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Abstract

This paper explores the relationships between overall diet quality and attitudes
toward risk and time using a general population survey. Our survey combines (i) a
state-of-the-art food frequency questionnaire with (ii) a choice-based preference mod-
ule to elicit individual risk and time preferences. The survey was administered to a
representative sample of the French population. Using a hierarchical Bayes framework,
we jointly estimate individual risk aversion and impatience parameters. We show that
risk and time preferences significantly explain individual heterogeneity in key aspects
of diet quality, even after controlling for socio-demographic characteristics. We find
that more impatient and more risk-seeking individuals have poorer overall diet qual-
ity, more impatient individuals have higher daily energy intake, and more risk-seeking
individuals consume more alcohol.
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1 Introduction

Understanding the determinants of food choices is crucial to tackle the increasing burden
of diet-related noncommunicable diseases. (Murray et al., 2020) Traditionally, economists
have explained demand for different foods based on price, income, and product characteris-
tics (Dubois et al., 2014), and have considered remaining preference heterogeneities across
consumers as exogenous primitives. However, identifying the origins of consumers food pref-
erences is necessary to address the determinants of malnutrition and nutritional inequalities
(Darmon and Drewnowski, 2008). A recent strand of work has explored the roles of social
and cultural factors in shaping food preferences (Atkin, 2016), but similar evidence drawing
on insights from decision theory remain surprisingly elusive.

Diet quality entails mostly delayed and uncertain consequences on well-being and health
(Willett, 1994). Risk and time preferences, the two foundational elements of decision theory,
should thus be expected to influence dietary habits. For instance, less patient individuals
may overlook long-run health damages from consuming junk food, while risk-seeking indi-
viduals may be willing to gamble on their health and continue to consume unhealthy drinks.
If these phenomena prove widespread, this finding could have important consequences for
the design and the evaluation of policies tackling malnutrition - including undernutrition,
micronutrient intake inadequacy, and energy imbalance leading to overweight and obesity.
In particular, it is possible that impatient and risk-seeking individuals will consume poor
quality foods despite being perfectly informed about the health consequences of their choice.
This might contribute to explaining the limited shifts in demand caused by policies which
treat malnutrition as a problem of imperfect information (Dubois et al., 2021). Insights from
the behavioral literature might help to improve the design of nutrition policies (Brownback
et al., 2023). Understanding the influence of behavioral primitives on food preferences might
improve welfare evaluations related to current public policies (Allcott et al., 2019c) and the
credibility of counterfactual analyses based on policy-invariant structural parameters (Meier
and Sprenger, 2015; Schildberg-Hörisch, 2018). Finally, it might help to explain the corre-
lation between dietary preferences and income (Allcott et al., 2019a) and the heterogeneous
effects of nutritional policies across income groups (Akee et al., 2013; Allcott et al., 2019b).

This paper explores the relationships between overall diet quality and attitudes toward
risk and time using a general population survey. To do so, we combine (i) a state-of-the-art
food frequency questionnaire with (ii) a choice-based preference module to elicit individual
risk and time preferences, and conduct this survey on a representative sample of the French
population. Building on recent advances in the empirical literature on hierarchical Bayes
methods (Train, 2009; Toubia et al., 2013; Baillon et al., 2020), we simultaneously estimate
individual risk and time parameters. Finally, we show that risk and time preferences signifi-
cantly explains the individual heterogeneity in key aspects of diet quality. We find that both
more impatient and more risk-seeking individuals have poorer quality diets and that the
former exhibit a higher energy intake while the latter exhibit higher alcohol consumption.
We verify that our results hold under several decision model specifications, and examine sev-
eral sources of endogeneity potentially driving our results including correlated measurement
errors (Gillen et al., 2019), contextual confounders, and reverse causation. We argue that
these alternative mechanisms are unlikely to generate our results, which lends credence to
the conjecture of an underlying causal mechanism.

While economists studying food consumption often rely on field, experimental, or scanner
data (Dubois et al., 2014; List and Samek, 2015), these methods generally are unable to
measure both at-home and out-of-home consumption or assess the extent of food waste.
Therefore, nutritional epidemiologists often favor survey methods that measure the whole
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diet at the individual level, and allow to decompose intakes across many nutrients. In this
paper, we adopt the latter approach and use a reduced food frequency questionnaire (Affret et
al., 2018). Combining the individual frequencies of consumption for each of the 28 food items
and their nutrient compositions, we consider three complementary leading indicators of diet
quality. First, we include the Daily Energy Intake (DEI) which measures the total calories
ingested per day. Second, we compute the Whole Diet Index (WDI) which characterizes the
overall quality of the diet in terms of nutritional adequacy with official recommendations.
Third, we complement our evaluation of diet quality with the total alcohol intake, a major
health driver which is measured in the same questionnaire but not accounted for in the WDI.

To measure risk and time preferences, we designed a module adapted specifically to gen-
eral population surveys. The module includes eight tasks, four focused on risk preferences
and four on time preferences. Each task includes a series of four hypothetical binary choices
between a lottery and a certain gain in the risk part, and between a later sure gain and a
sooner sure gain in the time part. For each risk (resp. time) prospect, we apply a bisection
algorithm to progressively narrow the interval containing the corresponding certain (resp.
sooner) equivalent. This preference module offers a balance between simplicity and theoreti-
cal consistency (Charness et al., 2013). The tasks are sufficiently simple to be undertaken by
the general population, and allow to estimate individual parameters from standard decision
theory models. Our elicitation tasks are similar to those of Falk et al. (2018), who elicit one
certainty equivalent and one later equivalent using a bisection algorithm with five binary
choices. However, in order to estimate structural risk aversion and time discounting, our
module collects four certainty equivalents and four sooner equivalents.1 We conduct this
survey on the ELIPSS socio-economic panel, which tracks a representative sample of the
general population in France over several years. Conditional on their participation to the
surveys, the panelists were granted free internet mobile access (4G) and tablets. This strong
incentive to participate allows us to rule out selection bias due to lack of internet access, and
yielded a large response rate of 83%.

Using the intervals containing risk and sooner equivalents, we jointly estimate individual
risk aversion and impatience parameters using a hierarchical Bayes framework. This method
makes use of the population distribution in the estimation of individual parameters, which
improves its accuracy and robustness compared to single-subject estimations (Murphy and
ten Brincke, 2018). A key feature of our questionnaire is that it allows us to consider a range
of decision models, from the classic discounted expected utility model (DEU) to extended
hyperbolic discounting rank-dependent utility (HDRDU) models. We rationalize seemingly
inconsistent answers across tasks by considering that respondent use noisy certainty and
sooner equivalents. These errors are heteroskedastic across individuals, so that each indi-
vidual is also characterized by the consistency of their equivalents across tasks. We check
the stability of the distributions obtained after convergence, and run a sensitivity analysis
which shows that our results are not driven by the estimation settings.

Finally, we test the associations between our estimates and diet quality. We find sta-
tistically and economically significant associations between our structural estimates and the
indicators of diet quality, after controlling for differences in socio-demographic variables.
First, our estimations suggest daily energy intake is higher among the most impatient com-
pared to the most patient individuals. Second, we find that less impatient individuals exhibit
better diet quality. Third, our estimates indicate that more risk-seeking individuals consume
more alcohol. Our results suggest that time preferences play a bigger role explaining cross-

1Eliciting sooner rather than later equivalents has several advantages: (i) it yields equivalents are always
bounded upwards, (ii) it allows to homogeneously scan the entire range of the impatience parameter, and
(iii) it can be implemented with fixed sooner gains for any time delay.
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sectional variations in overall diet quality, and that risk aversion better explains variations in
alcohol consumption. This is coherent with the facts that alcohol intoxication has short-run
psychotropic effects, whereas most dietary choices have essentially long-run health conse-
quences. We provide a series of robustness checks showing that our results hold both with
our main estimates based on a standard DEU model, with estimates based on the extended
HDRDU model, and with model-free estimated using the average of equivalents. We also
find that substituting these averages by only one certain and one sooner equivalents yield
statistically insignificant results for some pairs of equivalents. This highlights the benefits of
including several tasks in the questionnaire, as it increases the reliability of the estimations
of risk and time preferences and reduces the likelihood of low powered negative results. We
then leverage the estimated propensities for errors in risk and time tasks to identify out-
liers in terms of consistency. Removing the 5% outliers corroborates the previous results and
yields that risk-seeking individuals have a significantly poorer diet quality. We check that our
results are not spuriously generated by correlations between measurement errors in certainty
and sooner equivalents using the instrumental variable estimation method from Gillen et al.
(2019). Finally, we examine several alternative mechanisms that could explain our results,
including contextual confounders and reverse causation. Although our cross-sectional data
delivers results that cannot be conclusive on causality, we argue that it is unlikely that our
main results are driven by alternative mechanisms. In addition, we exploit ancillary data
from the same panel to obtain additional results on associations with the body mass index
(BMI) and the frequency of physical activity, which corroborate our previous findings and
the existing evidence in the literature.

This paper makes several contributions. First, our results add directly to the empirical
literature on the determinants of individual dietary preferences. There is an emerging stream
of research on the influence of social interactions and cultural factors,2 and the role of
personality traits (Lunn et al., 2014) but evidence linking general dietary habits to risk and
time preferences is scarce. The existing studies typically provide indirect evidence using only
the BMI,3 which imperfectly captures the health consequences of malnutrition (Kobylińska
et al., 2022), or focus on one or few selected product categories such as yogurts (De Marchi
et al., 2016), snacks (Bradford et al., 2017), fast food and sweets (Samek et al., 2021), or
alcohol (Barsky et al., 1997; Anderson and Mellor, 2008; Sutter et al., 2013). In particular,
List et al. (2022) study the relationships between risk and time preferences and sets of healthy
or unhealthy foods among a sample of low-income children. In our study, we measure overall
diet quality at the general population scale. We are aware of only two existing studies
measuring overall diet quality in relation with risk or time preferences: Huston and Finke
(2003) focuses on time attitudes and only observe proxies for patience, and Galizzi and
Miraldo (2017) focuses on risk attitudes in a sample of 120 students. Our study combines
both risk and time preferences, and shows that time preference are more associated with
diet quality while alcohol intake is more associated with risk attitudes. These results reflect
the facts that alcohol intoxication triggers immediate risks, whereas overall dietary quality
has essentially long-run health consequences.4

Our paper also contributes to the broader public health literature which documents the
behavioral factors of hazardous health choices, such as substance use (Kirby et al., 1999) and
smoking (Barsky et al., 1997; Anderson and Mellor, 2008; Burks et al., 2012; Sutter et al.,

2See for instance Fortin and Yazbeck (2015), Atkin (2016), and Lewbel et al. (2022).
3See Chabris et al. (2008), Anderson and Mellor (2008), Burks et al. (2012), Sutter et al. (2013), Golsteyn

et al. (2014), and Courtemanche et al. (2015).
4This is in line with the results on drug use of Blondel et al. (2007), who found that substance users differ

from nonusers in risk preferences, but not in time preferences.
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2013; Golsteyn et al., 2014). Most of this literature focuses on time preferences (Lawless
et al., 2013), and only a handful of articles combine risk and time preferences.5 Finally,
our work relates to the few general population surveys which both leverage choice-based
elicitation methods to measure risk or time preferences and assess their external validity
(Von Gaudecker et al., 2011; Courtemanche et al., 2015; Bradford et al., 2017; Falk et al.,
2018; Meissner et al., 2023) – i.e. their ability to predict economics choices external to the
elicitation procedure (Schildberg-Hörisch, 2018). Our preference module relates more closely
to Von Gaudecker et al. (2011), who also collect enough observations to allow for stochastic
response and structurally estimate model parameters. A key novel feature of our study is
to investigate an aspect of real-life behavior – food consumption – largely unexplored with
these methods.

The rest of the paper is organized as follows. Section 2.1 presents the sample. In section
3, describes the we describe our questionnaire on risk and time preferences, our decision
model, and the estimation method. In section 2 we describe present the diet measurement
module and discuss explains how we constructed build our leading indicators of diet quality
in section 2. Section 4 discusses comments the estimates of individual risk estimates and the
time parameters and provides evidence on their associations with to diet quality. Section 5
concludes

2 Measuring diet in the ELIPSS panel

In this section, we present the ELIPSS panel and describe how we build the leading indicators
of diet quality for each individual.

2.1 The ELIPSS panel

Our survey was conducted in France and involved participants in the ELIPSS panel. ELIPSS
is a web-based longitudinal social sciences survey inspired by the Netherlands LISS panel and
the US Knowledge panel.6 Between 2011 and 2019, it was funded by the French agency for
research (ANR).7 The ELIPSS panel target population is francophone residents of metropoli-
tan France, aged between 18 and 79 years on July 1st 2016, living in ordinary households
(i.e. excluding homeless individuals and individuals living in institutions or communities).
According to the 2014 census the eligible population numbered 45.3 million. The panel is
composed of 3,331 individuals selected according to a true probability sample of households
drawn from the population register by the French National Institute of Statistics and Eco-
nomic Studies (INSEE). An important feature of this panel is that in exchange for their
response to a 30 minute monthly survey all members were provided with touchscreen tablets
(Archos) and mobile internet connection (4G). This indirect monetary incentive drastically
increased the ELIPSS response rates (over 80% for every survey round) compared to other
online surveys or telephone or face to face interviews (de Leeuw et al., 2018). Due to these
sampling, material, and incentive particularities, the ELIPSS sample is an accurate repre-
sentation of the general population in France (Blom et al., 2016; Cornilleau and Duwez,
2021).

The ELIPSS panel is surveyed once a year for socio-demographic information, the other
monthly surveys are questionnaires proposed by the successful projects selected by the

5Notable exceptions include Blondel et al. (2007), Sutter et al. (2013), Bradford et al. (2017), Falk et al.
(2018), Samek et al. (2021), and List et al. (2022).

6https://www.elipss.fr/fr/
7Equipex DIME-SHS (ANR-10-EQPX-19-01)
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ELIPSS Scientific committee. Our study uses data from the 2018 annual survey merged
with the Psychofood survey (Nebout et al., 2020), which successfully passed the ELIPPS
peer-reviewing process. Our survey includes a risk and time preferences module and a diet
measurement module. The preference module consists of a series of binary choices allowing
to elicit risk and time preferences according to a variety of decision models. We describe
this module in section 3. In the diet measurement module, the participants had to fill a food
frequency questionnaire. Based on their responses, we computed several diet indicators in-
cluding energy intakes. This module is described in section 2. The survey was administered
on June 6th, 2018 to the 2,655 individuals still present in the panel, and the data collection
stopped on July 26th. A total of 2,199 individuals reached the end of our questionnaire, a
high response rate of 83%. The data set included weights correcting for non-response in
order to ensure that the sample was representative of the French population.

2.2 Frequency of consumption

A frequency questionnaire (FFQ) based on Affret et al., 2018 was used to collect data on
respondents diets. This FFQ measures the frequencies of consumption and portion sizes of
28 food items grouped into seven food groups (see table D.1 for the list of the items by food
group).

For each food item j, the frequency of consumption was estimated through a two-stage
procedure. The first question was: “On average, over the last 12 months, how often did
you eat j?” with possible answers “every day”, “every week”, “every month” or “rarely or
never”. Individuals who responded “every day” (resp. “week”, “month”) were then asked to
answer in a second question to narrow down their frequency of consumption within a period:
“Over the last 12 months, on average, how many times every day (resp. “week”, “month”)
did you eat j?”, and had to enter this frequency manually. Finally, respondents were asked
to select their average portion size from several different pictures (see the appendix figure
D.1) or expressed in common units (e.g. one standard size yogurt). This third question
was: “Over all occasions when you ate that item, what was the average portion size?”. For
each item, we combine the respondents’ responses to infer their average daily quantities
consumed.

For each individual i and food item j, we compute the average daily consumption Qij in
g/day by multiplying the chosen average portion size in g by the frequency of consumption by
day.8 We do so for each of the 28 food items, including alcohol which we use as a dependent
variable in the result section 4.

2.3 Daily nutrients intake

We convert the quantities of food items declared in the FFQ into daily intakes of nutrients.
This procedure allows us to conduct our main analysis on aggregated variables representing
the individuals’ diet rather than on specific food items. The daily intake of nutrient n by
individual i is computed as follows:

8The declared consumption frequencies expressed per month (resp. week) were converted into a per day
frequency by dividing frequencies by 30 (resp. by 7). Portion sizes were either quantified from the FFQ itself
(when quantity was available) or with the help of the SUVIMAX book (Hercberg et al., 2002) which provides
the conversion between pictures of portion sizes and exact volume for 244 food items generally consumed in
France.
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Intakein =
28∑
j=1

QijNjn (1)

where Qij is the average daily consumption of food item j by individual i, and Njn is the
content of food item j in nutrient n. The nutritional compositions Njn of the 28 food items
were provided by the French national INCA2 dietary survey and the French food nutrient
composition database CIQUAL. 9

2.4 Diet indicators

We evaluate the respondents’ diets over several dimensions. To measure the total quantity
of food intake, we compute the Daily Energy Intake (DEI) measured in calories. To assess
the overall quality of a diet measured across all nutrients, we use the leading indicator
designed in Vieux et al. (2013), which we refer to as the Whole Diet Index (WDI). As alcohol
consumption is not accounted for in the WDI albeit having important health impacts, we
consider the total alcohol consumption as a separate indicator.

Daily Energy Intake (DEI)

An excess in energy intake is usually the consequences of consuming foods high in saturated
fats or in added sugars. This indicator is known to be associated with bad health outcomes
(Bates et al., 2016). We compute the DEI as the sum of all estimated energy intakes from
foods. This is obtained by multiplying the estimated amount consumed in grams for each
food item by the energy composition of the item (per gram), and summing over items.

Whole Diet Index (WDI)

We evaluate the overall quality of each respondent’ diet using an index designed in Vieux
et al. (2013). We begin by computing three scores of nutritional quality which we then
combine to produce an aggregated categorical variable, the WDI.

The three scores of nutritional quality, estimated after exclusion of nutrients provided by
alcoholic beverages, are the following:

1. Mean Adequacy Ratio (MAR)

The MAR is an indicator of good nutritional quality (Madden et al., 1976). It cor-
responds to the percentage of Dietary Reference Intakes (DRI) for 20 key nutrients:
vitamins A, C, D, E, B12, B2, B6, calcium, potassium, iron, magnesium, proteins,
fibers, thiamine, niacin, folates, zinc, copper, iodine, and selenium. For each individ-
ual i, the indicator MARi is given by:

MARi =
1

20

20∑
n=1

min
{Intakein

DRIn
, 1
}

(2)

9Each food from a list of 1,183 foods consumed in the INCA2 survey was matched to each of the 28
FFQ food items. The nutrient composition per gram of each food item was estimated by a weighted mean
of all INCA2 foods associated with the FFQ food item. The weight associated to one given INCA2 food
corresponded to its consumption level among adults of the INCA2 dietary survey. For instance, if raspberries
are consumed in higher quantities than blueberries among French adults, then FFQ nutrient composition of
the global “Fruit” item will be more represented by raspberries than blueberries.
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where DRIn refers to the age- and gender- specific DRI for nutrient n. A MAR equal
to 100% implies a coverage of all 20 DRIs. The higher the MAR, the better the diet
quality. The DRIs are given in the appendix table D.2.

2. Mean Excess Ratio (MER)

The MER is an indicator of bad nutritional quality. It is the mean daily percentage of
Maximum Recommended Values (MRV) for 3 nutrients that should not be excessively
consumed (saturated fats, salt, free sugars. For each individual i, the indicator MERi

is given by:

MERi =
1

3

3∑
n=1

max
{Intakein

MRVn

, 0
}

(3)

where MRVn refers to the MRV for nutrient n. A MER equal to 0% means that none
of the maximum daily recommendations for each of the three unfavorable nutrients
is exceeded. The lower the MER, the better the diet. The MRVs are given in the
appendix table D.2.

3. Energy Density (ED)

The ED is the average caloric content of the diet, expressed in kcal per 100 grams. For
example, fruit, vegetables, fish, and lean meats have a low energy density while high
fat/high sugar foods have a high energy density. This indicator is negatively associated
with the nutritional quality of diets (Ledikwe et al., 2006), so that decreasing the ED
of the diet is recommended by several public health authorities to prevent obesity
and obesity-associated disease conditions. The calculation of the ED is based on all
food items consumed excluding beverages (e.g., water, hot beverages, milk, fruit juices,
other drinks...). The lower the ED the better the diet quality.

We compute each of the three above scores for each respondent of the Psychofood panel and
aggregate them into the WDI:

WDIi = 1MARi>mediani(MAR) + 1MERi<mediani(MER) + 1EDi<mediani(ED) (4)

where mediani(I) is the median of indicator I over the sample of respondents with the
same gender as individual i. These values are given in the appendix table D.3. We obtain an
ordered categorical variable taking values {0,...,3}. The higher the WDI the better the diet.
The best (resp. worst) value is 3 (resp. 0), indicating that the individual has a better (resp.
worse) value than half the same gender individuals of the sample for all three indicators.

Table 1 describes the distribution of the nutritional indicators across classes of WDI. The
first panel gives the average intake by food group and by WDI category. We obtain that
individuals with better diets consume more fruits and vegetables, pulses, and less high fat,
sugar, and salt foods. The second panel describes the distribution of the indicators DEI,
MAR, MER, and ED across WDI categories. The average DEI is higher for the two low
quality categories of WDI. We present the distribution of the leading nutritional indicators
across socio-demographic characteristics in section 4 (see table 4).

2.5 Missing values

Among the 2,199 individuals who reached the end of the preference module, 314 (14%)
failed to answer at least one question in the diet module. Among these, 137 individuals
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Table 1: Distribution of nutritional indicators

Whole Diet Index
0:Low 1:Intermediate - 2:Intermediate + 3:High

Intake by food group (g/day) Average
Fruits and vegetables 172 225 451 634
Cereal-based products and tubers 222 309 276 304
Meat, fish, and eggs 109 144 137 142
Pulses 18.5 28.3 40.7 52.5
Dairy products 246 301 288 272
High fat, sugar, and salt foods 216 221 145 111
Added fats 51.3 46.2 27.5 24.3
Beverages 1,780 1,922 1,877 1,881
Pure alcohol in beverages 8.22 9.07 5.86 5.55
Nutritional quality indicators
Daily Energy Intake (DEI, cal/day) 1,890 2,149 1,746 1,755
Mean Adequacy Ratio (MAR) 74.5% 80.0% 79.6% 89.5%
Mean Excess Ratio (MER) 21.9% 25.7% 10.8% 1.2%
Energy density (ED, cal/100g) 202 188 139 123
Observations (share) 207 (9.9%) 810 (38.8%) 869 (41.7%) 214 (10.3%)

Note: These statistics are computed without weights. The distribution across WDI groups is close to that
of a binomial B(4, 0.5) which probabilities are (0:12.5%, 1:37.5%, 2:37.5%, 3:12.5%), albeit with slightly
thinner tails. This is in part because the indicators are correlated, with coefficients 0.45 for MAR-MER,
-0.11 for MAR-DE, and 0.36 for MER-DE. These correlations are close to those reported in Vieux et al.
(2013).

have only missed one of the three questions for only one item (e.g. the average portion
size for one item) over the 84 questions pertaining to the 28 item, and 253 individuals who
failed to answer five questions or less. For these individuals, the collected data covers most
of their diet and allows to reasonably approximate their overall diet quality. To include
these individuals in the main analysis, we impute the missing value using the following rules.
First, if the individual missed the first question relative to the frequency of consumption for
a given item, we impute a frequency of zero. Second, if the individual answered the first
question but missed the second question relative to the number of times of consumption, we
impute a value of one time per periodicity unit given at question 1. Third, if the individual
answered the first two questions but missed the last question relative to the portion size,
we impute the average portion size computed over the nonmissing observations.10 In the
appendix, we verify that our qualitative results hold if we drop all individuals with at least
one missing item frequency or one imputed value (see table D.4). For our main results
presented in section 4, we remove the 5% outliers for the caloric content, therefore excluding
16 individuals with many missing items imputed at zero.

10For several categories, an additional question asked the participants to specify the subcategory they
consume most often to narrow down the nutritional content of the type of product they consume. These
categories are: drinks (juice, sweetened beverages, light beverages, or equally often sweetened and light
beverages), hot beverages (coffee, tea, infusion, or equally often coffee and tea), oil (olive, canola, nut, sun-
flower, peanut, ISO4 (a mix of four oils), or other), and cereal products and bread (whole grain, white grain,
both equally often). These subcategories matter in terms of nutritional content. For instance, sweetened
beverages are attributed a caloric content of 42 cal/100g, against only 1.3 cal/100g for light beverages. For
these additional questions, we impute the missing values at the weighted average among collected answers.
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3 Measuring risk and time preferences

This section describes our preference module, our general theoretical framework, and the
estimation method. We design a parsimonious module to adapt the sophisticated elicita-
tion methods used in lab experiments (Hey and Orme, 1994; Wakker and Deneffe, 1996;
Abdellaoui et al., 2007) to a general population survey. Although model-free measurement
methods for risk and time attitudes using ordinal scales, such as Likert scales, have re-
cently been shown to be effective at explaining economic behaviors (Dohmen et al., 2011;
Falk et al., 2018; Tasoff and Zhang, 2022), economists often favor choice-based and theo-
retically grounded elicitation methods within the revealed preference paradigm which are
more suitable to policy evaluation and welfare analysis. In part because of their high imple-
mentation costs at the general population scale, the ability of these structural methods to
explain real economic decisions is still subject to investigation (Galizzi et al., 2016; Charness
et al., 2020).11 Our paper contributes to this literature by showing that structural elicita-
tion methods used on several tasks conducted in the general population yield risk and time
preferences that significantly explain diet quality.12 This section describes the preference
module, presents the decision model we employ to parameterize risk and time preferences,
and finally details our estimation procedure.

3.1 Preference module

Our preference module offers a compromise between simplicity and theoretical consistency.
The questionnaire is relatively short (5-10 minutes) and sufficiently simple for a large-scale
survey. It collects all the necessary data to estimate a structural decision model.

Notation

Let zt denote an outcome received at time t with certainty. When the outcome is received
immediately (i.e. at t = 0), we simplify the notation by z. The notation (xt, p, yt) denotes
a risk prospect that gives an outcome x at time t with probability p and an outcome y at
time t with probability 1 − p. We denote by � the preference relation over these objects
and use notation ∼ for the indifference. The expected gain of the risk prospect (x, p, y) is
xp+(1−p)y. The certainty equivalent of the risk prospect (x, p, y) is the outcome c? such that
c? ∼ (x, p, y). By definition, there is risk aversion (resp. risk-seeking) when c? < xp+(1−p)y
(resp. c? > xp+(1−p)y). In order to measure time preferences, we consider binary choices of
type zt vs xt+τ , where t ≥ 0 and τ > 0. The sooner equivalent in t of a delayed outcome xt+τ
is the outcome c?t such that c?t ∼ xt+τ . We define the sooner equivalent of a time prospect
denoted (t, x, t+ τ) as the sooner equivalent in t of the prospect xt+τ .

Design

To estimate the risk and time preferences of the respondents, we design a questionnaire to
collect their certainty and sooner equivalents for various risk and time prospects. We divide
the questionnaire into two parts: (i) a risk part where the outcomes are risky (0 < p < 1)

11Only few papers leverage choice-based elicitation methods at the general population level (Von Gaudecker
et al., 2011; Courtemanche et al., 2015; Bradford et al., 2017). Studies comparing the respective perfor-
mance of stated versus revealed preference measures typically focus on experimental samples and limited
demographic groups. For instance, Samek et al. (2021) find that stated risk and time preference correlate
with BMI among teenagers, but not experimental measures based on a task with multiple price lists.

12For comparison, we also include a stated risk preference measure in our survey, which exhibits less
explanatory power for our diet indicators (see section 4).
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but obtained without delay (t = τ = 0) and (ii) a time part where the outcomes are delayed
(τ > 0) but obtained with certainty (p = 1). To elicit a respondent’s equivalent of a given risk
(resp. time) prospect, we ask whether the respondent would choose that prospect instead
of a certain (resp. sooner) outcome. For each prospect, the questionnaire includes four
successive binary choices following a bisection algorithm to halve the possible range of the
equivalent at each question, as illustrated in figure 1.

Figure 1: Bisection algorithm for the risk prospect (0, 0.5, 80)

Note: At the top of the tree, the first question offers e40 against the prospect. If the respondent accepts
(path A), the second question offers e20 instead. Alternatively, if she declines (B) the second question offers
e60.

Consider for example the risk prospect R1= (80, 0.5, 0), where the respondent has 50%
chance to obtain e80 immediately. The first question asks whether the respondent would
take e40 immediately with certainty rather than choosing the risk prospect R1. Her answer
reveals whether her certainty equivalent for prospect R1 is above or below e40. If she
accepts (resp. declines), it implies that her certainty equivalent for this prospect R1 lies
within the interval (0; 40) (resp. (40, 80)). The second question is then identical to the first
one except that we replace the certainty value by the middle of the interval implied by the
first answer. After this second question, the range of the possible values for her certainty
equivalent is divided by two. We proceed so four times to obtain intervals of length 5. Note
that the lengths of the intervals are identical across prospects, reflecting agnosticism about
the distribution of the equivalents.

We consider several prospects for both the risk and the time parts. The main rationale
is that measures of both risk and time preferences are notoriously noisy (Frederick et al.,
2002; Schildberg-Hörisch, 2018). For that reason, measuring accurately the underlying risk
and time preferences requires to disentangle the information on risk and time attitudes from
noise, and therefore to collect answers to several tasks. A second motivation is that including
several tasks allow to estimate more behavioral traits relative to risk and time preferences
(see next section). Although collecting more information generally improves the precision
of the estimation, including a large number of tasks may also generate cognitive fatigue,
decrease acceptability, and trigger more dropouts. This constraint was partly monitored by
the management of ELIPSS who limits the size of surveys sent to the panel. The number of
prospects included in our questionnaire results from a trade-off between (i) collecting enough
information to adequately measure preferences and (ii) keeping our modules reasonably short
and easy to understand by the general population. These constraints led us to consider 4 risk
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and 4 time prospects in total, which are listed in table 2. The risk part of the questionnaire
thus includes 4 questions following the bisection algorithm for each of the 4 different risk
prospects. All outcomes are expressed in euros.13 For each prospect, the first proposed value
is the middle between the high gain and the low gain, so e40 for the risk prospects R1-R3
and e60 for the prospect R4. The time part of the questionnaire mirrors the risk part and
consists in the 4 time prospects described in table 2. For each time prospect (t, x, t+ τ), we
ask 4 questions following the bisection algorithm to elicit the sooner equivalent in t. The
first proposed value is e40 for all 4 time prospects. In the first 3 time prospects, we elicit
the quasi-present equivalents with t =1 day. The last time prospect generates a variation in
t that allows us to measure the extent of present bias (see section 4). During the experiment,
the order of the prospects was randomized both across the risk and time parts and within
each part.

Table 2: Risk and time prospects

Risk Time
Index x p y Index t x t+ τ
R1 80 0.50 0 T1 1 day 80 3 months
R2 80 0.25 0 T2 1 day 80 6 months
R3 80 0.75 0 T3 1 day 80 12 months
R4 100 0.50 20 T4 6 months 80 12 months

Note: All gains are in euros.

Incentives

While incentivized choices are the standard in the lab, using real incentives in general pop-
ulation surveys is less systematic (Tasoff and Zhang, 2022).14 Real incentives dramatically
increase the costs of large population studies, while the literature on the significance of hy-
pothetical bias has yielded mixed results (Cohen et al., 2020). Besides monetary costs for
the researcher, implementing real incentive-compatible procedures can be cognitively taxing
and time consuming (Stantcheva, 2022). It requires to engage the participants in detailed
explanations prior to the questionnaire (Baltussen et al., 2012), which may generate cogni-
tive fatigue, noise in the responses, and drop outs before completion. Furthermore, since our
primary interest is the relationship between diet and risk and time preferences, the possibility
of hypothetical bias may not bear consequences for our results.15 Finally, to our knowledge
there is no incentive compatible method for food questionnaires so that our food data relies

13Our paper thus focuses on the external validity of risk and time preferences elicited with monetary
outcomes for diet quality. Although we acknowledge that risk and time attitudes may vary across domains
so that individuals may behave somewhat differently for monetary and health outcome, Dohmen et al. (2011)
conclude that domain-specific preferences assessments are all strongly positively correlated. They also find
that domain-specific preferences are the most correlated with the corresponding domain behavior. This
results suggests that using hypothetical health outcomes instead of monetary outcomes would only yield
stronger associations.

14 Meissner et al. (2023) is a recent exception, although they draw only a small fraction of the respondents
for the payments.

15A constant bias would have no impact on our results. If it consists in an additional noise on the
equivalents, we can control for it in our procedure allowing for stochastic noise (see section 3.2). Finally, if
it causes an idiosyncratic error in our measured risk and time preferences, it may only bias our estimates
toward zero, so that our results underestimate would underestimate the true relationships. The role of real
incentives in a lab setting is explored by
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on declared frequencies of consumption (see section 2). For the sake of consistency between
the two modules, and the other reasons listed above, our preference module collects hypo-
thetical choices. As shown below, the answers of the respondents showed general consistency
across tasks, suggesting that participants answered our module seriously.

Our preference module is specifically designed for the general population and aims at
balancing theoretical consistency with simplicity. Our tasks are kept short and simple (5 to
10 minutes in total) so as to maximize the answer rate (Edwards et al., 2009). Participation
was also strongly supported by the fact that all participants were granted tablets and free
internet access conditional on their participation to all surveys.

Descriptive statistics of the equivalents

The answers of a given individual for a given prospect yield an interval containing her
certainty/sooner equivalent for this prospect. To describe these raw observations, we first
compute the middle of this interval for each individual and each prospect. Table 3 gives
the average of these middles across individuals, for each prospect. For each prospect, the
last two columns give respectively the shares of respondents who answered all questions
(4/4) and the number of respondents who answered no questions (0/4). For all prospects,
the vast majority (more than 97.5%) of the participants answered all 4 binary choices of
the bisection algorithm so that their equivalents can be bounded by an interval of length
5, and only a small minority (under 2%) answered none of the choices. For the latter, we
remain agnostic about their equivalents for the corresponding task. We find 18 individuals
who missed either all risk tasks (8), all time tasks (3), or both (7). As the data provides
no information on their equivalents, we remove these individuals in the rest of the analysis
and estimate individual risk and time preferences for N=2,181 individuals. The ranking
of these averages across prospects is consistent with the design, as the average certainty
equivalent increases with the gain and with the probability of winning this gain. Similarly,
the average sooner equivalent decreases with delay τ , and increases with the sooner date
t. For all risk prospects, the median certainty equivalent is lower than the expected value,
indicating risk aversion. We find statistically significant correlations between 0.1 and 0.2
between the certainty equivalents and the sooner equivalents, which stresses the importance
of considering risk and time attitudes jointly to explain economic behaviors (see table D.5
in the appendix).
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Table 3: Certainty and sooner equivalents across individuals, in euros

Prospect Average Median S.d. # Answers
4/4 0/4

Risk (x; y) p px+ (1− p)y
R1 (80;0) 0.50 40 28.3 32.5 17.9 2,155 35
R2 (80;0) 0.25 20 18.0 17.5 15.8 2,147 36
R3 (80;0) 0.75 60 37.2 37.5 20.9 2,150 40
R4 (100;20) 0.50 60 45.1 42.5 18.1 2,149 37

Time x t t+ τ
T1 80 1 day 3 months 54.0 57.5 20.2 2,159 28
T2 80 1 day 6 months 50.2 57.5 21.6 2,153 34
T3 80 1 day 12 months 44.1 42.5 23.1 2,165 28
T4 80 6 months 12 months 53.0 57.5 20.0 2,167 25

Note: These values are not weighted and computed in the raw data (N=2,199). For
example, the answers for the risk prospect R1 yield intervals which middles have an
average across respondents of e28.3, a median of e32.5, and a standard deviation of
e17.9. 2,155 respondents answered all 4 binary choices for R1 and only 35 answered
none.

3.2 Model

In this section, we motivate why we need a decision model, present our model for the equiv-
alents, and discuss conceptual and empirical aspects of our framework.

Motivation

The main motivation for the model is that the sooner equivalents only reflect a combination
of risk and time preferences. As noted early in the literature on time preferences (Frederick et
al., 2002), the normative benchmark of the discounted expected utility (DEU) model implies
that the decreasing marginal utility (i.e. risk preferences) confounds the discount rate.
Empirically, this implies that measuring risk and time preferences requires to disentangle
the role of the curvature of utility in the intertemporal choices – to the extent that utility
is nonlinear. In particular, Andersen et al. (2008) find that ignoring utility curvature in the
measurement of time preferences yields to a substantial positive bias in the discount rates.
In our case, this suggests that our sooner equivalents are driven both by utility curvature
and time preferences.

The second motivation is a practical one: we need to disentangle the signal from the
noise in the equivalents. A decision model provides a theoretically sound rule to distin-
guish the information pertaining to risk and time preferences from the noise, and aggregate
that information into a parsimonious set of parameters informing the decision process. In
our framework, we build on the seminal works of Hey and Orme (1994) and Bruhin et al.
(2010) and consider that individuals have noisy representations of their underlying theoret-
ical equivalents. This framework not only allows to extract the relevant information from
the equivalents, but also provides a measure of the noise variance across individuals, i.e. of
how precisely they represent their equivalents.

Behavioral equations

Let gain x provide individual i with utility u(x, αi), where αi > 0 and u(·, αi) is a positive
and strictly increasing function. A gain x obtained in period t grants discounted utility

14

Electronic copy available at: https://ssrn.com/abstract=4474126



D(t, δi)u(x, αi) with δi > 0 and D(·, δi) a positive and strictly decreasing function. Our
objective is to elicit individual preference parameters αi and δi from their indifference levels
revealed by their answers. To this aim, we consider a structural equation model for these
indifference levels. Under DEU, the theoretical certainty equivalent of respondent i for the
risk prospect R = (x, p, y), is denoted c∗iR and given by equation (5).

c∗iR = u(·, αi)−1[pu(x, αi) + (1− p)u(y, αi)] (5)

This equation allows to identify the risk preference parameters αi. For each respondent
and for each time prospect T = (t, x, t + τ), under DEU, the theoretical sooner equivalent
c∗iT is given by equation (6).

c∗iT = u(·, αi)−1

[
D(t+ τ, δi)

D(t, δi)
u(x, αi)

]
(6)

This equation allows to identify the intertemporal-attitude parameter δi, given that the
parameters αi are identified from equation (5). Equations (5) and (6) provide the expected
values of the certainty equivalents and the sooner equivalents.

Specification of noise

In practice respondents may make seemingly inconsistent answers across prospects that vio-
late the monotonicity of preference and in turn the deterministic framework presented above.
For instance, the answers of a given respondent may indicate a lower certainty equivalent for
prospect R1=(80, 0.5, 0) than for prospect R2=(80, 0.25, 0). We rationalize these apparent
mistakes by assuming that the respondents base their answers on noisy certainty and sooner
equivalents noted ciR and ciT , respectively. We consider the following additive normal errors
for the certainty and the sooner equivalents:

ciR = c∗iR + εiR with εiR ∼ N(0, (σri )
2) ∀R ∈ {R1, ...,R4}, (7)

ciT = c∗iT + εiT with εiT ∼ N(0, (σti)
2) ∀T ∈ {T1, ...,T4}. (8)

The parameters σri > 0 and σti > 0 characterize the extent to which individual i devi-
ates from her theoretical equivalents. They allow for seemingly inconsistent answers across
prospects, and may also capture possible noise due to our use of hypothetical choices. We
further allow for heteroskedasticity as the variances may vary across individuals and across
prospect types: each individual has a given error variance for all her certainty equivalents,
and another one for all her sooner equivalents. Note that although the realizations of errors
εiR and εiT vary across individuals and prospect type, we assume that the 4 chained binary
choices of a given individual pertaining to the same prospect are determined by a single
noisy equivalent observed prior to entering the bisection algorithm. This implies that each
turns in the bisection tree unequivocally reduces the range of the interval containing the
equivalent. Note also that our framework is not a typical random utility model (RUM), a
framework that may generate identification issues when individuals are assumed to compare
the noisy utilities of two uncertain prospects (Apesteguia and Ballester, 2018). We consider
that individuals have noisy representations of their underlying equivalents, but precisely
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represent the sure gains.16 In our framework, the respondents only compare noisy equiva-
lents to sure gains, which guarantees that the probability of choosing the sure gain increases
monotonically with risk aversion.

In our baseline DEU estimations presented in section 4 we parameterize u(x, αi) = xαi

and D(t, δi) = e−δit. This yields the following formulas for the equivalents:

c∗iR = [pxαi + (1− p)yαi ](1/αi) (9)

and

c∗iT = e
− δi
αi
τ
x. (10)

with αi > 0 and δi > 0.17 Before turning to the estimation method, we clarify conceptual
aspects of our framework.

Remarks on the model

Classically, we consider that individuals consume their gains at receipt without background
consumption (Cohen et al., 2020). Assuming away background consumption is coherent with
the rich literature exploring the Rabin’s paradox, which Bleichrodt et al. (2019) conclusively
interpret as unilateral evidence in favor of reference-dependence or narrow bracketing. In
our case, this would translate as neglecting background consumption in the argument of the
utility function. We however acknowledge that risk attitudes may vary with the range of
gains. Given that we consider rewards under e100, we only claim to measure small-stakes
risk aversion. In support of the consumption-on-receipt assumption, Andersen et al. (2008)
and Andreoni et al. (2018) both conclude that intertemporal arbitrage is negligible in ranges
of gains and horizons similar to those we consider. Although we cannot rule out some residual
heterogeneity in arbitrage and background consumption, we argue that it would merely add
noise to our estimation which would be captured by our stochastic component to the extent
they affect the equivalents in a separably additive way. If standard, any remaining noise in
our estimation of risk and time preferences could only attenuate the associations we set out
to measure, and would therefore be unlikely to generate spuriously significant estimates.

The main motivation of our model relies on the role played by nonlinear utility in the
sooner equivalents. Although finding curved utility is commonplace in experiments using the
DEU framework, allowing probability weighting to explain risk attitudes may decrease utility
curvature towards linearity. We explore this possibility in an extension presented in section
4, where we consider an extended rank-dependent expected utility model (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992) and allow for present bias (Laibson, 1997).
For completeness, in appendix A, we also check other models assuming linear utility only
for time tasks or for both tasks, and we obtain similar results.

16Although some recent papers allow for a noisy representation of raw numbers (Khaw et al., 2021), we
argue that this noise is likely negligible compared to the one affecting the representation of equivalents,
a concept that may be difficult to grasp precisely (e.g. involves the inversion of utility in equation (5)).
In support of our assumption, the fact that the bisection algorithm only involves gains that are integers
multiples of 5, which are the same across all tasks except R4 (where they are shifted to (20;100)), arguably
reduces the risk of numerical misrepresentation.

17This proves convenient for our estimation method assuming an prior log-normal distribution for all
parameters (see next section). We check in appendix table D.8 that our main results hold also when allowing
αi < 0. In that specification, the αi have a prior normal distribution.

16

Electronic copy available at: https://ssrn.com/abstract=4474126



3.3 Estimation method

We estimate all individual parameters using a hierarchical Bayes framework. This section
first describes and motivates the overall strategy, and then details our implementation of the
method.

General approach

To assess the link between individual preferences and diet quality, we first estimate all in-
dividual parameters as presented in this section. We then regress the diet indicators on the
estimated preferences and discuss the causal interpretation of our estimates in section 4.
A straightforward way to estimate all individual parameters is to run separate estimations
of the parameters for each individual, either by maximizing the individual likelihoods (Hey
and Orme, 1994) or by nonlinear least squares (Abdellaoui et al., 2007). However, a recent
trend in the literature has highlighted several shortcomings of this method: (i) it may not
converge for individuals who do not fit the model well, (ii) it may yield implausible esti-
mates for individuals with inconsistent or extreme answers, (iii) it can be subject to local
maxima/minima issues (Nilsson et al., 2011; Murphy and ten Brincke, 2018; Gao et al.,
2022). Single-subject estimations has thus often led researchers to consider ex-post bounds
and simply remove individuals from the sample with missing or estimates taking implausible
values (Bradford et al., 2017). An alternative is to regularize the individual estimates by
assuming that they are drawn from a parametric probability distribution – typically normal,
lognormal, or discrete – so as to limit the risk of large outliers. Such distributional as-
sumptions are routinely employed in works estimating the distribution of preferences using
random parameter models (via maximum simulated likelihood), without actually estimating
all individual parameters (Bruhin et al., 2010; Von Gaudecker et al., 2011; l’Haridon and
Vieider, 2019; Jagelka, 2023). Using simulations and a test-retest experiment, Murphy and
ten Brincke (2018) show that estimating the population distribution in a first stage with
a random coefficient model, and then leveraging this distribution to estimate the posterior
probabilities of individual parameters, yields more reliable estimations than single-subject
estimations. This is because single-subject estimations ignore the plausibility of point esti-
mates with respect to the population distribution. This issue is especially troublesome when
the number of observations per individual is constrained to be relatively low, as in general
population surveys like ours. We thus adopt such a hierarchical framework and assume that
individual parameters are drawn from a population distribution.

Our implementation follows a recent development in the empirical literature in decision
theory and behavioral economics that simultaneously estimates individual parameters and
their population distribution using the hierarchical Bayes framework. This method has sev-
eral practical advantages described in Train (2009). First, contrary to the two-step method
in Murphy and ten Brincke (2018), the estimation of individual parameters accounts for
the sampling error in the estimated population distribution. Second, the estimation of the
population distribution is not sensitive to local maxima issues as it does not involve nu-
merical optimization – convergence is assessed by inspecting the stability of the posterior
distribution. Third, its computation time does not increase substantially when allowing all
individual parameters to be freely correlated. This contrasts with the maximum simulated
likelihood method which computing time quickly becomes prohibitive as the number of cor-
related random coefficients increases, so that it typically requires to restrict the covariance
across random coefficients (Von Gaudecker et al., 2011; l’Haridon and Vieider, 2019). Since
one of our aim is to disentangle the respective relationships of risk and time preferences with
diet quality, it is key not to restrict a priori the correlation between these parameters, which
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is more conveniently achieved with a hierarchical Bayes estimation (Ferecatu and Önçüler,
2016). Following this burgeoning literature,18 we adopt a hierarchical Bayesian approach to
jointly estimate individual and population parameters.

Implementation

Train (2009) provides a general exposition of the hierarchical Bayes method, which we adapt
to our case in this section. We denote by θi = (αi, δi, σ

r
i , σ

t
i) the set of individual parameters.

The successive answers of individual i to the bisection procedure for the risk prospect R ∈
{R1, ...,R4} yield two bounds (c−iR, c

+
iR) such that c−iR ≤ ciR ≤ c+

iR. From equation (8), the
likelihood function l for a given observed interval (c−iR, c

+
iR) conditional on θi writes:

l(c−iR, c
+
iR|θi) = Φ

(
c+
iR − c∗iR
σri

)
− Φ

(
c−iR − c∗iR

σri

)
(11)

where Φ is the cumulative function of the standard normal distribution. Substituting
σri with σti and index R with T in equation (11) yields the likelihood of the observations of
the time prospects T ∈ {T1, ...,T4} for individual i. The method accommodates missing
answers, as this expression also applies for the 140 individuals who did not complete the
bisection algorithm for at least one prospect (i.e. with c+

i. − c−i. > 5). For these individuals,
the estimation is only less precise.

Let yi = (c+
ij, c

−
ij)j∈{R1,...,R4,T1,...T4} be the vector of all the observations pertaining to

individual i. The likelihood of the vector yi conditional on the individual parameter vector
θi is:

li(yi|θi) =
R4∏

R=R1

l(c−iR, c
+
iR|θi)

T4∏
T=T1

l(c−iT , c
+
iT |θi). (12)

We assume that the individual-level parameters θi are realizations of a random vector θ
following a positive log normal distribution such that:

log(θ) ∼ N (µ,W ) (13)

where µ and W are the population parameters. We further assume that the population
parameters µ and W are random variables themselves and consider the following independent
prior distributions:

µ ∼ N (µ0, S0) (14)

W ∼ IW (K, IK) (15)

where µ0 and S0 are nonrandom vectors, K is the number of individual parameters
(K = 4 in the baseline), IK is the identity matrix of dimension K, and IW (K, IK) is the
inverse Wishart distribution with K degrees of freedom and scale matrix IK . S0 is large so
that the prior distributions of the population means µ are flat and that µ0 acts as an initial
value rather than a prior. We denote by N the number of individuals with I = {1, ..., N}
and consider the following posterior distributions given the data:

18See Jarnebrant et al. (2009), Nilsson et al. (2011), Toubia et al. (2013), Baillon et al. (2020), Gao et al.
(2022), and Alam et al. (2022) for recent applications of the hierarchical Bayes approach to the estimation
of behavioral preferences.
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P (θi|µ,W, yi) ∝ li(yi|θi)φ(log(θi)|µ,W) ∀i ∈ I (16)

µ|(W, (yi)i∈I) ∼ N

(
1

N

∑
i∈I

log(θi),W/N

)
(17)

W |(µ, (yi)i∈I) ∼ IW

(
K +N,

KIK +NS

K +N

)
(18)

with S =
∑

i∈I(log(θi)−µ)(log(θi)−µ)′/N . We simulate D draws of θ using the RSGHB
R package which implements the Markov chain Monte Carlo (MCMC) algorithm described
in Train (2009). The algorithm starts with the initial values θ0 = 1K and W 0 = IK to
simulate a draw of vector θ with equation (16), uses these simulations to draw new values
of µ and W with equations(17) and (18), and iterates. We use the default values of the
RSGHB package setting the target acceptance rate at 0.3 and the initial rate at 0.1. We
use 10,000 burn-in draws, followed by 50,000 draws of which we select only 1 draw every 5
to mitigate potential autocorrelation issues. Without loss of generality, we divide all gains
by the maximum gain e 100 to fasten numerical approximations. We run conservative
simulations to evaluate convergence using the diagnostics proposed in Gelman et al. (2013).
Using 10 random starting values, we obtain satisfactory convergence for all parameters after
only 1,000 burn-in, over 2,000 draws of which we select only 1 draw every 2, and splitting the
chains in two parts to assess stationarity. Figure D.2 in the appendix illustrates the stability
of the distributions obtained in the baseline specification after 10,000 burn-in iterations. For
each individual i, we obtain D = 10, 000 draws θ̂di and the estimate of θi is the mean of
these draws θ̂i = 1

10,000

∑10,000
d=1 θ̂di . In the appendix section B, we run simulations to show the

accuracy of the estimation method in terms of parameter recovery, and its stability across
sets of estimation parameters.

4 Results

This section presents the distribution of the leading diet indicators across socio-demographic
characteristics, the estimated individual parameters for risk and time preferences, and our
main results linking the two groups of variables.

4.1 Distribution across socio-demographics

Socio-demographic characteristics include all variables used for the proportional fitting weight-
ing scheme: gender, age, education, location (region), and nationality. These variables are
provided by administrative data and are therefore not subject to misreporting. Table 4
shows the frequency of the three main socio-demographic variables, namely gender, age, and
education, and their respective average energy intake, diet quality indicator, and alcohol
consumption. Column (1) gives the 2014 census share for the target population, i.e. the
francophone residents of metropolitan France aged 18-79 on July 1st, 2016 and living in
ordinary households. The columns (2-4) show that our sample provides an accurate repre-
sentation of the target population, especially after adjusting for the weights in Column (4).19

In the columns (5-6), we remove the individuals who missed either all risk or all time tasks,

19The corresponding statistics for location and nationality are available upon request. Our weighted
sample adequately represents the target population across these characteristics as well.
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as well as the 5% outliers for the energy intake in order to correct obvious misreporting.20

Our reduced sample includes 2,086 individuals and still exhibits an excellent representativity
when adjusting for the weights.

Consistent with the INCA3 2017 national survey on food consumption in France (ANSES,
2017), we find that males have a higher daily energy intake and alcohol consumption, that
individuals under 45 have on average a slightly higher energy intake and a lower alcohol
intake,21 and that individuals who obtained more advanced diplomas have a higher alcohol
intake. The only exception is the pattern for education and daily energy intake, for which
INCA3 finds an opposite relationship. Comparing average values, we find an overall under-
reporting of calories and alcohol consumption in our survey compared to INCA3. These
differences may partly stem from methodological differences: INCA3 is a 3 days recall survey
whereas we use a food frequency questionnaire. In our regression analysis presented in section
4.3, we control for systematic under- or over-reporting within socio-demographic groups by
fixed effects. The overall diet quality measured by the WDI exhibits the same average across
genders,22 and increases with age and education.

Table 4: Demographics and diet quality

Variable Census Full sample Sample after trimming∗

Share N Share Weight N Weight DEI WDI Alcohol
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Gender
Female 51.0% 1,154 52.5% 51.0% 1,096 51.1% 1,881 1.50 4.27
Male 49.0% 1,045 47.5% 49.0% 990 48.8% 2,042 1.50 9.10
Age
18-22 8.1% 81 3.7% 9.6% 76 9.5% 1,970 1.39 3.89
23-34 19.1% 243 11.1% 17.6% 229 17.4% 1,982 1.49 5.78
35-44 17.5% 488 22.2% 17.5% 467 17.5% 1,979 1.40 5.91
45-54 19.6% 548 24.9% 19.6% 517 19.5% 1,911 1.56 5.93
55-64 17.2% 477 21.7% 17.2% 453 17.3% 1,932 1.53 7.90
65-79 18.5% 362 16.5% 18.6% 344 18.8% 1,993 1.55 9.03
Education
No highschool 27.8% 292 13.3% 27.8% 268 27.1% 2,038 1.50 6.07
Some highschool 23.4% 497 22.6% 23.3% 468 23.4% 2,125 1.40 6.44
Highschool 33.6% 825 37.5% 33.7% 787 33.9% 1,865 1.49 6.59
College 15.2% 585 26.6% 15.2% 563 15.5% 1,781 1.65 8.00
Total 100% 2,199 100% 100% 2,086 100% 1,960 1.50 6.63

Note: ∗ In these columns we remove the 5% outliers of the energy intake and the individuals who missed all questions in
the preference module. Column (1) gives the shares for the target population according to the 2014 Census, found in the
ELIPSS report of Cornilleau and Duwez (2021). (4) and (6) give the weighted shares. The values in Columns (7-9) are
weighted averages. The daily energy intake “DEI” is expressed in calorie per day. The column “WDI” gives the average
value of the indicator. The daily alcohol intake is expressed in grams of pure alcohol per day. The levels of educations
depend the highest diploma obtained, and are defined as follows: “No highschool” includes individual without a diploma
and individuals with a pre-highschool diploma: the former CEP (Certificat d’études primaires - end of primary school)
or the BEPC (Brevet d’études du premier cycle - end of middle school); “Some highschool” includes individual with a
diploma obtained before the end of highschool: the CAP (Certificat d’aptitude professionnelle) or the BEP (Brevet d’études
professionnelles); “Highschool” includes individuals with the highschool diploma Baccalauréat but no college degree (less
than 2 years in college); “College” includes individuals with a college degree (at least 3 years of college education).

20We keep only the weighted individuals between the 2.5th and 97.5th weighted quantiles of the distribu-
tion, computed for each gender (given in appendix table D.3). The daily reference intake for energy is 2,000
calories, so that we removed individuals who reported consuming less than about 40% or more than about
225% of the daily reference value on average over the last year.

21In contrast with INCA3, individuals older than 65 have reported a higher energy intake in our sample.
22This corroborates the results of Vieux et al. (2013) who report comparable distributions of WDI for men

and women.
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4.2 Individual parameters estimates

In this section, we estimate the risk aversion (αi) and discount rate (δi) parameters following
the method explained in section 3.3. Table 5 gives summary statistics on the distribution
of the estimates. The average of the risk aversion estimates is 0.71 and their median is
0.57. The large majority of respondents are risk averse (84%). These values are in line with
other large scale studies (Bradford et al., 2017; Meissner et al., 2023). The median of the
estimated standard deviations σ̂ri from the certainty equivalents is 13.4, which is large in
comparison with the width of the intervals for the certainty equivalents (5 for a complete
questionnaire). These large deviations reflect that for many individuals, the hierarchy of the
certainty equivalents conflicts with the hierarchy of the expected values across prospects.23

The median estimated discount rate is 0.037 in our survey, which implies that e1 in 1 month
has a present value of e0.96. This discount rate ranges in the higher values reported in the
review of Frederick et al. (2002), which likely stem from the fact that we consider rather
short delays and small gains (Cohen et al., 2020). The standard deviations σ̂ti have a mean
of 10.9 exhibit more heterogeneity than the σ̂ri . In particular, the minimum σ̂ti is small (1.7),
which is driven by the fact that many respondents chose the extreme equivalents for all
time prospects.24 In the appendix B, we run simulations to evaluate the parameter recovery
performance of our estimation method combined with our data structure.

Table 5: Estimates of the individual parameters

Min Q25 Median Mean Q75 Max Std. dev.
Risk
α̂i 0.15 0.31 0.57 0.71 0.84 8.34 0.81
σri 9.1 12.5 13.5 13.6 14.7 22.5 1.7

Time
δi 0.001 0.015 0.037 0.060 0.068 2.247 0.129
σti 1.7 5.9 10.4 10.9 14.9 39.8 6.3

Figure 2 shows the cumulative distribution functions of the individual estimates (in-
creasing black curve) together with their densities (dark grey curve). The horizontal grey
segments represent the Bayesian credibility intervals of the individual estimates, reflecting
uncertainty on their relative ranks. The dotted lines give the mean population estimates
and the grey squares give the 95% credibility intervals of the posterior distributions of the
individual parameters, thus containing 95% of the individuals.

Panel (a) shows the distribution of the risk coefficient estimates. The distribution is a
positive lognormal by design. The estimation yields rank uncertainty across the estimates
α̂i, as most individuals in the 60% middle of the distribution (from rank 0.3 to rank 0.9)
have overlapping 95% credibility intervals for α̂i.

25 We account for this uncertainty in our
robustness checks. Individuals who gave seemingly inconsistent answers across risk prospects

23For instance, 23% of respondents obtained a strictly smaller equivalent for prospect R3 (expected value
of 60) than for prospect R2 (20).

2447 respondents chose the interval [0,5] for all time prospects and 203 respondents chose the interval
[75,80] for all time prospects. This is in part because our bisection algorithm only searches for sooner
equivalent that are lower than the later value.

25Graphically, only the bottom 30% of the distribution have an upper bound under the average of 0.71, and
only the top 10% have a lower bound above this average. Note however that the estimates of the posterior
expected individual value E(pi|datai) are estimated precisely as their variances are divided by 100.
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have larger values of σ̂ri , and wider credibility intervals on their risk preference estimates α̂i.
26

Because the plotted values are exponentiated, the width of the credibility interval increases
with α̂i. In Panel (b), the distribution of the time preference estimates δ̂i is less flat, with
more individuals having estimates close to zero. Panels (c) and (d) show the distributions of
the estimates of the deviations from the certainty and sooner equivalents. For comparability,
these two panels have the same x-axis scale. The deviations from the certainty equivalent
σ̂ri are much more concentrated around their mean, whereas the σ̂ti have a flat distribution
ranging from 1.7 up to 40. The rank uncertainty is especially important for the estimates
σ̂ri , for which most individual intervals are overlapping.

The estimation procedure allows for a flexible covariance matrix across individual coef-
ficients. Table 6 shows the resulting correlation coefficients across parameters. Consistent
with the results of Ferecatu and Önçüler (2016), we find that the α̂i and the δ̂i are strongly
positively correlated, so that impatience positively correlates with risk-seeking.27 We find
that the propensity to make errors on the risk part (captured by σ̂ri ) is not correlated with
time preferences. Similarly, the correlation between the propensity to make errors on the
time part (captured by σ̂ti) and the risk aversion coefficient is close to zero. However, σ̂ri is
negatively correlated with α̂i, so that more risk-seeking individuals are more consistent in
their answers across risk prospects. This is coherent with the results of Khaw et al. (2021)
who, although they use a different framework, do find that respondents making more random
choices are more risk-averse. Similarly, we find that σ̂ti is positively correlated with impa-
tience δ̂i, so that more impatient individuals are less consistent across time prospects. The
propensities to make errors in the risk and in the time part are strongly positively correlated
(.57). In the appendix B, we show that these patterns are not generated by our setting and
estimation method.

Table 6: Correlations of the estimates across individuals

α̂i δ̂i σ̂ri
δ̂i 0.49

[0.46,0.53]
σ̂ri -0.43 -0.03

[-0.46,-0.39] [-0.07, 0.01]
σ̂ti -0.08 0.41 0.54

[-0.13,-0.04] [0.37,0.44] [0.51,0.57]

Note: 95% asymptotic confidence intervals based on
Fisher’s Z transform are given in brackets.

Figure 3 displays the median of preference estimates across socio-demographic variables.
It shows that older individuals have lower levels of risk-seeking α̂i and impatience δ̂i. Consis-
tent with l’Haridon and Vieider (2019), we also find that older individuals exhibit a higher

26There is a large correlation (.77) between the σ̂ri and the standard deviations of α̂i (calculated across the
D = 10, 000 draws of α̂i for individual i). Note that the σ parameters only capture the inconsistency across
answers, not the potential noncompletion of the bisection algorithm for a given task. Individuals who fail
to complete all risk and time tasks have larger standard deviations of their estimates, but not necessarily
larger sigmas.

27This may seem inconsistent with the positive correlation between certainty and sooner equivalents (see
appendix table D.5), as larger sooner equivalents indicate more patience. But the correlation across certain
and sooner equivalents does not identify the sign of the correlation across structural parameters. This is
because the sooner equivalents depend both on αi and δi in our main decision model. For completeness, in
appendix A, we discuss results obtained when assuming individuals discount raw gains hence omitting the
dependence of the sooner equivalents on the αi.
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Figure 2: Posterior distributions of each individual parameter

(a) Risk coefficient α̂i
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(b) Time coefficient δ̂i
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(c) Deviation from certainty equivalent σ̂ri
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(d) Deviation from sooner equivalent σ̂ti
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Note: For each individual parameter pi ∈ {αi, δi, σri , σti}, the black curve and the dark grey curve respectively
give the cumulative distribution function of the individual estimates p̂i, and their density. The dotted line
is the simple average across individuals. The grey segments represent the 95% credibility interval of pi for
each individual i. They are computed by approximating the posterior distribution of pi with a lognormal
distribution with underlying mean and variance taken at their empirical counterparts across the 10,000 draws
log(pdi ). The shaded rectangle gives the 95% credibility interval of the posterior distribution of pi ignoring
the data. This interval is computed from the lognormal distribution with underlying mean and variance
taken at their empirical counterparts across individuals estimates of log(pi), neglecting the uncertainty on
these population mean and variance.
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propensity for errors in the risk tasks (σ̂ri ), but not in the time tasks. We also find that edu-
cation correlate positively with the risk-seeking coefficient α̂i and negatively with impatience
δ̂i and both standard deviations σ̂ri and σ̂ti . Consistent with Filippin and Crosetto (2016),
we find that the median estimates for risk attitude are comparable across genders. We also
find that the median male is more patient than the median female. Finally, males exhibit
lower median standard deviations from their certainty and sooner equivalents than women,
consistent with l’Haridon and Vieider (2019).

In the appendix figures D.5, we show how the estimated preferences relate to the comple-
tion time of the questionnaire and find intuitive patterns supportive of the internal validity of
our method. Finally, our questionnaire ended with a series of satisfaction questions designed
to evaluate the appreciation of the survey by the panelists. We report in the appendix figure
D.6 the result of one such question: “Did you have difficulty understanding the questions?”.
We find that the large majority of respondents (76%) reported no difficulty understanding
the questions, which suggests that our parsimonious questionnaire generated little cognitive
fatigue. We find modest relationships with risk-seeking and impatience, and a clear increas-
ing pattern between both σs and the difficulties to understand the questions. This suggests
that our measure of consistency partly captures the ability of the individuals to understand
the questions, and thus to answer in a consistent way across tasks.

4.3 Diet indicators and behavioral preferences

In this section, we provide evidence of the external validity of risk and time preferences for
diet quality, i.e. that the estimated preferences are significantly associated with the diet
indicators in the general population. Figure 4 depicts the averages of our main dietary
indicators for the energy content of the diet (DEI), the overall diet quality (WDI), and
alcohol consumption, for each decile of the risk and time estimates distributions.28 We
can see that the average energy intake and diet quality decrease slightly with risk-seeking
attitudes, and strongly with impatience. Mean alcohol consumption is higher among deciles
corresponding to more risk-seeking and impatient individuals, a pattern that is more salient
for risk preferences.

28Figure D.3 in the appendix replicates figure 4 for each indicator used to compute the WDI, and figure
D.4 give the average quantity consumed of each food group and 8 main nutrients across the estimated risk
and time preferences.
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Figure 3: Median preferences across socio-demographics
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Figure 4: Main nutritional indicators by decile of risk and time preference
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Note: The diamonds represent the weighted averages by decile using the survey weights. The dashed lines
represent the regression slopes of the weighted linear regressions explaining the averages by decile.

Regressions using DEU estimates

We next test the significance of these associations in regressions that include both risk and
time attitudes, with and without controlling socio-demographic characteristics. Since the
energy intake is continuous and positive, we consider log-linear regressions on the attitudinal
regressors estimated by the Ordinary Least Squares (OLS). The second indicator, the diet
quality index (WDI) is an ordered categorical variables with four hierarchical levels. We
estimate ordered logit models explaining the indicator by the attitudinal variables. 29 Our
third and last indicator is the daily alcohol intake, which we explain by attitudinal variables in
linear regressions estimated by OLS. Our main attitudinal regressors are normalized measures
of risk aversion and impatience estimates respectively α̂i and δ̂i. We consider two rescaling
transformations. First, we consider the ranks of α̂i and δ̂i within the sample. The rank
function turns these variables into uniformly distributed variables taking values between
0 and 1. This variable changes aims at facilitating the quantitative interpretation of the
estimates. Another advantage is that it mitigates the distortions introduced by outlying

29the appendix table D.6 shows estimates of regressions explaining the linear components of the WDI
(MAR, MER, and ED). These regressions support the significant association between impatience and diet
quality. This suggests that misreporting in the diet questionnaire, which would bias our estimates of the
ordered logit models explaining the WDI but not the OLS estimations explaining MAR, MER, and ED, is
not a significant concern in our data.
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values. As a robustness check, we also ran regressions where the regressors related to the
attitudinal variables are the underlying log-parameters of risk and time preferences (which
are normally distributed by design) divided by their respective standard deviation across
individuals.

Our main results combining the risk and time preferences in the same regressions are
reported in table 7, where the preferences are estimated under the DEU framework. We
apply weights in these regressions to correct for potentially endogenous nonresponse (Solon
et al., 2015), and report robust standard errors for the weighted linear regressions. The
estimations without weights are provided in table D.7 in the appendix and yield similar
results. Columns (1-2), (3-4), and (5-6) show estimates reflecting the associations between
attitudinal variables and respectively the energy intake (DEI), the diet quality (WDI), and
the daily alcohol consumption. In the top two rows the attitudinal variables are rescaled by
rank, and in the two rows below they are rescaled by log. Columns (1), (3), and (5) show the
direct associations obtained without control variables, whereas columns (2), (4) and (6) show
their counterpart using socio-economic variables as control variables, including one dummy
for gender, 6 dummies for age, 3 dummies for education, 2 dummies for nationality, and 7
dummies for the regional location. In the log-linear and linear models, the values are the
OLS estimates of the coefficients in the regressions. For the ordinal logit models, we show
the odds ratios minus 1 to improve the comparison of the direction of the associations across
columns. We convert the estimates using the function (x 7→ exp(x) − 1), which gives the
odds ratios minus 1.

Table 7: Joint association between behavioral parameters and diet quality

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
DEU estimation

Rank
Risk seeking: rank(α̂i) -0.053 -0.010 -0.024 -0.115 2.957 ** 2.594 **

(0.046) (0.048) (0.145) (0.137) (1.072) (1.038)

Impatience: rank(δ̂i) 0.132 ** 0.127 ** -0.408 *** -0.362 ** 0.545 1.992 *
(0.044) (0.044) (0.089) (0.100) (1.073) (1.048)

Log
Risk seeking: log(α̂i)/s.d. -0.011 -0.001 -0.003 -0.029 0.909 ** 0.784 **

(0.013) (0.014) (0.042) (0.042) (0.315) (0.307)

Impatience: log(δ̂i)/s.d. 0.037 ** 0.037 ** -0.110 ** -0.097 ** 0.188 0.539 *
(0.013) (0.013) (0.039) (0.041) (0.316) (0.310)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: Each column contains the estimates from two regressions using either the rank or the log transfor-
mation. The figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x)−1), which
gives the odds ratios minus 1. The standard deviations in brackets are given under their corresponding
coefficients. For Ordinal Logit models, the standard deviations of the odds ratios are computed using
the Delta-method. The linear models are estimated by OLS, the other models by maximum likelihood.
The standard errors for linear models are robust. For Ordinal Logit models, the significance levels
pertain to the raw estimates. Controls include gender (1 dummy), age (6 dummies), education (3),
nationality (2), and living area (7). All estimations use weights. Significance: *:p<0.10; **:p<0.05;
***:p<0.01. The critical values are the corresponding quantiles of a standard normal.

We obtain significant and consistent associations between our rescaled risk and time
parameters and the nutritional indicators. The first panel shows that more impatience is
significantly associated with more energy intake and lower overall quality diet, after con-
trolling for risk aversion. The estimate in column (2) indicates that the most impatient
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individuals have a 13% higher daily energy intake than the most patient individuals, after
controlling for differences in socio-demographic variables. In column (4), the estimate indi-
cates that the odds that the most impatient individuals adopt a diet in the better category is
36% lower than that of the most patient individuals, holding the socio-demographic variable
constant.30 This corroborates existing evidence in experimental settings (De Marchi et al.,
2016; Bradford et al., 2017; Samek et al., 2021; List et al., 2022) and selected products cat-
egories (Bradford et al., 2017). In these regressions, the estimates of the scaled coefficients
for risk attitudes α̂i are not statistically significant for energy intake and diet quality.

Furthermore, we find a strong and positive association between risk-seeking attitudes
and alcohol consumption, in line with Barsky et al. (1997) and Anderson and Mellor (2008).
The association between alcohol consumption and time preferences is only weakly statis-
tically significant (10% level) when including covariates. Our results indicate that alcohol
consumption positively correlates with impatience within a homogeneous socio-demographic
group, but not in the general population. This is because for gender, age, and education, the
more patient groups also exhibit higher alcohol consumption levels (see table 4). The fact
that alcohol consumption is more strongly associated with risk preferences is consistent with
the short-run effects of alcohol intoxication, whereas other dietary choices have essentially
long-run health consequences. Our estimates indicate that the average daily consumption
of pure alcohol of the less risk-averse individuals is almost 3g higher than the most risk
averse individuals - which amounts to about 2 standard drinks (10g of alcohol in France)
per week. The estimations substituting the rank of δ̂i with the standardized log of δ̂i yield
the same qualitative results. Failing to control jointly for both risk and time attitudes yields
similar results for energy intake, but overestimates the size of the coefficient for risk in the
regressions explaining diet quality and alcohol consumption (see appendix table D.9). In the
appendix table D.10, we find that the stated risk preferences are less associated with alcohol
consumption (not significantly with covariates), so that our revealed preference approach
yields estimates with higher external validity in our context.

Taken together, our results provide evidence that impatience is associated with energy
intake and diet quality, and that risk attitudes correlate with alcohol intake, even after
controlling for socio-demographic variables. In appendix C, we provide supplementary results
showing associations of our estimated parameters with the body mass index (BMI) and
the frequency of physical activity which corroborate our previous findings and the existing
literature. These data are not collected in our survey but in previous annual ELIPSS surveys
in 2016 and 2017 and are not systematically reported.

4.4 Robustness to decision model

We check in this section that our results are not driven by our assumptions on the decision
model.

30The odds of a probability p is p/(1−p). The odds ratio for a characteristic X is p1/(1−p1)
p0/(1−p0) where p0 is the

probability of moving to the higher category for individuals with X = x, and p1 is the same probability for
individuals with X = x+ 1, which is constant across categories and values of X in the ordered logit model.
For the ranked variable, the odds ratio compares the odds between the top of the distribution (rank=1) and
its bottom (rank=0). The implied difference in probabilities depends on p0. For instance, an odds ratio of
1.3 with p0 = 0.5 implies that p1 ≈ 0.565 so a probability difference of 6.5pp, but for p0 = 0.1 that difference
is only of 2.6pp.
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Regressions using HDRDU estimates

First, we check that we obtain similar results with an extended model accounting for present
bias and probability weighting. These models are often referred to as hyperbolic discounting
rank-dependent utility (HDRDU) models. We consider the individual-specific probability
weighting discounting function w(p, γi) = e−(−log(p))γi following the specification proposed by
Prelec (1998), and the quasi-hyperbolic discounting function D(t, βi, δi) = βie

−δit if t > 0 and
1 otherwise. For each respondent i, the certainty equivalent c?iR of a risk prospect (x, p, y)
with rank dependence x > y and the sooner equivalent c?iT of a time prospect T = (t, x, t+τ)
are respectively given by equations(19) and (20).

c∗iR = [w(p, γi)x
αi + (1− w(p, γi))y

αi ](1/αi) (19)

c?iT = β
1/αi
i e−δiτ/αix (20)

In this specification, our estimates of αi and δi account for the possibility of probability
weighting and present bias. The estimation is run using the same algorithm, considering a
positive lognormal distribution for the γi and an initial population mean of 1. Table D.11 in
the appendix provides the distribution of these estimates. The top panel of table 8 shows that
we obtain similar results using these HDRDU estimates of αi and δi. We cannot include all
estimates α̂i δ̂i, γ̂i, and β̂i together in the same regression because they are highly correlated
(see appendix table D.12) so that we cannot identify separately the regression coefficients
for α̂i and γ̂i, or δ̂i and β̂i.

31 In the middle panel of table 8, we show that substituting the
ranks of the HDRDU estimated parameters γ̂i and β̂i for the DEU parameters α̂i and δ̂i
yields similar results. We interpret the coefficient for the rank of γ̂i as reflecting risk-seeking
behaviors: over our set of probabilities (0.5,0.25,0.75,0.5) a higher γi indicates a relatively
more convex curve for the probability transformation function, which implies more risk-
seeking behaviors.32 The results for the present bias estimates β̂i are qualitatively identical
as those for impatience, accounting for the reverse direction of effects: a larger βi indicates
less present bias.

Regressions using model-free measures

To further check that our results are not driven by functional assumptions, we substitute
the estimated risk and time preferences with model-free measures based on the intervals
observed for each equivalent. Although these measures are subject to the critic that sooner
equivalents are partly determined by utility curvature and thus by risk preferences, we here
take the view that this issue is negligible.33 For each prospect R and each individual i, we
observe an interval (c−iR, c

+
iR) bounding the noisy equivalent of individual i for that prospect.

We consider the middle of this interval ĉiR = (c−iR+c+
iR)/2 as a point estimate of the certainty

31Doing so yields nonsignificant estimates and Variance Inflation Factors (VIF) greater than 25, indicating
prohibiting levels of correlation across covariates. This is especially severe for the two risk parameter. In
the appendix table D.13, we include both time parameters in the same regression and provide suggestive
evidence that diet quality may be more associated with present bias than with impatience (as measured by
the exponential discounting parameter).

32For instance, Wakker (2010) states page 175: “The implications of probability weighting for risk attitude
can be compared to those of utility. Concave utility curves enhance risk aversion. Similarly, convex weighting
curves enhance pessimism and risk aversion. [...] Under RDU, the degree of risk aversion depends on both
utility and probability weighting.”

33See also appendix section A where we consider structural models with linear utility, where impatience
is accurately measured by sooner equivalents alone.
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Table 8: Robustness to other estimations of the rankings

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)

Using α̂i and δ̂i from the HDRDU model
Risk seeking: rank(α̂i) -0.022 0.020 -0.149 -0.211 2.909 ** 2.894 **

(0.043) (0.044) (0.119) (0.114) (1.049) (1.020)

Impatience: rank(δ̂i) 0.132 ** 0.132 ** -0.379 *** -0.340 ** 0.659 2.103 **
(0.042) (0.042) (0.088) (0.097) (1.038) (1.030)

Using γ̂i and β̂i from the HDRDU model
Risk seeking: rank(γ̂i) -0.021 0.025 -0.140 -0.218 * 3.079 ** 3.199 **

(0.045) (0.045) (0.124) (0.117) (1.077) (1.058)

Present bias: rank(-β̂i) 0.112 ** 0.100 ** -0.374 ** -0.341 ** 0.945 1.920 *
(0.043) (0.042) (0.092) (0.100) (1.072) (1.042)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: The figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x) − 1), which gives the
odds ratios minus 1. The standard deviations in brackets are given under their corresponding coefficients. For
Ordinal Logit models, the standard deviations of the odds ratios are computed using the Delta-method. The linear
models are estimated by OLS, the other models by maximum likelihood. The standard errors for linear models
are robust. For Ordinal Logit models, the significance levels pertain to the raw estimates. Controls include gender
(1 dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estimations use weights.
Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles of a standard
normal.

equivalent. Substituting index R with T in the previous expressions yields the point estimate
ĉiT of the sooner equivalent for each time prospect. These measures are model-free in the
sense that they do not depend on assumptions on the shape of the utility and discounting
functions. In the top panel of table 9, we regress the leading indicators on the ranked
average middles of these intervals across risk and time prospects, respectively. These model-
free results corroborate those of table 7, with an additional statistically significant coefficient
found for the link between risk-seeking attitudes and diet quality - which we also recover
once correcting for measurement error in the main regressions in the next section.

Finally, we evaluate the role of collecting several equivalents for our results. We consider
all 16 possible pairs of one certainty equivalent and one sooner equivalent, run all the re-
gressions for each case, and display the number of estimates statistically significant at the
5% level for each sign in the bottom panel of table 8. The details of all these estimations
are given in the appendix table D.14. We find that for many pairs of equivalents, the levels
of statistical significance of the estimates are different from our main results. For instance,
in 6 out of 16 combinations, the link between energy intake and patience is nonsignificant,
which corresponds a false negative rate of 37.5%. This highlights the benefits from collecting
several equivalents.

4.5 Robustness to measurement errors

In this section, we rule out that our results are driven by variations in the magnitude of
measurement errors, correlations of measurement errors across risk and time (i.e. between
two independent variables), and correlations of measurement errors across diet indicators
and certainty and sooner equivalents (i.e. between dependent and independent variables).
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Table 9: Regressions using the raw equivalents

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Model-free: average across prospects

Ranked average
Rank of mean ĉiR 0.022 0.061 -0.258 ** -0.302 ** 3.280 ** 3.628 ***

(0.042) (0.042) (0.104) (0.101) (1.073) (1.046)
Rank of mean -ĉiT 0.109 ** 0.105 ** -0.366 ** -0.333 ** 0.778 1.904 *

(0.041) (0.042) (0.090) (0.097) (1.034) (1.019)
Number of significant estimates across 16 pairs

Ranked average
Rank of mean ĉiR + 0 ; - 0 + 4 ; - 0 + 0 ; - 8 + 0 ; - 8 + 16 ; - 0 + 16 ; - 0
Rank of mean -ĉiT + 11 ; - 0 + 10 ; - 0 + 0 ; - 16 + 0 ; - 15 + 0 ; - 0 + 4 ; - 0

Note: The figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x)−1), which gives the odds
ratios minus 1. The standard deviations in brackets are given under their corresponding coefficients. For Ordinal
Logit models, the standard deviations of the odds ratios are computed using the Delta-method. The linear models
are estimated by OLS, the other models by maximum likelihood. The standard errors for linear models are robust.
For Ordinal Logit models, the significance levels pertain to the raw estimates. Controls include gender (1 dummy),
age (6 dummies), education (3), nationality (2), and living area (7). All estimations use weights. Significance:
*:p<0.10; **:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles of a standard normal.

Magnitude of measurement errors

A major advantage of the method is that it accounts explicitly for measurement errors in
the raw data, i.e. in the collected certainty and sooner equivalents. Collecting several risk
and time equivalents not only allows to estimate behaviorally founded decision models (e.g.
allowing for present bias and probability weighting), but it also allows to filter out the
measurement errors in the equivalents. However, our data includes individuals who gave ex-
tremely inconsistent answers across tasks (see section 4.2). For these individuals, we cannot
precisely estimate the risk and time preferences, which may generate an attenuation bias
in our main estimations. These individuals can be identified using the estimated σs, which
conveniently measure the respondents’ propensities to give inconsistent answers across tasks.
We prefer this selection method for outliers rather than the typical alternative of dropping
individuals whose choices violate preference monotonicity (see for instance Bradford et al.
2017), as doing so ignores that such inconsistencies may be generated by noisy representation
of the equivalents and in practice leads leads to removing a substantial share of the respon-
dents. in table 10, we remove the 5% outliers for either σ̂r or σ̂t and run the same regressions
on the remaining 1,916 individuals.34 We find similar results for energy intake and alcohol,
and find that risk-seeking attitudes now significantly correlate with diet quality, together
with impatience. This corroborates the findings of Galizzi and Miraldo (2017) focusing on
risk preferences, who found that risk aversion was significantly associated with diet quality
in a sample of students. By contrast, the appendix table D.10 shows that the stated risk
preferences are neither significantly associated with diet quality nor with alcohol intake on
the same subsample. This supports the higher external validity of our structural estimation
method over the stated preference measure in our context.

34Appendix table D.6 reports the results for MAR, MER, and DE, which corroborate our main results.
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Table 10: Removing outliers for the propensities to deviate in risk and time tasks

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
DEU estimation

Risk seeking: rank(α̂i) -0.027 0.012 -0.245 * -0.323 ** 2.584 ** 2.191 *
(0.049) (0.052) (0.123) (0.114) (1.188) (1.137)

Impatience: rank(δ̂i) 0.106 ** 0.101 ** -0.455 *** -0.420 ** 1.494 2.962 **
(0.048) (0.047) (0.090) (0.099) (1.232) (1.187)

Controls X X X
Observations 1,916 1,916 1,916 1,916 1,916 1,916

Note: In these estimations we remove the 5% outliers for σ̂ri and σ̂ti . Controls include gender (1
dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estimations use
weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01.

Correlation across measurement errors

We check that our results pertaining to the respective roles of risk and time preferences are
not driven by the effect described in Gillen et al. (2019), i.e. a bias due to (i) a differential
measurement error for risk and time preferences and (ii) correlated true parameters. In
their paper, Gillen et al. (2019) show that controlling for a variable measured with error
but structurally correlated with the right-hand-side variable of interest may yield spuriously
significant estimates. This phenomenon may also apply to our setting with two variables
of interest measured with error, if the measurement error is larger for one variable. The
solution proposed by Gillen et al. (2019) is to rely on several measures of the same parameter.
Although we dispose of only one set of structural estimates for risk and time preferences,
our 4 certain and 4 sooner equivalents allow to generate 16 different pairs of certain and
sooner equivalents. In the appendix table D.15, we verify that using their estimator on the
ranks of the equivalents yields qualitatively identical results the regressions using the mean
equivalents.35 Altogether, properly accounting for measurement errors consistently shows
that more risk-seeking individuals and more impatient individuals have lower quality diet,
even after controlling differences in socio-demographic characteristics.

We finally address the concern that diet indicators and risk and time preference may
be measured with correlated errors. In particular, if late food choices disproportionately
affect the answers to the food frequency questionnaire, recent events may influence both
the individuals revealed risk and time preferences, and declared food habits. This could
for instance be the case for a positive event causing widespread celebrations, which may at
least temporarily affect preferences. We are able to test the influence of such an important
event, as our data collection period partially overlaps with the 2018 soccer world cup which
ended with the victory of the French team on July 15th.36 This event may have at least
temporarily affected individuals perceptions (Dohmen et al., 2006), which may in turn have
changed their preferences (Malmendier and Nagel, 2011). Although most of respondents
answered before the end of the first phase of the competition, we can test the influence of
a pivotal game on June 30th after which 28% of observations were collected. Controlling
for potentially spurious variations caused by this event does not affect our main results (see

35We stack 16 replicas of our data set and regress our leading indicators on one pair of certainty and
sooner equivalent (each considered in one of the 16 replicas), instrumented by all other equivalents. To
ensure a constant variance of the measurement error across the equivalents, we keep only individuals who
have completed the bisection algorithm for all risk and time tasks - so that all equivalents are bounded
within a interval of width 5.

36The dates of our survey (June 6th to July 26th) were set by the management of the ELIPSS panel.
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appendix table D.16). We can thus rule out that our results are driven by correlations across
measurement errors spuriously triggered by this event.

4.6 Threats to causal interpretation

Having established that the associations between preferences and diet quality are not driven
by measurement errors, we now turn to the discussion on the causal interpretation of these
estimates. Our main candidate for the causal mechanism explaining the results is that more
patient and more risk averse individuals are more sensitive to future health hazards, and
therefore more likely to adopt healthier diets. We acknowledge that the nature of the data
does not allow to conclusively demonstrate this causal effect, as we cannot fully control
for individual-specific unobserved heterogeneity. However, we argue that the nature of the
research question – the impact of preferences – rules out the application of the standard tools
for causal inference because it is impossible to randomly assign preferences. This leaves us
with the alternative strategy of successively addressing threats to a causal interpretation of
our estimates. In this Section, we provide an array of evidence suggesting that alternative
mechanisms are unlikely to drive our results.

Exogenous confounding factors

First, our estimates may be driven by unobserved confounding factors causing both risk and
time preferences, and our leading indicators of diet quality. Although economists tradition-
ally consider risk and time preferences as exogenous primitives (Stigler and Becker, 1977),
a recent body of evidence has shown how these preferences may be influenced by exogenous
individual characteristics (Dohmen et al., 2011). Table 7 shows that our estimations are af-
fected only marginally by the inclusion of important potential confounding factors including
gender, age, and education. The similarities among our estimates with and without these im-
portant drivers of risk and time preferences mitigate concerns about the role of confounding
factors.37

A mediating and confounding factor: income

Previous regressions deliberately omit contextual factors that may not be exogenous to risk
and time preferences, but may nevertheless confound the link between these preferences
and diet quality. Such variables may both confound and mediate the relationship between
preferences and diet quality. Perhaps the most important such variable is income, which
correlates with diet quality (Darmon and Drewnowski, 2008), likely depends on risk and
time preferences (Golsteyn et al., 2014), and may reciprocally influence risk and time pref-
erences (Tanaka et al., 2010; Schildberg-Hörisch, 2018) - although all these causal effects

37Other plausibly exogenous and potentially relevant omitted variables include height and cognitive abili-
ties (Dohmen et al., 2010; Dohmen et al., 2011; Jagelka, 2023). The fact that we control for education, which
correlates with both (Case and Paxson, 2008; Gorry, 2017) partially alleviates this concern. Although we
do not observe cognitive ability, we argue that our σs may capture a trait correlated with cognitive ability.
These parameters account for the magnitude of individual inconsistencies across answers. Such a measure
of inconsistency may capture the ability for decision-making (Choi et al., 2014), which may influence risk
and time preferences. In our setting, given the correlation between impatience, the time of completion of
the survey, and the σs, it may also be the case that impatience increases the σs as it may decrease the time
allocated to answer the questions. This would make the σs a mediator of the effect of impatience, not a
confounder. With this caveat, in appendix table D.18 we run regressions controlling by the σs. We find that
the main association between time and our main diet quality remains weakly significant even when including
both σr and σt.

33

Electronic copy available at: https://ssrn.com/abstract=4474126



are empirically disputed (Meier and Sprenger, 2015; Schildberg-Hörisch, 2018). To address
this concern, we use the income declared by the panelists during the annual survey con-
ducted in April 2018 as a proxy of their income at the time of our survey.38 This variable
was not included in previous regressions because (i) it is plausibly driven by risk and time
preferences so would likely mediate their total effects on our diet indicators,39 (ii) unlike
the socio-demographic characteristics obtained via administrative data it is subject to mis-
reporting, and (iii) it has 15% missing values over the 2,086 individuals used in the main
regressions.

Table 11: Controlling for a potential mediator: income

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Risk seeking: rank(α̂i) -0.002 0.023 -0.416 ** -0.438 ** 1.773 2.314 *

(0.054) (0.057) (0.109) (0.110) (1.272) (1.218)

Impatience: rank(δ̂i) 0.065 0.066 -0.421 ** -0.433 ** 2.230 2.869 **
(0.050) (0.049) (0.108) (0.108) (1.380) (1.302)

Log Income per unit -0.066 ** -0.049 * 0.274 ** 0.181 * 0.380 -1.057
(0.026) (0.029) (0.109) (0.114) (0.665) (0.693)

Controls X X X
Observations 1,627 1,627 1,627 1,627 1,627 1,627

Note: In these estimations we remove the 5% outliers for σ̂r and σ̂t. Controls include gender (1
dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estimations use
weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01.

Table 11 shows that when controlling for income after removing the outliers for the
σs, our main results on diet quality and alcohol are qualitatively unaffected, although the
association between energy intake and impatience is no longer statistically significant. We
verify that these results are not affected when controlling for location by the size of the
city of residence (in addition to the regional fixed effects) in appendix table D.17, with and
without the outliers. These additional spatial controls (i) broadly capture spatial variations
in relative prices of healthy foods versus unhealthy foods that may mediate the influence
of income on diet, and (ii) alleviate concerns on the influence of spatially differentiated
macroeconomic shocks which may affect risk preferences (Malmendier and Nagel, 2011).
As a byproduct, these regressions provide evidence that the link between income and diet
quality is not entirely driven by heterogeneity in risk and time preferences, which contributes
to the literature on the causes of nutritional inequalities (Darmon and Drewnowski, 2008).

38The respondents state their monthly income, after social security contributions and before income tax,
by unit of consumption with intervals delimited by the following thresholds: e650, e950, e1,200, e1,400,
e1,650, e1,900, e2,200, e2,500, e3,200. We convert these categories into a quantitative variable using the
lower bound of each interval, and, to apply the log transformation, a value of e400 as the minimum for
the lowest interval - a value corresponding to the income support in the absence of unemployment benefits.
Using a linear scale for income does not affect our results.

39We acknowledge that to some extent, socio-demographic variables such as education (Golsteyn et al.,
2014) and geographical location (Jaeger et al., 2010) may also be driven by risk and time preferences.
Controlling for these variable may thus offset the indirect effects of risk and time preferences on diet quality.
The fact that controlling for all socio-demographics has only marginal effects on our point estimates suggest
that these mechanisms do not play a major role for our main results. The only exception is our estimation of
the relationship between impatience and alcohol intake which becomes strongly significant when controlling
for socio-demographic characteristics, as these are correlated with both impatience and alcohol intake. In
particular, individuals with higher diplomas are more patient and drink more alcohol, whereas more patient
individuals within a class of education drink less alcohol. The total effect of patience on alcohol intake may
thus be ambiguous.
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Reverse causation

Finally, we cannot rule out the possibility of a reverse causality effect. One plausible channel
for this effect would be that diet quality drives health status which in turn, might affect risk
and time preferences. We argue that the plausible direction of this effect does not explain
our main results. Both Decker and Schmitz (2016) and Banks et al. (2020) conclude that
negative health shocks increase risk aversion, which would in our context generate a positive
correlation between diet quality and risk-seeking attitudes. This channel may thus not
explain why the more risk-seeking individuals in our data report lower diet quality. The
direction of reverse effects may however be different for alcohol consumption, as Corazzini
et al. (2015) find that alcohol intoxication increase impatience in experiments - but has no
significant effect on risk tolerance consistent to the review of Horn et al. (2022). Reverse
causality may thus partly explain why we find that, within socio-demographic groups, more
impatient individuals consume more alcohol.

4.7 Heterogeneity

In this last section, we explore the heterogeneity of the effects presented above. in table 12 we
run the baseline regression with an interaction term between the estimated ranks for risk and
time preferences. The coefficients for α̂i (resp. δ̂i) are thus interpreted at the minimal value
for δ̂i i.e. extremely patient individuals (resp. α̂i i.e. extremely risk-seeking individuals).
We find that the estimated coefficients are similarly signed and significant as in the baseline
regression, except for alcohol where the estimates are less significant. The interaction term
is strongly significant for our main diet indicator, which implies that the association between
risk seeking (resp. impatience) and diet fades as impatience (resp. risk. seeking) increases.
This feature is coherent with the fact that both risk-seeking and impatience are traits that
make individuals be less sensitive to the risk of future negative health outcomes, which
mitigates the role of risk and time preferences in the choice of diet quality. In this Table, the
values of for the Ordinal Logit estimation are the raw coefficient to facilitate the summation
of marginal effects. We obtain that the implied marginal effect of risk seeking only reaches
zero for high level of impatience and vice versa: at the median risk and time preference,
more risk-seeking and more impatience decreases diet quality.

Finally, in the appendix table D.19, we explore how the associations between diet indi-
cators and risk and time preferences vary across socio-demographic groups. We find that
our main results are driven by groups with larger values for the corresponding variables:
the results on impatience are driven by more impatient groups (low income, low education),
whereas those for risk are driven by more risk seeking groups (high income, high education).
Similarly, the results on alcohol are primarily driven by groups consuming more alcohol (high
income and education, older individuals, and males).

5 Concluding remarks

This paper evaluates the link between individuals risk and time preferences and overall diet
quality and alcohol consumption. We employ a standard method in nutritional epidemiology
consisting of a food frequency questionnaire which measures the whole diet at the individual
level. We represent the individuals’ diet with three diet indicators: the daily energy intake,
the whole diet indicator, and alcohol consumption. We also design a risk and time preferences
module for general population surveys so that the decision tasks are made as cognitively
easy as possible. We use a hierarchical Bayes framework to jointly estimate individual
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Table 12: Interaction between risk and time attitudes

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
DEU estimation

Rank
Risk seeking: rank(α̂i) -0.002 0.073 -0.932 ** -1.275 *** 3.789 * 2.455

(0.085) (0.085) (0.298) (0.306) (2.056) (2.034)

Impatience: rank(δ̂i) 0.180 ** 0.205 ** -1.389 *** -1.528 *** 1.339 1.862
(0.090) (0.088) (0.289) (0.293) (2.063) (2.084)

Interaction: rank(α̂i)×rank(δ̂i) -0.096 -0.156 1.723 *** 2.173 *** -1.584 0.262
(0.146) (0.140) (0.490) (0.497) (3.764) (3.707)

Note: Each column contains the estimates from two regressions using either the rank or the log transfor-
mation. The standard deviations in brackets are given under their corresponding coefficients. The linear
models are estimated by OLS, the other models by maximum likelihood. The standard errors for linear
models are robust. For Ordinal Logit models, the significance levels pertain to the raw estimates. Controls
include gender (1 dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estima-
tions use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The critical values are the corresponding
quantiles of a standard normal.

risk aversion and impatience parameters. Our interdisciplinary approach allows us to draw
on state-of-the-art nutritional epidemiology and behavioral economics methodologies which
extends work on the determinants of diet quality.

Our results show significant associations between the risk and time preferences parameters
and the diet indicators. More impatience is associated significantly with higher energy intake
levels and lower overall diet quality. As for risk attitudes, we find that more risk-seeking
individuals have a higher consumption of alcohol. By balancing simplicity and theoretical
consistency, we believe that our risk and time preference module would be suited to other
general population surveys and could be used to explain other real-life economic behaviors.

Although our cross-sectional data delivers results which cannot be definitely conclusive
in terms of causality, we are able to examine and reject several alternative mechanisms which
might be generating our results. The stability of our main results to various specifications
and sets of control variables lends credence to the conjecture of an underlying causal mech-
anism. Although an ideal research design would provide a random assignment of risk and
time preferences, such an experimental manipulation of preferences might not be feasible.
Therefore, observational studies addressing plausible threats to identification using the avail-
able data may be a main tool for economists to study the causal effects of preferences on
real-life behaviors.

Notwithstanding the risk of hypothetical bias, our results show that hypothetical choice-
based measurements have explanatory power for real-life behaviors. Although our risk and
time parameters estimates explain dietary habits in a robust manner, exploring the role of
real incentives on the validity of these measure would be a fruitful path for future research.
In particular, future works could use real data on consumption to address the potential
correlation between the hypothetical bias in risk and time equivalents and the reporting bias
in dietary habits.

Our results have important implications for public health policies. We contribute to
document the psychological determinants of diet quality, a key determinant of health status
(Murray et al., 2020). This stream of research advocates accounting for risk and time prefer-
ences in the evaluation of the welfare impacts of interventions to tackle the obesity epidemic.
Our results contribute to show that targeted public policies based on psychological deter-
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minants could be efficient at modifying health behaviors such as dietary habits (Brownback
et al., 2023), and suggests new tools to tackle malnutrition as complements to traditional
policy tools such as price instruments and information campaigns.
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Appendix A Model with discounted monetary gains

This section presents the results of a model where the time prospects are assumed not to be affected
by the shape of the utility function. This model is commonly used in the experimental literature
on time preferences, and considers that individuals only discount raw monetary gains, not their
utility. This assumption implies that either individuals have two different utility functions: a
nonlinear function for risky prospects (allowing non neutral risk attitudes) and a linear function for
time prospects with sure gains at different points in time, or either that individuals have a linear
utility function and are risk neutral. We investigate both frameworks in the following subsections.
Regardless of whether the utility is linear or not for the risky prospects, the sooner equivalent for
time prospect T of individual i becomes:

c∗iT = e−δ
′
iτx (21)

A.1 Linear utility only for time prospects

In this section, we consider a linear utility for time prospects, and the same power utility function
for the risk prospect. This specification implies that individuals have a different utility function for
risk and time prospect, an assumption notably explored in Abdellaoui et al. (2013). The Tables
and Figures of this Appendix are the counterparts of those presented in the main text. Table A.1
shows that the discounting estimates increase, with a median of 0.067 against 0.037 in the main
text. This is consistent with the analysis of Andersen et al. (2008) and stems from the fact that
in this discounted gain specification, the coefficient δ′i arguably identifies the ratio δi/αi from the
discounted utility framework in the main text, although with a different prior distribution.40

Table A.1: Individual parameters with discounted gains

Min Q25 Median Mean Q75 Max Std. dev.
Risk
α̂i 0.15 0.31 0.57 0.71 0.84 8.32 0.80
σri 9.2 12.5 13.5 13.6 14.7 22.5 1.7

Time
δ′i 0.004 0.027 0.068 0.099 0.132 0.589 0.101
σti 1.7 5.8 10.4 10.9 14.8 39.8 6.3

Note: For individual i and parameter pi ∈ {αi, δ′i, σri , σti}, p̂i = E(pi|datai), i.e.
the estimate is the mean of the posterior distribution, computed as the mean
across 10,000 draws.

Table A.2 gives the resulting correlation matrix. The correlation between δ̂′i and the α̂i is much
smaller in absolute value and negative, and the estimates δ̂′i are now positively correlated with the
σ̂ri . Both correlations are consistent with the fact that the δ′i in this specification identify the ratio
δi/αi in the baseline specification, as the α̂i are negatively correlated with the σ̂ri . The correlation
between the deviations σ̂ri and σ̂ti is unaffected by the change of specification.

Table A.3 shows we obtain similar results in this specification with a discounted monetary gain,
although now the transformed α̂i are significantly associated with diet quality. This also stems
from the fact that in this specification, risk attitudes and time preferences are both partly captured
by δ̂′i.

40The discounted gain framework assumes a lognormal distribution for this ratio whereas the discounted
utility framework assumes a ratio of lognormal distributions. The absolute difference between (i) the δ̂i
estimated in the discounted gains framework and (ii) the ratio δ̂i/α̂i estimated in the main text is below
0.0026 for 90% of the respondents, with a median absolute difference at 0.0002.
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Table A.2: Correlation matrix of the estimates across individuals

α̂i δ̂′i σ̂ri
δ̂′i -0.13

[-0.17,-0.08]
σ̂ri -0.42 0.47

[-0.46,-0.38] [0.44,0.51]
σ̂ti -0.08 0.91 0.56

[-0.13,-0.04] [0.90,0.91] [0.53,0.59]

Note: The 95% confidence interval are given in
brackets.

Table A.3: Main regression with the estimates of the discounted gain model

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)

Risk seeking: rank(α̂i) 0.022 0.062 -0.270 ** -0.312 ** 3.262 ** 3.727 ***
(0.044) (0.044) (0.105) (0.102) (1.081) (1.055)

Impatience: rank(δ̂′i) 0.120 ** 0.117 ** -0.366 ** -0.322 ** 0.524 1.871 *
(0.042) (0.043) (0.092) (0.102) (1.045) (1.037)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: The figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x) − 1), which
gives the odds ratios minus 1. The standard deviations in brackets are given under their corresponding
coefficients. For Ordinal Logit models, the standard deviations of the odds ratios are computed using the
Delta-method. The linear models are estimated by OLS, the other models by maximum likelihood. The
standard errors for linear models are robust. For Ordinal Logit models, the significance levels pertain to the
raw estimates. Controls include gender (1 dummy), age (6 dummies), education (3), nationality (2), and
living area (7). All estimations use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The critical
values are the corresponding quantiles of a standard normal.

A.2 Linear utility for risk and time with probability weighting

In this section, we consider a linear utility function for both risk and time prospects. As the
curvature of utility no longer explains the cross-individual heterogeneity in risky choices, we allow
for probability weighting to explain risk preferences. This specification is motivated by experiments
showing that, when allowing for both nonlinear utility and probability weighting, the curvature of
utility was typically linear for small gains (∼ e25, Abdellaoui et al. 2011) – with larger gains (≥ e
200) other experiments found a significantly curved utility (Abdellaoui et al., 2019). In our main
HDRDU specification, we do find that allowing for probability weighting reduces the curvature of
the utility, but we lack identifying variation to discriminate both parameters and therefore consider
in this section the assumption that utility may linear for both risk and time.

We estimate two models with linear utility and probability weighting, allowing for present bias
or not. The summary statistics are reported in table A.4, and the corresponding results of our main
regressions are reported in table A.5. We find that our main results hold in both specifications.
When allowing for present bias, we find as in the main HDRDU specification that β and δ are
highly correlated, and are unable to clearly disentangle their respective contribution to the overall
association between time preferences and diet preferences.
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Table A.4: Individual parameters with linear utility and probability
weighting

Min Q25 Median Mean Q75 Max Std. dev.
Without present bias: RDU

Risk
γ̂i 0.05 0.14 0.24 0.28 0.35 1.64 0.18
σri 7.9 13.6 16.3 17.4 20.9 35.2 4.9

Time
δi 0.004 0.027 0.067 0.099 0.132 0.532 0.100
σti 1.8 5.8 10.4 10.9 14.9 39.2 6.4

With present bias: HDRDU
Risk
γ̂i 0.05 0.14 0.24 0.28 0.35 1.62 0.19
σri 7.7 13.5 16.2 17.3 20.9 35.4 4.9

Time
δi 0.003 0.017 0.050 0.083 0.103 0.496 0.099
βi 0.76 0.82 0.86 0.87 0.92 1.01 0.07
σti 2.0 5.2 9.1 9.4 12.6 37.3 5.2

Note: For individual i and parameter pi ∈ {αi, δ′i, σri , σti}, p̂i = E(pi|datai), i.e.
the estimate is the mean of the posterior distribution, computed as the mean
across 10,000 draws.
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Table A.5: Main regression with linear utility and probability weighting

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)

Without present bias: RDU
Rank
Risk seeking: rank(γ̂i) -0.062 -0.015 -0.343 ** -0.441 *** 3.264 ** 3.391 **

(0.047) (0.049) (0.098) (0.087) (1.050) (1.053)

Impatience: rank(δ̂i) 0.099 ** 0.103 ** -0.384 ** -0.358 ** 0.812 2.065 **
(0.043) (0.043) (0.092) (0.099) (1.056) (1.040)

Log
Risk seeking: log(γ̂i)/s.d. -0.025 * -0.012 -0.083 ** -0.128 ** 0.961 ** 0.915 **

(0.013) (0.014) (0.038) (0.038) (0.302) (0.301)

Impatience: log(δ̂i)/s.d. 0.027 ** 0.029 ** -0.105 ** -0.099 ** 0.237 0.530 *
(0.012) (0.012) (0.037) (0.039) (0.293) (0.285)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

With present bias: HDRDU
Only δ
Risk seeking: rank(γ̂i) -0.060 -0.012 -0.344 ** -0.441 *** 3.202 ** 3.338 **

(0.047) (0.049) (0.097) (0.087) (1.058) (1.063)

Impatience: rank(δ̂i) 0.102 ** 0.108 ** -0.396 *** -0.371 ** 0.802 2.038 *
(0.043) (0.044) (0.090) (0.096) (1.068) (1.048)

Only β
Risk seeking: rank(γ̂i) -0.077 * -0.031 -0.300 ** -0.409 *** 3.149 ** 3.082 **

(0.046) (0.049) (0.100) (0.089) (1.016) (1.025)

Present bias: rank(-β̂i) 0.079 * 0.079 * -0.383 *** -0.365 ** 1.033 2.014 **
(0.043) (0.042) (0.089) (0.094) (1.022) (0.997)

Both δ and γ
Risk seeking: rank(γ̂i) -0.044 0.008 -0.328 ** -0.424 *** 2.871 ** 3.170 **

(0.048) (0.048) (0.105) (0.094) (1.136) (1.141)

Impatience: rank(δ̂i) 0.235 0.273 * -0.257 -0.177 -1.937 0.625
(0.151) (0.155) (0.339) (0.382) (3.322) (3.269)

Present bias: rank(-β̂i) -0.135 -0.169 -0.190 -0.242 2.798 1.446
(0.148) (0.148) (0.357) (0.341) (3.185) (3.114)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: The figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x)− 1), which gives the
odds ratios minus 1. The standard deviations in brackets are given under their corresponding coefficients. For
Ordinal Logit models, the standard deviations of the odds ratios are computed using the Delta-method. The
linear models are estimated by OLS, the other models by maximum likelihood. The standard errors for linear
models are robust. For Ordinal Logit models, the significance levels pertain to the raw estimates. Controls
include gender (1 dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estimations
use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles
of a standard normal.

47

Electronic copy available at: https://ssrn.com/abstract=4474126



Appendix B Parameter recovery

This section presents the results of a simulation to assess the precision of the baseline estimation
procedure with the dimensions of our data set (N=2,000 individuals). The structural means and
standard deviations are chosen to mimic the distributions of the parameters obtained in our baseline
estimations in the main text. In the simulation, we consider a diagonal covariance matrix across
the 4 parameters, so that we can test how much of the correlation obtained in the estimations is
driven by our setting. The results in this section are based on a single simulated data set and
a single estimation. The values may vary at the margin for other simulations, but repeating the
simulation and the estimation yields the same qualitative conclusions.

Population and individual parameters Table B.1 gives the summary statistics of a pa-
rameter recovery estimation over the simulated values. We obtain a slight bias toward zero for all
log parameters, with marginal consequences on the rank uncertainty of the preference parameters.
The resulting rank uncertainty is more substantial on the error parameters σri and σti , which we do
not rely on to test our associations in the main text. The bias for the ranked parameters of interest
in the main text is null.

Table B.1: Summary statistics of estimated values

Log parameters
log(αi) log(δi) log(σri ) log(σti)

Structural mean -0.700 -3.600 2.600 2.100
Sample mean -0.681 -3.660 2.595 2.071
Estimated mean -0.623 -3.537 2.434 1.799

[-0.656;-0.589] [-3.594;-3.481] [2.411;2.457] [1.760;1.837]
Structural s.d. 0.700 1.300 0.100 0.700
Sample s.d. 0.714 1.321 0.102 0.700
Estimated s.d. 0.680 1.215 0.293 0.701

[0.653;0.708] [1.170;1.260] [0.271;0.316] [0.665;0.738]
Mean ind. error 0.058 0.123 -0.160 -0.272
Absolute mean ind. error 0.261 0.423 0.194 0.445

Exponentiated parameters
αi δi σri σti

Sample mean 0.649 0.059 13.465 10.129
Estimated mean 0.674 0.061 11.877 7.658

[0.519;0.555] [0.027;0.031] [11.144;11.668] [5.814;6.281]
Sample s.d. 0.498 0.105 1.381 7.901
Estimated s.d. 0.446 0.086 1.861 4.608
Mean individual error 0.025 0.001 -1.588 -2.471
Absolute mean ind. error 0.158 0.022 2.175 3.788

Ranked parameters
rank(αi) rank(δi) rank(σri ) rank(σti)

Mean rank error 0.000 0.000 0.000 0.000
Absolute mean rank error 0.102 0.089 0.303 0.179

Note: The “Structural mean” and “s.d.” are the means and standard deviations used to simulate the
sample values. The “Sample” values are calculated over the simulated values. The “Estimated” values
are calculated over the estimates.

Covariance Table B.2 shows the nondiagonal elements of 6 correlation matrices. Panels A.1
and A.2 give the correlation matrices over the simulated sample, for structural (exponentiated)
and log parameters, respectively. Because the structural covariance used to simulate the data is
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diagonal, these values are all close to zero. Panel B gives the counterparts of these covariances over
the estimates of the simulated sample, together with 95% confidence intervals. Most estimated
correlation coefficients are not significant or close to zero as expected, but some are spuriously
significant so suffer from a bias due to our setting. The most concerning bias is for α̂i and σ̂ri which
are positively and substantially correlated. One may then worry that these biases may be large
enough to cause the coefficients we obtain in table 6 in the main text.

For comparison purposes, Panel C thus reproduces the correlation matrix from the main text,
and its counterpart with log parameters. We find that the spurious correlations we obtain in the
simulations are much smaller than the one we estimate in our survey data, or of opposite sign.
This suggests that the few spurious correlations due to our estimation method and setting cannot
explain alone the significant correlation coefficients obtained with our survey data.

Table B.2: Recovery of the nondiagonal elements of the correlation matrix

A: Correlation matrix in the simulated independent sample

A.1: Structural parameters A.2: Log parameters
αi δi σri log(αi) log(δi) log(σri )

δi 0.01 log(δi) 0.01
σri -0.01 -0.02 log(σri ) -0.01 -0.02
σti -0.03 -0.02 0.05 log(σti) -0.03 -0.02 0.05

B: Estimated correlation matrix over the simulated independent sample

B.1: Structural parameters B.2: Log parameters

α̂i δ̂i σ̂ri
̂log(αi) ̂log(δi) ̂log(σri )

δ̂i 0.07 ̂log(δi) -0.02
[0.02;0.13] [-0.07, 0.02]

σ̂ri 0.32 0.08 ̂log(σri ) 0.51 0.09
[0.24;0.40] [-0.01;0.16] [0.48,0.54] [0.04,0.13]

σ̂ti -0.09 0.21 0.00 ̂log(σti) -0.10 0.07 -0.01
[-0.15;-0.03] [0.15;0.27] [-0.10;0.09] [-0.15,-0.06] [0.02,0.11] [-0.05, 0.04]

C: Estimated correlation matrix in the baseline estimation in the main text

C.1: Structural parameters C.2: Log parameters

α̂i δ̂i σ̂ri
̂log(αi) ̂log(δi) ̂log(σri )

δ̂i 0.45 ̂log(δi) 0.49
[0.40;0.49] [0.46,0.52]

σ̂ri -0.32 0.05 ̂log(σri ) -0.39 0.02
[-0.42;-0.21] [-0.06;0.15] [-0.42,-0.35] [-0.02, 0.06]

σ̂ti -0.10 0.79 0.33 ̂log(σti) -0.08 0.43 0.57
[-0.15;-0.04] [0.76;0.82] [0.23;0.42] [-0.13,-0.04] [0.39,0.46] [0.54,0.60]

Note: The 95% confidence intervals over the structural parameters in Panels A-C.1 are obtained using the
Fisher’s Z transform are given in brackets. The ones for the log parameters in Panels A-C.2 are given by the
quantiles over the 10,000 draws.

Sensitivity analysis Lastly, figure B.1 shows that the distributions of the individual estimates
do not vary substantially across 10 sets of estimations parameters: number of burn-in simulations,
number of simulations kept, number of simulations skipped to mitigate autocorrelation, and prior
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variance. The only exception is the variance of σri which is slightly larger when choosing a larger
prior variance (equal to 10 times the identity matrix).
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Figure B.1: Stability of the estimation across 10 sets of parameters
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Note: For all estimations and all parameters, the figure gives the median and the 95% middle interval of the
distribution across the N=2,000 individuals in the simulated data. We consider estimations using 1,000 or
10,000 burn-in simulations, keeping 1,000 or 10,000 simulations in total, every 5 or 10 simulations to mitigate
autocorrelation, and with a diagonal prior variance of 1 or 10.
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Appendix C Results on BMI and physical activity

In this section, we use ancillary data on other indicators to support the external validity of our
individual estimates. First, we consider the Body Mass Index (BMI) as an indicator of balance
between diet and physical activity, which association with time preferences is documented in the
litterature (Chabris et al., 2008; Sutter et al., 2013; Golsteyn et al., 2014). The BMI was provided by
the ELIPSS panel from their general survey which was then merged to our Psychofood survey data.
It was calculated based on self-declared height and weight. Around 12% of the respondents have a
missing value for BMI in the 2018 ELIPSS survey. To improve the power of regressions explaining
this variable, we use the BMI from the previous ELIPSS survey in 2017 for a majority of these
individuals. This yields 1,815 observations of BMI in our sample without the outliers for the σs.
The raw data are truncated under 18.5 and above 35 to guarantee anonymity. For each individual i,
we consider a categorical variable BMIi reflecting the nutritional status of the individual according
the World Health Organization (WHO) definition: i) underweight if BMIi ≤18.5, ii) normal weight
if 18.5 < BMIi < 25, iii) overweight if 25 ≤ BMIi < 30, and iv) obese if BMIi ≥ 30.41 We also
include an indicator of frequency of physical activity with five different categories: “less than once
a month”, “one to to three times a month”, “once a week”, “several times a week”, and “every day
or so”. This is nonmissing for 1,903 individuals in our sample. We order these categories so that
higher values indicate more frequent physical activity.

Table C.1: Results with the baseline DU model

Dependent variable BMI Physical activity
Model Ordinal Logit Ordinal Logit

(1) (2) (3) (4)
Risk seeking: rank(α̂i) -0.278 * 0.025 -0.074 -0.016

(0.124) (0.187) (0.145) (0.162)

Impatience: rank(δ̂i) 0.500 ** 0.552 ** -0.305 ** -0.335 **
(0.264) (0.288) (0.110) (0.108)

Controls X X
Observations 1,815 1,815 1,903 1,903

Note: The figures for Ordinal Logit models are the estimates transformed
by (x 7→ exp(x) − 1), which gives the odds ratios minus 1. The standard
deviations in brackets are given under their corresponding coefficients. For
Ordinal Logit models, the standard deviations of the odds ratios are com-
puted using the Delta-method. The linear models are estimated by OLS,
the other models by maximum likelihood. The standard errors for lin-
ear models are robust. For Ordinal Logit models, the significance levels
pertain to the raw estimates. Controls include gender (1 dummy), age (6
dummies), education (3), nationality (2), and living area (7). All estima-
tions use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The
critical values are the corresponding quantiles of a standard normal.

Table C.1 gives the associations of the estimated parameters with supplementary health indi-
cators from the ELIPSS annual survey, after removing the 5% outliers for the σs as in the main
text. Consistent with the empirical literature on weight status and time preferences (Chabris et
al., 2008; Sutter et al., 2013; Golsteyn et al., 2014; Courtemanche et al., 2015), we find that more
impatient individuals are more likely to have a higher BMI. We obtain a statistically significant
at the 10% level and negative estimates indicating that more risk-seeking individuals have a lower
BMI in our sample. When controlling for socio-demographic variables, the estimate is no longer
statistically significant. This is in line with Anderson and Mellor (2008) and Galizzi and Miraldo
(2017) who found mixed results on the relationship between risk aversion and BMI, depending on

41Lagged BMI values are strong predictors of current BMI. The absolute difference between the 2017 BMI
and the 2018 BMI is under 0.6 for half the sample, and under 2 for 90% of the sample.
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the specification. 42 Consistent with our results on BMI, we find that more impatient individuals
practice physical activities significantly less often, whereas we find no significant association with
risk attitudes.

42The literature remains altogether inconclusive on the link between risk preferences and BMI. In a sample
of children and teenager, Sutter et al. (2013) find an association with a opposite direction between certainty
equivalents and BMI. More recently, Samek et al. (2021) and List et al. (2022) obtains insignificant association
between risk preferences and BMI.
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Appendix D Supplementary tables and figures

Table D.1: List of the 28 food items aggregated into 7 food groups

Food group Item

Fruit and vegetables
Cooked vegetables
Raw vegetables
Fruit

Cereal-based products and tubers

Bread
Pasta, rice
Brealfast cereals
Potatoes

Meat, eggs, fish and pulses

Poultry
Meat
Eggs
Fish
Pulses

Dairy product
Milk
Yogourt
Cheese

High fat, sugar, salt processed foods

Fries
Pizza, quiches, lasagna
Breaded
Savory snacks
Sweet snacks
Sweetened deserts
Cured meat

Added Fats
Vegetable oils
Other fats

Beverages

Water
Hot Beverages
Other beverages
Alcohol
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Table D.2: Dietary recommendations

Nutrient Gender Age Value Unit
Dietary Reference Intakes (for the MAR index)

Fiber All All 30.0 g
Vitamin B12 All All 2.4 mcg
Vitamin C All All 110.0 mg
Vitamin E All All 12.0 mg
Vitamin D All All 5.0 mcg
Potassium All All 3100.0 mg
Iodine All All 150.0 mcg
Calcium All 18-54 900.0 mg

All 55-79 1200.0 mg
Vitamin B2 Male All 1.6 mg

Female All 1.5 mg
Proteins Male All 60.0 g

Female All 50.0 g
Vitamin A Male All 800.0 mcg ER

Female All 600.0 mcg ER
Vitamin B1 Male All 1.3 mg

Female All 1.1 mg
Vitamin B3 Male All 14.0 mg

Female All 11.0 mg
Vitamin B6 Male All 1.8 mg

Female All 1.5 mg
Vitamin B9 Male All 330.0 mcg

Female All 300.0 mcg
Iron Male All 9.0 mg

Female All 16.0 mg
Magnesium Male All 420.0 mg

Female All 360.0 mg
Zinc Male 18-54 12.0 mg

Male 55-79 11.0 mg
Female 18-54 10.0 mg
Female 55-79 11.0 mg

Copper Male 18-54 2.0 mg
Male 55-79 1.5 mg

Female All 1.5 mg
Selenium Male 18-54 60.0 mcg

Male 55-79 70.0 mcg
Female 18-54 50.0 mcg
Female 55-79 60.0 mcg

Maximum Recommended Values (for the MER index)
Saturated fatty acids All All 22.0 g
Free sugars All All 50.0 g
Sodium All All 3153.0 mg

Note: Most values are based on WHO and FAO (2003). The values for
saturated fatty acids and free sugars are from Scientific Committee for Food
(1993), and that for potassium is from Martin (2001).
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Table D.3: Quantiles by gender

Used for the WDI Quantiles of energy
Gender MAR MER DE q2.5% q97.5%

Female 83.10 4.19 155.39 779 4,505
Male 82.99 8.13 168.23 737 4,541

Note: These values are the medians of the MAR, MER, and DE
used to compute the WDI, and the 2.5% and 97.5% quantiles used
to remove outliers. The values are computed over the full sample
(N=2,199). The quantiles of energy are in cal/day.

Table D.4: Including or removing diet outliers and imputed values

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Including diet outliers and imputed values

Risk seeking: rank(α̂i) -0.060 -0.019 -0.048 -0.143 3.220 ** 2.784 **
(0.053) (0.056) (0.138) (0.129) (1.063) (1.010)

Impatience: rank(δ̂i) 0.168 ** 0.155 ** -0.428 *** -0.377 ** 0.869 2.355 **
(0.052) (0.050) (0.085) (0.096) (1.092) (1.079)

Controls X X X
Observations 2,179 2,179 2,179 2,179 2,179 2,179

Removing diet outliers and imputed values
Risk seeking: rank(α̂i) -0.052 -0.007 -0.162 -0.256 * 3.066 ** 2.790 **

(0.051) (0.052) (0.135) (0.125) (1.189) (1.148)

Impatience: rank(δ̂i) 0.120 ** 0.119 ** -0.358 ** -0.282 * 1.484 2.809 **
(0.048) (0.047) (0.105) (0.122) (1.189) (1.159)

Controls X X X
Observations 1,803 1,803 1,803 1,803 1,803 1,803

Note: This Table replicates table 7 including or removing the diet outliers and the individuals who
required diet imputation. The results are qualitatively unaffected. The figures for Ordinal Logit
models are the estimates transformed by (x 7→ exp(x) − 1), which gives the odds ratios minus 1.
The standard deviations in brackets are given under their corresponding coefficients. For Ordinal
Logit models, the standard deviations of the odds ratios are computed using the Delta-method. The
linear models are estimated by OLS, the other models by maximum likelihood. The standard errors
for linear models are robust. For Ordinal Logit models, the significance levels pertain to the raw
estimates. Controls include gender (1 dummy), age (6 dummies), education (3), nationality (2), and
living area (7). All estimations use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The
critical values are the corresponding quantiles of a standard normal.
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Table D.5: Correlation across equivalents

Certainty Sooner equivalents
equivalents T1 T2 T3 T4

R1 0.15 0.16 0.14 0.16
[0.11,0.19] [0.12,0.20] [0.10,0.18] [0.12,0.20]

R2 0.09 0.11 0.12 0.08
[0.05,0.13] [0.07,0.15] [0.08,0.16] [0.04,0.12]

R3 0.17 0.16 0.15 0.20
[0.13,0.21] [0.12,0.21] [0.11,0.20] [0.16,0.24]

R4 0.09 0.09 0.07 0.10
[0.05,0.14] [0.05,0.13] [0.03,0.11] [0.06,0.14]

Note: This Table gives the correlation between the center of the inter-
vals bounding the certainty equivalents and the sooner equivalents. We
find that all certainty equivalents are slightly positively correlated with all
sooner equivalents. This is not inconsistent with the correlations across
structural parameters in the main text as the sooner equivalents depend
both on the discount factor and on the curvature of the utility function.
These model-free correlations do not identify the correlation between struc-
tural parameters. 95% asymptotic confidence intervals based on Fisher’s Z
transform are given in brackets. These values are computed over the full
sample (N=2,199).
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Table D.6: OLS regressions on MAR, MER, and ED

Dependent variable Adequacy ratio Excess ratio Energy density
Model Linear Linear Linear

(1) (2) (3) (4) (5) (6)
Equivalents: Main sample

Rank of mean ĉiR 1.188 1.910 -2.784 -2.196 1.843 4.453
(1.491) (1.522) (3.498) (3.646) (4.228) (4.160)

Rank of mean -ĉiT 2.142 1.827 9.138 ** 7.719 ** 9.951 ** 10.183 **
(1.523) (1.548) (3.580) (3.604) (4.224) (4.133)

DEU estimates: Main sample

Risk seeking: rank(α̂i) -0.411 0.365 -9.952 ** -8.331 * -4.171 -1.319
(1.634) (1.753) (4.278) (4.311) (4.294) (4.398)

Impatience: rank(δ̂i) 2.581 2.441 11.394 ** 9.477 ** 10.241 ** 9.873 **
(1.627) (1.607) (3.776) (3.654) (4.202) (4.248)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

DEU estimates: Without outliers for the σs
Risk seeking: rank(α̂i) -0.108 0.658 -4.368 -2.676 -1.479 0.871

(1.791) (1.906) (3.975) (4.261) (4.522) (4.645)

Impatience: rank(δ̂i) 1.144 0.777 8.843 ** 7.125 * 11.048 ** 11.651 **
(1.824) (1.782) (3.664) (3.816) (4.527) (4.540)

Controls X X X
Observations 1,916 1,916 1,916 1,916 1,916 1,916

Note: These regressions explain the intermediary indicators used to compute the WDI. The top
panel report regressions on the sample used in the table 7, while report regressions on the sample
used in the table 10. These estimates corroborate our main regressions where impatient individuals
have a significantly worse diet quality. Within these indicators, risk-seeking attitudes measured by
DEU estimates are associated with the excess ratio only when including the outliers for the σs, and
only weakly so when controlling for covariates (10% level). Without the outliers for the σs, we find
that risk seeking is not significantly associated with the components of the WDI, suggesting that
the aggregation is required to reveal the significant association between risk seeking and diet quality
in table 10. The standard deviations in brackets are given under their corresponding coefficients.
The standard errors are robust. Controls include gender (1 dummy), age (6 dummies), education
(3), nationality (2), and living area (7). All estimations use weights. Significance: *:p<0.10;
**:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles of a standard normal.
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Table D.7: Main estimation without weights

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Equivalents

Rank of mean ĉiR 0.020 0.041 -0.342 ** -0.398 *** 4.963 *** 4.870 ***
(0.029) (0.030) (0.094) (0.089) (1.062) (1.049)

Rank of mean -ĉiT 0.083 ** 0.064 ** -0.290 ** -0.231 * 0.153 1.185
(0.029) (0.029) (0.102) (0.113) (1.023) (1.045)

DEU estimation
Risk seeking: rank(α̂i) -0.041 -0.007 -0.183 -0.295 ** 4.651 *** 3.993 ***

(0.031) (0.032) (0.125) (0.113) (1.025) (1.032)

Impatience: rank(δ̂i) 0.100 ** 0.078 ** -0.367 ** -0.302 ** 0.521 1.665
(0.030) (0.031) (0.096) (0.109) (1.042) (1.067)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: Each column contains the estimates from two regressions using either the rank or the log transfor-
mation. The figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x)−1), which
gives the odds ratios minus 1. The standard deviations in brackets are given under their corresponding
coefficients. For Ordinal Logit models, the standard deviations of the odds ratios are computed using
the Delta-method. The linear models are estimated by OLS, the other models by maximum likelihood.
The standard errors for linear models are robust. For Ordinal Logit models, the significance levels
pertain to the raw estimates. Controls include gender (1 dummy), age (6 dummies), education (3),
nationality (2), and living area (7). These estimations do not use weights. Significance: *:p<0.10;
**:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles of a standard normal.

Table D.8: Main estimation allowing for α < 0

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
DEU estimation

Risk seeking: rank(α̂i) -0.052 -0.009 -0.073 -0.171 2.741 ** 2.267 **
(0.047) (0.048) (0.142) (0.132) (1.133) (1.084)

Impatience: rank(δ̂i) 0.111 ** 0.106 ** -0.302 ** -0.242 * 1.068 2.458 **
(0.044) (0.044) (0.108) (0.122) (1.125) (1.077)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: In these regression, we consider a utility function allowing for αi ≤ 0. For αi = 0 it
yields log(x), and for αi < 0 it yields (−x)αi . This allows for more curvature of the utility
function. We re-estimate the α̂i, run the same regressions as in the main text, and find similar
results. For Each column contains the estimates from two regressions using either the rank or
the log transformation. The figures for Ordinal Logit models are the estimates transformed by
(x 7→ exp(x) − 1), which gives the odds ratios minus 1. The standard deviations in brackets are
given under their corresponding coefficients. For Ordinal Logit models, the standard deviations
of the odds ratios are computed using the Delta-method. The linear models are estimated by
OLS, the other models by maximum likelihood. The standard errors for linear models are robust.
For Ordinal Logit models, the significance levels pertain to the raw estimates. Controls include
gender (1 dummy), age (6 dummies), education (3), nationality (2), and living area (7). These
estimations do not use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The critical values
are the corresponding quantiles of a standard normal.
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Table D.9: Separate associations between behavioral parameters and diet quality

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Risk seeking: rank(α̂i) -0.005 0.038 -0.184 -0.247 ** 3.152 ** 3.342 ***

(0.044) (0.044) (0.114) (0.109) (1.035) (1.005)

Impatience: rank(δ̂i) 0.113 ** 0.123 ** -0.413 *** -0.390 *** 1.621 2.973 **
(0.041) (0.040) (0.083) (0.089) (1.033) (1.013)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: This Table replicates the top panel of table 7 using either only risk estimates or time estimates
in each regression, so that each estimate is from a different regression - we use the same format
to ease comparisons. The figures for Ordinal Logit models are the estimates transformed by (x 7→
exp(x)− 1), which gives the odds ratios minus 1. The standard deviations in brackets are given under
their corresponding coefficients. For Ordinal Logit models, the standard deviations of the odds ratios
are computed using the Delta-method. The linear models are estimated by OLS, the other models by
maximum likelihood. The standard errors for linear models are robust. For Ordinal Logit models, the
significance levels pertain to the raw estimates. Controls include gender (1 dummy), age (6 dummies),
education (3), nationality (2), and living area (7). All estimations use weights. Significance: *:p<0.10;
**:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles of a standard normal.
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Table D.10: Stated risk preference measure

Dependent variable Energy Diet quality Alcohol
Model Log-linear Ordered logit Linear

(1) (2) (3) (4) (5) (6)
With outliers for the σs

Only stated risk
Stated risk seeking: rank 0.092 ** 0.074 * -0.083 -0.111 2.432 ** 1.386

(0.042) (0.042) (0.132) (0.131) (1.167) (1.137)
With estimated impatience
Stated risk seeking: rank 0.075 * 0.054 0.015 -0.021 2.214 * 0.877

(0.043) (0.044) (0.149) (0.147) (1.166) (1.140)

Impatience: rank(δ̂i) 0.100 ** 0.113 ** -0.415 *** -0.387 *** 1.247 2.815 **
(0.043) (0.041) (0.084) (0.091) (1.023) (1.012)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Without outliers for the σs
Only stated risk
Stated risk seeking: rank 0.071 0.053 -0.127 -0.166 2.073 1.256

(0.044) (0.045) (0.134) (0.130) (1.291) (1.246)
With estimated impatience
Stated risk seeking: rank 0.054 0.034 0.004 -0.042 1.645 0.522

(0.046) (0.047) (0.157) (0.153) (1.293) (1.248)

Impatience: rank(δ̂i) 0.085 * 0.099 ** -0.512 *** -0.499 *** 2.219 * 3.750 ***
(0.047) (0.045) (0.076) (0.080) (1.143) (1.123)

Controls X X X
Observations 1,916 1,916 1,916 1,916 1,916 1,916

Note: In these estimations we control for the stated risk preference measure, with or without the 5% outliers
for σ̂ri and σ̂ti . The stated risk preferences are measured via the standard Lickert scale from 0 to 10, which
we rank between zero and 1 for comparison with our main regressions. We show regressions with and without
the ranked estimated impatience parameter. These regressions indicate that the stated risk aversion has less
explanatory power than our structural estimate for diet quality and alcohol consumption. Contrary to our
structural estimates for risk, the stated measure positively and significantly correlates with energy intake in a
bivariate setting but only weakly so when including socio-demographics or when controlling for time prefer-
ences. Over the sample without the outliers for the estimated σs, the stated risk measure is not associated with
our diet indicators, contrary to our estimated risk measure. Controls include gender (1 dummy), age (6 dum-
mies), education (3), nationality (2), and living area (7). All estimations use weights. Significance: *:p<0.10;
**:p<0.05; ***:p<0.01.

Table D.11: Individual parameters in the extended HDRDU model

Min Q25 Median Mean Q75 Max Std. dev.
Risk
α̂i 0.23 0.55 0.79 0.85 1.02 4.44 0.48
γ̂i 0.18 0.33 0.45 0.47 0.56 1.42 0.19
σri 8.1 10.5 11.3 11.7 12.3 23.6 1.9

Time
δi 0.002 0.014 0.039 0.057 0.075 1.123 0.079
βi 0.77 0.85 0.89 0.90 0.94 1.03 0.06
σti 1.8 5.1 8.9 9.1 12.1 37.7 5.0

Note: These summary statistics describe the distribution of the estimated in-
dividual parameters in the extended HDRDU model. This estimation yields
comparable distribution of the parameters, albeit slightly higher values for α̂i
and lower values for the σs.
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Table D.12: Correlations of the estimates in the HDRDU model

α̂i γ̂i δ̂i β̂i σ̂ri
γ̂i 0.94

[0.94,0.95]

δ̂i 0.26 0.34
[0.22,0.30] [0.31,0.38]

β̂i -0.12 -0.27 -0.60
[-0.16,-0.08] [-0.31,-0.23] [-0.63,-0.57]

σ̂ri 0.22 0.19 0.43 -0.34
[0.18,0.26] [0.15,0.23] [0.39,0.46] [-0.38,-0.30]

σ̂ti -0.10 -0.04 0.64 -0.69 0.57
[-0.14,-0.06] [-0.09, 0.00] [0.61,0.66] [-0.71,-0.67] [0.54,0.60]

Note: 95% asymptotic confidence intervals based on Fisher’s Z transform are given in
brackets. The very large correlation between α̂i and γ̂i is caused by a combination of
factors: (i) αi and γi both increase the theoretical certainty equivalents for all tasks
except R2 -although our model is identified using R4; (ii) the certainty equivalent
for R2 is relatively less precisely bounded by our bisection algorithm which includes
only 4 intervals for risk-averse individuals; (iii) the respondents all exhibit a large
propensity for errors σ̂ri compared to the identifying variation potentially generated
by the influence of γi on the R2 equivalents (+/-e5 at the median α̂i).
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Table D.13: Suggestive evidence on distinct associations: discounting vs. present bias

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Separate regressions using the standardized log estimates

Risk seeking: log(α̂i)/s.d. -0.004 0.007 -0.018 -0.039 0.892 ** 0.855 **
(0.012) (0.012) (0.038) (0.038) (0.292) (0.287)

Impatience: log(δ̂i)/s.d. 0.036 ** 0.037 ** -0.109 ** -0.097 ** 0.246 0.607 **
(0.012) (0.012) (0.036) (0.038) (0.298) (0.295)

Risk seeking: log(γ̂i)/s.d. -0.003 0.009 -0.031 -0.058 0.988 *** 0.983 ***
(0.013) (0.013) (0.039) (0.039) (0.296) (0.293)

Present bias: -log(β̂i)/s.d. -0.032 ** -0.029 ** 0.152 *** 0.136 ** -0.239 -0.539 *
(0.012) (0.012) (0.049) (0.050) (0.300) (0.292)

Including both time parameters in the same regression (VIF>5)
Rank
Risk seeking: rank(α̂i) -0.021 0.021 -0.148 -0.210 2.834 ** 2.856 **

(0.043) (0.044) (0.119) (0.115) (1.048) (1.023)

Impatience: rank(δ̂i) 0.181 * 0.195 * -0.191 -0.059 -3.076 -0.297
(0.102) (0.106) (0.257) (0.306) (2.496) (2.466)

Present bias: rank(-β̂i) 0.055 0.071 0.346 0.491 -4.208 * -2.699
(0.103) (0.104) (0.431) (0.487) (2.508) (2.428)

Log
Risk seeking: log(α̂i)/s.d. -0.004 0.006 -0.024 -0.046 0.906 ** 0.869 **

(0.012) (0.012) (0.038) (0.038) (0.291) (0.286)

Impatience: log(δ̂i)/s.d. 0.048 0.055 * 0.107 0.135 -0.660 -0.138
(0.029) (0.031) (0.108) (0.113) (0.740) (0.739)

Present bias: -log(β̂i)/s.d. 0.013 0.020 0.273 ** 0.291 ** -1.008 -0.830
(0.030) (0.030) (0.126) (0.130) (0.728) (0.718)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: We do not show regressions including estimates of the two parameters for risk (α and γ) because
doing so yields VIFs greater than 25 indicating a prohibiting level of multicolinearity – doing so yields
estimates that are mostly nonsignificant. Because the two time parameters (δ and β) are slightly less
correlated, including both of them in the same regression yields lower VIFs between 5 and 6 (for both the
rank and the log transformations). This falls below the commonly used threshold of 10 but still indicates
highly inflated standard errors due to correlated regressors, which suggest caution in the interpretation. For
comparison with our main results we control for heterogeneous risk attitudes with α̂ (using γ̂ yields the same
results). With these caveats, these regressions provide suggestive evidence that present bias (measured by
β) is relatively more associated with diet quality than impatience (measured by the exponential discounting
parameter δ), both in terms of magnitude of the point estimates in the top panel and in terms of statistical
significance in the bottom panel when using the normalized log transformation. This suggests that outliers
for present bias and impatience exhibit different pattern for diet quality, which variations are mitigated
with the rank transformation. We also find suggestive evidence that the exponential discounting parameter
is slightly more associated with energy intake than present bias. All estimations use weights. Significance:
*:p<0.10; **:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles of a standard normal.
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Table D.14: Main regressions when using only one pair of ranked
equivalents

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Rank(ĉiR) at R1 0.006 0.044 -0.097 -0.173 3.016 ** 3.197 **

(0.042) (0.043) (0.126) (0.119) (1.072) (1.046)
Rank(-ĉiT ) at T1 0.075 * 0.064 -0.305 ** -0.281 ** 1.189 2.014 **

(0.043) (0.044) (0.098) (0.104) (1.010) (0.985)
Rank(ĉiR) at R1 0.010 0.049 -0.121 -0.194 3.023 ** 3.225 **

(0.042) (0.043) (0.123) (0.116) (1.077) (1.055)
Rank(-ĉiT ) at T2 0.084 ** 0.080 ** -0.365 ** -0.341 ** 0.955 1.608

(0.041) (0.040) (0.089) (0.094) (1.060) (1.024)
Rank(ĉiR) at R1 0.013 0.052 -0.105 -0.184 2.953 ** 3.243 **

(0.042) (0.043) (0.126) (0.118) (1.080) (1.057)
Rank(-ĉiT ) at T3 0.104 ** 0.098 ** -0.278 ** -0.261 ** 0.459 1.620 *

(0.042) (0.042) (0.102) (0.107) (1.006) (0.979)
Rank(ĉiR) at R1 0.014 0.052 -0.120 -0.189 2.929 ** 3.180 **

(0.041) (0.042) (0.124) (0.117) (1.074) (1.052)
Rank(-ĉiT ) at T4 0.108 ** 0.111 ** -0.338 ** -0.306 ** 0.305 1.302

(0.041) (0.043) (0.093) (0.099) (1.092) (1.079)
Rank(ĉiR) at R2 -0.029 -0.001 0.062 -0.003 3.194 ** 2.599 **

(0.042) (0.043) (0.149) (0.142) (1.165) (1.158)
Rank(-ĉiT ) at T1 0.070 0.059 -0.289 ** -0.266 ** 1.285 2.030 **

(0.043) (0.043) (0.100) (0.106) (1.034) (1.009)
Rank(ĉiR) at R2 -0.028 0.001 0.053 -0.009 3.141 ** 2.534 **

(0.043) (0.043) (0.147) (0.141) (1.163) (1.161)
Rank(-ĉiT ) at T2 0.079 * 0.074 * -0.347 ** -0.321 ** 0.923 1.484

(0.041) (0.041) (0.091) (0.097) (1.076) (1.039)
Rank(ĉiR) at R2 -0.023 0.006 0.060 -0.006 3.102 ** 2.586 **

(0.043) (0.043) (0.149) (0.142) (1.139) (1.133)
Rank(-ĉiT ) at T3 0.098 ** 0.092 ** -0.256 ** -0.237 * 0.505 1.541

(0.043) (0.043) (0.105) (0.110) (0.996) (0.964)
Rank(ĉiR) at R2 -0.026 0.003 0.061 0.000 3.050 ** 2.477 **

(0.042) (0.042) (0.148) (0.142) (1.156) (1.150)
Rank(-ĉiT ) at T4 0.102 ** 0.104 ** -0.318 ** -0.284 ** 0.239 1.147

(0.042) (0.043) (0.095) (0.102) (1.103) (1.085)
Rank(ĉiR) at R3 -0.002 0.042 -0.330 ** -0.370 ** 3.316 *** 3.663 ***

(0.043) (0.043) (0.092) (0.089) (0.983) (0.965)
Rank(-ĉiT ) at T1 0.074 * 0.063 -0.329 ** -0.300 ** 1.139 1.984 **

(0.043) (0.044) (0.094) (0.101) (0.996) (0.972)
Rank(ĉiR) at R3 0.001 0.045 -0.344 ** -0.384 *** 3.314 *** 3.686 ***

(0.043) (0.042) (0.091) (0.088) (0.986) (0.971)
Rank(-ĉiT ) at T2 0.083 ** 0.078 * -0.389 *** -0.362 ** 0.879 1.571

(0.041) (0.041) (0.085) (0.091) (1.044) (1.012)
Rank(ĉiR) at R3 0.006 0.049 -0.336 ** -0.379 *** 3.275 *** 3.727 ***

(0.044) (0.043) (0.092) (0.089) (0.985) (0.971)
Rank(-ĉiT ) at T3 0.103 ** 0.097 ** -0.309 ** -0.288 ** 0.437 1.630 *

(0.043) (0.042) (0.097) (0.103) (0.995) (0.972)
Rank(ĉiR) at R3 0.009 0.053 -0.353 ** -0.389 *** 3.279 *** 3.728 ***

(0.043) (0.042) (0.090) (0.087) (0.987) (0.974)
Rank(-ĉiT ) at T4 0.107 ** 0.111 ** -0.373 *** -0.338 ** 0.385 1.432

(0.042) (0.043) (0.088) (0.095) (1.085) (1.079)
Rank(ĉiR) at R4 0.057 0.086 ** -0.258 ** -0.299 ** 2.327 ** 2.654 **

(0.043) (0.042) (0.103) (0.101) (1.087) (1.080)
Rank(-ĉiT ) at T1 0.081 * 0.067 -0.323 ** -0.293 ** 1.101 1.958 **

(0.043) (0.043) (0.095) (0.102) (1.011) (0.987)
Rank(ĉiR) at R4 0.058 0.088 ** -0.260 ** -0.303 ** 2.287 ** 2.614 **

(0.044) (0.042) (0.103) (0.101) (1.072) (1.069)
Rank(-ĉiT ) at T2 0.089 ** 0.082 ** -0.373 *** -0.344 ** 0.752 1.435

(0.041) (0.040) (0.087) (0.093) (1.040) (1.004)
Rank(ĉiR) at R4 0.059 0.089 ** -0.250 ** -0.295 ** 2.230 ** 2.601 **

(0.044) (0.042) (0.104) (0.102) (1.094) (1.088)
Rank(-ĉiT ) at T3 0.108 ** 0.099 ** -0.288 ** -0.263 ** 0.224 1.391

(0.043) (0.041) (0.100) (0.106) (1.009) (0.978)
Rank(ĉiR) at R4 0.062 0.090 ** -0.264 ** -0.301 ** 2.222 ** 2.578 **

(0.043) (0.042) (0.102) (0.101) (1.084) (1.083)
Rank(-ĉiT ) at T4 0.113 ** 0.112 ** -0.350 ** -0.309 ** 0.119 1.127

(0.041) (0.042) (0.090) (0.098) (1.089) (1.079)
Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: These estimates are from regressions combining all possible pairs of risk and time equivalents. Each
estimate is from a separate regression. The figures for Ordinal Logit models are the estimates transformed by
(x 7→ exp(x)− 1), which gives the odds ratios minus 1. The standard deviations in brackets are given under
their corresponding coefficients. For Ordinal Logit models, the standard deviations of the odds ratios are
computed using the Delta-method. The linear models are estimated by OLS, the other models by maximum
likelihood. The standard errors for linear models are robust. For Ordinal Logit models, the significance levels
pertain to the raw estimates. Controls include gender (1 dummy), age (6 dummies), education (3), nationality
(2), and living area (7). All estimations use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The
critical values are the corresponding quantiles of a standard normal.
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Table D.15: IV estimation à la Gillen et al. (2019)

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Linear Linear

(1) (2) (3)
Risk seeking: rank(ĉiR) 0.045 -0.067 ** 6.798 ***

(0.043) (0.034) (1.367)
Impatience: rank(ĉiT ) 0.066 * -0.063 ** 1.721

(0.035) (0.029) (1.234)
Controls X X X
Clusters 1,972 1,972 1,972

Note: The diet quality is here measured with a dummy indicating
a WDI of 2 or more. The standard errors are clustered at the
individual level. These estimations include only individuals who
have completed the bisection algorithm for all risk and time tasks.
Significance: *:p<0.10; **:p<0.05; ***:p<0.01.

Table D.16: Controlling for a contextual factor: the soccer world cup

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Risk seeking × Pre 1/8 round -0.058 -0.015 0.191 0.114 2.806 ** 2.687 **

(0.053) (0.055) (0.208) (0.202) (1.149) (1.135)
Impatience × Pre 1/8 round 0.103 ** 0.106 ** -0.497 *** -0.466 *** -0.603 0.841

(0.051) (0.050) (0.089) (0.097) (1.207) (1.165)
Post 1/8 round -0.062 -0.040 -0.078 -0.037 -1.561 -0.969

(0.069) (0.066) (0.199) (0.211) (1.513) (1.517)
Risk seeking × Post 1/8 round -0.039 0.002 -0.410 * -0.515 ** 3.186 2.327

(0.094) (0.089) (0.168) (0.141) (2.440) (2.364)
Impatience × Post 1/8 round 0.213 ** 0.186 ** -0.075 0.054 3.731 * 5.171 **

(0.091) (0.090) (0.270) (0.314) (2.232) (2.147)
Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: These regressions tests whether our results are driven by changes triggered by the victory of France over
Argentina during the soccer world cup. We use the ranked estimates from the DEU model in these regressions.
The variable “Post 1/8 round” is a dummy variable equal to one if the respondent started the questionnaire
the day after the game or later, and zero otherwise. We do find significant variations in the associations after
this game: diet quality becomes only associated with risk attitudes and declared alcohol consumption more
associated with impatience after this game. However, our main results hold over the period prior to this game
(which contains 72% of observations), where individuals’ perceptions are not influenced by this event. The
figures for Ordinal Logit models are the estimates transformed by (x 7→ exp(x)−1), which gives the odds ratios
minus 1. The standard deviations in brackets are given under their corresponding coefficients. For Ordinal
Logit models, the standard deviations of the odds ratios are computed using the Delta-method. The linear
models are estimated by OLS, the other models by maximum likelihood. The standard errors for linear models
are robust. For Ordinal Logit models, the significance levels pertain to the raw estimates. Controls include
gender (1 dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estimations use
weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01. The critical values are the corresponding quantiles
of a standard normal.
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Table D.17: Controlling for income and location

Dependent variable Energy Diet quality Alcohol
Model Log-linear Ordered logit Linear

(1) (2) (3) (4) (5) (6)
With outliers for the σs

Risk seeking: rank(α̂i) -0.017 -0.022 -0.175 -0.176 2.440 ** 2.425 **
(0.052) (0.052) (0.146) (0.146) (1.116) (1.125)

Impatience: rank(δ̂i) 0.107 ** 0.106 ** -0.397 ** -0.391 ** 1.954 * 1.939 *
(0.045) (0.045) (0.106) (0.107) (1.168) (1.167)

Log Income per unit -0.049 * -0.052 * 0.057 0.059 -0.548 -0.512
(0.028) (0.028) (0.094) (0.094) (0.621) (0.609)

Log city size -0.002 -0.018 * 0.066
(0.003) (0.010) (0.061)

Log city size × Log Income per unit 0.005 -0.003 0.026
(0.005) (0.015) (0.105)

Controls X X X X X X
Observations 1,764 1,763 1,764 1,763 1,764 1,763

Without outliers for the σs
Risk seeking: rank(α̂i) 0.023 0.016 -0.438 ** -0.447 ** 2.314 * 2.286 *

(0.057) (0.056) (0.110) (0.109) (1.218) (1.232)

Impatience: rank(δ̂i) 0.066 0.066 -0.433 ** -0.426 ** 2.869 ** 2.864 **
(0.049) (0.049) (0.108) (0.109) (1.302) (1.302)

Log Income per unit -0.049 * -0.054 * 0.181 * 0.165 -1.057 -1.006
(0.029) (0.030) (0.114) (0.112) (0.693) (0.676)

Log city size -0.003 -0.024 ** 0.063
(0.003) (0.010) (0.066)

Log city size × Log Income per unit 0.008 0.021 0.016
(0.005) (0.018) (0.121)

Controls X X X X X X
Observations 1,627 1,626 1,627 1,626 1,627 1,626

Note: In these estimations we control for the potential influence of city size interacted with income, with or
without the 5% outliers for σ̂ri and σ̂ti . The interaction term broadly controls for differentiated macroeconomic
conditions in rural and urban across the income gradient. These results corroborate the regressions including
only income in the main text. Controls include gender (1 dummy), age (6 dummies), education (3), nationality
(2), and living area (7). All estimations use weights. Significance: *:p<0.10; **:p<0.05; ***:p<0.01.
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Table D.18: Controlling for the precision parameters σ̂s

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Using the estimates from the DEU model

Only risk parameters
Risk seeking: rank(α̂i) 0.070 0.103 ** -0.308 ** -0.296 * 2.272 3.209 **

(0.053) (0.052) (0.123) (0.127) (1.481) (1.443)
Imprecision for risk: rank(σ̂ri ) 0.129 ** 0.118 ** -0.238 -0.109 -1.512 -0.238

(0.054) (0.056) (0.139) (0.166) (1.508) (1.502)
Only time parameters

Impatience: rank(δ̂i) 0.032 0.093 -0.461 ** -0.513 ** 5.376 ** 6.057 ***
(0.077) (0.075) (0.128) (0.119) (1.840) (1.766)

Imprecision for time: rank(σ̂ti) 0.099 0.037 0.111 0.325 -4.612 ** -3.843 **
(0.076) (0.078) (0.262) (0.324) (1.804) (1.760)

Both risk and time parameters
Risk seeking: rank(α̂i) 0.010 0.039 0.074 0.074 1.338 1.565

(0.077) (0.078) (0.284) (0.288) (2.018) (1.943)

Impatience: rank(δ̂i) 0.085 0.100 -0.552 * -0.547 * 1.544 2.672
(0.135) (0.129) (0.205) (0.210) (3.704) (3.576)

Imprecision for risk: rank(σ̂ri ) 0.073 0.069 -0.086 0.030 -2.096 -1.336
(0.068) (0.065) (0.205) (0.235) (1.965) (1.916)

Imprecision for time: rank(σ̂ti) 0.021 0.004 0.365 0.400 -0.265 -0.228
(0.135) (0.130) (0.636) (0.659) (3.929) (3.815)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: Because the σs are highly correlated with our main parameters, we arguably lack identifying variation
to disentangle the relationships between our diet indicators and each parameter. With this caveat, when
including all four parameters in the same regressions, we find that the main association between time and our
main diet quality remains weakly significant even when including both σr and σt. Controls include gender (1
dummy), age (6 dummies), education (3), nationality (2), and living area (7). All estimations use weights.
Significance: *:p<0.10; **:p<0.05; ***:p<0.01.
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Table D.19: Heterogeneity across income, education, age, and gender

Dependent variable Energy Diet quality Alcohol
Model Log-Linear Ordinal Logit Linear

(1) (2) (3) (4) (5) (6)
Heterogeneity across income

Interaction with income deviation
Risk seeking: rank(α̂i) -0.028 0.001 -0.246 * -0.260 * 2.318 ** 2.780 **

(0.049) (0.050) (0.128) (0.132) (1.145) (1.124)

Impatience: rank(δ̂i) 0.085 * 0.088 ** -0.395 ** -0.400 ** 1.187 2.019 *
(0.045) (0.043) (0.105) (0.107) (1.215) (1.161)

Log Income per unit -0.064 -0.045 0.760 ** 0.648 ** -0.757 -2.453 *
(0.051) (0.055) (0.305) (0.301) (1.452) (1.420)

Risk seeking: rank(α̂i)×∆ Log Income 0.211 ** 0.244 ** -0.592 ** -0.659 *** 3.688 * 3.590 *
(0.085) (0.086) (0.117) (0.100) (2.039) (1.968)

Impatience: rank(δ̂i)×∆ Log Income -0.185 ** -0.220 ** -0.027 0.073 -0.030 0.511
(0.086) (0.084) (0.276) (0.309) (2.160) (2.127)

Income categories
Risk seeking: rank(α̂i)× Low income -0.126 -0.122 0.222 0.231 0.949 1.685

(0.077) (0.076) (0.296) (0.303) (1.781) (1.719)

Impatience: rank(δ̂i)× Low income 0.267 *** 0.273 *** -0.612 *** -0.602 *** 1.753 3.345 **
(0.069) (0.068) (0.090) (0.095) (1.698) (1.696)

Risk seeking: rank(α̂i)× High income 0.017 0.065 -0.359 ** -0.398 ** 3.329 ** 2.991 **
(0.054) (0.055) (0.134) (0.133) (1.379) (1.366)

Impatience: rank(δ̂i)× High income -0.033 -0.025 -0.148 -0.174 0.358 0.865
(0.055) (0.055) (0.183) (0.183) (1.479) (1.390)

Controls X X X
Observations 1,764 1,764 1,764 1,764 1,764 1,764

Heterogeneity across education, age, and gender
Education categories
Risk seeking: rank(α̂i)× not completed HS -0.020 -0.035 0.048 0.111 2.377 * 1.898

(0.069) (0.073) (0.210) (0.231) (1.414) (1.436)

Impatience: rank(δ̂i)× not completed HS 0.204 ** 0.196 ** -0.544 *** -0.483 ** 0.081 0.729
(0.064) (0.071) (0.089) (0.113) (1.416) (1.560)

Risk seeking: rank(α̂i)× completed HS -0.017 0.017 -0.215 -0.330 * 2.894 ** 3.597 **
(0.050) (0.057) (0.159) (0.156) (1.382) (1.448)

Impatience: rank(δ̂i)× completed HS 0.018 0.057 -0.166 -0.203 1.428 3.225 **
(0.050) (0.052) (0.169) (0.176) (1.413) (1.388)

Age categories
Risk seeking: rank(α̂i)× under 45yo -0.086 -0.053 -0.028 0.200 1.717 1.504

(0.072) (0.082) (0.198) (0.272) (1.385) (1.554)

Impatience: rank(δ̂i)× under 45yo 0.166 ** 0.146 ** -0.469 ** -0.149 -0.176 1.413
(0.072) (0.072) (0.109) (0.197) (1.380) (1.426)

Risk seeking: rank(α̂i)× above 45yo -0.026 0.025 0.038 -0.331 * 4.828 *** 3.553 **
(0.050) (0.053) (0.201) (0.139) (1.367) (1.408)

Impatience: rank(δ̂i)× above 45yo 0.103 ** 0.113 ** -0.354 ** -0.502 *** 1.165 2.520 *
(0.050) (0.051) (0.123) (0.105) (1.398) (1.483)

Gender categories
Risk seeking: rank(α̂i)× Female -0.064 0.005 -0.094 -0.210 1.014 2.334 **

(0.062) (0.069) (0.182) (0.173) (1.189) (1.179)

Impatience: rank(δ̂i)× Female 0.072 0.094 -0.389 ** -0.470 ** -1.512 0.902
(0.060) (0.064) (0.123) (0.119) (1.133) (1.055)

Risk seeking: rank(α̂i)× Male -0.045 -0.025 0.046 -0.010 4.688 ** 2.887
(0.056) (0.064) (0.203) (0.211) (1.551) (1.759)

Impatience: rank(δ̂i)× Male 0.202 *** 0.159 ** -0.421 ** -0.249 3.273 ** 3.017 *
(0.058) (0.059) (0.111) (0.160) (1.627) (1.781)

Controls X X X
Observations 2,086 2,086 2,086 2,086 2,086 2,086

Note: In these regressions, we add interaction terms between the risk and time parameters and selected socio-
demographics: income, education, age, and gender. We find that the relationship between preferences and
diet quality varies across socio-demographic groups. The general pattern is that our main results are driven
by groups with larger values for the corresponding variables: the results on impatience are driven by more
impatient groups (low income, low education), whereas those for risk are driven by more risk seeking groups
(high income, high education). Similarly, the results on alcohol are primarily driven by groups consuming
more alcohol (high income and education, older individuals, and males). Controls include gender (1 dummy),
age (6 dummies), education (3), nationality (2), and living area (7). All estimations use weights. Significance:
*:p<0.10; **:p<0.05; ***:p<0.01.

68

Electronic copy available at: https://ssrn.com/abstract=4474126



Figure D.1: Screenshot of a question from the food frequency questionnaire
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Figure D.2: Stability of the distributions of the draws across the D = 10, 000 iterations

(a) Sample means of the normally distributed underlying log-parameter
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Note: This Figure illustrates the stability of the distribution of draws across the D = 10, 000 draws kept for
the baseline estimation, after 10,000 burn in iterations. Panel (a) gives the mean across individual draws of
each parameter at each iteration. Panels (b) to (e) give the estimated distributions under the 99th percentile
every 1,000 iterations.
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Figure D.3: Components of the WDI index by decile of risk and time preference
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Notes: This Figure shows the distribution of the intermediate indicators used to compute the WDI across
deciles of estimated risk and time parameters.
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Figure D.4: Food groups and nutrients by decile of risk and time preference

(a) Food groups
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(b) Nutrients
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Note: This Figure gives the average quantity consumed daily by food group and for main nutrients across
deciles of estimated risk and time parameters.
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Figure D.5: Completion time

Risk seeking Impatience Deviation − risk Deviation − time
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Note: The diamonds give the weighted median completion by decile of α̂i, δ̂i, σ̂
r
i , and σ̂ti (from

left to right), computed using the survey weights. We find intuitive patterns which support
the internal validity of our method. In particular, the median completion time decreases with
impatience, so that less patient individuals typically completed the questionnaire faster. We
also find that more risk-seeking individuals completed the questionnaire faster, which may
stem from the fact that risk-seeking attitude and impatience are positively correlated in our
sample. Finally, we find that less consistent individuals for risk and time exhibited lower
median completion times, which may explain their lower consistency across tasks. A similar
pattern was found by Von Gaudecker et al. (2011).
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Figure D.6: Difficulties to understand the questions
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Note: The diamonds give the weighted medians of α̂i, δ̂i, σ̂
r
i , and σ̂ti (from left to right),

computed using the survey weights. We find that most individuals had no difficulty answering
all the questions. Furthermore, the individuals who had difficulty to understand “some,”
“most,” or “all questions” gave more inconsistent answers across tasks, reflected in larger
median σs.
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