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1. Introduction
Worldwide, landsliding is frequently caused by intense rainfall (Guzzetti et al., 2008; Marc et al., 2018), leading 
to hundreds of casualties every year (Petley et al., 2007). In the Himalayas, hundreds of landslides are triggered 
annually by heavy rainfall between May and October, damaging vital infrastructure and posing a significant 
hazard to communities. In addition to rainfall, widespread landsliding can also result from earthquakes. Recently, 
the 2015 Mw 7.8 Gorkha earthquake in Nepal triggered over 25,000 landslides and resulted in elevated levels 
of landsliding during subsequent monsoon seasons (Jones et al., 2021; Marc et al., 2019; Roback et al., 2018). 
Sustained cloud cover, which often lasts months during the monsoon, obscures commonly used satellite observa-
tion products and has limited previous analyses to multi-annual inventories (Jones et al., 2021; Kincey et al., 2021; 
Marc et al., 2019). This lack of landslide timing information within the monsoon period limits our understand-
ing of landslide triggering, which is thought to depend on both hydrological recharge by the monsoon (Gabet 
et al., 2004; Illien et al., 2021), intense bursts of rainfall (Jones et al., 2021), and post-seismic regolith disturbance 
(Marc et al., 2019, 2021). Characterization of a large number of landslides in terms of both location and timing 
is crucial to untangle the influence of these multiple triggering mechanisms, and ultimately improve physical and 
empirical models of landslide hazard.

In some cases, information on landslide timing can be obtained through interviews with local residents and 
news reports (Bell et al., 2021) or through analysis of signals recorded by seismic networks (Hibert et al., 2019). 
However, these methods are often limited to large landslides (for seismic methods) and those in populated 
areas (for reports and interviews). In contrast, Synthetic Aperture Radar (SAR) satellite data may offer a more 
generally applicable landslide timing technique. SAR images can penetrate cloud and are sensitive to changes 
in surface roughness and vegetation cover caused by landslides (Mondini et al., 2021). Recently, methods have 

Abstract Monsoon rainfall triggers hundreds of landslides across Nepal every year, causing significant 
hazard and mass wasting. Annual inventories of these landslides have been mapped using multi-spectral 
satellite images, but these images are obscured by cloud cover during the monsoon, making it impossible to 
use them to constrain landslide timing. We employ recently developed techniques to derive individual timings 
from Sentinel-1 for 579 landslides in 2015, 2017, 2018, and 2019 in Nepal. We use this new timing information 
alongside satellite rainfall data to identify spatio-temporal clusters of landslides and associate these with 
periods of particularly intense rainfall. We also observed that during the 2015 monsoon, many landslides failed 
earlier and in dryer conditions than in 2017–2019. We use physical models to demonstrate how this requires a 
temporary loss of hillslope strength following the Mw 7.8 Gorkha Earthquake sequence and suggest a modeled 
cohesion loss in the range 1–3 kPa.

Plain Language Summary Earthquakes, storms and long periods of rain during the monsoon all 
contribute to landsliding in Nepal. Understanding these different triggers requires information on where and 
when landslides happen every year. We applied a new landslide timing method based on Sentinel-1 satellite 
images alongside satellite measurements of rainfall to model the amount of rain needed to trigger individual 
landslides during the monsoon. This allowed us to connect landslides with particular storms and to observe the 
influence of a large earthquake in 2015 on landslide timing. Landslides occurred in unusually dry conditions 
following the earthquake, which can be interpreted as a temporary weakening of the landscape.
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been developed that use Sentinel-1 time series to constrain landslide timings with a resolution of up to 12 days 
(Burrows et al., 2022; Deijns et al., 2022). Although 12 days is less precise than previous methods, it is sufficient 
to better understand complex triggering, and these new methods greatly increase the potential spatial scope of 
studies requiring landslide timing.

Here, we demonstrate the novel capability of Sentinel-1 time series to constrain the timings of hundreds of 
mapped landslide polygons triggered during four monsoon seasons following the Gorkha earthquake in Nepal 
(2015 and 2017–2019). Using this timing information alongside calibrated satellite rainfall products, we identify 
spatio-temporal clusters of landslides and relate these to specific periods of intense rainfall within the monsoon, 
offering new insights on hydro-meteorological thresholds (Bogaard & Greco, 2018) and the role of extreme rain-
fall (Jones et al., 2021). We also use physical models to estimate the soil water saturation when each landslide 
failed, which can then be used to infer hillslope strength parameters. The large numbers of landslides considered 
in the study allow us to infer bulk changes in hillslope strength between years. Thus, landslide timing information 
offers a new way to study the transient post-seismic weakening that has been observed following large earth-
quakes (Brain et al., 2021; Jones et al., 2021; Marc et al., 2015, 2019).

2. Materials and Methods
We apply a two-step process in which landslides are first mapped as polygons using multi-spectral satellite 
images and then constrained in time using Sentinel-1 time series. This timing information allows us to model the 
soil saturation at the time of failure from satellite rainfall products, which can then be used in a simple hillslope 
stability model (Figure S1 in Supporting Information S1).

2.1. Landslide Timings From Sentinel-1

Here we use the landslide timing method of Burrows et al.  (2022) since it allows individual landslides in an 
inventory to be assigned different timings and we do not expect monsoon-triggered landslides to occur simulta-
neously. This method, which allows 30% of the landslides in an inventory to be timed with an accuracy of 80%, is 
summarized in Figure S1 in Supporting Information S1 and detailed in Burrows et al. (2022).

The method requires a simultaneous step change in at least two of four metrics calculated for each polygon from 
the γ0 backscatter derived from Sentinel-1 ground range detected (GRD) image time series in Google Earth 
Engine:

•  Average amplitude compared to the local background amplitude
•  Variability between pixels
•  Geometric shadows
•  Geometric bright spots (dihedral scattering)

In most cases, the precision of the timing is the same as the Sentinel-1 repeat time: 12 days. In a small number of 
cases, this increases to 24 or 36 days due to missing Sentinel-1 acquisitions or is decreased when a landslide is 
timed by both the ascending and descending satellite orbits.

2.2. Landslide Data Compilation

We applied the techniques from Section 2.1 to four annual inventories of monsoon-triggered landslides between 
2015 and 2019. First, three compiled over central and eastern Nepal by Jones et al. (2021) for 2015, 2017 and 
2018. 2016 was omitted due to poor Sentinel-1 coverage over Nepal during that monsoon season. For the same 
reason, the landslide timing methods could not be applied to the central-southern part of the 2015 inventory. 
We also prepared an additional inventory for the 2019 monsoon season over the same area mapped by Jones 
et al. (2021) and extended each inventory further west (Figure 1a). All inventories were prepared through compar-
ison of pan-sharpened Landsat 8 images acquired before and after each monsoon season. We discarded polygons 
under 2000 m 2, since this is the minimum size at which Burrows et al. (2022) tested their methods and since 
inventories compiled from medium resolution imagery such as Landsat 8 may be incomplete for small events. 
This left 3,373 landslides across the four monsoon seasons (Figure 1a), of which we were able to constrain the 
timings of 579 events.
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To assess whether there were bulk differences in landslide properties between years that could influence their 
timings and to constrain the hillslope stability model, we characterized all landslide scars by their area, As, median 
slope, θs, 90th percentile drainage area, Dr90, and thickness, Ts. As was estimated from the area and perimeter of 
each landslide polygon according to the formulas presented in Marc et al. (2018). θs and Dr90 were derived from 
the shuttle radar topography mission (SRTM-30m) digital elevation model (DEM) in QGIS (Farr et al., 2007). Ts 
was estimated from As according to the empirical relationships of Larsen et al. (2010).

We removed 197 landslides with high drainage areas (>10 4.5 m 2) that could have been influenced by lateral 
rather than vertical infiltration (Iverson, 2000). We also examined each timed landslide in high resolution satel-
lite images in Google Earth Explorer and excluded 16 polygons that appeared not to be landslides, but instead 
features relating to human activity (e.g., construction or agriculture) and 23 landslides that were likely to have 

Figure 1. (a) Density of landslides >2,000 m 2 per km 2 from the inventories of Jones et al. (2021) and this study. Dashed line 
shows western limit of the area mapped by Jones et al. (2021). The number of landslides in each year is given in brackets. 
(b) Locations of landslides with timings constrained using Sentinel-1. Points are colored by the month in which the midpoint 
of the Sentinel-1 time window lies. (c) Average total monsoon rainfall based on gauge-corrected GPM. Markers show gauge 
locations.
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been influenced by factors other than rainfall, leaving 347 landslides (Figure 1b). These 23 included: 17 land-
slides that intersected roads, which are often poorly engineered and can bring slopes closer to failure (Pradhan 
et al., 2022); 5 bank collapses next to rivers, whose timing is likely determined by river flooding or undercutting; 
and finally a large rockslide that dammed the Kali Gandaki River in 2015 but that field observations suggest was 
a delayed earthquake-triggered landslide (Collins & Jibson, 2015).

2.3. Rainfall Data Sets and Calibration

In order to model soil saturation through time for each landslide, we used the NASA GPM IMERG satellite rain-
fall product, which combines microwave and infrared measurements from a constellation of satellites (Huffman 
et al., 2015). This product offers continuous rainfall estimates, covers the whole spatial extent and duration of our 
study, and captures the spatial distribution of annual precipitation and the frequency of wet days over Nepal well 
(Talchabhadel et al., 2022). However, it generally underestimates rainfall during the monsoon when compared to 
rain gauges and struggles to capture orographically induced precipitation, leading it to underestimate precipita-
tion at high altitudes in Nepal (Sharma et al., 2020).

To address these shortcomings, we calibrated the GPM rainfall, R, using gauge data in two steps. In each step, we 
derive a corrected rainfall Rcorr = aR b, by optimizing a and b to minimize the difference in cumulative distribution 
function (CDF) between Rcorr and the calibration rainfall. Both CDFs only take rainy days (>0.05 mm of rain in 
both data sets) during the monsoon (15 April–15 October).

First, we used the APHRODITE rainfall product (Yatagai et al., 2012). For Nepal, APHRODITE ends in 2015, 
and so does not cover the period required for this study, but it is based on rain gauge data so its spatial pattern 
should better recreate the orographic effect than GPM. As a gridded product derived from gauge data across the 
country, it also provides more complete spatial coverage than individual gauges. We took the GPM and APHRO-
DITE data sets from 2010 to 2015 and downsampled the GPM data onto the 0.25° grid of the APHRODITE data 
set. Thus, a and b were constrained at each pixel (Figure S2 in Supporting Information S1), and corrected GPM 
rainfall was derived for the study period, 2015–2019.

Second, we repeated the calibration procedure on the APHRODITE-corrected GPM, using individual rain gauges 
(Table S1 in Supporting Information S1, Figure 1c). Here, most pixel display a ∼ 1 and b > 1 meaning that the 
APHRODITE-corrected GPM underestimated the rainfall recorded by the gauges, especially at high magnitude 
values, probably because the APHRODITE product represents the mean rainfall over a large pixel (0.25°). This 
underestimation appears worse at high elevations, probably due to the relatively sparse network of gauges in 
the High Himalayas that were used to derive APHRODITE. In order to better estimate the monsoon-rainfall, 
we apply a further correction across the whole study area, using median values of a and b, 1.11 ± 0.54 and 
1.18 ± 0.13, respectively (Figure 1c).

2.4. Soil Moisture Model

To model at first order the shallow regolith hydrology, we used a “leaky bucket” approach (Gabet et al., 2004; 
Wilson & Wieczorek, 1995), in which the evolution through time of the soil water content Wt is dominated by 
local rainfall input Rt minus evapotranspiration, E. This process is estimated using Equation 1 until the field 
capacity FC is reached.

𝑊𝑊𝑡𝑡 = 𝑊𝑊𝑡𝑡−1 + (𝑅𝑅𝑡𝑡 − 𝐸𝐸) (1)

FC is determined from the porosity η, drained porosity ηd and regolith thickness hs. hs was obtained from 
the depths estimated in Section  2.2. We took constant values of η  =  0.4 and ηd  =  0.15 following Gabet 
et al. (2004).

𝐹𝐹𝐹𝐹 = ℎ𝑠𝑠(𝜂𝜂 − 𝜂𝜂𝑑𝑑) (2)

Once Wt exceeds FC, water begins to drain from the system and its evolution is described by Equation 3:

𝑊𝑊𝑡𝑡 = 𝑊𝑊𝑡𝑡−1𝑒𝑒
−𝑘𝑘 +

(

𝑅𝑅𝑡𝑡

(

1 − 𝑒𝑒
−𝑘𝑘
)

𝑘𝑘
− 𝐸𝐸

)

 (3)
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with k a non-dimensional drainage parameter. The system is allowed to vary between dry (W = 0) and saturated 
(W = hsη). We used values of E = 3 mm/day (appropriate for Nepal given the season and elevation range of the 
study (Lambert & Chitrakar, 1989)) and k = 0.02.

With the landslide timing information obtained using the methods from Section 2.1, we can use W at the time of 
failure in the Factor of Safety equation (FoS).

𝐹𝐹𝐹𝐹𝐹𝐹 =
tan(𝜙𝜙)

tan(𝜃𝜃)
+

𝐶𝐶 − 𝑔𝑔𝑔w𝜌𝜌w tan(𝜙𝜙)

𝑔𝑔𝑔s𝜌𝜌s sin(𝜃𝜃)cos(𝜃𝜃)
 (4)

At the point of failure, FoS = 1, hw, the vertical water height was obtained by taking the maximum value of W 
within the landslide timing window and reprojecting it into the vertical plane. Thus, using standard values for the 
density of the water and soil, ρw = 1,000 kg/m 2 and ρs = 2,600 kg/m 2 respectively, we are left with two unknowns: 
cohesion, C, and internal friction angle, ϕ. Assuming ϕ = θ we can retrieve C (in kPa) for each timed landslide. 
Alternative scenarios are discussed in Section 4.1.

3. Results
3.1. Landslide Characteristics

The distribution of landslide timings varies noticeably between years (Figure 2a). In addition to distributed timings 
between mid-June and mid-September, most years contain temporal clusters. Sharp peaks are seen in August 2017 
and July 2019 that align with widely reported flood events (Government of Nepal, 2017; Government of Nepal, 2019), 
while 2015 and 2018 show concentration of landsliding in early June and September, respectively. In terms of rain-
fall (Figures 2b and 2c), the clustered nature of 2017 landsliding is striking with nearly half of the timed landslides 
occurring with moderate cumulative rainfall Rc ∼ 1,000 mm but intense peak daily rainfall of Id ∼ 100 mm/day. 
2019 landslides have distributed peak and cumulative rainfall, while in 2015 about 60% of the landslides occurred 
with Rc < 1,000 mm, and in 2018 landslides occurred at comparatively low Id and high Rc.

Distributions of As and Dr90 for our timed landslides are similar between years, except for 2018 which has gener-
ally higher drainage areas (Figure 2). Slope gradient is more variable and landslides triggered in 2015 generally 
occurred on somewhat steeper slopes than in other years.

3.2. Modeling Regolith Saturation and Strength at Failure

The soil saturations at failure Sfail modeled with Equations 1–3 span the range 0–1 and tend to decrease with slope 
gradient (Figure 3a). In 2017, 2018 and 2019, 82% of the timed landslides were triggered with Sfail > FC, while 

Figure 2. Characteristics of timed landslides: (a) timing (b) Cumulative rainfall from 15th April to landslide timing (c) peak daily rainfall within time window (d) 
kernel density of slope gradient in scar (e) kernel density of 90th percentile drainage area for pixels within scar (f) scar area kernel density.
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this proportion was only about 50% in 2015 (Figure 3a). From these lower saturation levels, we retrieve lower 
cohesion values for the 2015 landslides when binning by slope gradient (Figure 3b). 33 Landslides with Sfail < 0.1 
are excluded from this modeling, since they are assumed to be either incorrectly timed by Sentinel-1, triggered 
by rainfall underestimated by GPM (Section 4.2) or triggered by a mechanism other than vertical infiltration 
(Section 4.3). Difference in median cohesion between 2015 and other years increases from around 1 kPa at a slope 
of 30° to closer to 3 kPa at a slope of 50°.

4. Discussion
We obtained landslide timing information for 374 landslides triggered during the 2015, 2017, 2018, and 2019 
monsoon seasons. While the method described in Section 2.1 is only 80% accurate, if 1/5 of our landslide timings 
are incorrect, our two main results remain valid: first, the identification of spatio-temporal clusters of landslides 
related to specific periods of intense rainfall for example, August 2017, and second, that the 2015 monsoon 
resulted in earlier and drier landslides compared to other years, which could be interpreted as lower cohesion 
(2a,2c and  3). However, this 80% accuracy, along with the 12-day timing precision and uncertainties in our 
rainfall product and in parameters such as regolith depth, prevents us from deriving local hydro-meteorological 
thresholds (Dahal & Hasegawa, 2008) or establishing minimum values of daily and cumulative rainfall for land-
slide triggering (Gabet et al., 2004) (Figure S3 in Supporting Information S1).

4.1. Sensitivity to Under-Constrained Model Parameters

Various modeling parameters (E, hs, η, ηd, and k) may vary spatially and would ideally be constrained by field-
work, but this is impractical for a study carried out on this spatial scale. Instead, we consider that, while individual 
landslides may be imperfectly modeled, when we apply these models to large numbers of landslides (occurring 
in different years but in the same landscape and with similar characteristics (Figures 2d–2f)), the effects of errors 
in these modeling parameters should be similar across years so that the difference observed between 2015 and 
later years remains valid.

This assumes that these parameters are static in time. However, a temporary increase in permeability has been 
observed following earthquakes (Illien et al., 2022; Wang & Chia, 2008). By using the same value of k for all 
years rather than allowing water to drain faster in 2015 due to enhanced permeability, we may have overestimated 
Sfail in 2015 relative to other years. We also explored a scenario in which k is correlated with slope, which also 
resulted to an increased difference in modeled cohesion in 2015 (generally steeper slopes than other years). Our 
modeled difference in Sfail and cohesion is therefore a conservative estimate.

ϕ is also poorly constrained, but assigning it a fixed value (25°–45°) gives inconsistent results, requiring either 
negative or unrealistically high cohesion values (Figure S4 in Supporting Information S1). Instead, with ϕ = θ 

Figure 3. (a) The maximum modeled soil saturation within the 12-day Sentinel-1 time window for each landslide based on a leaky bucket model. Landslides with 
Sfail < 0.1 are faded out (b) Modeled cohesion based on soil moisture values from (a) for 2015 (red) and 2017–2019 (blue). The number of landslides in each violin is 
given at the bottom of the plot. Dashed lines show medians with white arrows showing the median cohesion drop in 2015 compared to other years. Ranges 15–25 and 
55–65 are faded out since they contain insufficient (<10) landslides.
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in the range 30°–50°, we obtain cohesions between 2 and 10 kPa, values that are typical for shallow landslides 
(Gabet et al., 2004; von Ruette et al., 2014; Wu & Sidle, 1995). This is consistent with recent studies where 
landslide susceptibility (whether triggered by rainfall or earthquakes) was found to scale with slope normalized 
by the landscape median rather than absolute slope, suggesting that mechanical strength (i.e., ϕ) is adjusted 
to the landscape (i.e., θ) (Emberson et al., 2021; Marc et al., 2018; Milledge et al., 2019). Furthermore, fixing 
C = 4,000 kPa in Equation 4 and solving for ϕ yields a strong correlation between ϕ and θ and a reduced ϕ value 
in 2015 (Figures S4 and S5 in Supporting Information S1).

4.2. Spatio-Temporal Clusters of Landslides and the Role of Intense Rainfall

Landslide timings were not evenly distributed through time (Figure 2a) but instead can be related to short periods 
of intense rainfall that triggered spatio-temporal clusters of landslides. This is significant since it has previously 
been suggested that monsoon season containing an extreme rainfall event have much higher levels of mass-wasting 
than would be expected based on overall levels of monsoon rainfall (Jones et al., 2021). Establishing individual 
landslide timing as we have done will allow us to better compare the relative importance of continuous monsoon 
rainfall and intense rainfall bursts in terms of landslide erosion and hazard.

The largest spatio-temporal cluster of landslides we identify is associated with heavy rains in the Terai region 
from 11–14 August 2017 (Government of Nepal, 2017) and is clearly visible in Figure 2a. Recalling that our 
method retrieves timings for 30% of the landslides with 80% accuracy, a spatio-temporal cluster should contain 
around a quarter (0.3 × 0.8) of the landslides in a given spatial cluster. 66 of the 116 landslides for which we have 
timing information in 2017 overlap with this event, with 59 of these lying within an area <150 km 2 in eastern 
Terai. This sector represents 0.3% of the area mapped by Jones et al. (2021) but contains 41% of the 2017 land-
slides. This demonstrates the significant impact of a short localized rainfall event in terms of overall landslide 
numbers in 2017, even though Jones et al. (2021) did not identify 2017 as an outlier when investigating how mass 
wasting scales with overall monsoon intensity.

In 2018, a spatial cluster is visible in the Kali Gandaki Valley (Figure 1a), with 40 landslides located in an area 
<40 km 2. However, when we apply our timing methods in this location, we can divide it into two spatio-temporal 
clusters, with 4 timed landslides in early-mid August and 4 in mid September. Bell et al. (2021) have suggested 
several factors that could explain the high levels of landslide activity in the Kali Gandaki during this monsoon 
season, including an extreme rainfall event on the 13th of September that was recorded by rain gauge and melt-
ing  snow during August. Bell et al. (2021) noted that neither of these events was captured by GPM, consistent 
with our GPM-based modeling, where both clusters have Sfail < 0.1, plotting at the bottom of Figure 3a.

We observed 13 landslides that occurred early during the 2015 monsoon season in the adjacent Sankhuwasabha 
and Taplejung Districts in north-eastern Nepal. This spatio-temporal cluster, occurring at a time when the cumu-
lative rainfall in the regolith would be very low, is most likely associated with very heavy rain and flooding 
reported on the 10th and 11th of June in this location (Floodlist, 2015). 11 of the landslides were assigned time 
windows overlapping with this rainfall event, which seems underestimated in GPM, possibly due to its small 
spatio-temporal scale. Landslides in July 2019 can also be correlated with reports of heavy rainfall from the 
11–12 of that month (Government of Nepal, 2019). One cluster of 3 timed landslides overlapping with this event 
was observed in Sankhuwasabha district as well as a more spatially dispersed group of 8 landslides across the 
eastern Terai region. Finally, we assigned timings to two landslides belonging to a tight spatial cluster of 9 in 
Ramechhap district, linking them with a 4-hr intense rainfall event reported there on 15 July 2017 (Gautam & 
Dong, 2018).

Overall, short periods of intense rainfall appear to influence overall landslide numbers, particularly in 2017. This 
has implications for future landslide hazard under climate change, which is expected to make intense rainfall 
events more likely (Kirschbaum et al., 2020).

4.3. New Constraints on Post-Seismic Landscape Disturbance

The constraints on landslide timing we have obtained here represent a new opportunity to quantify and understand 
the landscape disturbance caused by earthquakes. We observed landslides occurring earlier and in response to 
less rainfall in 2015 than in other years (Figures 2a–2c). Increased susceptibility to rainfall-triggered landsliding 
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within earthquake-affected areas has been observed for several events with a return to normal conditions within 
1 to a few years (Jones et al., 2021; Marc et al., 2015, 2019). It has been suggested that elevated landslide rates 
could be the result of weakened regolith or of enhanced rainfall infiltration, supported by observations of wide-
spread co-seismic ground cracking (Collins & Jibson, 2015; Owen et al., 2008). Transient changes, sometimes 
with similar temporal dynamics, have also been observed in geophysical metrics such as shallow seismic velocity 
or rock permeability (Illien et al., 2022; Marc et al., 2021).

Hillslope stability models indicate a cohesion loss of between 1 and 3 kPa for 2015 landslides and a large increase 
in the proportion of weak (<3  kPa) landslides (Figure  3b), or an equivalent weakening in terms of friction 
(Figure S5 in Supporting Information S1). In exploring the effect of earthquake shaking on brittle rocks, Brain 
et al. (2021) revealed a complicated response in terms of both cohesion and friction that is both path-dependent 
and varies depending on the intensity of ground shaking experienced. Thus the true process may be a combined 
loss of friction and cohesion.

Most co-seismic landslides occurred at longitudes between 84.5 and 86.5 (Roback et al., 2018) and the area across 
which higher landslide frequencies were observed, while larger, does not extend as far as the Kali Gandaki Valley 
(Marc et al., 2019). However, we observed the same shift in landslide timing in the west of our study area as 
elsewhere. 7/15 (47%) of the 2015 landslides west of the dashed line in Figure 1 occurred before the field capacity 
was reached compared to 52/103 (50%) east of this line and 41/229 (18%) in 2017, 2018 and 2019 combined. The 
spatial extent of the weakened area, as revealed by early landslides, is therefore larger than the area impacted by 
co-seismic landslides as well as the area across which higher landslide frequency is observed.

Twenty landslides in 2015 (17% compared to 3% in 2017–2019) occurred in May-June and in very dry conditions 
(Sfail < 0.1). Landslides are generally less likely this early in the monsoon, particularly before the field capacity of 
the regolith is reached (Gabet et al., 2004; Illien et al., 2021). It is possible that these 20 may be better explained 
by an alternative failure mechanism. 18 were located in the area which underwent the strongest shaking during 
the earthquake and experienced the most aftershocks. With the exception of one whose timing aligns with the 
Mw 7.3 Dolakha aftershock on the 12th May, these landslides occurred too late to have been directly triggered 
by aftershocks. Beyond undetected rainfall or incorrect timing, these landslides may be explained by progressive 
failure following the earthquake, as was suggested for the Baisari rockslide (Collins & Jibson, 2015).

5. Conclusions
We used Sentinel-1 to constrain the timings of 579 landslides triggered during the 2015, 2017, 2018, and 2019 
monsoon seasons in Nepal. Using these data alongside satellite rainfall data, we were able to obtain two main 
results. First, we identified spatio-temporal clusters of landslides associated with specific intense rainfall events. 
In one case, we found that up to 40% of the landslides in an annual inventory were associated with a single intense 
rainfall event, highlighting the need for further research into the relative importance of long duration rainfall 
and shorter, more intense rainfall in determining the mass wasting effect of the Nepal monsoon. Second, when 
comparing the bulk properties of landslides between years, we observed comparatively early landsliding during 
the 2015 monsoon following the Mw 7.8 Gorkha earthquake. Numerical modeling of soil water content through 
time suggests that these landslides occurred in unusually dry conditions, requiring either a change in triggering 
mechanism or a weakened hillslope in 2015 compared to other monsoon years.

Unimpeded by cloud cover, Sentinel-1 resolves landslide timing much better than previous approaches based on 
optical imagery. Beyond Nepal and monsoon-affected areas, the method could be applied to any landslide inven-
tory in vegetated environments whose timings are poorly constrained and thus difficult to assign to a specific 
trigger, for example, landslides triggered during sequences of storms or earthquakes, including post-seismic 
rainfall-triggered landsliding (Amatya et al., 2023; Ferrario, 2019; Jones et al., 2023).Our study thus highlights 
the value that Sentinel-1 could have in disentangling the effects of multiple landslide-triggering events in cloudy 
conditions.

Data Availability Statement
Landslide polygons for 2015, 2017 and 2018 compiled by Jones et al. (2021) are available from the National Geosci-
ence Data Centre (NGDC) repository (item ID 166966) https://webapps.bgs.ac.uk/services/ngdc/accessions/
index.html?simpleText=landslide%20nepal. The landslide timing data set, as well as new inventories compiled 
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for the 2019 monsoon and for western Nepal are available on Zenodo (Burrows et al., 2023). Sentinel-1 data 
provided by Copernicus and accessed using our Google Earth Engine code for landslide timing (Burrows, 2022). 
GPM IMERG rainfall data are available from https://gpm.nasa.gov/data/directory, APHRODITE from http://
aphrodite.st.hirosaki-u.ac.jp/products.html. Rain gauge data were provided by the Nepal Department of Hydrol-
ogy and Meterology and the Nepal WWF (Not open access), the Global Historical Climatology Network (Menne 
et al., 2012), and the GFZ PRESSurE project (Andermann et al., 2021) (See Table S1 in Supporting Informa-
tion S1 for individual gauges). SRTM DEM data are from Farr et al. (2007). Figures were made using PyGMT 
(Uieda et al., 2023) and Matplotlib (Caswell et al., 2023).
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