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Analyzing Qualitatively Optimization Objectives in
the Design of HPC Resource Manager

Robin Boëzennec , Fanny Dufossé , Guillaume Pallez

Abstract—A correct evaluation of scheduling algorithms and
a good understanding of their optimization criterias are key
components of resource management in HPC. In this work, we
discuss bias and limitations of the most frequent optimization
metrics from the literature. We provide elements on how to
evaluate performance when studying HPC batch scheduling.

We experimentally demonstrate these limitations by focusing
on two use-cases: a study on the impact of runtime estimates on
scheduling performance, and the reproduction of a recent high-
impact work that designed an HPC batch scheduler based on
a network trained with reinforcement learning. We demonstrate
that focusing on quantitative optimization criterion (“our work
improve the literature by X%”) may hide extremely important
caveat, to the point that the results obtained are opposed to the
actual goals of the authors.

Key findings show that mean bounded slowdown and mean
response time are irrelevant objectives in the context of HPC.
Despite some limitations, mean utilization appears to be a
good objective. We propose to complement it with its standard
deviation in some pathologic cases. Finally, we argue for a larger
use of area-weighted response time, that we find to be a very
relevant objective.

Index Terms—State of the Practice, Methodology, Resource
Management, Machine Learning, Metric, Batch Scheduling, High
Performance Computing, Runtime estimates

I. INTRODUCTION

With the development of machine learning solutions, re-
source Management of large scale systems is evolving. We are
seeing an increasing number of learning-based algorithms to
map applications to resources or to optimize their use. Such
techniques often consist of two steps: a learning phase that
learns how to optimize a given objective, and an exploitation
phase.

Compared to historical classical resource management tech-
niques, their main limitation is the lack of transparency of
their decision: what have they learned? What criteria are they
putting first when taking such and such decision?

As an example, consider the classical job-packing problem:
how do you schedule parallel jobs on an homogeneous parallel
platform. For this problem, classical scheduling heuristics such
as First Come First Served (FCFS), where jobs are sorted
by increasing arrival date before being scheduled, or Shortest
Area First (SAF), where jobs are scheduled by increasing
volume of work before being scheduled, are well understood
and have been thoroughly studied. Their simplicity permit a
clear comprehension of their behavior. The most well known
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of the job packing heuristics is EASY-BF that combines the
FCFS approach with a backfilling technique to reduce idle
time. The backfilling step consists in filling the idle periods
of nodes with small waiting jobs that can be allocated without
delaying previously scheduled jobs. Backfilling permits a
better packing capacity without impacting the fairness.

A second category of scheduling algorithms consist of
neural networks trained with reinforcement learning (RL)
techniques [11], [15], [27]. RL algorithms perform their ex-
plorative learning phase by evaluating the performance of
a schedule on a given metric, and updating the different
parameters of their networks based on these performances.
In the end, the performance for these metrics often work out
well, but, the actual behavior of such schedulers is generally
opaque. In addition, this behavior highly depend on the metric
used for optimization. Thus, the analysis of such algorithms
can not be based solely on the targeted metrics. Generally, a
scheduling analysis can not only be quantitative and requests
to consider qualitative criteria as packing efficiency, fairness
or transparency.

Understanding the bias and limitations of metrics for HPC
resource management becomes even more important to help
explain the behavior of such algorithms.

In this work which extends considerably our preliminary
discussion [4] we discuss several methodological elements
to qualitatively study optimization criteria and the result of
an analysis. This work is illustrated using the job packing
problem, but our methodology should be applied to other
resource management problems (such as I/O, memory). Our
main contributions are the following:

• We give a qualitative analysis of several optimization
criteria used in the literature. We argue that the mean
bounded slowdown and mean response time are irrelevant
objectives in the context of HPC. On the contrary, we
show the relevance of the area weighted response time
to measure the packing efficiency of HPC scheduling
algorithms even in context where the system utilization
does not allow to discriminate between algorithms.

• Through two experimental use-cases, we confirm our
findings:

1) We demonstrate the statements from this analysis
by studying the classical EASY-BF algorithm on
two workloads (Mira and Theta) with two runtime
estimate functions: a very precise one, and the actual
runtime estimate provided by users. This section con-
firms that without performing a qualitative analysis
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and by simply looking at specific performances, one
cannot conclude a study.

2) We strengthen our points with a qualitative analysis
of the performances of RLScheduler [27]. RLSched-
uler is a neural-network batch scheduler for HPC,
trained with reinforcement learning. This use-case
also serves us to discuss the importance of some
good practices in performances evaluation. We show
that compared to the state of the art, RLScheduler is
not up to the task, yet.

The rest of the paper is constructed as follows: In Sec-
tion II, we discuss the objective criteria that are considered
in scheduling framework. We focus on their limitations for
HPC systems, and provide alternatives to improve them. We
then work on demonstrating experimentally our statements.
Section III-A details the methodology of our first use-case
before presenting and analyzing the results in Section III-B.
Section IV analyzes the behavior of RLScheduler and uses it
to discuss several metrics. Section V discusses related work.
Finally, Section VI concludes the work.

II. EVALUATING THE QUALITY OF A SCHEDULE

Several optimization criteria are used to evaluate the perfor-
mance of a Resource and Job Management Software. In this
Section, we discuss more in depth those objectives, particularly
in the context of High-Performance Computing. We explain
their limitations in this context.

The analysis presented in this work is targeted for High-
Performance Computing: building a machine able to perform
ExaFlops targets the execution of large scale applications
mostly and the validation of the performance of a solution
should reflect this. Extreme-scale platforms have a high oper-
ating cost and are expected to be utilized as much as possible.

Analysis of HPC system traces showed that Users are now
submitting medium-sized jobs because the wait times for larger
sizes tend to be longer [20]. To execute medium-size jobs, it
is probably more efficient (cost-wise) to have multiple smaller
clusters than an HPC machine with a dense interconnect.

To define objectives, we use the following notations for job
Ji (represented visually in Figure 1):

tsub
i The release time of job Ji (aka submission time)
tstart
i The starting time of job Ji

tfin
i The completion time of job Ji

trun
i The length of job Ji (aka execution time/runtime)1

twait
i The waiting time of job Ji (t

wait
i = tstart

i − tsub
i )

N cores
i The number of cores used by job Ji

Time

trun
i

tsub
i tstart

i tfin
i

twait
i

Fig. 1: A visual representation of the various notations

1This is different from the requested/estimated time testimate
i which we

discuss in Section III.
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(a) Mean Response time ≈ 3.6;
Mean Slowdown ≈ 2.8; WRT = 3.3
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(b) Mean Response time = 3;
Mean Slowdown ≈ 1.8; WRT = 5

Fig. 2: In this example, all jobs are released at t = 0. Despite
what appears to be a more efficient strategy, the left schedule
has worse mean response time and slowdown than the right
schedule.

A. Mean (bounded) slowdown

The average bounded slowdown (also called mean flow) is
an optimization criteria extensively used in the literature [6],
[7], [17], [25], [27], [28]. Its goal is to provide a measure of
fairness over applications.

The slowdown Si of job Ji (also called the flow of the job)
corresponds to the ratio of the time it spent in the system over
its real execution time. Formally, it is defined as

Si =
trun
i + twait

i

trun
i

=
tfin
i − tsub

i

trun
i

Note that in practice many jobs are extremely small (few
seconds). In these cases their slowdown could be arbitrarily
high even if their wait time is ridiculously small (a five minutes
wait time for a job that dies instantly (one second) would result
in a slowdown of 300).

The solution that is often used is to consider a variant of
the slowdown called the bounded slowdown:

Sb
i = max

(
tfin
i − tsub

i

max (trun
i , τ)

, 1

)
(1)

where τ is a constant that prevents the slowdown of smaller
jobs from surging. Then the average bounded slowdown S̄ is:

S̄b =
1

n

∑
i

Sb
i , where n is the number of jobs

1) Limits for HPC workloads: By improving the quality
of service to the small jobs, one can considerably improve
this objective. This is often what is actually measured when
work studies this objective, and is the opposite of what a
system administrator of an HPC machine is looking for. This
is illustrated in Figure 2.

Work by Carastan-Santos et al. [6] where the ML algorithm
provides a priority function confirms this intuition and the
fact that learning-based batch schedulers with the objective of
bounded slowdown simply give higher priority to small jobs.
Similarly, Legrand et al. [17] have realized the importance
of small jobs for bounded slowdown and focus on having an
oracle which guesses which job is small and which is large.
This is sufficient for substantial performance gains for this
objective.

In Section III-B1, we also show that this is subject to a high
variability, and very influenced by the behavior of small jobs
representing an insignificant part of the workload. It makes it
an unfit metric to evaluate the performance of RJMS in HPC.
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2) Alternative approach: To understand the actual behavior
of the system, Du et al. [9] consider the bounded slowdown
as a function of the size of the job. In this case, this objective
is not one to optimize anymore, but a more qualitative way
to measure and understand the performance of a solution.
Another approach is to use a weighted version of the average
slowdown where large jobs are given more weight than smaller
jobs.

B. Utilization

This optimization criteria measures how fully the platform
is occupied. It is a particularly important objective for an
HPC platform that costs multiple-million of dollars yearly to
operate. This is the main objective studied in [12]–[14].

If W (t1, t2) is the total amount of work done between t1
and t2 on a platform with N nodes, the utilization U(t1, t2)
on the interval [t1, t2] is measured as:

U(t1, t2) =
W (t1, t2)

N · (t2 − t1)
. (2)

Note that when jobs fail to complete fully (for instance
because their walltime is underestimated), it is interesting to
measure the “useful utilization”, i.e. the volume of computa-
tion that lead to a successful execution [9].
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(a) Schedule example and its corresponding cumulative distribution function
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(b) Schedule example and its corresponding cumulative distribution function

Fig. 3: Even though the global utilization is the same between
the two schedules (13/16), the distribution of their utilization
differ significantly.

1) Limits for HPC workloads: One of the main limitation
concerns machines with lower submission rate (i.e. that are not
“packed”), then any scheduling solution has the same (low)
utilization since it corresponds to executing almost all jobs
during the whole window. Utilization by itself does not allow
discriminating between different schedule qualities (Figure 3).

Another one is the fact that it is more a system administrator
target: how to maximize the yield of my machine. It does not
give a sense of the quality of the schedule: an easy way to
maximize utilization would be to have a large queue of jobs
waiting to be executed and find the one that works best at all
time (often favoring smaller jobs that can fill a hole).

2) Alternative approach: Our observations show that in
some scenarios if the utilization of an HPC platform is lower
than 93%, the “quality” of a scheduler has no impact on the
average utilization of the schedule.
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(a) Mean utilization: 0.625
Utilization std: 0.5625
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(b) Mean utilization: 0.625
Utilization std: 0.125

Fig. 4: Different scheduling configurations with their mean
utilization and utilization std

There are settings for which the workload has different
“modes” (such as intensive in the day; low on requests in the
night), in this case it may be interesting to study utilization of
these workloads separately. Having a good understanding of
one’s workload is important.

We found that a way to measure this is to study the
density function of the utilization (see Figure 3). Intuitively, for
two identical job submission schemes, a “better” scheduling
algorithm will have more phases at very high utilization (and
hence more at lower utilization). Indeed, it can pack jobs as
soon as they are available, whereas a poorer scheduling quality
will delay jobs from phases of time with intensive job counts
to phases with less intensive job counts. Hence, an alternative
approach is to look at the standard deviation of the utilization
instead of its mean. Remember that this only works when the
system is under-utilized.

When a system is under-utilized, two schedules have an
almost identical utilization, so we propose to measure the
standard deviation of the utilization as a way to differentiate
the quality of a schedule: the “best” algorithm from a uti-
lization perspective should have a higher standard deviation
(more time-windows with very high occupation and more
time-windows with low occupation). The idea behind is that
when there are bursts of incoming workload, the better the
scheduler, the sooner the workload is scheduled (hence with
peak of utilization vs a more balanced utilization). This is
shown graphically in Figure 4 where the first schedule is
better at using all available resources at the same time, leading
to a standard deviation of utilization greater than the second
schedule.

Some remarks on using the standard deviation:
1) The standard deviation of utilization is not a new metric

independent of the utilization. It can be used to compare
schedulers when the system is under-utilized (and thus
utilization can not discriminate algorithms), to give
information about which algorithm would be able to
reach the higher utilization once the system actually
becomes fully utilized.

2) Thus, it is important to note that the standard deviation
is only relevant to compare schedules with a similar
utilization. If it is not the case, one can just tell which
schedule is better by looking at the utilization.

3) This metric allows to qualify whether one schedule is
better than another one from a utilization perspective,
but it lacks interpretability: what does having a standard
deviation x times greater than another one means over-
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all? In the Appendix [5, Section 1] we give an answer
for a particular example, but we have no general answer.

C. Response time (and Wait Time)

Mean response time (or mean wait time) is a metric often
used in the literature [12], [14], [19], [23], [25], [27]. The
response time RT i of a job Ji is the duration between the
submission of the job and its completion, or equivalently its
wait time and its length.

RT i = twait
i + trun

i

The mean response time is equivalent to the mean wait time
since the difference is the mean runtime which depends on the
workloads but not on the schedule. In the following, we only
address the response time, but our reasoning identically apply
to wait time.

1) Limits for HPC workloads: Using this objective gives
equal importance to all jobs, independently of the work they
represent. In an HPC workload, this gives an advantage to
the numerous “small” jobs, even if they only represent a very
small portion of the workload. In Figure 2 we can see that
the scheduling on the top intuitively looks more efficient than
the second, and yet it has a worst mean response time. This is
because the scheduling on the bottom favors small jobs despite
being less effective at densely packing jobs. This is a limit
for the response time objective because simply improving it
does not necessarily mean improving the quality of the overall
schedule (from an HPC perspective).

Some authors also study the maximum response time, as
a mean to qualify the performance that a user may expect.
However, this metric does not differentiate between a 1-hour
job that waits for 1 minute, and a 1-minute job that waits for
1 hour.

Finally, similarly to the mean bounded slowdown, we show
in Section III-B1 that depending on the workload this objective
is subject to a lot of variability.

2) Alternative metric: Goponenko et al. [16] have argued
for the use of the AWF, where one weights the response time
by a priority proportional to the quantity of work (cores · time)
of each job. In the following we call this metric WRT for area-
Weighted Response Time.

WRT =
∑
i

Wi · RT i (3)

This metric is interesting for the following properties:

Proposition 1. Given a schedule:
1) Performing work earlier improves the WRT metric;
2) Permuting any amount of work without changing the

utilization profile2 of the schedule keeps the WRT metric
unchanged;

As long as the rigid job model is preserved (i.e. each job keep
the same runtime and number of cores).

2The utilization profile of a schedule is the function t 7→ u(t) where u(t)

is the instantaneous utilization at time t. Then U(t1, t2) =

∫ t2
t1

u(t)dt

t2−t1

While the second result was mentioned [16], we did not
find a formal proof of this result in the literature and have
provided it in the Supplemental Material [5, Section 2].

Interestingly, Proposition 1 highlights the fact that WRT is
a metric that measures the quality of the Utilization Profile,
and hence evaluates the packing efficiency of algorithms.
Compared to the utilization, WRT is able to give information
on the mean response time. It also keeps its relevance at
low utilization, even when the workload submission profile
varies. Indeed, it is able to compare two schedules with similar
average utilization if one schedule performs work earlier than
the other schedule.

WRT can therefore also be seen as an interesting alternative
to the utilization metric as well as an alternative metric to
Mean Response Time.

D. Additional comments

We have presented several limits that one faces when con-
sidering quantitatively optimization metrics. There are other
important considerations that one should consider.

1) Performance Gain: As a community we often value
large gains over previous algorithms. However, let us show
with a simple example how these gains can be deceptive.
Define the opposite of the utilization U as idle occupation
I = 1− U which is an objective that one wants to minimize.
Given an algorithm with an utilization of U1 = 95% (this
corresponds to current HPC utilization [20]). If another algo-
rithm improves this utilization by 1%, this corresponds to an
improvement of the idle time of 20% . So is a 1% gain a good
performance or not?

2) Measurement: How to measure correctly the perfor-
mance of a solution is also a complicated issue because of
non-steady state phases where behavior can be different. We
discuss this in more depth in Sections III-A4 and IV-B3.

3) Summary: As presented many objectives when opti-
mized have negative side effect for the scheduling of large
jobs on large scale platforms.

Yet many works, particularly recent works that discuss im-
proving batch-scheduling techniques using machine learning
still optimize these objectives. As an example, recent research
directions have focused on using RL-based scheduling in batch
schedulers [27], [28]. They show that by using RL into the
batch scheduling, one can improve considerably the response
time and bounded slowdown at a small cost in utilization.
We demonstrate the limits of these analysis in Section IV by
correctly analyzing the results.

In the next Sections, we show on specific use-cases what
happens when one does not stop at the quantitative perfor-
mance, but goes in depth of using a metric.

III. USE-CASE: THE IMPACT OF RUNTIME ESTIMATES

HPC Resource and Job Management Systems rely on user-
submitted runtime estimate functions. These estimates are
known to be inaccurate. Many work [3], [20] have focused
on improving runtime prediction.

To demonstrate the risk of evaluating quantitatively a
schedule, we propose to evaluate the performance of two
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notable runtime estimates functions: a perfect estimate, and the
estimate provided by the users (see Section III-A3). The results
on metrics detailed in Section II are detailed in Section III-B.

A. Evaluation Methodology

We simulate the execution of EASY-BF using the batch
simulator Batsim on the workloads of platforms Mira and
Theta. Our code is available at https://gitlab.inria.fr/rboezenn/
hpc_metrics_code.

1) Batsim: Simulations are run in Batsim [10] (version
4.1.0), a simulator to analyze batch schedulers with the EASY-
BF version of the algorithm easy_bf_fast from Batsched
(version 1.4.0). easy_bf_fast is an online scheduler. Batsched
is a set of Batsim-compatible algorithms implemented in C++.

Our most intense simulations (compute-wise) execute
10 000 jobs on 49 152 nodes, which corresponds to Mira’s
characteristics. A single simulation with this setup takes about
10 minutes to complete on a laptop with a processor intel i5-
8350U. It has 4 cores, 8 threads, a max frequency of 3.6GHz,
and 6MB of cache.

2) Workloads: We used traces from computers Mira and
Theta [1] of the Argonne National Laboratory. The Mira
supercomputer was launched in 2012 at the 3rd place of
TOP500 [2] HPC centers. It ran 49 152 nodes and was
maintained until 2019. The available trace covers years 2014
to 2018. It contains a total of 330k jobs.

The Theta platform was launched in 2016 and runs 4 392
nodes with traces from 2017 to 2022. We have not used the
first year of Theta because the number of cores used was
varying. Without this year, the trace contains about 420k jobs.

In both cases, system admins were giving incentives to users
to request a number of nodes which is an integer power of two,
that is nearly always the case [20].

For the evaluations, we create a total of 70 inputs by
partitioning the traces in sets of 10k consecutive jobs (30 for
Mira, 40 for Theta): we sorted traces by submission time, and
we used the jobs from index 1 to 300 000 (by slice of 10 000)
for Mira, and from index 1 to 400 000 (by slice of 10 000) for
Theta.

These samples provide a wide variability of workloads: on
Mira they span from 12 days of consecutive submissions to
110 days, with a mean duration of 59 days, while on Theta
they span from 15 to 61 days with a mean of 40 days.

The workloads are then constructed as follows. Consider
the jobs sorted by their submission times:

1) We study the workload starting from t1001, the submis-
sion time of its 1001st job;

2) The 1000 first jobs are used to create a non-empty queue
at the beginning of the analysis: all their submission
times are set to t1001.

3) Runtime estimate functions: The goal of this work is
to evaluate the impact of the precision of runtime estimates.
Hence, we define several walltime functions. Given r the
runtime of a job (in seconds):

• EXACT : r 7→ r + 1 second. This simulates an almost
perfect estimate (except for extremely small jobs, but this
simplifies the interaction with Batsim).

• USER-WALLTIME, it corresponds to the walltime pro-
vided by the users.

4) Measuring performance: Since we simulate subset of
the traces, we need to prune the traces for the performance
evaluation in order to remove possible side effects that may
not be representative.

a) Utilization related objectives: The utilization and its
standard deviation are measured on a given time window
as presented in Equation (2). If only a part of a job is
inside the window, we ignore the part of the job that is
outside the window. To remove side effects, we crop the
borders of the execution window to measure performances
when the scheduler is in its steady state, in consistence with
the literature [25]. The measurement window [t1, t2] is defined
s.t.:

t1 =0.15
(
max

i
tsub
i −min

i
tsub
i

)
t2 =0.85

(
max

i
tsub
i −min

i
tsub
i

)
.

b) Bounded slowdown and Response time: When com-
puting these objectives, we do not include the performance of
the first and last 15% jobs to measure the performance of the
steady state (For details: the 10% jobs in the initial queue are
included in these 15%, which mean that at the start we crop
the 10% in the initial queue plus the first 5% scheduled jobs.).
We use τ = 10s for the bounded slowdown (Equation (1)),
following the literature [25].

c) Relative improvement for a given metric: In the eval-
uation we discuss the relative improvement of EXACT over
USER-WALLTIME for an objective O (which we sometimes
abbreviate as Relative Improvement or RI). This relative im-
provement RI(O) is measured as:

• If O is a maximization objective (e.g. utilization, utiliza-
tion standard deviation), then

RI(O) =
OEXACT −OUSER-WALLTIME

OUSER-WALLTIME
(4)

• If O is a minimization objective (e.g. response time,
bounded slowdown), then

RI(O) =
OUSER-WALLTIME −OEXACT

OUSER-WALLTIME
(5)

This difference allows to clearly see that when RI(O) > 0 then
EXACT performs better than USER-WALLTIME by a factor
RI(O) on objective O, while when RI(O) < 0, then EXACT
performs worse than USER-WALLTIME by a factor −RI(O)
on objective O.

B. Result analysis

In this section we investigate the impact of walltime ac-
curacy in the performance of Resource and Job Management
Software in order to discuss various metrics.

The two runtime estimate functions are evaluated in Figure 5
over the various criteria discussed in Section II: Bounded
Slowdown (Section II-A), Utilization (Section II-B), Response
Time and WRT (Section II-C). In these figures, to discuss
the performance difference between the two runtime estimate

https://gitlab.inria.fr/rboezenn/hpc_metrics_code
https://gitlab.inria.fr/rboezenn/hpc_metrics_code
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(a) Mean Bounded
Slowdown

(b) Utilization (c) Mean
Response Time

(d) WRT

Fig. 5: Relative improvement of EXACT over USER-
WALLTIME for different metrics. The subfigures have different
scales. Utilization is a maximization objective while the others
are minimization objectives.

functions, we use the relative improvement of EXACT over
USER-WALLTIME as computed by Equations (4) and (5).

The quantitative results in Figure 5 demonstrate the im-
portance of the selection of the objective function. If we
study the bounded slowdown, having a perfect estimate of the
walltime seems to improve the performance of the Resources
and Job Management Systems (RJMS) by almost 50% which
seems remarkable. Utilization-wise, the performance only sees
marginal performance improvement (approximately 0.5%). On
the contrary, it seems that knowing in advance precisely the
runtime of an application can be detrimental to the response
time of the machine (approx. 4% decrease of performance for
Mira), but it does not hold if we measure the area-weighted
response time.

Looking at mean values is not enough. In the next section,
we analyze in depth these results.

1) Mean-Bounded Slowdown and Response Time: An ob-
servation of Figure 5a (on bounded slowdown metric) and 5c
(on mean response time) is the important variability of the
performance. Discussing the mean of an objective with high
variability is meaningless: the performance is highly influ-
enced by the workload

(a) Average
bounded slowdown

(b) Utilization (c) Mean response
time

(d) WRT

Fig. 6: Evolution of the Relative Improvement of EXACT over
USER-WALLTIME with several metrics when deleting the jobs
that last less than 1000s (Theta data). y-axis are not the same.

Another way to confirm this is to slightly change the
workload and see the impact on the objective. In Figure 6,
we compare the performance of the two algorithms on the

(a) Theta data

(b) Mira data

Fig. 7: Median Relative Improvement of the RT for Theta (up)
and Mira (down) jobs as a function of trun. The numbers on
the blue line are the numbers of jobs in each group.

workload that contains all jobs, and on the workload where
we have removed all jobs that last less than 1000 seconds.
Interestingly, after this transformation, only 50% of the jobs
remain, while 99% of the work remains.

After this transformation, for both objectives, the algorithm
that seemed to perform better now performs worse! It is not
the case for the two other metrics (Utilization and WRT). In
addition, one can remark that these objectives still have a very
high variability which means again that by selecting the right
input workloads, the results could be completely different.

These results show that mean bounded slowdown and mean
response time should not be used as quantitative optimization
criteria to evaluate the performance of a scheduler. Their high
sensitivity to small jobs and their high variability make then
unreliable objectives.

Qualitative analysis: These two metrics are nevertheless
useful to a qualitative analysis. The following analysis is based
on the mean response time with awareness of its bias.

On Figure 7, we plot the relative improvement of response
time as a function of job execution time.

Details on Figure generation: To group jobs, we divided the
interval [mini t

run
i ,maxi t

run
i ] in 18 groups of same size on a

geometric scale. We then only plot results of groups with more
than 50 elements.

For example, the first figure splits the set of jobs into
18 groups of jobs with similar execution time (only 16 are
displayed because 2 groups contain less than 50 jobs). The
blue line corresponds to the median relative improvement. The
values printed on the blue line are the numbers of jobs in each
group. The green dotted lines correspond to the first and last
decile.

Figure 7 shows a correlation between the job execution
time and its response time improvement by using EXACT.
Specifically we observe three groups: short jobs, medium-
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Fig. 8: Available work in the waiting queue as a function of
time for one of workload sample from Mira when scheduled
with the EXACT walltime function. This shows that the avail-
ability of jobs is not regular throughout the execution.

length jobs and long jobs. When switching from USER-
WALLTIME to EXACT:

• EXACT improves considerably the response time of small
jobs;

• Meanwhile, medium-length jobs see an increased average
response time;

• Finally, longer jobs benefit from a little improvement of
their response time.

Again, studying these objectives, one should be concerned
about the extremely high standard deviation of the perfor-
mance.

A more qualitative analysis like this one may help under-
stand the behavior of an algorithm over another one. Similarly,
one could study the impact of other parameters (for instance
the number of nodes, or the ratio trun

i /testimate
i ).

Particularly, in this case one could hypothesize that when
using better runtime estimates medium-length jobs are less
backfilled than they were when the runtime estimate of longer
jobs is really wrong. Long jobs (which are rarely backfilled)
benefit from fewer medium-lengthed jobs taking priority over
them.

Slightly out of scope of this study (but for the sake of
arguments), one can verify this intuition by measuring the
number of jobs that are indeed backfilled (see Table I, to
read it: 82% of the 142k jobs that are smaller than 1000s
are backfilled with USER-WALLTIME).

All trun
i < 1000s 1000s < trun

i < 20ks 20ks< Rt
Backfilled with 209k (75%) 116k (82%) 90.4k (71%) 2.84k (26%)

USER-WALLTIME
Backfilled with 199k (71%) 118k (83%) 80k (63%) 1.48k (14%)

EXACT

Total Number 280k 142k 127k 10.8k
of jobs

TABLE I: Number of Jobs backfilled with USER-WALLTIME
and EXACT in function of their runtime (Theta data). We
removed the first and last 15% jobs of each sample as they
are not used to compute response time.

To conclude, we can make the following recommendations on
mean response time and mean bounded slowdown:

1) In general, they should not be used to evaluate quanti-
tatively a solution;

2) They can help understand qualitatively the performance
of a solution. Again, one should be careful about unex-
plained large variance in performance.

2) Utilization:

(a) Data from Mira (b) Data from Theta

Fig. 9: Relative improvement of the Utilization of EXACT
over USER-WALLTIME as a function of the Utilization.

(a) Utilization for EXACT is 0.92
(RI: 0.29%).

(b) Utilization for EXACT is 0.95
(RI: 0.07%).

Fig. 10: Cumulative distribution functions of the utilization for
two selected scenarios from Mira where utilization difference
between EXACT and USER-WALLTIME is close to 0.

a) Qualitative analysis: With respect to the utiliza-
tion 5b, it seems that the improvement is extremely small
(about 0.5%). As we explained in Section II-B, this may not
be surprising and is an artifact of the non-constant arrival rate
(see Figure 8). When there is a low utilization (and low arrival-
rate), all jobs end-up being executed within the measured time-
window even with poor packing quality. To demonstrate this,
we plot in Figure 9 the relative improvement of the utilization
as a function of the Utilization of USER-WALLTIME.

The measure presented in Figure 9 confirms our intuition:
when the utilization is below 93% there is almost no utilization
improvement, while for high-utilization periods (above 95%
utilization), EXACT improves the system utilization by 1-
2%. Of course above 95% utilization the gap available for
improvement is extremely small, and it is hard to use this
improvement to quantitatively compare several solutions (dif-
ferent algorithms or in this case the impact of better runtime
estimates). This shows the limits of the utilization as an
objective to compare two solutions. Indeed, it is only a relevant
objective when higher than a certain threshold.

In Figure 10, we show the density distribution of EXACT
and USER-WALLTIME for two workloads where the relative
difference in utilization is almost null. We observe that the
solution that uses perfect estimation of walltime functions
has more scenarios with extremely low utilization and more
with higher utilization. We interpret it as a better management
of peaks of submissions, hence that the solution generally
performs better job packing. This would be consistent with
the fact that the algorithm using EXACT performs better in
periods of very dense utilization (> 95%).

b) Toward better objectives: As a quantitative objective
to be able to compare various algorithms, we propose to
measure the standard deviation (std) of utilization. For two
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Fig. 11: Relative improvement of the standard deviation of
the utilization as a function of the relative improvement of the
utilization (Mira and Theta data).

algorithms with identical utilization, high standard deviation
imply large variation of utilization, that we correlate with more
periods of high utilization and more periods of low utilization.

In Figure 11, we plotted the increase in standard deviation
as a function of the increase in utilization. Two clusters are
visible:

• A cluster with a relatively high increase in utilization, but
a drop in standard deviation.

• Another with a relative improvement of utilization close
to 0, but an increase in standard deviation

The first cluster corresponds to the data points of the figure
9 which have a clear improvement in utilization (note that the
y-axis of 9 is the x-axis of 11), while the second corresponds
to the data points where there is no clear increase in utilization.

In the first case, as the utilization is already better with
EXACT than with USER-WALLTIME, one can conclude that
EXACT is better without having to look at the standard
deviation. However, for the second cluster, it is not possible
to conclude that an algorithm is better than another just by
looking at the utilization: indeed, the utilization is quite close
to 0. So, one needs to look at the standard deviation (which
is up to 20% better with EXACT) to conclude that EXACT is
better than USER-WALLTIME.

Our conclusion is two-fold:
1) First, our experiments confirm that when a platform

is under-utilized, the utilization can be an irrelevant
objective.

2) In this particular case, the standard deviation allows to
compare various algorithms in order to determine which
one would be able to reach the highest utilization once
the platform becomes fully-utilized.

IV. USE-CASE: REINFORCEMENT-LEARNING FOR
RESOURCE MANAGEMENT

In the previous Section, we have claimed that using the
mean bounded slowdown was a problem when used to evaluate
quantitatively a solution. We have claimed in Section II-D that
this was particularly a problem for what we called black-box
algorithms, i.e. scheduling algorithm that take decisions that
are not explainable.

Explainability of algorithms When scheduling jobs using the
First-Come-First-Served strategy, one can explain the decisions

taken by the schedule (the oldest job gets priority). Similarly, in
the F1 algorithm provided by Carastan-Santos et al. [6], even
if one does not have the details on how the priority function is
obtained, the scheduling strategy is interpretable (a mix of size
of the job and release time of the job). We call these algorithms
explainable: the system administrator can explain the algorithm
to the users. By opposition, a recent line of work such as the
work by Zhang et al. [27] propose to train solutions via various
learning strategies. The scheduler then takes what it believes to
be the best solution. In this case one cannot explain what made
the scheduler take a decision over another one. This is one we
call a black-box algorithm.

In this Section, we demonstrate our claim by reproducing a
recent result by Zhang et al. [27] and by providing a different
analysis of the performance. We selected this work for several
reasons:

• It is one of the first work that provides a RL-based so-
lution for resource management, was published at SC’20
(a very visible conference in HPC) and has already been
cited more than 50 times which shows an engagement by
the community.

• It claims that “the learned model perform stably, even
when applied to unseen workloads, making them practical
for production use.”

• The main benefits observable from their solution is when
applied to the Mean Bounded Slowdown objective.

A. Methodological framework

For this section, we have used the code made available
by the authors at https://github.com/DIR-LAB/deep-batch-
scheduler. We used the last commit available (cd433e3) pushed
in May 2021. In addition to the RLScheduler code, the authors
provide their input traces, their trained models and other
baseline schedulers. This is what we used for the analysis
of this section. The code of our analysis is available at
https://gitlab.inria.fr/rboezenn/hpc_metrics_code.

1) Scheduling algorithms: RLScheduler has one network
model with several versions depending on the training: the au-
thors trained a separated version for each pair of trace (SDSC-
SP2, HPC2N, and Lublin-1 and Lublin-2) and optimization
metric (mean bounded slowdown, mean response time and
utilization).

In our analysis, we focused on the trace Lublin-1 (called
Lublin256 in the code) because it is the one with the highest
utilization, and hence where the importance of the scheduler is
likely to be the most notable (note that the trace is synthetic).

Let RLSCHED-MBSD-LUB1 be the model trained with
mean bounded slowdown on Lublin-1 traces, and RLSCHED-
UTIL-LUB1 the model trained with utilization on Lublin-1
traces. We studied the algorithms RLSCHED-MBSD-LUB1
and RLSCHED-UTIL-LUB1 with backfilling as well as the
algorithm FCFS-BF (first-come-first-served with backfilling)
provided in the github repository.

2) Traces: The traces included have a total of 10 000 jobs.
For their evaluations, Zhang et al. [27] performed ten inde-
pendent tests, scheduling 1024 randomly sampled consecutive
jobs of the trace. The seed for their tests were available. As
a sanity check, we verified that we could reproduce the main

https://github.com/DIR-LAB/deep-batch-scheduler
https://github.com/DIR-LAB/deep-batch-scheduler
https://gitlab.inria.fr/rboezenn/hpc_metrics_code
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results they obtained on the Lublin-1 trace (specifically those
presented in Table II ).

B. Analysis of results

When compared to FCFS-BF, Zhang et al. [27] reported the
following performance of the RLScheduler mechanism with
backfilling:

• It strongly and consistently improves the Mean Bounded
Slowdown [27, Table V, Table VII].

• It sometimes slightly improves utilization, and sometimes
slightly hurts it [27, Table VI].

• It strongly improves the Maximum Bounded Slow-
down [27, Table VIII].

For completeness, these results are reported in Table II.
In what follows, we re-discuss these results with a quali-

tative analysis and show results opposite to what the authors
observe. We conclude on the importance of a good method-
ological framework.

1) Visual representation: Before discussing qualitatively all
results, we present in Figure 12 the Gantt chart of three
schedules (with RL model and without). All these schedules
are computed on the same job data set.

(a) RLSCHED-MBSD-LUB1

(b) RLSCHED-UTIL-LUB1

(c) FCFS-BF

Fig. 12: Gantt chart for various scheduling strategy on the
same workload (Lublin-1, start at index 5000, 2048 jobs). The
jobs are in blue and the red lines represent the edges.

Note that for this data set, if the first job is released at time
0, then the last job is released at 10pm on day 17.

Already, one can clearly see on these examples a behavior
of RLScheduler that schedules many large jobs at the end
of the schedule. This is extremely concerning as it intuits

starvation. In addition, an observation is that the utilization
seems extremely unbalanced throughout the execution. All
this is of course circumstantial, but coincides with the various
observations that we made in the previous Section of this work.
In the rest of this Section we demonstrate that this is actually
a trend.

2) Mean Bounded Slowdown: We have showed in Sec-
tions II-A and III-B1 the limits of studying the mean bounded
slowdown: in terms of input dependency and high variability,
and with the fact that having an important improvement on the
mean bounded slowdown may mean unbalancing the workload
and having many small jobs executed first. This seemed
particularly noticeable on Figure 12.

We confirm these various results here by studying the wait-
time as a function of the work of each job (Wi = N cores

i trun
i )

in Figure 13, as well as recomputing the mean bounded
slowdown when the smallest jobs are removed from the trace.

Methodology To generate Figure 13, we used the Lublin-
1 dataset. We run the entirety of the 10 000 jobs for each
of the scheduling algorithm. We then divided the interval
[mini Wi,maxi Wi] in 9 groups of same size. Then, we box-
plotted the wait time of the jobs of each group.

Fig. 13: Wait time as a function a job work for several
schedulers.

The data observed on Figure 13 confirms the fact that what
the RL model does is to actually schedule small jobs as soon
as possible while delaying large jobs. This is particularly true
for the network trained on the bounded slowdown objective.

Finally, Table III, confirms our previous results in therm
of dependency of the mean bounded slowdown metric toward
small jobs. It compares the mean bounded slowdown results
obtained on the entirety of the Lublin-1 traces, and on the same
trace once we removed jobs with an execution time lower than
130 seconds. The remaining jobs represent 50.6% of the jobs
of the trace but 99.7% of the quantity of work. The network
was not re-trained on the new trace with deleted jobs.

This section confirms again the fact that the mean bounded
slowdown should not be used as an optimization objective.

3) Utilization: On the utilization performance, the first
point to be made is that all scenarios have quite low utilization:
the highest utilization observed by the authors is Lublin-1 with
87% (see Table II). This contradicts many recent results about
utilization in HPC centers (for instance on Mira the average
utilization is 95% [20]).

This could be explained if the trace had a low submission
rate, However, in this case, on average the system has a load
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Mean BSD Utilization Max BSD
Trace FCFS-BF RLSCHED-MBSD-# FCFS-BF RLSCHED-UTIL-# FCFS-BF RLSCHED-MBSD-#

Lublin-1 235.82 58.64 0.868 0.850 - -
SDSC-SP2 1595.1 397.82 0.682 0.707 7257 4116

HPC2N 127.38 86.14 0.639 0.642 2058 1147
Lublin-2 247.61 118.79 0.587 0.593 - -

TABLE II: Various performance difference between FCFS-BF, and RLSched (trained on the corresponding trace) [27].

FCFS+BF RL (Mbsd) Ratio of performances
Lublin-1 461 54 8.5

Lublin-1 with cut 34 11 3.1

TABLE III: Evolution of the mean bounded slowdown metric
when deleting short jobs.

much higher that what it can deal with. This is visible on
Figure 12 where we do not consider any jobs submitted after
day 18, but where the execution of the trace lasts until after
day 25. Indeed, the mean arrival rate of Lublin-1 is 272 cores-
seconds per second. As the platform has 256 cores, it would
therefore need extra cores to process all the jobs in time, even
with a utilization of 100%!

The explanation comes from an important methodological
error that was made in the evaluation of the utilization. When
measuring utilization, Zhang et al. [27] measure the utilization
of the whole execution of their small traces. In practice,
the beginning of the trace (which we can call "initialization
phase") and the end of the execution trace (which we can
call "clean-up phase") should not be used to measure the
utilization since their behavior would certainly change if the
trace increased in time.

This is particularly true for the RL algorithm where it seems
that the large jobs are delayed with each new small job, and
where, in practice they could never be executed.

In Figure 14, we show the difference of utiliza-
tion on a single sample, as a function of its size
(the number of jobs in the sample), using two mea-
surement strategies, one that does not use measurement
bounds, and one that measures utilization on the interval
[0.15

(
maxi t

sub
i −mini t

sub
i

)
; 0.85

(
maxi t

sub
i −mini t

sub
i

)
] as

proposed in Section III-A4.

Fig. 14: The dotted lines give the utilization when using no
measurement bound. The samples of length 1024, 2048 and
4096 start at index 5000, and the sample of size 10 000 starts
at index 0.

From Figure 14 we can make the following observations:

• When considering the full trace, the utilization of FCFS
is 96%. This is more coherent with what we know from

HPC centers [20] and far from the 87% claimed by Zhang
et al.

• The RLScheduler models have extremely poor utilization
performance, with a degradation up to 17% when con-
sidering the full trace for RLSCHED-MBSD-LUB1. This
result contradicts significantly the statements made by the
authors.

The lesson learned is that for utilization (i) it is important
to have a trace long enough and not a series of small traces;
(ii) one should be careful about initialization and clean-up
phases. In addition to a correct choice of evaluation criteria,
one should be extremely careful about the methodological
evaluation. Indeed, the methodology provided by Zhang et
al. [27] seemed to imply that the difference in utilization was
extremely low, while it is actually quite important when we
consider a much longer trace.

4) Max Bounded Slowdown: Given the observations from
the two previous sections, one may wonder why the authors do
not observe starvation and how they can claim an improvement
in Max Bounded Slowdown (see Table II). Note that the
authors did not measure it for Lublin-1, but experimental eval-
uation confirm their quantitative observations (see Figure 15).

Fig. 15: Max Bounded Slowdown of FCFS+Backfilling, and
RLScheduler+Backfilling when τ = 10 seconds.

The first element that should be noted and that should serve
as a warning is the value of this bounded slowdown: 15 000
for FCFS+BF. It essentially says that it can happen for a job
to wait for 15k times its size. If this was a one-hour job, then
it would mean 250 days. This semi-qualitative analysis tells
us that this number does not make sense.

It however makes sense if we consider the smallest jobs and
the bound τ = 10 seconds used for the computing the bounded
slowdown (Eq. (1)). In this case, a bounded slowdown of
15 000 corresponds to a wait time of 42h which corresponds to
the fact that the system is over-utilized and that the more we
move forward in time, the larger the queue. We can verify this
by increasing the size of τ (Figure 16), in this case the max
bounded slowdown loses several orders of magnitude, and the
max bounded slowdown of RLSCHED-MBSD-LUB1 becomes
2 times worse than that of FCFS+BF!
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Fig. 16: Max Bounded Slowdown of FCFS+Backfilling, and
RLScheduler+Backfilling when τ = 1 hour.

5) Final comments: Throughout this section, we were able
to demonstrate again the limits of the objective functions
we discussed before. In addition, we showed the importance
on how to measure them correctly (e.g. utilization and max
bounded slowdown). Interestingly, a simple critical look at the
results should have been enough to notice the methodological
errors (utilization of 87% is inconsistent with what we know,
same for a max bounded slowdown of 15 000).

Again, this strengthens our point that simple quantitative
analysis are extremely deceptive and are not sufficient. In
this case, it hides the fact that the Reinforcement Learning
Strategy delays large job indefinitely. This is less visible in
the paper because the authors only consider sets of 1024 jobs,
but becomes more apparent if we increase the number of jobs
(see Figure 17).

(a) 1024 jobs

(b) 2048 jobs

(c) 4096 jobs

Fig. 17: Gantt chart obtained with RLScheduler-MBSD de-
pending on the number of jobs used (start at index 5000).

Correctly studying optimization metrics is of tremendous
importance to our field, particularly when studying black-

box algorithms (such as schedules that are computed by
Reinforcement Learning algorithms).

V. RELATED WORK

The question of metrics in HPC Batch schedulers is ad-
dressed by Goponenko et al. [16]. They focus on the question
of packing efficiency and fairness. They consider the metrics
of mean bounded slowdown, mean response time, WRT, and
a last metric weighted by number of requested nodes that
increases with the waiting time. Utilization is not considered as
a metric but as a global objective for selecting a good metric.
They conclude in a poor interest of mean bounded slowdown
and mean response time in terms of efficiency and fairness.

The choice of one or more metrics is driven by some general
abstract objective, as quality of packing or fairness between
users. Verma et al. [26] compare four metrics designed for
packing efficiency including utilization. The other metrics are
Hole filling, that counts the number of unitary jobs that could
have been added in holes of the schedule, workload inflation
that increases the size of the workload until the limit of
pending jobs is reached, and cluster compaction that reduces
the number of nodes until the same limit. These metrics are
compared for different criteria including accuracy and time
for computation of the metric (the two last metrics imply the
computation of multiple schedules).

Some other metrics have been used to measure the packing
capacity of an algorithm. The loss of capacity is the name of
two different metrics used to evaluate idle time while jobs
are waiting. Leung et al. [18] use the loss of capacity to
measure the capacity of improvement of the utilization, that is
the average minimum between the number of nodes requested
by pending jobs and the number of available nodes. Zhang
et al. [29], use it to measure the average fraction of idle
nodes when there are waiting jobs. Some authors [8], [21]
consider the mean response time and bounded slowdown for
different categories of jobs based on their duration and number
of requested nodes.

Inioluwa Deborah Raji et al. [22] criticize the fact that AI
solutions are often deployed while not working. They claim
that their functionality is often overlooked and should not be
taken as granted.

VI. CONCLUSION

Evaluating correctly the performance of resource and job
management systems is a major question that relies on many
dimensions. With the generalization of black-box recommen-
dation systems, being confident in the evaluation is a key
research problem.

Tsafrir et al. [24], [25] have discussed how one should
generate workloads in order to evaluate correctly the impact
of runtime estimates. In the line of their work, we discuss
the objectives that one should consider in order to evaluate
correctly the impact of runtime estimates on job schedulers.
We also provide elements on a correct evaluation framework.

Specifically we showed the following results:
• We underlined the importance of some critical but often

overlooked practices in performance measurement. It
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includes using measurement bounds, looking qualitatively
at the results... The most important of which being that
one should observe the variability of one’s result and
should not use an objective if the variability is too high.
These aspects become even more critical when dealing
with black box algorithms.

• Certain average objectives such as the mean bounded
slowdown or mean response time should not be used as
optimization criteria in HPC. They heavily favor small
jobs which is irrelevant for the domain. In addition,
this also leads to a very strong reliance on small jobs
which causes them to be subject to too much variability
depending on the input.

• On the contrary, we believe as others before us that
the area-Weighted Response Time (WRT) may be a
more robust objective for the analysis of HPC Resource
Management solutions. It works as both an administrator
and a user metric. In addition, it does not share the flaws
of the other user-centric metrics we have discussed, and
contrary to utilization it stays a relevant metric when the
platform is partially under utilized.

• We have discussed the limitation of the utilization for a
given workload to compare different algorithms, and un-
derline the importance of the methodological framework
to study it. In the case where the utilization does not allow
differentiating between various algorithms, we introduced
a new optimization metric which can help inform about
the quality of a schedule: the standard deviation of the
utilization.

A side result of our analysis is that Easy-Backfilling is
actually extremely efficient for HPC machines, even when
walltime estimates are bad, and that we should be extremely
wary of work that claim high gains over this algorithm.
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