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A B S T R A C T

Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze
this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this
paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the
Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet
architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the
encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside
the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as
PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid
loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and
cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of
Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further
improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++,
and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The
comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-
Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting
Covid-19 infections in four datasets and two evaluation scenarios.
1. Introduction

Since the outbreak of the Covid-19 pandemic (late 2019, Wuhan,
China), the world has been in a global crisis. Detection of infected
individuals plays a critical role in the fight against this disease. Medical
imaging is often used as a primary or complementary tool to RT-PCR
(which has a significant false-negative rate) to detect infected individ-
uals (Kucirka et al., 2020). Medical imaging modalities used include
radiographs (Vantaggiato et al., 2021) and the CT-scans (Bougourzi
et al., 2021a). Indeed, CT-scans are strongly recommended for both
initial and follow-up examinations when Covid-19 is suspected (Jin
et al., 2020; Wu et al., 2021; Bougourzi et al., 2023). In addition,
CT scans have demonstrated their efficiency for Covid-19 diagnosis at
early stages, whereas CT findings may be present before the onset of
symptoms (Kim et al., 2020; Pan et al., 2020b). On the other hand,
CT-scans can be used for more purposes. CT scans have been used to

∗ Corresponding author at: University of the Basque Country UPV/EHU, San Sebastian, Spain.
E-mail addresses: fares.bougourzi@isasi.cnr.it (F. Bougourzi), cosimo.distante@cnr.it (C. Distante), fadi.dornaika@ehu.eus (F. Dornaika),

Abdelmalik.Taleb-Ahmed@uphf.fr (A. Taleb-Ahmed).

segment the infected parts and can be used directly to estimate the
severity of infection and percentage (Bougourzi et al., 2021c).

Indeed, there are different clinical scenarios for patients with Covid-
19 infection, including early versus advanced stages, asymptomatic ver-
sus symptomatic patients, and severe versus non-severe situations (Sun
et al., 2020). Therefore, the CT imaging findings associated with Covid-
19 correlate strongly with these clinical scenarios. Typically, the time
course of Covid-19 infection consists of three main stages: early, mid,
and late (Salehi et al., 2020). In addition, the infection findings in
CT-scans vary from case to case. Initial infection presents as bilateral
multi-lobar Ground-Glass Opacification (GGO), especially in the lower
lobes, with peripheral or posterior distribution (Salehi et al., 2020; Sun
et al., 2020). In the intermediate stage, the number and size of GGOs in-
crease, and there is progressive transformation of GGO into multi-focal
consolidating opacities, thickening of the septum, and development of
vailable online 21 March 2023
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a crazy-patch pattern, especially in the severe cases. The study by Pan
et al. (2020a) showed that imaging findings had improved in 75% of
patients after day 14, including a reduced number of affected lobes and
resolution of the crazy paving pattern and consolidating opacities.

Although CT-scanners are available in most hospitals, even in less
developed countries, an experienced radiologist is needed to detect and
follow the progression of Covid-19 infection. To address this problem,
many machine learning approaches have been proposed to provide
automated solutions that reduce the need for radiologists and help
them (Vantaggiato et al., 2021; Muhammad et al., 2022; Bougourzi
et al., 2021b; Santa Cruz et al., 2021).

Because Covid-19 infection findings exhibit high variability in
shape, size, type, and position during disease progression, the segmen-
tation task is very challenging. On the other hand, the segmentation
task with artificial intelligence comes with additional challenges (Ku-
mar Singh et al., 2021; Laradji et al., 2021). One of the most difficult
challenges is the low intensity contrast between the infection and
normal tissue, especially for the ground glass opacity (GGO) feature.
In addition, it is difficult to distinguish between consolidation and
crazy paving and non-lung tissue, especially when the infection has a
peripheral or posterior distribution with the presence of consolidation
or crazy paving (Kumar Singh et al., 2021; Laradji et al., 2021).

In the last decade, Deep Learning approaches, especially CNNs, have
achieved high performance on most computer vision tasks compared
to traditional methods (Bougourzi et al., 2020, 2022). However, to
train an efficient Deep Learning architecture, huge labeled data is
needed (Bougourzi et al., 2020, 2022). When Covid-19 began to prolif-
erate, such adequate data were not available due to many factors. These
factors include: the privacy restrictions on the use of patient data, the
large amount of time and effort required in the labeling process, and
the need for many experienced radiologists to segment the infection
regions in the CT-scans (Zhao et al., 2021b; Fung et al., 2021; Laradji
et al., 2021). In this pandemic, it was difficult to find radiologists who
could perform this task.

Due to data limitation, most existing works have used small data
to train their models (Fan et al., 2020; Abdel-Basset et al., 2021; Liu
et al., 2021; Elharrouss et al., 2021). On the other hand, these works
have only used infected slices to train and test their models (Fan
et al., 2020; Wang et al., 2020; Abdel-Basset et al., 2021; Liu et al.,
2021; Kumar Singh et al., 2021; Elharrouss et al., 2021; Wang et al.,
2022). However, this does not correspond to the real scenario where
the infections in CT-scan usually occur only in a few slices. Therefore,
it is interesting to investigate the performance of the segmentation
approaches for both infected and uninfected slices corresponding to a
realistic configuration.

In the primary datasets used for Covid-19 segmentation, only the
middle slices of the CT scans were used. However, infection can occur
in any area of the lung. In recent months, additional datasets for
Covid-19 segmentation have been made publicly available (Radiolo-
gists, 2019; Ma et al., 2021; Zhang et al., 2020). The aim of this work
is to segment Covid-19 infections in a real scenario (all slices of 3D CTs
are used for training and testing). To this end, inspired by the Att-Unet
architecture, we propose three different architectures. Moreover, we
compare our results with three CNN-based segmentation architectures
and three published architectures for Covid-19 segmentation whose
implementation codes have been made publicly available.

Training segmentation models with the Cross-Entropy (CE) loss
function usually have problems in predicting object boundaries, re-
sulting in fuzzy boundaries (Qin et al., 2019). In addition, a Covid-19
infection may have multiple small infection regions. To address these
issues, we proposed an additional BCE loss function that focuses on the
infection boundaries. The small infection regions have more boundary
pixels (relative to the area of the infection) than the larger ones.
Therefore, the proposed hybrid loss function weighs the small infection
2

regions more than the large infections.
For pulmonary and Covid-19 infections, there may be high variabil-
ity in screening and changes in intensity and illumination from one
CT-scanner to another and from one imaging environment to another.
Patient age, ethnicity, and severity of Covid-19 infection may also
affect the appearance of the CT scan. Therefore, it is interesting to
investigate the effectiveness of segmentation methods in cross-datasets
experiments. The cross-datasets experiments investigate the generaliza-
tion ability of the proposed machine learning solutions and can provide
a clear idea of their applicability in the real world.

In order to provide an efficient Covid-19 infection segmentation
solution that can overcome the above challenges from different aspects,
our main contributions can be summarized as follows:

• Inspired by the Att-Unet architecture, we propose three different
architectures for segmenting Covid-19 infections from CT-scans.
The first variant, Pyramid Att-Unet (PAtt-Unet), uses image pyra-
mids to preserve the spatial awareness in all of the encoder
layers. Unlike most attention-based segmentation architectures,
our proposed PAtt-Unet uses the attention gates not only in the
decoder but also in the encoder.

• In addition to the PAtt-Unet architecture, we propose DAtt-Unet,
designed to segment Covid-19 infections and lungs simultane-
ously. In DAtt-Unet, the two segmentation tasks share the encoder
and the intermediate blocks of Att-Unet but each has its own
decoder.

• Based on PAtt-Unet and DAtt-Unet, we propose a Pyramid Dual-
Decoder Att-Unet (PDAtt-Unet) architecture using the pyramid
and attention gates to preserve the global spatial awareness in
all of the encoder layers. In the decoding phase, PDAtt-Unet has
two independent decoders that use the Attention Gates to segment
infection and lung simultaneously.

• To address the shortcomings of the binary cross entropy loss
function in distinguishing the infection boundaries and the small
infection regions, we propose the 𝐵𝐶𝐸𝐸𝑑𝑔𝑒 loss that focuses on
the edges of the infection regions.

• To evaluate the performance of our proposed architectures, we
use four public datasets with two evaluation scenarios (intra and
cross datasets), all slices from CT scans are used for the training
and testing phases.

• To compare the performance of our approach with other CNN-
based segmentation architectures, we use three baseline archi-
tectures (Unet Ronneberger et al., 2015, Att-Unet Oktay et al.,
2018 and Unet++ Zhou et al., 2018) and three state-of-the-art
architectures for Covid-19 segmentation (InfNet Fan et al., 2020,
SCOATNet Zhao et al., 2021a, and nCoVSegNet Liu et al., 2021).
The experimental results show the superiority of our proposed
architecture compared to the basic segmentation architectures as
well as to the three state-of-the-art architectures in both intra-
database and inter-database evaluation scenarios. The codes of
the proposed architectures and the loss function have been made
publicly available at. https://github.com/faresbougourzi/PDAtt-
Unet. (Last accessed April, 20𝑡ℎ 2022).

The remainder of this paper is organized as follows: Section 2 presents
some related work on segmentation of Covid-19 infections from CT-
scans. In Section 3, we describe our proposed approach. Section 4
consists of the description of the datasets used and the evaluation
scenarios and metrics. Section 5 presents and discusses the experiments
and results. Section 6 shows some segmentation examples. Finally,
Section 7 concludes the paper.

2. Related work

Over the past decade, Deep Learning has enabled us to master many
tasks that seemed impossible for machines (Bougourzi et al., 2020,
2022). In particular, medical imaging tasks that are very complicated
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and require specialists and radiologists (Prevedello et al., 2019; Roth
et al., 2022). Machine learning can provide an efficient solution to
medical imaging tasks to assist and guide radiologists and physicians
to reduce subjectivity and bias in decision-making. It could also signif-
icantly reduce the time and effort required (Wang et al., 2020; Zhao
et al., 2021b; Fung et al., 2021; Laradji et al., 2021).

Since the emergence of the Covid-19 pandemic, many approaches
to segmenting Covid-19 infection have been proposed In Zhao et al.
(2021b), Xiangyu Zhao et al. proposed dilated dual attention U-Net
(D2 A U-Net) to automatically segment lung infection in Covid-19 CT
slices. To evaluate the performance of their approach, they took only
the infected slices from Segmentation dataset nr.2 (Radiologists, 2019)
and the COVID-19-CT-Seg dataset (Ma et al., 2021) and used them
as training data. As test data, they used the 100 slices of the dataset
presented in Radiologists (2019).

Liu et al. (2021) proposed a two-stage cross-domain transfer learn-
ing system. Their framework consists of two main components. First,
they proposed nCoVSegNet, a deep learning-based approach that uses
attention-driven feature fusion and large receptive fields. Second, they
trained nCoVSegNet with a cross-domain transfer learning strategy that
leverages knowledge from natural images (i.e., ImageNet) and medical
images (i.e., LIDC-IDRI) to reinforce final training on CT images with
Covid-19 infections. They used MosMedData dataset (Morozov et al.,
2020) for the final stage of transfer learning (40 slices for training
and 10 slices for testing), then they tested the obtained model on the
COVID-19-CT-Seg dataset (Ma et al., 2021).

In Wang et al. (2022), Ruxin Wang et al. proposed an encoder–
decoder CNN-based system for segmenting Covid-19 infections from the
CT scans. Their approach is based on aggregation of peer and cross-
level contextual learning. To capture the complex structure, they used
an autofocus module to detect and incorporate multiscale contextual
information at the peer level. They also proposed a panoramic module
to capture complementary fine details and semantic information. To
evaluate the performance of their approach, Ruxin Wang et al. com-
bined different datasets, MosMedData dataset (Morozov et al., 2020;
Ma et al., 2021), COVID-19 CT segmentation (Radiologists, 2019),
and Segmentation dataset nr. 2 (Radiologists, 2019), and removed the
slices that have no infection. Then, the obtained dataset was randomly
divided into a training dataset and a test dataset (it is not clear whether
the patient-independent protocol was followed or not).

Deng-Ping Fan et al. proposed a deep network (Inf-Net) for seg-
mentation of Covid-19 lung infections (Fan et al., 2020). Their Inf-Net
approach uses parallel partial decoders to aggregate high-level features
and create a global map. They also used implicit reverse attention
and explicit edge attention to model the boundaries and improve the
representations.

Since Covid-19 infection labeling is a tedious and time-consuming
task, the semi-supervised method has been extensively studied (Yang
et al., 2021; Abdel-Basset et al., 2021; Wang et al., 2020; Mu et al.,
2021). Fan et al. (2020) investigated a semi-supervised segmentation
strategy that exploits the framework of randomly selected reproduction.
The experimental results showed that using the semi-supervised frame-
work can improve learning ability and achieve better performance.

At the advent of the Covid-19 pandemic, the available labeled
data for training and evaluating machine learning approaches was
very limited, especially for the segmentation task. For this reason,
the first state-of-the-art approaches were evaluated with very limited
data, which limits the study population (Fan et al., 2020; Abdel-Basset
et al., 2021; Liu et al., 2021; Elharrouss et al., 2021). This reduces the
reliability of these approaches in real-world scenarios, where Covid-19
infection exhibits high case-to-case variability in shape, type, location,
and intensity (Sun et al., 2020; Kumar Singh et al., 2021; Laradji
et al., 2021). On the other hand, many state-of-the-art approaches
were trained and evaluated using only the infected slices (Fan et al.,
2020; Wang et al., 2020; Abdel-Basset et al., 2021; Liu et al., 2021;
3

Kumar Singh et al., 2021; Elharrouss et al., 2021; Wang et al., 2022).
However, this does not correspond to the real scenario, where the
infections in CT-scan usually occur only in a few slices with different
degrees. In addition to the above two evaluation limitations, most
of the state-of-the-art approaches were evaluated only for the intra-
dataset scenario. However, the cross-dataset scenario investigates the
generalization capability for real-world application scenarios. This is
a very important evaluation scenario, especially in the case of CT-
scanning data where the intensity and illumination vary greatly from
one CT-scanner to another and from one acquisition setting to another.
The goal of this work is to develop an efficient CNN-based approach
for segmenting Covid-19 infections from CT-scans in real clinical sit-
uations, using all slices of 3D CT-scans for training and testing. In
addition, extensive evaluations are performed on four datasets for intra-
datasets and cross-datasets to investigate the generalization ability of
the proposed approach in different real-world scenarios.

3. The proposed approach

In this section, we first provide details of our proposed Pyramid
Att-Unet (PAtt-Unet), Dual-Decoder Att-Unet (DAtt-Unet) and Pyra-
mid Dual-Decoder Att-Unet (PDAtt-Unet) architectures in terms of net-
work architecture and core network components. Then, we present the
proposed Hybrid loss function.

3.1. Pyramid Att-Unet (PAtt-Unet)

During the encoding phase of Unet-like segmentation architectures,
high-level features are learned through successive convolutional layers
and pooling layers. This shrinks the spatial dimensionality and expands
the depth of the feature maps. However, this learning process leads to a
loss of spatial information, which is very important for identifying the
salient parts of the infection. To preserve global contextual awareness
in all of the encoder layers, we propose a Pyramid Att-Unet architecture
(PAtt-Unet). The encoder of the proposed PAtt-Unet uses four pyramid
levels (𝑃1, 𝑃2, 𝑃3, and 𝑃4) of the input slice image (𝐼), as shown in
ig. 1b. Specifically, the PAtt-Unet architecture encoder is constructed
sing Basic ConvBlocks, Attention Gates (AGs), and the four pyramid
aths. First, the Basic ConvBlock consists of two 3 × 3 convolution
ernels, each followed by a batch normalization and a ReLU activation
unction, as shown in Fig. 2(a). Second, the Attention Gate (AG) is
dentical to the one proposed in the Att-Unet architecture (Oktay et al.,
018). Unlike the Att-Unet architecture, the AGs are not only used in
he decoding phase, but are also used to preserve spatial awareness
uring the encoding phase. Fig. 2(b) shows the details of the AG block.
s can be seen in this figure, the AG receives an input feature 𝑥
[ℎ,𝑤, 𝑐𝑥]) and a gating signal 𝑔 ([ℎ,𝑤, 𝑐𝑔]), where ℎ and 𝑤 represent

the height and width and 𝑐𝑥 and 𝑐𝑔 represent the number of channels of
the input feature 𝑥 and gating signal 𝑔, respectively. Each of the input
features 𝑥 and the gating signal 𝑔 is fed into a 1-by-1 convolutional
layer to unify the number of channels 𝑐𝑥 and 𝑐𝑔 to 𝑐𝑖𝑛𝑡. The obtained 𝐺
and 𝑋 features are summed to construct 𝐺𝑋 features, which are fed to a
ReLU activation function and then to a 1-by-1 convolutional layer that
shrinks the number of channels to 1, followed by a Sigmoid activation
function. This produces a spatial attention filter 𝐴, which is of the shape
[ℎ,𝑤]. Finally, the input feature 𝑥 is element-wise multiplied by the
ttention filter 𝐴, as shown in the following equation:

𝑎𝑡𝑡 = 𝐴 ⊗ 𝑥 (1)

As shown in Fig. 1.(b), the encoder of the proposed PAtt-Unet uses
four pyramid levels (𝑃1, 𝑃2, 𝑃3, and 𝑃4) of the input slice image (𝐼).
Each pyramid image is fed into Basic ConvBlocks to match the feature
maps of the corresponding encoder layers’ output. Each output of the
pyramid convolutional feature maps is used as a gating signal to control
the attention of the corresponding encoder layer. On the other hand, the
decoder of the PAtt-Unet architecture is identical to the decoder of the
Att-Unet architecture (Oktay et al., 2018). The detailed structure of the

proposed PAtt-Unet architecture can be found in Fig. A.5 in Appendix.
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Fig. 1. Comparison of Att-Unet (a), our proposed PAtt-Unet (b), our proposed DAtt-Unet (c), and PDAtt-Unet (d).
Fig. 2. Schematic description of (a) Encoder and Decoder Basic ConvBlock. (b) Attention Gate block, where g is the gating signal and the 𝑥 is the input feature maps. 𝐴(ℎ,𝑤) is
the obtained spatial attention, which is applied for all channels of the input feature maps (x).
3.2. Dual-decoder Att-Unet (DAtt-Unet)

To segment Covid-19 infection and exclude confusion with the other
lung tissues, we propose a DAtt-Unet architecture. Our DAtt-Unet is
designed to segment both infections and lung regions, simultaneously.
The goal is to guide the training process to look inside the lung regions
and distinguish between the infection tissue (especially when consoli-
dation and crazy paving are peripherally or posteriorly distributed) and
non-lung tissue. Figs. 1(a) and (c) show the difference between our
proposed DAtt-Unet and Att-Unet architectures. Both DAtt-Unet and
Att-Unet use the attention gates (AG). As shown in Fig. 2(b), AG learns
the important spatial regions from the skip features and reduces redun-
dant features by using the up-sampling features as the gating signal. As
shown in Fig. 1(c), DAtt-Unet has the same encoder for the infection
and lung segmentation tasks that is used by the skip connections, while
each task has its own decoder. The goal is to use the encoder to
learn high-level features for both tasks. Then, the decoders use these
features to segment the infection and lung regions independently. The
4

detailed structure of the proposed PAtt-Unet architecture can be found
in Fig. A.6 in Appendix.

3.3. Pyramid Dual-Decoder Att-Unet (PDAtt-Unet)

Our proposed Pyramid Dual-Decoder Att-Unet (PDAtt-Unet) com-
bines the two architectures PAtt-Unet and DAtt-Unet, as shown in
Fig. 1, (b), (c), and (d). Fig. 3 illustrates the details of the proposed
PDAtt-Unet architecture, which consists of one encoder with pyramid
paths and two decoders.

The PDAtt-Unet encoder consists of two main components: the main
encoder path, which consists of five Basic ConvBlocks layers and four
maxpooling layers. The outputs of the five Encoder layers are denoted
by 𝐸1, 𝐸2, 𝐸3, and 𝐸4, respectively. The second component of the
encoder is the pyramid paths. In total there are four pyramid paths,
which has pyramid inputs (𝑃1, 𝑃2, 𝑃3, and 𝑃4) of the input slice image
(𝐼), respectively. The pyramid paths generate the pyramid feature
maps, denoted by 𝑃𝑓1 , 𝑃𝑓2 , 𝑃𝑓3 and 𝑃𝑓4 , by using Basic ConvBlocks.
The pyramid feature maps are used to preserve the spatial attention
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Fig. 3. Our proposed Pyramid PDEAtt-Unet. Both PDAtt-Unet and PDEAtt-Unet have identical architecture. However, PDEAtt-Unet exploits loss function denoted as Edge loss.
awareness in all encoder layers, where they are used as gating signals
of the Encoder AGs. More specifically, 𝐸1 is obtained using a Basic
ConvBlock that uses 3 input channels (input slice images) and generates
32 feature maps. The obtained 𝐸1 is passed to the maxpooling layer,
which reduces the spatial dimensions to half. On the other hand, the
first input to the pyramid path is the pyramid image 𝑃1 (which is half
the size of the input image 𝐼). 𝑃1 is fed into the Basic ConvBlock,
which is similar to the first Encoder Basic ConvBlock (3–32), and the
output is denoted 𝑃𝑓1 . 𝑃𝑓1 and the maxpooling of 𝐸1 are the input of
the first encoder attention gate, where 𝑃𝑓1 is the gating signal. The
output of the AG block is concatenated with the maxpooled 𝐸1. The
concatenated feature maps are fed into the second Basic ConvBlock
of the main encoder path, which learns higher feature representations
from the concatenated features ([112, 112, 64]). The features of the
second encoder layer are denoted by 𝐸2 [112, 112, 64]. Similarly, the
input of the second pyramid path is 𝑃2, which is fed into two Basic
ConvBlocks (3–32 and 32–64), the output is denoted by 𝑃𝑓2 . 𝑃𝑓2 and the
maxpooled 𝐸2 [56, 56, 64] are the inputs of the second encoder attention
gate, where 𝑃𝑓2 is the gating signal. The output of the second AG block
is concatenated to the maxpooled 𝐸2. The concatenated feature maps
are fed into the third Basic ConvBlock of the main encoder path, which
learns higher feature representations from the concatenated features
([56, 56, 128]). The features of the third encoder layer are denoted
by 𝐸3 [56, 56, 128]. Similarly, 𝐸4 [28, 28, 256] and 𝐸5 [14, 14, 512] are
obtained by using pyramid paths (𝑃𝑓3 and 𝑃𝑓4 ), attention gates (third
and fourth), and Basic ConvBlocks, as shown in Fig. 3.

The decoder of PDAtt-Unet has two identical paths, the first path
is for segmenting of Covid-19 infection and the second path is for seg-
menting of lungs. Each path consists of four decoder Basic ConvBlocks,
four up-sampling blocks (bi-linear up-sampling) and four attention
gates. More specifically, the last encoder feature map (𝐸5) is up-
sampled to twice the spatial dimension to obtain feature maps of
[28, 28, 512]. The up-sampled feature maps and the feature maps from
the fourth skip encoder 𝐸4 are fed into the attention gate, with the up-
sampled feature maps representing the gating signal. The output of the
attention gate is concatenated with the up-sampled feature maps of 𝐸5,
then the decoder Basic ConvBlock is applied to obtain 𝐷𝐼4 [28, 28, 256]
for the infection segmentation path. Similar is applied to obtain 𝐷𝐿4
for the lung segmentation path. Similarly, 𝐷 , 𝐷 and 𝐷 and 𝐷 ,
5

𝐼3 𝐼2 𝐼1 𝐿3
Table 1
Our proposed PDAtt-Unet architecture in detail. E2conv is an encoder two convolutional
block. D2conv is a decoder two convolutional block.

Block Layer Input Output

Encoder

𝐸2𝑐𝑜𝑛𝑣1 224 × 224 × 3 224 × 224 × 32 = 𝐸1
𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔1 224 × 224 × 32 112 × 112 × 32
𝐸2𝑐𝑜𝑛𝑣2 112 × 112 × 64 112 × 112 × 64 = 𝐸2
𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2 112 × 112 × 64 56 × 56 × 64
𝐸2𝑐𝑜𝑛𝑣3 56 × 56 × 128 56 × 56 × 128 = 𝐸3
𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔3 56 × 56 × 128 28 × 28 × 128
𝐸2𝑐𝑜𝑛𝑣4 28 × 28 × 256 28 × 28 × 256 = 𝐸4
𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔4 28 × 28 × 256 14 × 14 × 256
𝐸2𝑐𝑜𝑛𝑣5 14 × 14 × 512 14 × 14 × 512 = 𝐸5

Decoder

𝑈𝑝 − 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔1 14 × 14 × 512 28 × 28 × 512
𝐷2𝑐𝑜𝑛𝑣1 28 × 28 × 768 28 × 28 × 256 = 𝐷𝐼4 = 𝐷𝐿4

𝑈𝑝 − 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔2 28 × 28 × 256 56 × 56 × 256
𝐷2𝑐𝑜𝑛𝑣2 56 × 56 × 384 56 × 56 × 128 = 𝐷𝐼3 = 𝐷𝐿3

𝑈𝑝 − 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔3 56 × 56 × 128 112 × 112 × 128
𝐷2𝑐𝑜𝑛𝑣3 112 × 112 × 192 112 × 112 × 64 = 𝐷𝐼2 = 𝐷𝐿2

𝑈𝑝 − 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔4 112 × 112 × 64 224 × 224 × 64
𝐷2𝑐𝑜𝑛𝑣4 224 × 224 × 96 224 × 224 × 32 = 𝐷𝐼1 = 𝐷𝐿1

𝐷𝐿2
and 𝐷𝐿1

are obtained for the infection and lung segmentation
paths, respectively. For this purpose, the encoder feature maps (𝐸3, 𝐸2,
and 𝐸1), attention gates, Decoder Basic ConvBlocks, and up-sampling
blocks are used, as shown in Fig. 3. The last infection path feature map
𝐷𝐼1 [224, 224, 32] is mapped to a channel output [224, 224, 1] using the
(1 × 1 × 1) convolutional block. Similarly, the last lung path feature
map 𝐷𝐿1

[224, 224, 32] is mapped to a channel output [224, 224, 1] using
the (1 × 1 × 1) convolution block. Details of the dimensions of the
PDAtt-Unet layers can be found in Table 1.

3.4. Hybrid loss function

In our experiments, we consider the standard BCE loss function,
where we use it to train Unet (Ronneberger et al., 2015), Att-Unet (Ok-
tay et al., 2018), Unet++ (Zhou et al., 2018), InfNet (Fan et al., 2020),
SCOATNet (Zhao et al., 2021a), nCoVSegNet (Liu et al., 2021) and the
proposed PAtt-Unet.
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For the proposed DAtt-Unet and PDAtt-Unet architectures, which
have two segmentation tasks simultaneously, the loss function (𝐿𝐺𝑙𝑜𝑏𝑎𝑙)
s composed as follows:

𝐺𝑙𝑜𝑏𝑎𝑙 = 𝛼𝐼𝑛𝑓 + 𝛽 𝐿𝑢𝑛𝑔 (2)

here 𝐼𝑛𝑓 and 𝐿𝑢𝑛𝑔 are the infection and lung task losses, respec-
ively. The weights 𝛼 and 𝛽 are set to 0.7 and 0.3, respectively. The
oal is to pay more attention to the infection segmentation task than
o the lung segmentation one, since it is the main segmentation task.

Since training segmentation models with the loss function CE usu-
lly suffers from predicting the boundaries of the objects, resulting
n fuzzy boundaries (Qin et al., 2019). In addition, a Covid-19 infec-
ion may have multiple small infection regions, and the segmentation
odels usually cannot segment these small infections. To address these

ssues, we propose an additional BCE loss function that focuses on the
nfection boundaries by giving larger weights to the boundaries, with
he small infections having larger weights than the large ones. The
roposed hybrid loss function is defined as follows:

𝐻𝑦𝑏𝑟𝑖𝑑 = 𝛼𝐼𝑛𝑓 + 𝛽 𝐿𝑢𝑛𝑔 + 𝛾 𝐸𝑑𝑔𝑒 (3)

here 𝐼𝑛𝑓 and 𝐿𝑢𝑛𝑔 are the losses associated with the infection and
ung segmentation tasks, respectively. The weights 𝛼 and 𝛽 are set to
.7 and 0.3, respectively. 𝐸𝑑𝑔𝑒 is the edge loss weighted by 𝛾. The 𝐼𝑛𝑓
nd 𝐿𝑢𝑛𝑔 are defined by:

𝐼𝑛𝑓 = −
𝐵
∑

𝑚=1

𝑊 ⋅𝐻
∑

𝑖=1
𝐺𝑅𝑖

𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝐺𝑅𝑖
) 𝑙𝑜𝑔(1 − 𝑝𝑖) (4)

𝑙𝑢𝑛𝑔 = −
𝐵
∑

𝑚=1

𝑊 ⋅𝐻
∑

𝑖=1
𝐺𝐿𝑖

𝑙𝑜𝑔(𝑠𝑖) + (1 − 𝐺𝐿𝑖
) 𝑙𝑜𝑔(1 − 𝑠𝑖) (5)

here 𝐵, 𝑊 and 𝐻 are the used batch size in training and the width
nd height of the predicted segmentation mask, respectively. 𝐺𝑅𝑖

∈
{0, 1} and 𝐺𝐿𝑖

∈ {0, 1} are the ground truth label of the infection
and lung of pixel 𝑖, respectively. Also, 𝑝𝑖 and 𝑠𝑖 are the prediction
robabilities of the infection and the lung of pixel 𝑖 obtained from the
ecoders for segmenting the infection and lung, respectively. On the
ther hand, for batch size (𝐵) and prediction width (𝑊 ) and height
𝐻), the edge loss function is defined as follows:

𝐸𝑑𝑔𝑒 = −
𝐵
∑

𝑚=1

𝑊 ⋅𝐻
∑

𝑖=1
𝐺𝐸𝑖

𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝐺𝐸𝑖
) 𝑙𝑜𝑔(1 − 𝑝𝑖) (6)

here 𝐺𝑅𝑖
∈ {0, 1} and 𝑝𝑖 are the ground truth label of the edge

nfection and the edge prediction probabilities of pixel 𝑖, respectively.
he ground-truth edge pixels are obtained by applying the morpholog-

cal gradient to the ground-truth infection regions. After obtaining the
round-truth edge pixels, the BCE loss function is applied between the
round-truth pixels and the corresponding pixels in the mask map. The
eight of the edge loss 𝛾 is experimentally determined for each dataset.
or simplicity, the training of the proposed PDAtt-Unet using the hybrid
oss function is referred to as PDEAtt-Unet.

In the proposed edge loss, the pixels at the infection boundary,
hich cause more confusion in the prediction than the other pixels,
re weighted more heavily. Unlike other targets where the edges in
he original images have significant structure, the edges of the Covid-
9 infection have extremely few pixels, so adding a head or a branch
o predict the edges is useless for solving multiple tasks, as found
xperimentally.

. Datasets and evaluation metrics

.1. Datasets

To evaluate the performance of our proposed architectures, we
sed four publicly available datasets, which are COVID-19 CT segmen-
ation (Radiologists, 2019), Segmentation dataset nr.2 (Radiologists,
6

Table 2
The used datasets summary.

Name Dataset #CT-Scans #Slices

Dataset_1 COVID-19 CT segmentation
(Radiologists, 2019)

40 100

Dataset_2 Segmentation dataset nr. 2
(Radiologists, 2019)

9 829

Dataset_3 COVID-19-CT-Seg dataset
(Ma et al., 2021)

20 3520

Dataset_4 CC-CCII Segmentation
Dataset (Zhang et al.,
2020)

150 750

2019), COVID-19-CT-Seg dataset (Ma et al., 2021), and CC-CCII Seg-
mentation Dataset (Zhang et al., 2020), which are summarized in
Table 2. The COVID-19 CT segmentation dataset (Radiologists, 2019)
consists of 100 axial CT images (slices) from more than 40 patients
with Covid-19 infection. Segmentation dataset nr.2 (Radiologists, 2019)
consists of 9 3D CT scans. In total, it consists of 829 slices, of which 373
slices have evidence of Covid-19 infection assigned by a radiologist.

The COVID-19-CT-Seg dataset (Ma et al., 2021) consists of 20 Covid-
19 CT scans. All cases contain Covid −19 infections. This dataset has
been labeled by many experienced radiologists and the labeling is con-
sistent. The entire lung mask, containing both normal and pathologic
regions, was labeled. There are a total of 1844 infected slices out of
3520 slices.

For CC-CCII Segmentation Dataset (Zhang et al., 2020), lesions were
segmented from CT slice images from the China Consortium of Chest
CT Image Investigation (CC-CCII). A total of 750 CT slices from 150
Covid-19 patients were manually segmented into background, lung
field, ground glass opacity (GGO), and consolidation.

The used datasets have long and similar names. To avoid confusion
between names, we refer to them as Dataset_1, Dataset_2, Dataset_3,
and Dataset_4, as shown in Table 2.

In our experiments, we explored both intra-dataset and cross-dataset
scenarios. For intra-dataset experiments, Dataset_2 (Radiologists, 2019),
Dataset_3 (Ma et al., 2021) and Dataset_4 (Zhang et al., 2020) are
randomly split into 70%–30% as training and test splits, respecting the
patient-independent splitting scenario in which all slices of a patient
belong to only one split (training or validation). For the cross-dataset
evaluation scenario, we used the trained models on Dataset_2 (trained
on the training data 70%) and tested them on Dataset_1 (Radiologists,
2019), Dataset_3 (Ma et al., 2021), and Dataset_4 (Zhang et al., 2020),
respectively. Similarly, we used the trained models on Dataset_3 (Ma
et al., 2021) (trained on the training data 70%) and test them on
Dataset_1 (Radiologists, 2019), Dataset_2 (Radiologists, 2019), and
Dataset_4 (Zhang et al., 2020).

4.2. Evaluation metrics

To evaluate the performance of different approaches, we used five
evaluation metrics, namely: F1 score (F1-S), Dice score (D-S), inter-
section over union (IoU), sensitivity (Sens), specificity (Spec), and
precision (Prec).

F1 score, Intersection over Union (IoU), Sensitivity (Sens), Speci-
ficity (Spec) and Precision (Prec) are defined as follows:

F1 score = 100 ⋅ 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(7)

𝐼𝑜𝑈 = 100 ⋅ 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

(8)

𝑆𝑒𝑛𝑠 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 100 ⋅ 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝑆𝑝𝑒𝑐 = 100 ⋅ 𝑇𝑁 (10)

𝐹𝑃 + 𝑇𝑁
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𝑃𝑟𝑒𝑐 = 100 ⋅ 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)

here 𝑇𝑃 is the True Positives, 𝑇𝑁 is the True Negatives, 𝐹𝑃 is the
alse Positives and 𝐹𝑁 is the False Negatives, all associated with the
inary segmentation of the test images.

F1 score, intersection over union (IoU), sensitivity (Sens), specificity
Spec), and precision (Prec) are micro-metrics, which are calculated at
he level of pixel. For these types of metrics, 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁
ere first calculated for all test images, and then these metrics were

alculated using the Eqs. (7), (8), (9), (10), and (11). However, the Dice
core is the macro version of the F1 score (the F1 score is calculated
or each test image, then the average over all test images is the Dice
core). For 𝑁 test images, the Dice score is defined as follows:

ice score = 100 ⋅ 1
𝑁

𝑁
∑

𝑖=1

2 ⋅ 𝑇𝑃𝑖
2 ⋅ 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(12)

where 𝑇𝑃𝑖, 𝑇𝑁𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 are True Positives, True Negatives, False
Positives and False Negative for the 𝑖th image, respectively. In the
experimental results, it is normal to have low dice score average since
in the three datasets there is a large number of uninfected slices, where
totally correct prediction of the masks (black mask) will give 0 dice
score for these slices which will be included in calculating the average.

5. Experiments and results

5.1. Experimental setup

For deep learning training and testing, we used the Pytorch (Paszke
et al., 2019) library with NVIDIA GPU Device GeForce TITAN RTX
24 GB. The batch size used consists of 6 images. We trained the
networks for 60 epochs. The initial learning rate is 0.01, which decays
by 0.1 after 30 epochs, followed by another decay of 0.1 after 50
epochs. Furthermore, we used active data augmentation techniques
which are: rotation using random angle between −35 degrees to 35
degrees, and random horizontal and vertical flipping. The values of
𝛾 for the Edge loss in the proposed hybrid loss function (illustrated
in Section 3.4) is experimentally set to 0.7, 2 and 0.9 for Dataset_2,
Dataset_3 and Dataset_4, respectively.

5.2. Experimental results on intra-dataset scenario

In this section, we evaluate the performance of the proposed
PDEAtt-Unet and compare it with Unet (Ronneberger et al., 2015), Att-
Unet (Oktay et al., 2018), Unet++ (Zhou et al., 2018), InfNet (Fan et al.,
2020), SCOATNet (Zhao et al., 2021a) and nCoVSegNet (Liu et al.,
2021). Tables 3–5 show the experimental results using Dataset_2 (Ra-
diologists, 2019), Dataset_3 (Ma et al., 2021) and Dataset_4 (Zhang
et al., 2020), respectively. From the results of Tables 3, 4, and 5, our
proposed approach (PDEAtt-Unet) outperforms three baseline segmen-
tation architectures and three state-of-the-art approaches. Specifically,
the experimental results of Dataset_2 show that our approach achieves
77.60%, 41.68%, and 63.40% for F1 score, Dice score, and IoU,
respectively. In this dataset, the best competing approach is SCOAT-
Net (Zhao et al., 2021a), which achieved 69.39%, 31.56%, and 53.13%
for F1 score, Dice score, and IoU, respectively. Therefore, our approach
outperformed the SCOATNet approach by 8.2%, 10.1%, and 10.3% for
F1 score, Dice score, and IoU, respectively.

Using the intra-dataset experiment results for Dataset_3 ( Table 4),
we find that InfNet (Fan et al., 2020) outperforms the other competing
methods, achieving 72.91%, 37.02%, and 57.37% for F1 score, Dice
score, and IoU, respectively. On the other hand, our proposed PDEAtt-
Unet approach outperforms all methods, especially InfNet by 2.60%,
4.25%, and 3.3% for F1 score, Dice score, and IoU, respectively.

Table 5 shows that nCoVSegNet (Liu et al., 2021) outperforms
the other state-of-the-art comparison approaches (InfNet and SCOAT-
7

Net) and the baseline architectures (Unet, Unet++, and Att-Unet).
On the other hand, our proposed PDEAtt-Unet approach outperforms
nCoVSegNet by 1.3%, 2.3%, and 1.8% for F1 score, Dice score, and
IoU, respectively. The intra-dataset experiment results show that our
proposed PDEAtt-Unet approach outperforms all competing methods
and the second best approach differs from one dataset to another. This
shows that our approach is efficient and consistent under different
evaluation conditions.

5.3. Experimental results on cross-dataset scenario

In order to compare different segmentation architectures, it is im-
portant to investigate their generalization capabilities in cross-
databases scenarios. Indeed, cross-database experiments play a crucial
role in evaluating the effectiveness of each architecture in real-world
scenarios. Tables 6 and 7 show the cross-dataset results of the trained
models on Dataset_2 (Radiologists, 2019) and Dataset_3 (Ma et al.,
2021), respectively. On the other hand, F1 score (F1-S), Dice score
(D-S), and Intersection over Union (IoU) are used as evaluation metrics.

For the cross-dataset experiments, Dataset_2 (Radiologists, 2019) is
used as training dataset and Dataset_1 (Radiologists, 2019), Dataset_3
(Ma et al., 2021) and Dataset_4 (Zhang et al., 2020) are used as
test datasets. From the results of Table 6, the proposed PDEAtt-Unet
architecture performs better than the state-of-the-art architectures and
the baseline architectures in the three test datasets.

For the cross-dataset experiments with Dataset_3 (Ma et al., 2021) as
the training dataset, Dataset_1 (Radiologists, 2019), Dataset_2 (Radiolo-
gists, 2019), and Dataset_4 (Zhang et al., 2020) are used as test datasets.
Based on the results of Table 7, we can notice that the proposed PDEAtt-
Unet outperforms all competing architectures in the three cross-dataset
scenario.

From Tables 6 and 7, the comparison between the state-of-the-art
architectures and the baselines shows that for each experiment, the
best architecture among these architectures changes. More specifically,
the best competing architecture for Experiments II, III and VI is
the SCOATNet architecture. On the other hand, for Experiments I,
IV and V , the best architectures are Att-Unet, InfNet and Unet++,
respectively. In contrast, our proposed approach achieves consistent
performance across experiments. Similar to the intra-dataset results,
the cross-dataset results also demonstrate the efficiency of the proposed
architectures and the use of Edge loss to segment Covid-19 infections.

5.4. Ablation study

As shown in Fig. 3, our proposed approach consists of a pyramid
encoder input, a dual decoders, and a hybrid loss function. To test
the effectiveness of each component, we perform an ablation study
using both intra-database and inter-database evaluation scenarios by
discarding some components of the proposed PDEAtt-Unet.

Table 8 shows the ablation study for intra-dataset experiments.
From this table, it can be seen that using Attention Pyramid paths
improves the results of the three intra-dataset experiments compared to
using the standard Att-Unet. For Dataset_2, the PAtt-Unet architecture
improves Att-Unet results by 4%, 3.1%, and 4.4% for F1 score, Dice
score, and IoU, respectively. Similarly, experiments with Dataset_3 and
Dataset_4 show the efficiency of using the encoder Attention Pyramids.
For Dataset_3 and Dataset_4, the F1 score is improved by 3.1% and
0.5%, respectively, the Dice score is improved by 3.6% and 0.7%,
respectively, and the IoU is improved by 4.8% and 0.7%, respectively.
The second component of our proposed approach is the use of a dual
decoders. The results compared to using Att-Unet show the superiority
of the proposed DAtt-Unet architecture on three datasets (Dataset_2,
Dataset_3, and Dataset_4) and three metrics (F1 score, Dice score, and
IoU).

Moreover, the combination of Attention Pyramid input and dual

decoders (PDAtt-Unet) improves the results even more. As can be
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Table 3
Experimental results of intra-dataset scenario using Dataset_2 (Radiologists, 2019). The following architectures are evaluated for Covid-19
infection segmentation: InfNet (Fan et al., 2020), SCOATNet (Zhao et al., 2021a), nCoVSegNet (Liu et al., 2021), Unet, Unet++, and Att-Unet
and the proposed PDEAtt-Unet.

Model F1-S D-S IoU Sens Spec Prec

InfNet (Fan et al., 2020) 40.86 15.02 25.68 35.11 99.06 48.88
SCOATNet (Zhao et al., 2021a) 69.39 31.56 53.13 56.67 99.83 89.46
nCoVSegNet (Liu et al., 2021) 55.41 26.57 38.32 41.10 99.81 85.01
Unet 66.38 28.95 49.68 52.15 99.87 91.30
UNet++ 59.29 26.49 42.13 43.23 99.93 94.32
Att-Unet 59.32 27.55 42.17 45.62 99.79 84.79
PDEAtt-Unet 77.60 41.68 63.40 80.69 99.30 74.74
Table 4
Experimental results of intra-dataset scenario using Dataset_3 (Ma et al., 2021). The following architectures are evaluated for Covid-19 infection
segmentation: InfNet (Fan et al., 2020), SCOATNet (Zhao et al., 2021a), nCoVSegNet (Liu et al., 2021), Unet, Unet++, and Att-Unet and the
proposed PDEAtt-Unet.

Model F1-S D-S IoU Sens Spec Prec

InfNet (Fan et al., 2020) 72.91 37.02 57.37 66.48 99.78 80.72
SCOATNet (Zhao et al., 2021a) 71.02 36.74 55.06 61.35 99.84 84.29
nCoVSegNet (Liu et al., 2021) 62.48 35.95 45.44 50.16 99.86 82.85
Unet 65.82 35.73 49.05 53.32 99.88 85.97
UNet++ 69.89 37.43 53.72 60.69 99.82 82.39
Att-Unet 68.67 33.42 52.29 58.34 99.84 83.45
PDEAtt-Unet 75.52 41.28 60.67 81.94 99.52 70.03
Table 5
Experimental results of intra-dataset scenario using Dataset_4 (Zhang et al., 2020). The following architectures are evaluated for Covid-19
infection segmentation: InfNet (Fan et al., 2020), SCOATNet (Zhao et al., 2021a), nCoVSegNet (Liu et al., 2021), Unet, Unet++, and Att-Unet
and the proposed PDEAtt-Unet.

Model F1-S D-S IoU Sens Spec Prec

InfNet (Fan et al., 2020) 72.19 40.80 56.49 63.62 99.86 83.44
SCOATNet (Zhao et al., 2021a) 77.57 46.99 63.25 70.66 99.86 85.12
nCoVSegNet (Liu et al., 2021) 78.06 47.20 64.02 74.69 99.82 81.74
Unet 75.49 45.34 60.63 69.34 99.84 82.84
Unet++ 77.45 46.99 63.20 71.55 99.85 84.42
AttUnet 77.27 46.32 62.96 70.48 99.87 85.51
PDEAtt-Unet 79.38 49.50 65.81 82.52 99.72 76.47
Table 6
Cross datasets results by using the trained model of Dataset_2 (Radiologists, 2019).

Testing dataset Model F1-S D-S IoU

Experiment I:
Dataset_1
(Radiologists,
2019)

InfNet (Fan et al., 2020) 39.28 32.83 24.44
SCOATNet (Zhao et al., 2021a) 49.24 40.82 32.66
nCoVSegNet (Liu et al., 2021) 37.83 31.74 23.33
Unet 49.34 34.57 32.75
Unet++ 26.59 24.79 15.33
Att-Unet 50.31 41.01 30.34
PDEAtt-Unet 57.50 46.13 40.35

Experiment
II: Dataset_3
(Ma et al.,
2021)

InfNet (Fan et al., 2020) 44.96 19.24 29.01
SCOATNet (Zhao et al., 2021a) 60.55 27.36 43.43
nCoVSegNet (Liu et al., 2021) 57.56 28.34 40.41
Unet 51.24 25.29 34.14
Unet++ 51.94 23.03 35.08
Att-Unet 56.61 25.90 39.48
PDEAtt-Unet 65.20 29.45 47.08

Experiment
III: Dataset_4
(Zhang et al.,
2020)

InfNet (Fan et al., 2020) 39.43 18.16 24.55
SCOATNet (Zhao et al., 2021a) 42.41 21.40 26.91
nCoVSegNet (Liu et al., 2021) 28.21 12.61 16.42
Unet 19.39 14.67 17.17
UNet++ 25.36 18.77 20.58
Att-Unet 41.89 17.24 20.29
PDEAtt-Unet 46.69 24.39 30.45

seen in Table 8, PDAtt-Unet improves the results of Dataset_2 com-
pared to Att-Unet by 14.5%, 8%, and 16.5% for F1 score, Dice score,
and IoU, respectively. The improvements for Dataset_3 are 5.15% and
5.76%, 6.2%, respectively. Similarly, the results for Dataset_4 are im-
proved by 1.37%, 1.52%, and 1.85% for F1 score, Dice score, and
8

Table 7
Cross datasets results by using the trained model of Dataset_3 (Ma et al., 2021).

Testing dataset Model F1-S D-S IoU

Experiment
IV: Dataset_1
(Radiologists,
2019)

InfNet (Fan et al., 2020) 67.83 60.19 50.03
SCOATNet (Zhao et al., 2021a) 63.36 59.52 46.37
nCoVSegNet (Liu et al., 2021) 66.37 58.19 49.66
Unet 62.15 55.37 45.08
Unet++ 67.45 58.43 50.88
Att-Unet 44.95 38.37 28.99
PDEAtt-Unet 69.99 63.18 53.83

Experiment
V: Dataset_2
(Radiologists,
2019)

InfNet (Fan et al., 2020) 51.88 21.66 35.03
SCOATNet (Zhao et al., 2021a) 20.61 18.23 20.50
nCoVSegNet (Liu et al., 2021) 54.29 25.05 37.26
Unet 42.99 19.74 27.38
Unet++ 70.30 26.95 54.20
Att-Unet 55.48 25.10 38.39
PDEAtt-Unet 72.51 27.96 56.43

Experiment
VI: Dataset_4
(Zhang et al.,
2020)

InfNet (Fan et al., 2020) 57.69 30.29 40.54
SCOATNet (Zhao et al., 2021a) 63.77 34.22 46.81
nCoVSegNet (Liu et al., 2021) 60.03 32.90 42.89
Unet 41.54 16.54 26.22
Unet++ 39.55 16.84 24.65
Att-Unet 53.13 23.78 36.17
PDEAtt-Unet 66.74 38.90 50.08

IoU, respectively. On the other hand, training the proposed PDAtt-
Unet architecture with the proposed hybrid loss (PDEAtt-Unet) achieves
better performance than with the global loss, as shown in Table 8.

Tables 9 and 10 show the ablation study for cross-dataset ex-
periments where Dataset_2 and Dataset_3 are used as training data,
respectively. From the results of Tables 9 and 10, we notice that both
PAtt-Unet and DAtt-Unet architectures outperform the baseline result
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Table 8
Ablation study of intra-dataset evaluation scenario. The experimental results of Dataset_2, Dataset_3 and Dataset_4 are summarized with
investigating the effectiveness of the following components, Attention Pyramid Input, Dual-Decoder and Hybrid loss function.

Architecture Ablation Dataset_2 Dataset_3 Dataset_4

Pyramid Dual Edge F1-S D-S IoU F1-S D-S IoU F1-S D-S IoU

Att-Unet ✗ ✗ ✗ 59.32 27.55 42.17 68.67 33.42 52.29 77.27 46.32 62.96
PAtt-Unet ✓ ✗ ✗ 63.51 30.69 46.53 71.75 38.22 55.95 77.76 47.06 63.62
DAtt-Unet ✗ ✓ ✗ 64.04 29.35 47.10 70.73 36.49 54.71 78.15 47.33 64.14
PDAtt-Unet ✓ ✓ ✗ 73.89 35.55 58.59 73.83 39.18 58.52 78.64 47.72 64.81
PDEAtt-Unet ✓ ✓ ✓ 77.60 41.68 63.40 75.52 41.28 60.67 79.38 49.50 65.81
Table 9
Ablation study of Cross-datasets evaluation scenario. The experimental results of using Dataset_2 as training data and Dataset_1, Dataset_3
and Dataset_4 as testing datasets are summarized with investigating the effectiveness of the following components, Attention Pyramid Input,
Dual-Decoder and Hybrid loss function.

Architecture Ablation Dataset_1 Dataset_3 Dataset_4

Pyramid Dual Edge F1-S D-S IoU F1-S D-S IoU F1-S D-S IoU

Att-Unet ✗ ✗ ✗ 50.31 41.01 30.34 56.61 25.90 39.48 41.89 17.24 20.29
PAtt-Unet ✓ ✗ ✗ 55.54 44.43 38.45 58.20 26.36 43.47 44.77 21.34 28.25
DAtt-Unet ✗ ✓ ✗ 52.30 42.51 31.84 59.65 25.52 42.51 43.75 21.15 27.47
PDAtt-Unet ✓ ✓ ✗ 56.12 44.22 39.01 64.02 28.65 48.36 45.75 21.44 29.66
PDEAtt-Unet ✓ ✓ ✓ 57.50 46.13 40.35 65.20 29.45 47.08 46.69 24.39 30.45
Table 10
Ablation study of Cross-datasets evaluation scenario. The experimental results of using Dataset_3 as training data and Dataset_1, Dataset_2
and Dataset_4 as testing datasets are summarized with investigating the effectiveness of the following components, Attention Pyramid Input,
Dual-Decoder and Hybrid loss function.

Architecture Ablation Dataset_1 Dataset_2 Dataset_4

Pyramid Dual Edge F1-S D-S IoU F1-S D-S IoU F1-S D-S IoU

Att-Unet ✗ ✗ ✗ 44.95 38.37 28.99 55.48 25.10 38.39 53.13 23.78 36.17
PAtt-Unet ✓ ✗ ✗ 68.07 61.08 51.60 70.42 27.84 54.35 63.64 34.90 46.67
DAtt-Unet ✗ ✓ ✗ 68.70 61.77 52.33 63.21 27.32 46.21 64.56 36.96 47.67
PDAtt-Unet ✓ ✓ ✗ 69.25 62.84 52.96 70.60 27.21 55.33 65.17 37.91 48.02
PDEAtt-Unet ✓ ✓ ✓ 69.99 63.18 53.83 72.51 27.96 56.43 66.74 38.90 50.08
of Att-Unet by a significant margin for all cross-dataset experiments, as
shown by the three evaluation metrics. Moreover, the combination of
the encoder Attention Pyramids and the dual encoders further improves
all results. Similar to the results in Table 8, using the proposed hybrid
loss function to train PDAtt-Unet achieves better performance than
using the global loss.

On the other hand, comparing the intra-dataset results within Ta-
bles 4, 3, 5, and 8 shows that the performance of PAtt-Unet, DAtt-Unet,
and PDAtt-Unet is better than the baseline architectures in the three
datasets. Moreover, PAtt-Unet, DAtt-Unet, and PDAtt-Unet perform
better or close to better than the best state-of-the-art approach of
InfNet (Fan et al., 2020), SCOATNet (Zhao et al., 2021a), and nCoVSeg-
Net (Liu et al., 2021). Similarly, the comparison of cross-dataset results
shows that PAtt-Unet, DAtt-Unet, and PDAtt-Unet perform better than
the state-of-the-art approaches in most experiments (Tables 6, 7, 9, and
10).

6. Discussion

To show the effectiveness of the proposed PDAtt-Unet trained with
the proposed hybrid loss function (PDEAtt-Unet), we visualized the gen-
erated segmented masks with nCoVSegNet (Liu et al., 2021), SCOAT-
Net (Zhao et al., 2021a), Unet++ (Zhou et al., 2018), Att-Unet (Oktay
et al., 2018), and PDEAtt-Unet, as shown in Fig. 4. The first row shows
an example of an infected slice with multiple infection regions. From
the segmented mask of the proposed PDEAtt-Unet, we can see that
PDEAtt-Unet is able to accurately segment the large and small infection
regions. In contrast, the other segmented masks show that the other
segmentation methods are not able to accurately segment the Covid-
19 infections, especially the small and border regions. The second row
shows an example of a Covid-19 infection that is a mixture of GGO
and consolidation with posterior distribution. Based on the segmented
9

masks, we see that the competing methods could not segment the
GGO infection in the upper lobe of the left lung and the borders of
the other infections. In contrast, the proposed PDEAtt-Unet is able to
segment the GGO infection, although the contrast with the uninfected
lung is low. The third and fourth rows show examples of two slices
with severe infection in which most lung regions are infected with a
mixture of GGO and consolidation. The competing architectures suffer
from non-lung tissue being segmented as infection. In contrast, the
proposed PDEAtt-Unet is able to accurately segment Covid-19 infection.
This demonstrates the efficiency of using two decoders for two tasks
(infection and lung segmentation).

7. Conclusion

In this work, we proposed an approach to segment Covid-19 infec-
tions from CT scans. Our proposed PDEAtt-Unet is an encoder–decoder
CNN architecture. The encoder is a Unet-like encoder with pyramid
paths and attention gates aimed to preserve the general structure
awareness for all encoder layers. The decoder consists of two Att-Unet-
like decoders that simultaneously segment the Covid-19 infection and
lung regions. To circumvent the limitations of the BCE loss function,
edge loss is proposed.

To prove the efficiency of our approach, we evaluated its per-
formance in both scenarios; within a dataset and across data. More-
over, we compared the performance of our proposed approach with
three baseline architectures (Unet, Att-Unet, Unet++) and three state-
of-the-art architectures for Covid-19 segmentation (InfNet, SCOAT-
Net, and nCoVSegNet). The experimental results showed the superi-
ority of our proposed approach compared to the baseline segmen-
tation architectures and to the three state-of-the-art architectures in
both intra-database and cross-database evaluation scenarios. The pro-
posed components of our approach have proved their efficiency in-
dividually. Moreover, their combination leads to better performance
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Fig. 4. Visual comparison of a segmentation model trained with different segmentation architectures. The first row shows visualization example from the validation data of
Dataset_3 (Ma et al., 2021). The rest three examples are from the cross-datasets scenario, where the models were trained using Dataset_3 (Ma et al., 2021) and tested on
Dataset_1 (Radiologists, 2019).
Fig. A.5. Our proposed PAtt-Unet architecture.
with stable and consistent results in all evaluated scenarios. Future
work could investigate the performance of the proposed solution in
other segmentation tasks in medical imaging with other infections and
organs.
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Appendix. PAtt-Unet and DAtt-Unet detailed architectures

See Figs. A.5 and A.6.
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Fig. A.6. Our proposed DAtt-Unet architecture.
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