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ABSTRACT

Modern communication systems rely on accurate channel es-
timation to achieve efficient and reliable transmission of informa-
tion. As the communication channel response is highly related to
the user’s location, one can use a neural network to map the user’s
spatial coordinates to the channel coefficients. However, these
latter are rapidly varying as a function of the location, on the order
of the wavelength. Classical neural architectures being biased
towards learning low frequency functions (spectral bias), such
mapping is therefore notably difficult to learn. In order to over-
come this limitation, this paper presents a frugal, model-based
network that separates the low frequency from the high frequency
components of the target mapping function. This yields an hyper-
network architecture where the neural network only learns low
frequency sparse coefficients in a dictionary of high frequency
components. Simulation results show that the proposed neural net-
work outperforms standard approaches on realistic synthetic data.

Index Terms— Model-based machine learning, Implicit
Neural Representations, Spectral bias, Channel estimation

1. INTRODUCTION

Classical signal processing methods have been used for decades
to solve data processing problems. Those methods are model-
based and, as every model is imperfect, they potentially exhibit
a high bias. However, such methods benefit from a relatively
low complexity. Recently, machine learning methods have
introduced a paradigm shift: rather than using models, one
can use generic neural architectures that learn from data. Such
methods exhibit a low bias due to their intrinsic adaptability, but
the computational and sample complexity of their training can
be very high. Model-based machine learning [1] proposes to
take the best of both worlds: achieving at the same time low bias
and low complexity by using models from signal processing to
initialize, structure, and train learning methods.

The field of communication engineering is particularly well
adapted to the use of model-based (MB) machine learning as many
models have been developed to describe communication systems.
More specifically, one can use propagation channel models to
achieve accurate channel estimation [2, 3, 4, 5]. As propagation
channels are highly correlated to the user’s location, one could
learn the location-to-channel mapping whose knowledge could
be useful in many applications. Indeed, it makes location-based

channel estimation possible, but also radio-environments com-
pression: the radio environment around a base station (BS) would
be stored in the weights and biases of the trained neural net-
work. Apart from that, it could also serve beamformer prediction,
jamming detection, resource allocation or even secure commu-
nication mechanisms. However, the spatial dependence of the
underlying model varies on the order of the wavelength, making
this mapping remarkably complex to learn. As a matter of fact, it
has been proven in [6] that classical neural architectures tend to be
biased towards learning low frequency functions (spectral bias).
Contributions. In this paper, a physics-based channel model
is used to derive a model-based neural architecture aimed at
learning the location-to-channel mapping in a supervised manner.
Similarly to architectures from the implicit neural representation
(INR) literature [7, 8, 9] , the proposed neural network presents
a spectral separation stage that splits the low frequency from
the high frequency content of the target mapping function. This
allows to bypass the spectral bias issue. However, in opposition
to INR architectures, the proposed architecture has an additional
hypernetwork whose role is to learn activation coefficients
of the high frequency components in a sparse manner. The
proposed architecture is evaluated on realistic synthetic data
against classical and INR neural architectures. It yields a huge
improvement in reconstruction performances but also a drastic
reduction in the number of parameters to learn.
Related work. Learning mappings through neural networks
has been extensively studied in the INR community for image
reconstruction [8, 10, 11] and 3D scene reconstruction from 2D
images [9, 12, 13]. A specific focus has been paid on finding archi-
tectures that can learn high frequency details [7, 8, 9]. Moreover,
using machine learning methods in order to achieve channel esti-
mation has attracted a huge interest in the past years [14, 15, 16].
Previous works about the learning of the location or pseudo-
location to beamformer mapping exist [17, 18]. However, to
the best of the authors’ knowledge, there is no previous work
specifically focused on learning the location-to-channel mapping.

2. PROBLEM FORMULATION

In this paper, a single input single output (SISO) monocarrier
scenario with one BS located at x1 = (x1, y1) and one user
equipment (UE) located at an arbitrary location x = (x, y)
is considered. Note that 2D locations are considered here for
simplicity of exposition and illustration. However, the proposed



method can be straightforwardly extended to the 3D case. Con-
sideringLp virtual propagation paths, the channel coefficient of
the BS-UE link at a given frequency can be modeled as:

h =

Lp∑
l=1

γle
−j 2πλ dl , (1)

where γl and dl are the complex attenuation and propagation
distance of the lth path, and λ is the wavelength. Using the image
source theory to model the propagation interactions [19, Chapter
1, p.47-49] and expanding the γl term yields:

h (x) =

Lp∑
l=1

αle
jβl

‖x− xl‖2
e−j

2π
λ ‖x−xl‖2 , (2)

where ∀l > 1, xl ∈ R2 is the image source location associated
to the lth path. αl and βl represent the small-scale attenuation
and phase shift of the lth path, so that α1 = 1 and β1 = 0
when considering a Line of Sight (LoS) path. The 1/ ‖x− xl‖2
attenuation represents the large scale fading of the lth path.

The goal of this study is to calibrate

fθ : x→ h (x) , (3)

a neural network f parameterized by a set of parameters θ that
maps the location x to its channel coefficient h (x). The high fre-
quency spatial dependence of the considered propagation model
can be seen in the argument of the exponential in Eq. (2). As the
carrier frequency rises, the wavelength drops: at usual frequen-
cies used in communication systems (sub-6GHz),λ is of the order
of a few centimeters. Thus, a small variation of the considered
location x leads to a huge change in its channel coefficient h (x),
making the location-to-channel mapping notably hard to learn.

3. PROPOSED METHOD

It is well known that deep neural networks are universal function
approximators [20, 21]. However, it has been shown that classical
neural architectures are biased towards learning low frequency
functions, a phenomenon known as spectral bias, making them
impractical for the learning of rapidly varying functions [6, 22].
In this paper, it is proposed to take insights from the propagation
model to design a neural architecture that learns the location-to-
channel mapping, following the model-based machine learning
paradigm [1].
Local planar approximation. The channel model in Eq. (2) rep-
resents waves spherically propagating from the BS antenna and
their reflections on various obstacles. Recall that xl ∈ R2 is the
location of the lth image source. Around an arbitrary reference lo-
cation xr ∈ R2, those spherical wavefronts can be approximated
locally by planar ones. This can be shown using a Taylor expan-
sion [23]. Let ξ (x) , ‖x− xl‖2, ξ (x) is differentiable at x =
xr. The first order Taylor expansion of ξ (x) around xr yields:

ξ (x) ' ξ (xr) + ∇ξ (x)|xr · (x− xr)

= ‖xr − xl‖2 + u(xr−xl) · (x− xr) ,
(4)

where u(xr−xl) is the unit norm vector in the (xr − xl) direction.
Injecting Eq. (4) into Eq. (2) gives, for x close to xr:

h (x) '
Lp∑
l=1

αle
jβlhl (xr)

e
−j 2πλ u(xr−xl)

·(x−xr)

1 +
u(xr−xl) · (x− xr)

‖xr − xl‖2

, (5)

where hl (xr) is the channel coefficient of the lth source at the
reference location xr. It is worth noting that the interpolation
term, i.e. the fraction, tends to 1 when xr tends to x. Moreover,
the numerator of the interpolation term is the equation of a planar
wave, propagating in the direction of the vector (xr − xl). As
a result, locally, Eq. (2) can be viewed as a linear combination of
planar wavefronts. Such planar wave approximation of spherical
waves is at the heart of many array processing techniques, as it
gives rise to the well-known steering vectors model, or spatial
signature [24, Chapter 7].

For any location x ∈ R2, Eq. (5) shows that one can ap-
proximate the channel coefficient h (x) as a linear combination
of planar wavefronts. Rearranging the terms, one can rewrite
Eq. (5), separating the high frequency content (planar wavefronts,
varying at the wavelength scale) from the low frequency content
(coefficients):

h (x) '
Lp∑
l=1

αle
jβlhl (xr) e

jkr,l·xr

1 +
u(xr−xl) · (x− xr)

‖xr − xl‖2︸ ︷︷ ︸
Slowly varying

e−jkr,l·x

︸ ︷︷ ︸
Fastly varying

, (6)

where kr,l = 2π
λ u(xr−xl) is an angular wave vector in the

(xr − xl) direction.
As mentioned before, this planar approximation is only valid

in a local neighborhood of xr. Let us tile the space with N
hexagons inscribed in circles of center xri and radius such that
∀x ∈ Hi, |h (x)− h′ (x)| ≤ ε, withHi being the location set
in the hexagon of center xri , and h′ (x) the Taylor-approximated
channel, i.e. the right-hand term of Eq. (6). This radius is
closely related with the spatial-validity length of the Taylor
approximation in Eq. (4). Then, Eq. (5) shows that, within each
of these hexagons, only Lp planar wavefronts are required to
compute h′ (x). As a result, a dictionary Ψ (x) = {ψi (x)}Di=1
of size D ≤ LpN containing well-chosen planar wavefronts
and an activation vector w (x) ∈ CD can be used as follows to
approximate h(x) for any x ∈ R2:

h (x) '
D∑
i=1

wi (x)ψi (x) , (7)

with ‖w (x)‖0 = Lp,∀x,

where the dictionary functions are constructed as

ψi (x) = e−jki·x. (8)

The directions of the planar wavefronts are defined by the
spatial frequencies ki, i.e. angular wave vector but from a spectral



perspective. From Eq. (5) one can observe that the angular wave
vector is 2π

λ u(xr−xl), so that ∀i ∈ J1, DK, ‖ki‖2 = 2π
λ . Due to

that norm constraint, the spatial frequencies used to approximate
the channel in Eq. (6) all belong to a one-dimensional manifold:
the circle of radius 2π

λ . This implies that it is possible to build a
generic dictionary by sampling the circle while keeping a tight ap-
proximation (no curse of dimensionality). Moreover, due to their
low frequency nature, the activation coefficientswi (x) should
be easily learnable by standard neural network architectures.
Model-based neural architecture. In practice, one can use
Eq. (7) to derive the model-based neural network presented in
Fig. 1, in which the dictionary containing high frequency planar
wavefronts and the low frequency coefficients are generated from
the location in two parallel branches. In more details, the low
frequency coefficients in wφ (x) ∈ CD are learned by an hyper-
network [25, 26] of parameter setφ.1 As integrating the `0 con-
straint of Eq. (7) in the training loss makes it non-differentiable, a
solution is to transfer this sparsity constraint on the hypernetwork
design. This is done, as seen in Fig. 1, with the softmaxC non-
linearity which favors sparsity in the activation vector wφ (x)
by greatly attenuating non-significant coefficients. In Fig. 1, the
Fourier feature (FF) layer, with parameter setϕ = {ki}Di=1, is
used to construct the dictionary Ψϕ (x), and is defined as:

FFϕ : x→
[
e−jk1·x, · · · , e−jkD·x

]
(9)

Note that this embedding layer is just the complex interpre-
tation of the cos/sin embedding in random Fourier features
(RFF) [7, 27]. Spatial frequencies in the dictionary could be
learned, but are kept fixed in this paper, by uniformly sampling
the circle of radius 2π

λ (as suggested by the above analysis).

Fig. 1: Proposed model-based neural network architecture.

4. EXPERIMENTS

It is proposed to evaluate the performance of the proposed
architecture on synthetic data, with f = 3.5GHz (λ ' 8.5cm).
Dataset generation. Firstly, a 10m by 10m square scene area
is generated. Then the image source locations are defined: a
LoS path and static image sources are considered. Constant
attenuation coefficients are allocated to each image sources,
those coefficients are chosen in a way such that the image
sources reflect a large part of the incident wavefronts, typically
0.6 < αi < 1, i 6= 1; phase shift values are uniformly sampled
between 0 and 2π. For the training dataset, locations are uni-
formly sampled in the scene area. A uniform location grid with

1Note that for z1 ∈ C, z2 ∈ CN , ReLUC (z1) = ReLU (< (z1)) +
jReLU (= (z1)) and softmaxC (z2) = softmax (|z2|).

λ/4 spacing in both directions is generated for the test dataset,
giving around 213k locations at the selected frequency. Finally,
both training and test datasets are generated using Eq. (2).
Models and metrics. The proposed architecture is compared
against a classical MLP and two RFF networks inspired by the
INR architectures. They are presented in Fig. 2.

Fig. 2: 1.MLP; 2.RFF; 3.RFF lin.

For all baselines, T1 = 4096, T2 = 2048 andD = 2000. In
the FF layer, 2. and 3. use the same uniformly sampled spatial
frequencies over the circle of radius 2π

λ than the ones used in the
proposed model-based network. For the model-based network,
the hyperparameters are fixed as T1 = 256, T2 = 128 and
D = 2000. The evaluation metric is the Normalized Mean
Squared Error (NMSE) in dB over the test dataset, defined as
10 log10(‖h− ĥ‖22/‖h‖22), where h, resp. ĥ, contains the chan-
nel coefficients, resp. estimated channel coefficients, over the
test dataset. All networks are trained using the `2 loss as follows:

L = E
[
‖fθ (x)− h (x)‖22

]
,x ∈ D ⊂ R2, (10)

whereD is the training location dataset of a particular scene. The
complete training dataset is: {xi, h (xi)}Ndi=1.
Reconstruction over a specific zone. The training location den-
sity is equal to 100 locs./m2 ' 0.7 locs./λ2 which corresponds to
10k training locations. Lp = 6 propagation paths are considered.

MLP RFF RFF lin. MB

Params. 16.8M 33.1M 4k 0.5M

NMSE(dB) 0.16 −3.30 −3.04 −20.60

Table 1: NMSE over the test grid.

One can see in Table 1 that the proposed model-based ar-
chitecture outperforms all the baselines, including architectures
from the INR literature, while having a much lower parameter
complexity than the MLP. Furthermore, it is worth noticing
that the proposed model-based network is actually the only one
that is able to learn the mapping: the high NMSE values of the
other networks show that they fail at this task. One should also
remark that the hypernetwork is the key element in the proposed
architecture. Indeed, through the model-based initialization of
the spatial frequencies, the RFF lin. network output can be seen



Fig. 3: Reconstruction performances (real part) over a small zone of the scene area (2.5m by 2.5m), a: Ground truth, b: MB, c: RFF, d: MLP

as a linear combination of planar wavefronts. However, this
network fails in the mapping learning task. This also holds true
with the over-parametered RFF whose output can be seen as
non-linear function of planar wavefronts. In Fig. 3 one can see
that this network manages to reconstruct high frequency content
but still fails in the perfect reconstruction. This is logical as this
network possesses high spatial frequencies through its FF layer
initialization, but does not fully take advantage of the model
analysis. Besides, one can also see in Fig. 3 that a model-agnostic
MLP also fails to learn the high frequency content of the mapping.
Reconstruction over a specific zone for differentLp and loc.
densities, averaged over 100 trainings. In this experiment, for
each training, new random image source locations are sampled,
allowing to simulate multiple scenes. Moreover, for each training,
all networks are retrained from scratch. One can see in Fig. 4 that,
for all path and all location density configurations, the model-
based network outperforms the baselines. The model-based
approach also presents a failure mode for low location density
configurations. This can be explained by the lack of spatially close
locations in the training dataset in that regime, resulting in the
learning failure of the rapidly varying spatial content. The spatial
Shannon-Nyquist criterion for perfect reconstruction gives a lo-
cation density of 4 locs./λ2. The proposed MB network achieves
almost perfect reconstruction in sub-Shannon-Nyquist location
density, outperforming classical signal processing methods. One
should note that, when increasing frequency, the wavelength
drops, leading to a higher requirement in the number of training lo-
cations to keep the same location density in locs./λ2. However, as
the frequency rises, the number of propagation paths drops, lead-
ing to potentially easier location-to-channel mappings to learn.
Reconstruction over a specific zone generated using ray-
tracing. In this experiment, channels in a 10m by 10m square
scene area are generated using the Sionna [28] ray-tracing
module in Paris, France, with the Etoile scenario. As for the other
experiments, the training locations are randomly sampled inside
the scene area, with a location density of 150locs./m2 ' 1.1
locs./λ2, which corresponds to 15k training locations. The test
locations are generated along a uniform grid with λ/4 spacing in
both directions. The maximal number of propagation paths inside
the scene is 11, and each path can have at most 3 consecutive
reflections. Diffraction and scattering are not considered here.
One can see in Table 2 that the MB network also outperforms all
baselines on more realistic channels and that it presents NMSE

values in the same order of magnitude that the ones in Table 1.
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Fig. 4: Reconstruction performances

MLP RFF RFF lin. MB

Params. 16.8M 33.1M 4k 0.5M

NMSE(dB) 0.14 −2.41 −2.21 −23.41

Table 2: NMSE over the test grid (ray-tracing channels).

5. CONCLUSION

In this paper, a model-based neural architecture was proposed to
learn a so-called location-to-channel mapping. The architecture
was derived from a propagation model using a local planar
approximation yielding a specific network architecture. The
performance of the proposed network were evaluated on realistic
synthetic data, showing a high performance gain compared to
both classical and INR architectures, while having a much lower
parameter complexity. Future work will include the refinement
of the hypernetwork architecture for better performance in the
low location density regime, the optimization of the spatial
frequencies’ distribution, the consideration of multiple antennas,
multiple subcarriers and 3D locations, which are expected to
largely enhance the mapping learning capability.
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