
1

Supplemental Material for "Analyzing Qualitatively
Optimization Objectives in the Design of HPC

Resource Manager"
Robin Boëzennec , Fanny Dufossé , Guillaume Pallez

I. INTERPRETATION OF STANDARD DEVIATION OF THE
UTILIZATION

This section gives an intuition of standard deviation of the
utilization and its link with mean utilization based on a simple
example.

We consider a platform with Nc resources, and a continuous
submission of tasks. Tasks have an average workload equal
to W (or work = number of resources used * runtime). We
consider two different phases. First from time t=0 to t=T ,
jobs are submitted with a small arrival rate (=number of jobs
submitted by unit of time) λ1, and then from T to 2T jobs
are submitted with an higher arrival rate λ2, with λ2 < λ1.
The workload arriving in queue per unit of time (called λ(t))
is equal to:

λ(t) =

{
λ1W if t ∈ [0, T ]
λ2W if t ∈ [T, 2T ]

The scheduler performance is expressed by the constant
Um, which is the maximum utilization that it can reach. We
suppose that if there are enough submitted jobs, the scheduler
always reach this maximum utilization. We also introduce Ui,
for i ∈ {1,2} which corresponds to the minimum utilization
required to ensure that the arriving workload is smaller than
the machine capacity when the arrival rate is λi. As the
arriving workload is equal to λiW and the system capacity
to Nc · U , we can deduce that Ui = Wλi

Nc
. As λ2 < λ1, we

also have U2 < U1.

Depending on the scheduler maximum utilization of Um

compared to U1 and U2, we will have different scheduling
configurations. They are shown in Figure 1.

- Case 1: Um < U1+U2

2 . The schedule does not execute the
workload before 2T , the utilization is constant at Um and the
variance is null.

- Case 2: Um ≥ U1: The schedule executes jobs when they
are submitted without putting them in queue. The utilization
is equal to U1 in the first phase and U2 in the second. This
results in a mean utilization of U1+U2

2 and a utilization
variance of (U1−U2)

2

4 .

Manuscrit received ... ; revised ... . Robin Boëzennec is with Inria, Labri,
University of Bordeaux, and University of Rennes. Guillaume Pallez is with
Inria and Université de Rennes. Fanny Dufossé is with Univ. Grenoble Alpes,
Inria, CNRS, Grenoble INP, LIG.

Utilization

TimeT 2T00
U1

U2

Um

(a) Case 1

Utilization

TimeT 2T00
U1

U2

Um

(b) Case 2

Utilization

TimeT 2TT
′00

U1

U2

Um

(c) Case 3

Fig. 1: The different configurations of the scheduling

- Case 3: U1+U2

2 ≤ Um < U1. The schedule runs all jobs,
but some jobs submitted in the first phase are scheduled during
the second one. As the scheduler always reach a utilization as
high as possible this leads to a utilization of Um when t ∈ [0,
T

′
] with a certain T

′
> T , and then a utilization of U2 during

[T
′
, 2T ]. In order to compute the mean and variance we need

to determine T
′
. At t = T

′
, there are no jobs lefts in the

queue, meaning that the workload arrived since t = 0 is equal
to the quantity of work that has been run by the machine.
Hence, we have λ1TW + λ2(T

′ − T )W = UmT
′
Nc, which

gives us T
′
= T U1−U2

Um−U2
. We can then compute the mean

utilization which is equal to U1+U2

2 (as we are scheduling
a constant workload that fits in a constant time window, it
is natural that the mean utilization stays a constant). The
utilization variance is equal to U1−U2

2 (Um − U1+U2

2 ).

Figure 2 summarizes how the mean and variance of uti-

https://orcid.org/0009-0008-5016-4413
https://orcid.org/0000-0002-2260-2200
https://orcid.org/0000-0001-8862-3277


2

Mean utilization

Maximum utilizationU1+U2

2
U100

U1+U2

2

Utilization variance

Maximum utilizationU1+U2

2
U1

00

(U1−U2)
2

4

Fig. 2: Mean (left) and variance (right) utilization in function
of the maximum utilization Um.

lization change with the maximum utilization. Once Um is
higher than U1+U2

2 , the mean utilization stops increasing and
the utilization variance starts growing.

If we have two scheduling with the same utilization mean,
and utilization variances V1 and V2, such as V1

V2
= α, and if

we make the hypothesis that both scheduling correspond to
the second case, we can compute that:

U1
m = αU2

m + (1− α)U1+U2

2

This allows telling how much an algorithm is better than
another. In the same way, if we make the hypothesis that a
schedule is in the second case, we can just invert the formula
and obtain that Um = V 2

U1−U2
+ U1+U2

2 .
Although these formulas give us numerical values, this is only
a particular case, and we are unable to interpret the value of
the variance in the general case.

II. INVARIANCE BY JOB PERMUTATION OF THE
AREA-WEIGHTED RESPONSE TIME

We call the utilization profile of a schedule, its function
utilization over the time. The aim of this section is to prove
the Theorem 1.

Theorem 1. Given a schedule, if one permutes jobs without
changing the utilization profile, the area-weighted mean re-
sponse (resp. wait) time will keep unchanged.

To do so, we will define a new metric, and prove some
results on this metric. From this first Theorem, we will deduce
the desired property on area-Weighted Response Time (WRT).
Figure 3 summarizes those results.

This new metric is the mean between the area-weighted
response time and the area-weighted wait time. It can therefore
be called the time of half completion (HC). This means that
for a single job, the metric (with its weight) is equal to:

HCi = trun
i N cores

i (twait
i +

trun
i

2
)

and the global metric (non-normalized) is equal to:

HC =
∑
i∈J

trun
i N cores

i (twait
i +

trun
i

2
)

Where J is the set of all jobs. Note that the half completion
time is also weighted by area, but for convenience, we do not
precise it in its name.

Lemma 1. : Given a schedule, there are operations that one
can apply to the schedule without changing the mean half
completion time weighted by work. These operations are:

• Permute jobs without changing the utilization profile.
• Merge jobs, and set the submission time of the new job

as the mean submission time (weighted by work) of the
merged jobs.

• Split a job in several smaller jobs, such as the mean
submission time (weighted by work) of the new job is
equal to the submission time of the separated job.

Intuition behind the proof: using half completion time places
the point of measure of a job’s metric at its barycenter. This
allows us to decompose the half completion time of a job as
the sum of all the half completion time we obtain by dividing
this job in infinitesimally small jobs. We can then swap these
infinitesimally small jobs without changing the metric. This
allows us to totally change the original job configuration while
preserving the half completion time.

Time

P1

P2

P3

P4

1 2 3 4

1

2
3 4

5
6

(a) Reference scheduling, WRT = 34, HC =
21.5.

Time

P1

P2

P3

P4

1 2 3 4

1

2
3 4

5
6

(b) Same jobs, but their order is changed while
maintaining the same utilization profile, WRT
= 34 (unchanged), HC = 21.5 (unchanged).

Time

P1

P2

P3

P4

1 2 3 4

1

2
3

4

5

6
7

(c) Different jobs, but the scheduling has the
same utilization profile, WRT = 28 (different),
HC = 21.5 (unchanged).

Time

P1

P2

P3

P4

1 2 3 4

1
2 3

4 5
6

(d) Scheduling made with the same jobs but
with a different utilization profile, WRT = 37
(different), HC = 23.5 (different).

Fig. 3: Several scheduling configurations and their corre-
sponding WRT and half completion time (both weighted by
work). All jobs are assumed to be queued at t = 0. Area-
weighted wait time behaves like the WRT.



3

Proof: The key of the proof is that HCi can also be written
as the integral of all the wait time that we obtain if we divide
the job i in an infinity of infinitesimally small rectangular jobs
(all submitted at the same time tsub

i ).

∫ N cores
i

0

(

∫ twait
i +trun

i

twait
i

tdt)dN = N cores
i

∫ twait
i +trun

i

twait
i

tdt

= trun
i N cores

i (twait
i +

trun
i

2
)

= HCi

Then we can rewrite HC with this formula:

HC =
∑
i∈J

∫ N cores
i

0

(

∫ twait
i +trun

i

twait
i

tdt)dN

Then, in each of these integrals, we performe the change of
variable told = tnew−tsub

i . This changes the bound twait
i +trun

i in
twait
i +trun

i +tsub
i = tfin

i , and the bound twait
i in twait

i +tsub
i = tstart

i .
Therefore:

HC =
∑
i∈J

∫ N cores
i

0

(

∫ tfin
i

tstart
i

(t− tsub
i )dt)dN

=
∑
i∈J

∫ N cores
i

0

∫ tfin
i

tstart
i

t dtdN −
∑
i∈J

∫ N cores
i

0

∫ tfin
i

tstart
i

tsub
i dtdN

We then define U as surface used by the jobs contained in
the set J, and we define Ci as the set of cores on which job i
is running. We have:

U =
⋃
i∈J

(Ci × [tstart
i , tfin

i ])

Where × represent a Cartesian product. Note that as long as
the utilization profile doesn’t change, the surface U will stay
the same. We can then rewrite HC as:

HC =

∫∫
U
tdt dN︸ ︷︷ ︸
A

−
∫∫

U
tsub
i dt dN︸ ︷︷ ︸
B

= A−B

A is the integral of a function over the surface U. In addition,
this function does not depend on the jobs. So, as long as U
is kept unchanged, we can split and merge or permute jobs
without affecting A.

B is the integral of another function over the surface
U. However this time the function depends on the
jobs. In this case, as long as U is kept unchanged,
we can reorder jobs without changing the metric. In
addition, we can also split and merge jobs following
the rules described in the Theorem. This concludes
the demonstration of the properties of half completion
time.

We can now deduce the results on WRT (and area-weighted
wait time):

Proof: The difference between the half completion time and
WRT is equal to:

D =
∑
i∈J

N cores
i (trun

i )2

2

This is also equal to the difference between wait time
(weighted by work) and half completion time. As D depends
on the jobs characteristics but not their order, this mean that
if we switch jobs order without changing the function u(t),
WRT (and wait time weighted by area) will keep unchanged.


	Interpretation of standard deviation of the utilization
	Invariance by job permutation of the area-weighted response time

