective direction. The chosen parameters
values in this model were (a1, a2, b1, b2) = (1.2, 3.6, 1.4, 2.5).
The labels of the modes describe the sign of the elements of
Pi in the same order. The computed sets Pi are respectively
equal to {1 − (bi + 1)x + aix

2y, bix − aix
2y, x, y, x − y},

containing equations corresponding respectively to the two
flow equations, the two invariant constraints and the transition
condition. In each state, the set of elements from {−, 0,+}
characterizes the sign of the corresponding elements from
Pi. Many qualitative cycles coexist, all of them transiting by
the two modes. There is no behavior staying in only one of
them. We now have the complete qualitative automaton of the
CPS. Both the discrete transitions and intra-modal behavior
are included, and the trajectories are shown more precisely
than in traditional hybrid automata.

Now, we must compute the different qualitative zones and
their interactions with qualitative states. The distances di
between every border and its associated secondary limits must
be entered as an argument: we did not automatize the choice



Fig. 4. Qualitative map of a Van der Pool oscillator system

of the value of the isocline yet. Once we have the equations of
the different isoclines, we aim to determine how they fit into
the qualitative states. This involves a new call on the constraint
solver: we can still create virtual states with a new constraint
expressed by the equality corresponding to the isocline and
make it match different qualitative states in the solver. If the
problem is satisfiable, then the qualitative zone defined by the
isocline exists in the qualitative state. Knowing which zone
exists on each qualitative state and computing once more the
transition direction creates a qualitative map that gives much
knowledge about the trajectories of the system, with a good
balance between qualitative and numerical information. Here,
we gave an example of the result we can obtain on a Van der
Pol oscillator: this system is a continuous system defined by
equation 2, where c is a constant.{

ẋ = 10(y + x− x3

3 )

ẏ = c− x− 3y
4

(2)

This system’s few equations and borders make it an ex-
cellent example, as the qualitative map is still understandable
and not too charged. In Figure 4, we drew the main borders
with plain lines and the associated secondary borders with
dotted lines. This representation corresponds to an instance of
the system where c is arbitrarily set to 0.465. The color code
associates each border with its proximity limits. For both the
straight lines (hyperplanes in two dimensions), we arbitrarily
chose a distance of 0.2 to place their proximity limits. We
computed the isoclines with ẋ = ±d1 and ẏ = ±d2 where
d1 = 10 and d2 = 1. Finally, the black arrows show the
transition direction the system allows with the computation
of the Lie derivatives. Double arrows highlight that both
transition directions are possible at a point of the border.

VI. APPLICATION TO PILOTING AND SUPERVISION

We can now automatize the process of creating the qual-
itative model and its comprehension to generate a hybrid
automaton representing the system’s behavior. We will now
develop some applications of this study of the CPS and the

possibilities offered by both the qualitative model and the
hybrid automaton. The main application we propose is the
creation of an automated pilot to guide numerical simulations
of the system or to supervise its real-time execution. As the
algorithm computed for each qualitative state all its succes-
sors, a pilot using the created structures can anticipate the
future transitions and raise an error signal when an unplanned
transition happens. This ability to detect miss-events allows
correcting errors in the systems simulation, or improving
resilience to uncertainty. Moreover, using the qualitative zones,
the pilot can not only verify but also prevent the transitions
and events in a simulation or a running system, meaning that
it can adapt its policy and vigilance to the situation and the
expected future events. For example, if a simulation is aimed
at measuring precisely the instant of specific events in the
execution of the system, the qualitative automaton and the
abstraction function can cooperate to precise the simulation
among the qualitative spaces and zones. This localization can
be used to know if an important transition is about to happen
(which means that the simulation step is to high), if one of
the variables is about to have a very fast variation (meaning
that the step should also be reduced as caution measure), or
if, on the contrary, nothing is supposed to happen in particular
for the next time steps. The adaptation of the simulation
step using the qualitative position of the system has been
presented in one of our previous works, and the results have
been pretty positive. Our works on automatic adaptation of
simulation steps based on qualitative positions were based
on the concept of security area and maximum variation. We
defined a reference simulation time step dt that will be used in
the absence of specific instruction and an integer k to serve as
the numeration base (common values such as 2 or 10 will be
preferred to simplify the computation). Using smaller values of
k improved precision while using larger favored computation
time. The work aimed to adapt the time step dt to the
qualitative position of the system to avoid useless computation
in zones without anything special and to focus on zones
where transitions, deviations, and errors are the most likely to
happen. When in the neighborhood of a transition/event, the
pilot imposed a reduction of the time step in order to locate
as precisely as possible the exact instant of the event and to
avoid rollback [14]. When in the neighborhood of a qualitative
transition, dt was reduced by the chosen factor k to impose
more precision on what we call critical areas. Moreover, a
precaution threshold must also be defined for each |Ẋi| with
Xi ∈ X: a derivative with a high absolute value implies that
with a constant time step, the simulation may deviate more
from the real trajectory than otherwise. A reduction of dt must
also be implemented to consider this. Therefore, we impose the
value of maxi(⌈logk(|Ẋidt|)⌉) to be restricted at each instant.
This formula allows us to reason with orders of magnitude [22]
and creates a discriminant criterion to fix the numerical steps
based on the value and the changes of the derivatives. This
method is based on quantized states simulation [23]–[25],
and creates a compromise between qualitative and numerical
reasoning, joining what Kuipers considered as semi-qualitative



reasoning. Consequently, we can compensate for the effects
of any strong variation with an adapted reduction of dt. The
limit value imposed to maxi(⌈logk(|Ẋidt|)⌉) will depend on
the researched precision of the model, which is not something
automatically quantifiable. Therefore, the intervention of a
human agent is required. As a result, we can upgrade the
precision of a numerical simulation compared to a constant-
step execution and get results with initial time steps that would
not have allowed a classic simulation to work. The detection
of the precise instant of the transitions is also more precise
because adapting the simulation step near the neighborhood
limits implies that any post-transition point will be in im-
mediate proximity to the transition border. Consequently, the
deviations caused by late detection of the transition threshold
decrease. We also noted a reduction of false transitions caused
by significant inertia on the variation of the variables when
some derivatives have high values. As the pilot automatically
reduces the time step in these situations, the inertia is canceled
due to the high number of computation points and does not
cause any false transition that could completely deviate the
simulated trajectory from the actual behavior. Moreover, the
execution time of an adaptive simulation is far lower than
for a precise simulation with constant and small time steps.
The simulator saves time when the system is not in any
proximity zone and has no high derivative among its variables.
It keeps it for areas of the state space where we seek precision
and reliability. Therefore, simulation piloting using qualitative
reasoning offers an interesting trade between time complexity
and result precision.

In the case of CPS monitoring, it is also possible to change
the frequency and the quality of the sensor sampling to
optimize the use of resources and keep a good quality of
results. By artificially modifying the quantization precision
during a simulation, it is also possible to modify the precision
of a simulation and to use better-quantized values in more
critical zones. However, adding decimals and precision in the
values of the system after having decided to suppress the
knowledge to improve the computation time is still a problem:
earning knowledge to get a finer quantification is not possible
without sensors or at the risk of choosing false values. Now
that we can nearly automatize the creation of such a qualitative
pilot, it is almost possible to generalize it to any kind of
CPS expressible with ODE dynamics. We still need to define
some parameters, such as a reference time-step that strongly
depends on the working context of the system, and a general
rule can not choose that for any CPS. We will also have to fully
automatize the definition of such a pilot using the qualitative
analysis presented above.

VII. LIMITS AND FUTURE WORKS

The main objective of our contribution was to automatize
as much as possible the creation of a qualitative model, its
study, and its application to many tasks such as simulation
piloting or execution supervising. If our results show that
we improved the pre-existing abilities in that area, we still
mentioned a few times in this article that we did not find a way

to automatize every segment of the process. Many points still
require human intervention, such as the choice of the number
of times each polynomial function defining the system should
be derived at most. Each time a parameter has to be set during
the process (also including the distance/curve to apply to the
proximity limits to draw the nullclines), the optimal choice
of the value requires knowing the context, the application,
or the specifications of the system. This is knowledge we
cannot access at early stages of development. Therefore, the
intervention of a human agent is still necessary to complete
the process. To fully automatize it, we thought about taking
ideas from naı̈ve physics and common sense reasoning [26]
to choose a theoretical best value based on prior conceptions,
databases of similar systems, or ontological reasoning about
the functional dependencies. However, this is only at the stage
of ideas, and we have yet to confront them to experience.
The main difficulty we encounter is the challenge posed
by solving equations and inequalities with both symbolic
variables and constants. Actually, solving ax2y−(b+1)x+1 >
0 ∧ bx − ax2y < 0 with a and b constants is far more
difficult when a and b are only symbolic and not valuated. In
Python, we have not yet found a way to solve the conjunction
of inequalities and to compute the successors of a state in the
case where the constants of the system are not or partially
valuated because most of the available solvers consider those
symbolic constants as other variables and therefore give a
solution including a (wrong) value of these parameters. This
implies that we are still unable to work on the design space
of the system and at very early stages of development. It is an
important limitation regarding the importance of qualitative
reasoning in CPS design and conception phases. A major
progress margin for our work is then to find a solver able
to deal with both symbolic variables and constants and to
express the existence of a solution of a complex equation
system depending on the value of the constants. We thought
about using online tools such as wolfram alpha or combining
Python with other languages that could offer an adapted solver.
Beyond that, we are working on generalizing these advances
to more types of systems, defined by more abstract structures
such as causality or bond graphs. As causality relations are
expressed as influences, causes, and dependencies and not as
equations, we must first resolve the previous problem. This
objective will expand our production to systems that cannot
be expressed with the formalism we used. Moreover, with a
few adjustments, it will be possible to extend our tool for
systems defined with functions not only polynomial but also
rational fractions: as K(X) = K[X] ∗ (K[X] \ {0}), what
we exposed to polynomial resolution should apply to rational
fractions under the condition of managing cautiously the zeros
of the denominators.
We will also improve the capacities of our qualitative models
by adding new analyses on the different equations. For exam-
ple, using works on semi-qualitative reasoning [12], [27], we
think that with a better analysis of the flow equations Fm,i, it
will be possible to pilot more complex simulations integrating
notions of uncertainty. If we can compute the zones of the



state space where each of the Fm,i is a contraction (i.e., where
∃k ∈ (0, 1) such that Fm,i is k-Lipschitz), the management of
uncertainty will become easier as we will know which areas
of the state space can tolerate uncertainties (if a function f is
a contraction, an initial uncertainty on f will only reduce with
time). This knowledge will give more efficiency to qualitative
pilots for simulation and supervision as they can use it to limit
artificial uncertainty and lower the simulation steps on non-
contraction zones, and give up some precision to save time
when all the dynamic equations are contractions.

Finally, by combining qualitative abstraction of CPS with
one of our other research axis based on the simplification of
functions based on orders of magnitude and orders of growth,
we could also include in the abstraction process the systems
defined with algebraic differential equations: by simplifying
the expression of these equations to piecewise continuous
functions based on local properties, we would study these new
expressions as we did with polynomials in this article to earn
more generality to the tool.

VIII. CONCLUSION

We have proposed a tool that allows the complete qualitative
study of many CPS based on their expression, using elements
from different qualitative reasoning methods. We are now able
to observe the entire qualitative automaton of the behavior of
the system, add a new layer of abstraction with our concept of
qualitative zones, and use them to pilot various applications of
the system, such as numerical simulation, conception, or real-
time monitoring. The process is yet to be fully automatized
and generalized to other representations of physical systems
to extend its generality and efficiency.
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Hermes, 10 2003.

[12] D. Berleant and B. J. Kuipers, “Qualitative and quantitative simulation:
bridging the gap,” Artificial Intelligence, vol. 95, no. 2, pp. 215–255,
1997.

[13] S. Medimegh, J.-Y. Pierron, and F. Boulanger, “Qualitative simulation
of hybrid systems with an application to sysml models.” in MODEL-
SWARD, 2018, pp. 279–286.

[14] O. Bouissou, A. Chapoutot, and S. Mimram, “Computing flowpipe
of nonlinear hybrid systems with numerical methods,” arXiv preprint
arXiv:1306.2305, 2013.

[15] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,”
in International Workshop on Hybrid Systems: Computation and Con-
trol. Springer, 2002, pp. 465–478.

[16] Y. Selvaraj, W. Ahrendt, and M. Fabian, “Formal development of safe
automated driving using differential dynamic logic,” IEEE Transactions
on Intelligent Vehicles, vol. 8, no. 1, pp. 988–1000, 2022.

[17] H. Zaatiti, L. Ye, P. Dague, J.-P. Gallois, and L. Travé-Massuyès,
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