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A Prediction Framework for Lifestyle-Related
Disease Prediction Using Healthcare Data

LIJUAN REN, HAIQING ZHANG, AICHA SEKHARI SEKLOULI, TAO WANG, ABDELAZIZ BOURAS

Abstract—With the improvement of living standards and
changes in work habits caused by industrialization, the preva-
lence of diseases linked to lifestyle is rising. In this context,
the prevention of lifestyle-related diseases (LRDs ) is extremely
important. The majority of existing research exclusively concen-
trates on the prognosis of a particular LRD sickness, making it
impossible for them to intelligently identify the important char-
acteristics of the disease. Therefore, this study aims to propose
a lifestyle-related disease prediction framework including three
key components, called missing value module, a feature selection
module, and a disease prediction module. The performance of
the proposed framework is evaluated by using real medical
data gathered during a hospital health check-up in Nanjing,
China. The experiment shows that the proposed framework can
automatically generate prediction ensemble models for specific
LRDs diseases, and achieve good accurate performance.

Index Terms—Lifestyle-related diseases, Prediction, Machine
Learning, Missing values

I. INTRODUCTION

Lifestyle-related diseases (LRDs) are illnesses that are sig-
nificantly influenced by lifestyle factors, and changes in these
factors can greatly improve disease prevention and treatment
[1], [2]. As countries become more industrialized and af-
fluent, which leads to bad lifestyles such as fast food, and
sedentary, thereby the prevalence of LRDs is increasing. Most
chronic diseases, including cardiovascular disease, metabolic
syndrome, obesity, type 2 diabetes, and some cancers, are
LRDs [2]. LRDs are currently the most common diseases in
the world, and their death toll exceeds that of AIDS, malaria,
and tuberculosis combined [3]. In the Republic of Ireland, over
40% of adults have at least one LRD, with high blood pressure
and high cholesterol being the most prevalent [4]. In 2017,
17.8 million individuals globally died from cardiovascular
disease (CVD), and the estimated number of tumor-related fa-
talities (mostly cancer) is 9.56 million [5]. The WHO predicts
that by 2030, there will be 366 million individuals worldwide
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with diabetes, up from the current estimate of 175 million
[6]. Despite the availability of numerous medications, LRDs
remain uncontrolled due to safety concerns associated with
these drugs [7]. Overall, the prevalence of LRDs represents a
crisis in the global healthcare system.

Smoking, poor diet, excessive alcohol use, and a sedentary
lifestyle are all clear contributors to various lifestyles related
diseases [8], [9]. Many studies [10], [11] have shown that
LRDs can be improved by healthy lifestyles. For example,
Ford et al. [10] found that those who did not smoke, were
not overweight, engaged in 3.5 hours of physical activity per
week, and consumed a nutritious diet decreased their risks of
myocardial infarction, stroke, cancer, and type 2 diabetes by
93%, 81%, 50%, and 36%, respectively, throughout the course
of the 8-year trial. A study in Denmark aged 30 to 80 years
showed that a change in physical activity level alone would
result in an increase in life expectancy of between 2.8 and
7.8 years for men and between 4.6 and 7.3 years for women
according to actual disease and death rates [11].

The idea of health is drastically altering, and the focus of
healthcare is shifting from disease models to health models on
a global scale [4]. Lifestyle-related diseases are multi-factorial
illnesses that are influenced by environmental and genetic
variables and brought on by the interaction of numerous risk
factors [1]. These illnesses have sneaky onsets, a protracted
incubation period, and a quick progression. Identifying and
treating large numbers of patients in a timely manner is
challenging. Additionally, as most lifestyle-related diseases
still have unclear etiologies and pathogens and poor thera-
peutic outcomes, it is important from a practical standpoint to
prevent the development of lifestyle-related diseases. Because
identifying population risks prior to the onset of diseases
can help people change their lifestyles as soon as possible,
especially the life behaviors of high-risk groups, lowering
the risk of disease [12]. The primary tool for assessing and
preventing lifestyle-related diseases is the disease prediction



model [13]. Disease prediction models specifically establish an
intelligent model to predict the probability of a specific disease
at a specific point in the future, classify high-risk groups in
accordance with the probability cut-off point, and conducts
behavior, diet, and other early interventions.

II. RESEARCH STATUS

The original disease prediction model is a disease prediction
model of coronary heart disease, which was established by
the United States based on the Framingham cohort study [14],
and other cardiovascular disease risk assessment models with
various markers [15], [16]. The disease prediction models have
gradually expanded from cardiovascular disease to include a
variety of diseases [17]-[19]. Machine learning (ML) tech-
niques, a subset of artificial intelligence techniques, employ
computer systems to predict diseases using statistical models
and algorithms, opening up a wide range of opportunities for
illness prevention [12]. Researchers have utilized a number of
ML algorithms to predict various diseases in the field of dis-
ease prediction. For instance, the use of ensemble techniques
for the early diagnosis of coronary heart disease [20]; the use
of support vector machines to detect pre-diabetes and diabetes
[21]; the use of random forest algorithms to predict the risk of
diabetes in the population examined physically [22]; To predict
hypertension, a combination of subtype (the least absolute
shrinkage and selection operator, LASSO) and support vector
machine recursive feature elimination (SVMRFE) was used
[23]. A new ensemble learning-based framework for the early
detection of type 2 diabetes utilizing lifestyle markers was also
developed [24].

However, existing prediction studies focus on single-disease
prediction, with a few papers focusing on multiple-disease
prediction. Yaganteeswarudu [25] proposed a system using
the Flask API to predict multiple diseases including diabetes,
diabetic retinopathy, heart disease, and breast cancer. This
system uses different datasets to train different machine-
learning models for different diseases. Rezace M et al. [26]
achieved consistent discrimination performance for multiple
cardiovascular diseases and type-2 diabetes using prediction
models derived from Cox proportional risk regression. These
models contain multiple shared predictor variables and can be
integrated into a single platform to enhance clinical stratifica-
tion to influence health outcomes. Moreover, Rashid J et al.
[27] proposed a new augmented artificial intelligence approach
using artificial neural networks (ANN) and particle swarm
optimization (PSO) to predict five prevalent chronic diseases
including breast cancer, diabetes, heart disease, hepatitis, and
kidney disease using five public datasets. Further, Gupta et
al. employed a genetic algorithm based on recursive feature
elimination and AdaBoost to predict two lifestyle diseases
(heart disease and diabetes) using two public datasets with
missing values.

Based on the above analysis, existing studies are unable to
intelligently identify key features of diseases while building
prediction models with different structures and robustness
for different LRDs. Therefore, our objective is to design

an intelligent risk prediction framework for LRDs that can
smartly identify key features of different LRDs for dirty real
medical data, and accurately predict the risk of LRDs.

III. THE OVERVIEW OF THE PROPOSED PREDICTION
FRAMEWORK

A framework for LRDs prediction is proposed based on
three key components, called missing value module, a fea-
ture selection module, and a disease prediction module. The
method of combining deletion and imputation is chosen as
the primary strategy for missing value processing for the
significant number of missing values in the data set gath-
ered from lifestyle-related diseases first. The feature selection
module employs machine learning-based feature selection to
discover key features for lifestyle-related diseases since differ-
ent lifestyle-related diseases have distinct important features.
In order to create a strong ensemble prediction model for
lifestyle-related diseases and achieve a more accurate predic-
tion of lifestyle-related diseases, the data processed by the
missing value module and the feature selection module are
used as the input of the prediction model. Figure 1 is a diagram
of the proposed prediction framework for LRDs.
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Fig. 1. LRDs prediction framework

In Fig.1, during the training process, the original dataset
with different diseases is first feed into the missing value
method to generate imputed data with higher quality. Then
feature selection method is used to screen the resulting data
to obtain sub-datasets with different features, which are passed
into the final Ensemble Prediction Method to get target
models adapting to different diseases. After feeding data, the
framework has three outputs including an imputation model,
a key feature list, and specific disease prediction models.
Then, when new data comes, it can improve data quality
by the trained imputation model, and then sub-datasets of
key features corresponding to different disease models are
input into target models to predict disease risk. After feeding
data, the framework has three outputs, including an imputation
model, a key features list, and some robust ensemble models
for specific LRDs diseases. Then, when new data comes, it can
improve data quality by the trained imputation model, and then
sub-datasets of key features corresponding to different disease
models are input into target models to predict disease risk.
The application process of the proposed framework is shown
in Fig.2.
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Fig. 2. The application process of the proposed framework

A. Missing Value Module

Some features or instances will have a disproportionate
number of missing values for a variety of reasons, including
missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR) [28]. The major
features of lifestyle-related diseases are used in our study
to build excellent predictive models, so when features or
instances have a large number of missing values, this is
difficult to apply in our study. Instead, we will prefer to use
the deletion method rather than filling in a large number of
estimates. We need to describe the criteria for deleting missing
values, or the threshold for using it, in more detail. According
to the 80% rule [29], which states that a substance should be
removed if its non-missing portion is less than 80% of the
sample size as a whole, the suggested prediction framework
excludes features or instances whose missing rate is more than
80%.

There are still some missing values in the dataset even
though some features and instances are compelled to be re-
moved in accordance with the threshold setting of the missing
rate. The reasons and ways of missing are typically dispersed
among several features and instances, making it difficult to
simply eliminate them using a deletion procedure. Therefore,
to appropriately handle missing values, we shall employ more
sophisticated techniques. In our previous study, we proposed
a missing value imputation method, called SncALWRFI [30],
that can be used with datasets that are imbalanced or mixed
types. We employed this approach as our default missing value
handling method in the missing value imputation step since
features with characteristics of unbalanced and mixed types
are common in datasets of lifestyle-related diseases. Similarly,
we incorporate various well-known and excellent imputation
methods for missing values, such as MissForest and KNNI,
as alternatives or benchmarks to provide people with more
options.

B. Feature Selection Module

As it can be challenging for people to distinguish between
significant and superfluous features when gathering data, fea-
ture selection is an essential component of data reprocessing.
Specifically, feature selection refers to choosing a task-related
feature subset from the full set of features to reduce the amount

of data that must be stored, shorten the time needed to train
machine learning models, and enhance the predictive skills
of machine learning models. Therefore, feature selection can
assist in both the identification of essential features and the
elimination of superfluous features. Data mining techniques
based on machine learning techniques were used to select
the primary characteristics of lifestyle-related diseases. The
benefit of this approach is that the outcomes are generated
by data analysis without the need for human interaction. This
approach is appropriate for those without strong expertise in
medicine and uses sophisticated algorithms to guide people
in choosing essential factors. Our research belongs to the
category of supervised learning because it focuses on the
prediction of LRDs disease. We, therefore, concentrate on
feature selection for supervised issues in this study. Three
categories of feature selection techniques can be distinguished
based on the form of the feature selection [31], and their
advantages and disadvantages are shown in Table 1.

TABLE I
ADVANTAGES AND DISADVANTAGES OF THREE FEATURE SELECTION
CATEGORIES
Category | Advantage Disadvantage Example
Filter High Ignore combination effect | Chi-Square
efficiency between features
Wrapper | High accu- | High complexity and over- | Complete
racy fitting with small samples search
Embedded| Automatically] Determines loss function | Tree-based
selection and parameters model

In Table 1, each method has its own advantages and
disadvantages. The feature selection of the wrapper has high
computation complexity, and the filtering mechanism ignores
the connection between the feature and the target variable.
As a result, the tree-based strategy in the embedding method
is employed for feature selection in the proposed prediction
framework. The proposed prediction framework uses the ran-
dom forest importance approach as the main algorithm of the
feature selection module because it can automatically identify
features and is suited to mixed data types with high data
dimensionality [32]. Specifically, the random forest feature
importance evaluation calculates the mean value of each
feature’s contribution to each tree in the random forest. There
are two techniques to obtain the final collection of key features
after assessing the importance of each feature: 1) select Top-N
features, 2) Select larger than the set threshold. Since the value
of N is difficult to determine and in order to keep as many
task-related features as possible, the feature selection module
selects according to the important threshold of the feature.

C. Disease Prediction Module

As we previously mentioned, a variety of machine learning
algorithms have been utilized by researchers to estimate the
risk of various diseases in the field of disease risk prediction.
In general, predictive models are divided into statistical-
based and machine learning based and their advantages and
disadvantages are shown in Table 2.



TABLE II
ADVANTAGES AND DISADVANTAGES OF PREDICTIVE MODELS

Category Advantage Disadvantage Example
Traditional Strong Considering multiple as- | Cox Re-
Statistical interpretability sumptions; Poor model- | gression
Model ing in complex data

Machine High flexibility; | High model complex- | Support
Learning High learning | ity; Poor model inter- | Vector
Model capability pretability Machines

Based on Table 2, to model complex data, our study
adopted a machine-learning approach. On the other hand, it
is challenging to employ a single model to generate more
accurate forecasts and attain higher levels of performance
due to the noise from attributes and classes. In machine
learning, an ensemble is a sort of model that is built by
merging the predictions of various individual models [33].
Typically, ensembles increase performance by reducing the
mistakes created by each individual model that contributes to
the ensemble. Therefore, to build a robust prediction model
for LRDs, we will employ ensemble techniques to reduce
the impact of noise. We employ a stacked ensemble method
proposed in our previous study [34], a technique that can be
used on datasets with diverse noise. This approach enables the
data-driven selection of models to build integrated predictive
models for different diseases.

IV. EXPERIMENT
A. Data Source

This study used real medical data gathered during a hospital
health check-up in Nanjing, China. This dataset is from 2012
to 2022. All subjects in the study gave informed consent to the
use of the data, and all sensitive information about the subjects
was removed from the original dataset. In this real case
study, hypertension, diabetes, and coronary heart disease are
three common lifestyle-related diseases. First, we removed 23
records who were 20 years of age or younger. The remaining
data comprised 32,784 instances and 65 attributes. Specifically,
attributes include demographics (such as age, gender, and sex),
urine tests (such as urine sugar, and urine occult blood), blood
tests (such as glucose, and creatinine), and lifestyles (such as
smoking, and drinking). Meanwhile, there are 18,936 males
(57.75%) and 13,848 females (42.24%) in the dataset, with an
age of 63.88+9.27.

For missing value analysis, 28% of the dataset’s instances
have less than 10% of their values missing, while 32.57 of
them have missing values between 10% and 20%. Less than
0.02% of the instances lost more than 35% of the values at the
same moment. Overall, no instance’s portion of the dataset is
missing by more than 50%, hence no instance is disregarded.
4 features’ missing rate exceeds the 0.8 cutoff point, which
means that 80% of their values are lost. The missing pattern
in our case data is non-monotonic, which is also supported
by the distribution plot of missing values. The findings of the
missing value analysis show that, even after eliminating some

features with 80% missing values, the data set still contains
8.84% missing values. Missing values are mainly distributed
discretely in various measured features. It is not advised to
delete the missing value model of the missing values in our
data set directly since it is not missing completely at random
(MCAR).

B. Missing Value Module

Firstly, we take hypertension as an example to analyze the
effectiveness of the missing value module. The SncALWRFI
imputation method was used to impute missing data based on
the previous analysis. Pair deletion (PD), MEAN, KNNI [35],
and MissForest [36] processing techniques were employed
in comparison to examining the effects of the SncALWRFI
imputation approach on the performance of lifestyle-related
disease prediction. Because 80% of the instances contain
missing values, the complete case analysis (CCA) approach
is not employed because it is impossible to delete instances
with missing values.

Additionally, to ensure fairness, default parameters are cho-
sen for datasets processed by various missing value methods,
along with Random Forest (RF), Light Gradient Boosting Ma-
chine (LGBM), and Logistic Regression Model(LRM) being
used as predictive models for diseases connected to lifestyle.
In detail, the data is split into two sets: a training data set,
which comprises 70% of the data, and a testing data set,
which contains 30% of the data. The training data set is
used to create a missing value imputation model, and the
test data set is used to assess the model’s effectiveness. We
compare performance using AUC as a performance indicator.
The experiment was carried out 20 times, and Table 3 displays
the average outcomes.

TABLE III
PREDICTION RESULTS OF DIFFERENT PROCESSING METHODS FOR
MISSING VALUES

Methods PD MEAN KNNI MissForest| SncALWRFI
RF 75.02 80.07 81.10 82.72 83.88
LGBM 75.98 81.46 82.92 83.94 84.83
LRM 71.08 72.19 7191 72.20 73.31

The maximum prediction result of 75.98 is obtained in the
LGBM model, according to experimental results, while remov-
ing features with missing values yields the lowest prediction
results. However, the SncALWRFI approach performs at its
best, achieving an average ideal value of 84.83 in the LGBM
model. Therefore, we employ SncALWRFI approach as the
missing value processing method.

C. Feature Selection Module

Furthermore, the highly accurate and robust random forest-
based feature selection (RF_FS) method is employed in the
feature selection module. Specifically, the data without missing
values preprocessed by the missing value module will be input,
followed by the use of RF_FS to analyze the importance of
features, and finally the selection of the data set containing
only key features in accordance with the ranking of feature



importance. A predictive model for LRDs was created using
an experimental dataset. Initially, there were 65 features in our
case, but since 4 of them (L_SQ, L_SA, L_DQ, and L_DA)
were 80% absent from the dataset, they were excluded and
the remaining 61 features were input into the feature selection
module. When calculating feature importance, the result will
be rounded to 3 decimal places. The top-N important features
or all features with importance greater than 0 can be chosen
once the calculation of feature importance is complete. In
order to keep as many features as possible, the feature selection
module selects according to the important threshold of the
feature, that is, the features with importance of more than 0
are picked. Specifically, the RF_FS method selects 45, 38, and
43 important features for hypertension, diabetes, and coronary
heart disease, respectively.

We take high blood pressure as an example as well, and the
final experimental dataset will have 32,784 instances and 45
features. We use the same three prediction models and conduct
20 runs to confirm the impact of feature selection strategies
on LRDs’ prediction outcomes. The Table IV below displays
the average AUC results obtained from 20 runs using various
prediction models.

TABLE IV
PREDICTION RESULTS OF FEATURE SELECTION
Methods RF LGBM | LRM
Non - Feature Selection 83.88 84.83 73.31
Random Forest Feature Selection 84.17 85.28 73.89

The experimental results demonstrate that feature selection
slightly increased the performance of the three prediction
models, demonstrating that the feature selection method based
on random forest can increase the accuracy of LRDs prediction
after removing some features with low importance.

D. Disease Prediction Module

After analysis based on key features, the dataset with
key features will be utilized to create a strong ensemble
LRD predictive model. The final LRDs prediction model
will be combined from candidate models including multilayer
perceptron (MLP), K-Nearest Neighbors (KNN), Decision
Tree (DT), support vector machine (SVM), Gaussian Bayese
Network, Logistic LRM, Extreme Gradient Boosting (XG-
Boost), LightGBM, and RF. Three steps make up the model
construction: ensemble model construction, hyperparameter
optimization, and model evaluation. The disease prediction
module will first automatically adjust the hyperparameters
of each individual model in order to improve performance
according to the parameter space in previous work [34]. Each
model will receive the ideal set of parameters following the
Bayesian optimization procedure. For hypertensive diseases,
the disease prediction module will automatically generate a
robust integrated prediction model and use the six-dimensional
model capability map to automatically and visually evaluate
the performance difference between the generated integrated

model and the various sub-models that make up the model, as
shown in Figure 3.
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Fig. 3. Ensemble model evaluation

According to Figure 3, it can be seen that the constructed
integrated model presents the best performance in the capabil-
ity chart. And the value of the most important AUC index is
87.54, which shows that the model has a high discrimination
ability and has practical application significance. Finally, to
analyze the performance of the proposed disease prediction
framework, we chose four advanced classifiers as the compar-
ison methods. Meanwhile, we considered two missing value
processing methods, including the deletion of features with
missing values and the imputation method based on traditional
random forest. The prediction results for the three diseases are
shown in Table 4.

According to the table, we can observe that different missing
value handling methods have little impact on the prediction
performance, while the proposed framework can achieve the
best prediction performance in the prediction of the three
diseases. This demonstrates that adopting the proposed frame-
work can intelligently identify key features of different LRDs
against dirty real-world medical data, and automatically build
robust prediction models for different lifestyle-related diseases
to accurately predict the risk of LRDs.

V. CONCLUSION

Lifestyle Related Diseases (LRDs) refer to diseases whose
pathophysiology is significantly affected by lifestyles. These
diseases include diabetes, some malignant tumors, obesity,
hypertension, coronary heart disease, other cardiovascular con-
ditions, stroke, and other cerebrovascular conditions. Even
with modern medication, such diseases pose a major threat
to people’s lives and health. The disease prediction model
is the primary tool for evaluating and avoiding lifestyle-
related diseases. Although a few works have addressed multi-
disease forecasting, the majority of present forecasting studies
concentrate on single-disease forecasting. As a result, we
propose a new prediction framework for LRDs that consists of
modules for disease prediction, feature selection, and missing
values. Finally, we apply the proposed prediction methodology
to a case from China. According to the experimental results,
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